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ABSTRACT
The evolution of Artificial Intelligence Generated Contents (AIGCs)
is advancing towards higher quality. The growing interactions with
AIGCs present a new challenge to the data-driven AI community:
While AI-generated contents have played a crucial role in a wide
range of AI models, the potential hidden risks they introduce have not
been thoroughly examined. Beyond human-oriented forgery detec-
tion, AI-generated content poses potential issues for AI models orig-
inally designed to process natural data. In this study, we underscore
the exacerbated hallucination phenomena in Large Vision-Language
Models (LVLMs) caused by AI-synthetic images. Remarkably, our
findings shed light on a consistent AIGC hallucination bias: the
object hallucinations induced by synthetic images are characterized
by a greater quantity and a more uniform position distribution, even
these synthetic images do not manifest unrealistic or additional rel-
evant visual features compared to natural images. Moreover, our
investigations on Q-former and Linear projector reveal that synthetic
images may present token deviations after visual projection, thereby
amplifying the hallucination bias.
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1 INTRODUCTION
With the rapid evolution of generative model techniques, Artificial
Intelligence Generated Contents (AIGCs) have ushered in a new
era of prosperity [22, 26]. AIGCs are no longer mere outputs of
generative models; rather, they encompass the information generated
during human-model or model-model interactions [3]. This result
in a large amount of synthetic content rapidly flooding into the
Internet, and people may have interacted with synthetic content
unconsciously.

Nevertheless, the pervasive AI-generated content may give rise to
several challenges. The first challenge to gain widespread attention
is forgery detection [21]. This field aims to assist humans in distin-
guishing between natural and synthetic content and is considered
a crucial aspect in AI safety. Particularly, a recent study [18] has
indicated that the recognition of synthetic images has resulted in an
approximate 40% human error rate, solidifying the fact that humans
are easily confused by AIGCs. Another under-examined challenge
is the impact of AI-generated content on AI models themselves. As
synthetic data plays a more common role in the training and rea-
soning process [28], the hidden risks of AIGCs to the AI models
are urgent yet largely unexplored. Taking Figure 1 as an example,
synthetic images with identical semantics are more likely to induce
hallucinations in LVLMs than natural images. This is largely because
these models’ training data, architecture, and training processes are
inherently designed for natural data. Applying models trained on
natural data to synthetic datasets without complications could lead
to unexpected outcomes.
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Figure 1: A hallucination example on both synthetic (right) and
natural images (left), where the highlighted fonts indicate the
hallucinated content. Evaluation results across various vision-
language tasks, such as semantic descriptions and factual judg-
ments, consistently illustrate the existence of a synthetic image-
induced hallucination bias.

We are motivated to explore the topics of how synthetic data
may impact AI models. In particular, this study focuses on the hal-
lucination issues that synthetic images may cause in Large Vision-
Language Models (LVLMs). Before addressing the core research
question, we first establish a synthetic image-involved hallucination
evaluation environment for LVLMs. Many current generative models
adopt the Text-to-Image synthesis approach [22, 30]. However, the
generation process leads to two primary issues: 1) semantic distor-
tion [31], where synthetic images lack authenticity (e.g., the finger
problem [18]) and; 2) semantic ambiguity [19], where synthetic im-
ages lack consistency and struggle to respond to text prompts. Given
the absence of an available synthetic image dataset for hallucination
evaluation, mitigating the impact of the aforementioned issues is
necessary. To this end, we introduce a Semantics Translation (ST)
method, which begins with a natural image and employs 1) caption
generation and revision, and 2) semantic filtering strategies to con-
trol the authenticity and consistency of the synthetic image, ensuring
that the evaluation is not affected by the quality of the synthetic
image.

We translate two widely used hallucination evaluation datasets:
POPE [13] and AMBER [23], and delve into the hallucinations
induced by synthetic images. We also compare them with the cor-
responding natural images. Surprisingly, our findings indicate that
LVLMs have a bias towards synthetic images, as shown in Fig-
ure 1. We refer to this phenomenon as synthetic image-induced
hallucination bias (shorten as hallucination bias). Our further ex-
periments reveal that the hallucination bias mainly exhibits 1) a
greater quantity and 2) a more uniform position distribution of hal-
lucinated content. Particularly, these phenomena are corroborated
across different LVLMs and evaluation datasets. In other words,
these LVLMs appear to adopt some inherent non-semantic short-
cuts in synthetic images, which lead to a continuous impact on the
extrapolation process. Then, we are committed to further studying

how synthetic images confuse LVLMs. Drawing inspiration from
the visual projection process of LVLMs, we examine two prevalent
visual projection modules: Q-former and Linear. Specifically, our
investigations shed light on the fact that 1) turning off the Q-former
projection or 2) deepening the layers of the Linear projection can 1)
effectively mitigate the token deviation of synthetic images and 2)
narrow the synthetic image-induced hallucination bias. That is to say,
LVLMs tuned in this way may generate less hallucinated content in
response to synthetic images.

Our core contributions are as follows: (1) In the context of the
rapid development of AIGC, we explore the impact of synthetic
images on the hallucination problem of LVLMs for the first time. To
achieve this, we introduce a semantics translation method to establish
a synthetic image-involved hallucination evaluation environment. (2)
Extensive experiments uncover the synthetic image-induced halluci-
nation bias of LVLMs, mainly manifesting as (i) a greater quantity,
and (ii) a more uniform position distribution. (3) We provide an
in-depth analysis on the synthetic image-induced hallucination bias
from the perspective of visual-text alignment. Experimental results
reveal that the current design of the visual projection module may
cause the token deviation of synthetic images, thus resulting in the
hallucination bias.

2 RELATED WORKS
AIGC and its Challenges: Recent advances in Artificial Intelli-
gence Generated Contents (AIGCs) have profoundly transformed
the approach to contents generation, and offered numerous benefits
for humans in various aspects of life and work [25]. For instance,
generative models such as Stable Diffusion [19] or ChatGPT-4 [1]
can generate high-quality image or text information by adhering to
the textual descriptions prompted by users. However, as AIGCs are
progressively introduced into the online world and applied to society,
it’s essential to take note of certain potential hidden risks they may
introduce. The first challenge to gain widespread attention is fake
detection, which has been seen as the boundary of AI safety [21].
Another prevailing challenge stems from the insufficient examina-
tion on the impact of AI-generated content on AI models themselves.
Specifically, certain researches have identified multifaceted risks
associated with AIGCs, including issues related to security, bias, and
privacy breaches [3, 4, 8, 24]. Furthermore, recent studies [6, 27]
have demonstrated that synthetic data can introduce source bias in
both text and cross-modal retrieval for web search, leading to an ele-
vated ranking of AI-generated content (AIGCs). Therefore, within
the context of the widespread application of AIGC, it is crucial to
thoroughly investigate the potential risks it may pose.

Hallucinations of LVLMs: Large Vision Language Models [2, 16,
29, 34] (LVLMs) are regarded as a natural extension of Large Lan-
guage Models [32] (LLMs). Through rich visual-text instructions-
tuning, LVLMs have demonstrated remarkable progress in tackling
complex multi-modal tasks, such as Visual Grounding and Visual
Question Answering (VQA) [2, 16, 29, 34]. However, LVLMs are
also plagued by the hallucination problem [10, 13, 17, 23], in which
the model either 1) depicts inaccurate objects or 2) entirely fabri-
cates content from associated images. These phenomena represent
a major bottleneck in their deployment and thus limit their practi-
cality in many scenarios [5, 33]. Recent research has delved into
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Figure 2: The pipeline of semantics translation method. On the left side, we introduce caption generation and revision method to
synthesize a correct description of the given natural image. Red represents the redundant or incorrect information within the initial
caption. On the right side, we utilize image synthesis and filtering strategy to sample the final synthetic image, ensuring a strict
correspondence to the revised caption and the input natural image. highlighted represents the redundant object in image synthesis
process. The final synthetic image satisfies the criteria of authenticity and consistency.

Figure 3: The comparison of key object positions before and after
the caption revision. Taking Stable Diffusion v1.5 as an example,
where the accepted character limit is 77, the distribution of key
objects in the revised caption generally satisfies the limits.

hallucination problems from the perspective of evaluation and miti-
gation [17]. In terms of evaluation, POPE [13] defines the hallucina-
tion problem as a binary classification task, aiming to explore the
model’s perceptual ability with respect to specific objects present
in the image. Meanwhile, AMBER [23] has contributed to the most
comprehensive hallucination evaluation dataset by extending the
binary evaluation approach of POPE and introducing generative task
evaluation. The mitigation of hallucination generally involves three
aspects: (1) Pre-processing, commonly achieved by providing high-
quality image-text pairs and well-designed instruction-tuning [14];
(2) In-processing, where the model is enhanced by strengthening
visual-textual feature learning [9]; (3) Post-hoc processing, known
for its superior scalability, usually alleviates model hallucinations in
the decoding stage [11].

3 SEMANTICS TRANSLATION
We focus on ensuring accurate hallucination evaluation on synthetic
images, with the precondition of excluding the quality influence.

Specifically, a synthetic image should meet: 1) authenticity, where
synthetic semantics should align with human cognition; and 2) con-
sistency, where the synthetic image should accurately respond to the
text prompt. In this section, we introduce a semantics translation
method to synthesize high-quality images. As shown in Figure 2,
the synthesis process of semantics translation method is constrained
under a natural image supervision through the following two steps:
1) Caption Generation and Revision, transforming visual semantics
into detailed textual semantics(Section 3.1); and 2) Image Synthe-
sis and Filtering, involving (i) image over-sampling and (ii) image
filtering based on similarity (Section 3.2).

3.1 Caption Generation and Revision
In this subsection, we translate the visual semantics of the given
natural image into the textual semantics. As shown in Figure 2 (left),
we employ GPT-4V(ision) to capture the key semantics. To main-
tain accurate textual semantics, we revise the extracted information
through GPT-3.5.

Caption Generation: In order to ensure that the generative model
receives text prompts closely aligned with the semantics of the given
natural image, we employ GPT-4V to obtain coarse-grained captions.
However, two notable issues persist in the generated captions: 1)
redundant or missing information, where the generated semantics
do not exist or fail to include the object that should be presented
in the image; and 2) excessive caption length, where the generated
captions often exceed the word limit accepted by most generative
models. This results in the loss of semantic information beyond the
word limit, thereby disrupting the consistency of semantics.

Caption Revision: To mitigate the aforementioned issues, the gener-
ated caption are revised by GPT-3.5. Specifically, we provide manual
annotations to assist GPT-3.5 in comprehending and revising the
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Table 1: The overall evaluation results of POPE on both synthetic and natural images. Δ indicates the hallucination gap between
natural and synthetic images. We use Δ represent the synthetic image-induced hallucination bias.

Model Image
Random Popular Adversarial

Accuracy F1 Yes (%) Accuracy F1 Yes (%) Accuracy F1 Yes (%)

MiniGPT-4
(13B)

Natural 70.00 72.38 58.60 62.50 67.31 64.70 63.43 68.21 65.03

Synthetic 66.70 71.27 56.70 58.43 66.63 64.57 57.87 66.19 64.60

Δ 3.30 1.11 1.90 4.07 0.68 0.13 5.56 2.02 0.43

mPLUG-Owl
(7B)

Natural 60.20 70.99 87.20 53.23 67.39 93.43 53.50 67.75 94.17

Synthetic 58.90 70.04 87.17 52.43 67.41 53.43 52.87 67.25 93.93

Δ 1.30 0.95 0.03 0.80 -0.02 40.00 0.63 0.50 0.24

LLaVA-v1
(7B)

Natural 62.47 72.55 86.73 55.53 69.02 93.53 53.33 68.02 95.93

Synthetic 60.10 71.38 83.43 53.20 68.05 92.47 52.40 67.66 93.70

Δ 2.37 1.17 3.30 2.33 0.97 1.06 0.93 0.36 2.23

LLaVA-v1.5
(7B)

Natural 90.00 90.12 51.20 86.40 87.01 54.67 79.70 81.74 61.17

Synthetic 84.37 83.57 45.17 81.37 81.01 48.10 74.73 75.84 54.60

Δ 5.63 6.55 6.03 5.03 6.00 6.57 4.97 5.90 6.57

QWen-VL
(13B)

Natural 86.07 84.18 38.07 84.90 83.27 40.23 82.73 81.29 42.27

Synthetic 78.37 73.33 31.10 76.83 72.23 33.43 74.97 70.70 35.43

Δ 7.70 10.85 6.97 8.07 11.04 6.80 7.76 10.59 6.84

existence, quantity and the relation semantics in the scene. Detailed
instruction is available in the Appendix. As shown in Figure 3, the
length of the revised caption is generally in line with the word limit
set by the generative model, ensuring that all key semantic informa-
tion can effectively prompt the generative model.

3.2 Image Synthesis and Filtering
Given the revised caption, we utilize Stable-Diffusion v1.5 to syn-
thesize a set of candidate images. As shown in Figure 2 (right), we
apply a filtering strategy to the candidate set, resulting in the final
synthetic image with the most authentic and consistent semantics.

Image Synthesis: The revised captions are employed as input prompts
for image synthesis. We can more easily sample the synthetic im-
age that are similar to natural image by increasing the sampling
times. Therefore, we adopt an over-sampling strategy by conducting
multiple generations with different random seeds to obtain a set of
candidate images.

Image Filtering: The filtering process includes two stages: (1) En-
suring authentic semantics in synthetic images, with a focus on
avoiding (i) the depiction of objects not existing in natural images or
(ii) introducing objects that contradict human cognition. To achieve
this, we initially extract objects using automated segmentation tools
[35]. Subsequently, we eliminate images displaying an excess or
absence of objects in their annotation results when compared to the
corresponding natural image. (2) Maintaining consistent semantics
with natural images, with a focus on the similarity between synthetic
and natural images. Specifically, we filter the candidate set from
two dimensions: (i) Image perceptual similarity, referred to as the
perceptual system’s understanding of the similarity between two
images (e.g., high-level semantics in terms of attributes and rela-
tions of objects). We use DreamSim [7], which better corresponds to

human perception, to measure the perceptual similarity between syn-
thetic and natural images. (ii) Image semantic faithfulness, referred
to as the alignment with textual annotations (e.g., existence-level
semantics). Specifically, we compute the cosine similarity between
the synthetic image and textual annotations through the CLIP [20]
model. Detailed settings are available in the Appendix. Finally, we
select the images with lower DreamSim scores and higher CLIP
scores as the final synthetic images.

4 HALLUCINATIONS ON SYNTHETIC
IMAGES

After excluding the influence of synthetic image quality issues on
hallucination evaluation, this section delves into the synthetic image-
induced hallucination. To more intuitively reflect the impact of
synthetic images, we also report the hallucination results on the
corresponding natural images and conduct a fair comparison in
the context of consistent semantics. Specifically, we first introduce
the evaluation datasets and metrics to ensure a comprehensive ex-
amination (Section 4.1). Subsequently, we quantify the synthetic
image-induced hallucinations across different LVLMs and datasets
from perspective of hallucination quantity and position distribution
(Section 4.2). Finally, we further investigate the effects on hallucina-
tion bias through experiments involving 1) prompt templates, and 2)
generation temperatures (Section 4.3).

4.1 Experiment Setup
Dataset: We selected two widely used datasets, POPE [13] and AM-
BER [23], as benchmarks for hallucination evaluation. Synthetic im-
ages corresponding to these datasets are obtained through semantics
translation method. POPE focuses on existence-type hallucination,
comprising 500 images with corresponding 9000 annotations. AM-
BER offers a richer setting with diverse dataset scaling, reasoning
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Table 2: The overall evaluation results of AMBER on both synthetic and natural images. We consider one generative and three
discriminative tasks, including the understanding on existence, attribute and relation semantics of objects.

Model Image
EXISTENCE ATTRIBUTE RELATION GENERATIVE

AMBER
Accuracy F1 Accuracy F1 Accuracy F1 CHAIR (↓) Cover (↑)

MiniGPT-4
(7B)

Natural 10.70 19.30 54.90 39.30 57.20 29.50 22.00 59.50 51.46

Synthetic 10.50 19.00 54.40 39.40 57.60 27.30 23.70 52.40 50.56

Δ 0.20 0.30 0.50 -0.10 -0.40 2.20 -1.70 7.10 0.90

MiniGPT-4
(13B)

Natural 82.80 90.50 58.80 48.10 55.80 60.30 14.80 59.80 68.62

Synthetic 60.20 75.10 57.40 42.80 55.50 53.40 17.20 49.20 63.46

Δ 22.60 15.40 1.40 5.30 0.30 6.90 -2.40 10.60 5.16

mPLUG-Owl
(7B)

Natural 17.00 29.00 56.10 33.80 60.50 28.50 22.10 49.90 54.54

Synthetic 17.20 29.30 54.80 29.70 58.40 28.70 22.20 45.30 53.53

Δ -0.20 -0.30 1.30 4.10 2.10 -0.20 -0.10 4.60 1.01

LLaVA-v1
(7B)

Natural 16.20 27.90 66.20 57.30 52.40 61.20 11.7 49.9 69.41

Synthetic 5.50 10.40 61.00 48.60 61.90 56.10 14.2 47 62.84

Δ 10.70 17.50 5.20 8.70 -9.50 5.10 -2.5 2.9 6.57

LLaVA-v1.5
(7B)

Natural 72.80 84.20 73.20 66.00 72.70 69.50 7.20 50.80 83.44

Synthetic 70.90 82.90 67.80 61.40 68.60 67.90 12.10 43.60 79.17

Δ 1.90 1.30 5.40 4.60 4.10 1.60 -4.90 7.20 4.27

QWen-VL
(13B)

Natural 82.50 90.40 81.80 81.10 71.50 60.70 6.80 49.30 86.79

Synthetic 87.40 93.20 70.10 73.10 55.80 61.70 10.00 33.80 83.00

Δ -4.90 -2.80 11.70 8.00 15.70 -1.00 -3.20 15.50 3.79

Figure 4: Hallucination statistics on different discriminative tasks reasoning within each pair of synthetic and natural image. Discrim-
inative task consider reasoning on attribute, existence and relation semantics, separately. We highlight that the attribute semantic
contains the action, number and state information of the annotated objects, separately.

tasks, and hallucination types. Specifically, AMBER 1) includes
1004 images with corresponding 15200 annotations; 2) assesses both
generative and discriminative tasks reasoning and; 3) encompasses
three types of model hallucination, including existence, attribute,
and relation.

Metrics on Generative Task Reasoning: We follow the settings in
AMBER, where CHAIR and Cover are used to evaluate the halluci-
nation. CHAIR measures the frequency of hallucinated objects in the
responses, while the Cover refers to as the coverage of objects occur-
ring in natural images. Generally, an ideal response should maintain
a low hallucination level without sacrificing response quality too
much, which means a lower CHAIR and a higher Cover.

Metrics on Discriminative Task Reasoning: The hallucination
evaluation for the discriminative task is usually defined as a binary

classification. Considering the imbalanced distribution of yes and
no answers in the question annotations, we referred to POPE and
adopted various metrics, including Accuracy, Precision, Recall, and
F1-score. Additionally, we report the ’Yes’ ratio in POPE to reveal
the confidence behavior of LVLMs.

Model to be Evaluated: We conduct hallucination evaluation on
the current mainstream LVLMs, including MiniGPT4 (13B) [34],
LLaVA-v1 (7B) [16], LLaVA-v1.5 (7B) [15], mPLUG-Owl (7B)
[29] and Qwen-VL (13B) [2].

4.2 Overall Evaluation Results on Synthetic
Image-induced Hallucination

Observation on Hallucination Quantity: Table 1 and Table 2
present the evaluation results of the mainstream open-source LVLMs
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Figure 5: The relative position distribution of hallucinated ob-
jects between synthetic and natural images.

on both AMBER and POPE datasets. A consistent observation
emerges that hallucinations induced by synthetic images are gener-
ally more pronounced than those observed in natural images. Addi-
tionally, we have the following noteworthy observations: (1) LVLMs
are easily confused by synthetic images in generative tasks reasoning.
This manifests particularly in i) an increased frequency of halluci-
nated objects and ii) the limited coverage of objects occurring in
the image. Moreover, given the consistency constraint on global se-
mantics between natural and synthetic images, it is counter-intuitive
for the LVLMs to generate more hallucinations in response to syn-
thetic images. This observation suggests that LVLMs may capture
some non-semantic shortcuts beyond the capabilities of the human
vision system. (2) The primary source of synthetic image-induced
hallucinations in discriminative tasks reasoning stems from the at-
tribute semantics. Table 2 provides a detailed comparison among
three discriminative tasks, revealing that synthetic images induce
higher hallucination results in attribute semantics. Our further analy-
sis includes a comparison of hallucination numbers within each pair
of synthetic and natural images across diverse attribute semantics,
involving number, action, and state semantics of objects. As shown
in Figure 4, synthetic images induce higher hallucinations across all
three attributes. (3) The synthetic image-induced model reasoning
behavior appears to be under-confident. As shown in Table 1, a
surprising observation emerges that the ’Yes’ ratio in LVLMs rea-
soning about synthetic images is much lower than that of natural
images. This implies that the non-semantic shortcuts in synthetic
images weaken the confidence of reasoning process. In other words,
synthetic images are more likely to induce the model to say ’No’.

However, on the AMBER result of existence task reasoning,
Qwen-VL exhibits higher accuracy on synthetic images, yielding
inconsistent behavior. We attribute this disparity to the nature of
existence-type hallucination annotations in the AMBER dataset,
which consist entirely of counterexample (i.e., questions that con-
sider objects not present in the image). The results in POPE indicate
that Qwen-VL has the lowest ’Yes’ ratio among all evaluation mod-
els, suggesting a low confidence in reasoning discriminative tasks.
Given this discrepancy takes advantage of AMBER’s annotation to
some extent, it does not impact the overall findings.

Table 3: Hallucination evaluation on generative task under dif-
ferent templates, where brief-desc and detailed-desc refer to as
"Generate a brief/detailed caption of the image", separately. Red
indicates a more severe hallucination bias.

Model Image
brief-desc detailed-desc

CHAIR (↓) Cover (↑) CHAIR (↓) Cover (↑)

MiniGPT-4
(13B)

Natural 5.30 32.20 13.50 58.00

Synthetic 7.70 28.50 16.90 48.50

Δ -2.40 3.70 -3.40 9.50

mPLUG-Owl
(7B)

Natural 9.70 39.70 20.60 48.60

Synthetic 12.50 33.20 21.00 44.30

Δ -2.80 6.50 -0.40 4.30

LLaVA-v1.5
(7B)

Natural 2.80 36.30 6.20 49.80

Synthetic 6.70 32.10 10.30 43.10

Δ -3.90 4.20 -4.10 6.70

Qwen-VL
(13B)

Natural 6.10 30.60 6.30 46.30

Synthetic 12.80 21.90 14.80 32.20

Δ -6.70 8.70 -8.50 14.10

Observation on Hallucination Position Distribution: We mainly
focus on generative task reasoning and perform Kernel Density Esti-
mation (KDE) examining the relative position distribution on both
synthetic and natural image-induced hallucinated object. As shown
in Figure 5, we observe that in LVLMs’ responses to natural images,
hallucinated objects tend to appear more at the front of the response,
corresponding to the peak of the density curve (i,e., blue distribu-
tion) located at the beginning of the relative position. In contrast, in
responses to synthetic images, hallucinated objects are relatively uni-
formly distributed across various locations (i.e., purple distribution).
This observation directly indicates that LVLMs usually generate
more "security contents" at the end of the response. In contrast,
synthetic images exhibit a continuous impact on the extrapolation
process of LVLMs, thus resulting in higher hallucination results.

4.3 Ablation Study
Previous analyses have demonstrated that the hallucinations induced
by synthetic images differ from those of natural images, character-
ized by a greater quantity and a more uniform distribution. We define
the above phenomenon as the synthetic image-induced hallucination
bias. In this subsection, we further investigate the effects on halluci-
nation bias, specifically from the perspectives of prompt templates
and generation temperature.

Observation on Prompt Templates: For generative task, AMBER
uses the most concise and commonly used generative prompt, "De-
scribe this image" to obtain descriptions of images from LVLMs.
Drawing inspiration from POPE’s design, we opt "Generate a brief/
detailed caption of the image", separately, and explore the influence
of prompt templates on the hallucination bias. Table 3 presents the
evaluation results of different LVLMs under two prompt templates.
A noticeable hallucination bias persists for synthetic images, re-
gardless of whether the prompt template is designed for obtaining
detailed or brief descriptions.

Intriguingly, we observe that the long-text generation process
appears to amplify the hallucination bias, indicating that the trend of
increasing the quantity of hallucinated content in synthetic images
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Figure 6: (a) Quantity evolution of hallucinated objects when
response to both synthetic and natural images. (b) The evolution
trend of the hallucination quantity with relative response length
on MiniGPT-4 (13B).

surpasses that in natural images. Building upon this finding, we seek
insights into the quantity evolution of hallucinated objects in the
two types of images. As hypothesized in Figure 6 (a), the hallu-
cination bias in position distribution reveals that synthetic images
exert a continuous impact on the extrapolation process, leading to
the ongoing generation of hallucinations. In contrast, natural images
typically achieve the saturation of hallucinations before synthetic
images, thus amplifying the hallucination bias. Nevertheless, the
extrapolation length is typically predetermined before the reasoning
(e.g., ’max_new_token’ generally does not exceed 512), imposing
an upper bound on the hallucinations quantity for both two types of
images. Results on MiniGPT-4 confirm our hypothesis, as shown in
Figure 6 (b).

Observation on Temperature: The temperature serves as a crucial
hyper-parameter in controlling the randomness and creativity of the
text generation process in LVLMs. We investigate the impact on
hallucination bias by reasoning under different temperatures. As
shown in Figure 7, we observe that synthetic images consistently in-
duce higher hallucinations, regardless of the temperature. Moreover,
higher temperatures lead to an increased frequency of hallucinated
objects, although it does not noticeably affect the coverage of objects
present in the image. This is attributed to the fact that a higher tem-
perature flattens the probability distribution, granting all words an
equal chance of selection. Consequently, this increase the probability
of generating hallucinated words without significantly altering the
generation of objects present in the image.

5 INVESTIGATING THE HALLUCINATION
BIAS: VIEWPOINT FROM VISUAL
PROJECTION MODULE

Previous discussions have confirmed that synthetic images indeed
induce LVLMs to generate more hallucinated content. However,
synthetic images also exhibit proficiency in successfully engaging
in visual segmentation tasks, as evidenced by the consistency of
segmentation annotations with natural images (refer to Section 3).
The apparent contradiction between these two phenomena raises
questions about how synthetic images confuse LVLMs.

It is well-established that an image token is derived by the visual
encoding and visual projection processes within LVLMs. Intuitively,
the transformation process into an image token may amplify the
impact of non-semantic shortcuts. At the same time, given the avail-
able difference in the visual representations between natural and

Figure 7: Hallucination evaluation on generative task under
different temperatures, where we report CHAIR and Cover
scores on LLaVA-v1.5 (7B) model.
synthetic images (e.g., Deepfake detection [21] seeks differences
between real and fake faces in the feature space.), we are motivated
to examine the effects of synthetic image on the visual projection
process. Specifically, we analyze two types of LVLMs represented
by Q-former (Section 5.1) and Linear (Section 5.2) projection, with
a focus on 1) the relative distance between synthetic and natural
images in different token spaces and; 2) the correlation with halluci-
nation bias.

5.1 Q-former Projection
Q-former, serving as a vision-language connector outfitted with
learnable queries for efficient cross-attention mechanisms, stands
as a central innovation in BLIP-2 [12]. To investigate the effect of
synthetic images on the Q-former projection, in this subsection, we
demonstrate the changes in 1) relative distance, and 2) hallucination
bias before and after turning off Q-former visual projector.

Experiment Setup: We deploy two variants, namely MiniGPT4-
Vicuna0 and MiniGPT4-LLaMA-2-Chat, respectively. Both of them
utilize the pre-trained BLIP-2 as the vision encoder. Nevertheless, the
former retains the Q-former projection in extracting image tokens,
while the latter abandons Q-former, aligning with our fundamen-
tal requirements. We employ kernel density estimation to visualize
the distribution shift of the relative distance between synthetic and
natural image tokens. Furthermore, both two LVLMs undergo hal-
lucination evaluation on synthetic images. This exploration aims
to uncover the relationship between the Q-former projection and
hallucination bias.

Observations on Relative Distance: The tokens of synthetic im-
ages deviate from those of natural images after Q-former projection.
As illustrated in Figure 8 (a), it is observed that the distribution
of relative distances significantly decreases when the Q-former is
turned off. This suggests that two types of images, which are initially
semantically close at the input level, also maintain proximity in the
token space.

Observations on Hallucination Bias: Synthetic image-induced hal-
lucination bias is amplified by Q-former projection. As depicted
in Figure 9 (a), LVLMs without Q-former exhibit a reduced hallu-
cination bias in reasoning for both generative and discriminative
tasks compared to preserving Q-former projections. Moreover, this
phenomenon aligns with our observation on relative distance. When
the Q-former projection is turned-off, the distribution of synthetic
images and natural images in the token space gradually converges.
Consequently, the issue of hallucinations in synthetic images is
rectified to the same level as observed in natural images.
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Figure 8: The changes of relative distance between synthetic and
natural images. (a) with or w/o Q-former projection and (b) the
number of Linear projection.

5.2 Linear Projection
Linear projection is a significant characteristic of the LVLMs rep-
resented by LLaVA architecture, and has emerged as the preferred
projection module for many LVLMs owing to its simplicity and
effective image-text alignment. Following the same settings on rela-
tive distance and hallucination bias mentioned in Section 5.1, this
subsection presents two aforementioned observations as we deepen
the layers of linear projection.

Experiment Setup: We deploy two variants, namely LLaVA-Vicuna
and LLaVA-LLaMA2-chat respectively. Both of them used pre-
trained CLIP-ViT-Large-34 as vision encoder. Nevertheless, the
former utilizes the MLP (i.e., multi-layers linear projection) in ex-
tracting image tokens, while the latter retains single layer linear
projection.

Observations on Relative Distance: The tokens of synthetic images
become closer to those of natural images after multi-layers linear
projection. Figure 8 (b) reveals a narrowing of the distribution when
progressing from a single linear projection to MLP, indicating that
deepening the linear projection layer proves effective in reducing
the token deviation between synthetic and natural images.

Observations on Hallucination Bias: Synthetic image-induced hal-
lucination bias can be reduced by deepening the layers of linear
projection. As shown in Figure 9 (b), as the layers of Linear projec-
tion decrease, the hallucination bias of the synthetic image increases
from the original 4.35 to 6.41. This indicates that the single layer
linear projection, fine-tuned with natural text-image pairs, is more
susceptible to the influence of synthetic images. Conversely, the
MLP structure ensures a closer relative distance between the two
types of images, resulting in less hallucination bias for the synthetic
image.

6 CONCLUSION
Despite the prosperity of generative models, the risks and challenges
posed by AIGC cannot be overlooked. This paper pioneers an explo-
ration into the impact of synthetic images on hallucination problems
during the reasoning process of LVLMs. Extensive experimental
results have confirmed a significant deviation between synthetic
image- and natural image-induced hallucination, referring to as the
hallucination bias. Further analyses have revealed that the divergence
between synthetic and natural image tokens can be attributed to the
visual projection module, leading to the amplification of relative

Figure 9: The changes of hallucination bias after (a) turning off
the Q-former projection and (b) deepening the layer of Linear
projection. We report the fluctuations in various task reason-
ing, including discriminative task (refer to as the accuracy and
f1-score) and generative task (refer to as CHAIR and Cover)
reasoning. We also report the fluctuations on AMBER score.

distance and hallucination bias. Our future works will endeavor from
the following aspects: 1) revealing the cause of synthetic image-
induced hallucination bias from the perspective of image synthesis
mechanisms and; 2) mitigating the hallucination bias in the reasoning
process of LVLMs on synthetic images.

This paper also emphasizes the importance of understanding the
differences between natural and synthetic data beyond the applica-
tions of forgery detection [21]. As AI-synthetic data becomes more
prevalent, we may encounter the following scenarios:
Scenarios one: Training with natural data and applying it to natural
data. This is the primary focus of current research, where many
tasks are well-solved under laboratory conditions. The proposing
algorithms achieve performance close to or even beyond human
benchmark.
Scenarios two: Training with natural data and applying it to synthetic
data. This is the scenario discussed in this paper.
Scenarios three: Training with synthetic data and applying it to
natural data. For instance, the widespread use of the ShareGPT
dataset in training large language models, and the potential use of
game engine-generated data by Sora. Synthetic data can compensate
for the deficiencies of natural data and contribute to continuous
improvement in model capabilities. This situation is expected to
grow.
Scenarios four: Training with synthetic data and applying it to
synthetic data.
Both scenarios two and three can be seen as generalized Out-Of-
Distribution (O.O.D.) problems, which can be referred as "Natural-
Synthetic O.O.D." They address the generalization from natural to
synthetic data and vice versa. In fact, even in scenario four, some
form of mixing natural and synthetic data for training should be con-
sidered. Therefore, understanding the differences between natural
and synthetic data is not only essential for authenticity verification
but also crucial for better utilization of synthetic data in training and
effective interaction with synthetic data in applications.
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