
Algorithmic progress in language models

Anson Ho1∗ Tamay Besiroglu1,2∗ Ege Erdil1 David Owen1

Robi Rahman1 Zifan Carl Guo2 David Atkinson1,3 Neil Thompson2

Jaime Sevilla1

Abstract

We investigate the rate at which algorithms for pre-training language models
have improved since the advent of deep learning. Using a dataset of over 200
language model evaluations on Wikitext and Penn Treebank spanning 2012-2023,
we find that the compute required to reach a set performance threshold has halved
approximately every 8 months, with a 90% confidence interval of around 2 to 22
months, substantially faster than hardware gains per Moore’s Law. We estimate
augmented scaling laws, which enable us to quantify algorithmic progress and
determine the relative contributions of scaling models versus innovations in training
algorithms. Despite the rapid pace of algorithmic progress and the development of
new architectures such as the transformer, our analysis reveals that the increase in
compute made an even larger contribution to overall performance improvements
over this time period. Though limited by noisy benchmark data, our analysis
quantifies the rapid progress in language modeling, shedding light on the relative
contributions from compute and algorithms.

1 Introduction

The field of language modeling has seen rapid advances, with recent large language models (LLMs)
demonstrating strong performance in domains such as programming [Li et al., 2022, Leblond et al.,
2023], mathematics [Cobbe et al., 2021, Trinh et al., 2024], and standardized tests [OpenAI, 2023].
But how has this progress been possible?

One salient factor is the scaling of training compute based on neural scaling laws [Sevilla et al., 2022,
Hoffmann et al., 2022, Kaplan et al., 2020], with state-of-the-art systems being trained for months on
tens of thousands of GPUs. But this is only part of the story: another key factor has been algorithmic
improvements, which result in more efficient use of resources such as compute and training data.
These include changes in model architectures, optimization algorithms, and software frameworks.

This picture raises some important questions: How much of recent progress in language models has
come from algorithmic improvements during pre-training, and how much has been from scaling up
models and datasets? The answers to these questions have crucial implications for the future of AI
progress, and have an important role in informing AI policy.

∗Joint first authors. 1Epoch. 2MIT FutureTech, CSAIL, 3Northeastern University. Email correspondence
to tamay@epochai.org. You can find our code and data here: https://github.com/epoch-research/
lm-algorithmic-progress.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

tamay@epochai.org
https://github.com/epoch-research/lm-algorithmic-progress
https://github.com/epoch-research/lm-algorithmic-progress

In this paper, we aim to answer these questions by following the approach first presented by Erdil
and Besiroglu [2022] in computer vision.2 To this end, we produce a dataset of over 200 language
models evaluated on popular language modeling datasets, and use this to fit a statistical model that
helps estimate the rate of algorithmic progress. Using our model, we further quantify the relative
importance of algorithms and scaling training compute, shedding light on one of the most important
drivers of AI progress.

1.1 Previous work

Thus far, there have been few works investigating algorithmic progress in machine learning. Notably,
Hernandez and Brown [2020] re-implement popular open-source ImageNet models and find a 44×
decrease in the compute required to achieve the same performance as AlexNet. Karpathy [2022]
reproduced the convolutional neural network of LeCun et al. [1989] using modern algorithmic
innovations, achieving a 60% reduction in error rate. Dorner [2021] measures progress in the sample
efficiency of deep reinforcement learning algorithms over time with doubling times ranging from
5 to 18 months. More recently, Erdil and Besiroglu [2022] estimate algorithmic progress based on
fitting a statistical model inspired by neural scaling laws. They find that algorithms and hardware
contribute roughly equally to performance, and the training compute needed to reach a certain level
of performance halves every 9 months.

2 Methodology

2.1 Model definitions

We want to estimate the rate at which newer language models are able to achieve a certain level of
performance more efficiently than older models. We do this by fitting a model that meets two key
desiderata: (1) the model must be broadly consistent with previous work on neural scaling laws (e.g.
Hoffmann et al. [2022]), and (2) the model should allow for a decomposition of the main contributors
to increased performance, such as improvements in how efficiently data or free parameters in the
model are used. In this sense, our core approach is similar to that in Erdil and Besiroglu [2022].

The starting point is the scaling law from Hoffmann et al. [2022], which relates the training loss L of
a dense transformer to its number of parameters N and the training dataset size D:

L = E +
A

Nα
+

B

Dβ
, (1)

where L is per-token cross entropy loss on the dataset, and E, A, B, α and β are constants. E
represents the ‘irreducible loss’ of the dataset, while the second and third terms, A

Nα and B
Dβ , capture

the errors that are due to the finiteness of the model or dataset, respectively.

Following Erdil and Besiroglu [2022] and Hernandez and Brown [2020], we quantify algorithmic
progress in terms of reductions of the resources (N and D) required to achieve the same level of
performance over time. To measure this, we introduce the concepts of “effective data" Deff and
“effective model size" Neff into the model:3

Neff ≡ N exp(α′(Y − Y0)), and Deff ≡ D exp(β′(Y − Y0)), (2)
where Y is the current year, Y0 is some reference year4, and α′ and β′ characterize the rate of
algorithmic progress for model size and dataset size, respectively. In other words, we assume that
continued algorithmic progress results in an exponential increase in Deff and Neff over some time
interval Y − Y0, even with fixed D and N . Plugging these into the original scaling law gives:

L = E +
A

N
αparam
eff

+
B

Dβdata
eff

= E +
A

Nαparam
e−αyear(Y−Y0) +

B

Dβdata
e−βyear(Y−Y0), (3)

2Note that we focus on pre-training algorithmic progress, which is distinct from algorithmic progress in
general. In particular, we do not consider “post-training enhancements" such as chain-of-thought prompting
[Davidson et al., 2023].

3This is not an original idea—for example, Hernandez and Brown [2020] and Erdil and Besiroglu [2022] use
the concept of “effective compute" to calculate doubling times for compute efficiency in computer vision, and
Davidson [2023] incorporates a similar idea into an integrated economic model.

4Note that the “years" in our model do not need to be integers, i.e. “fractions of a year" are allowed and are
determined based on the specific publication date of a model.

2

where A, B, αparam, αyear, βdata and βyear are constants. In relation to equation 2, we have that α′ =
αyear/αparam and β′ = βyear/βdata. Algorithmic progress is thus captured as a constant exponential
trend that multiplies with each of the two terms in the scaling law. In doing so, we are able to estimate
the rate at which fewer ‘resources’ (N and D) are required to achieve the same level of performance
over time. Furthermore, given that that the physical compute is approximately given by C ≈ 6ND
[Hoffmann et al., 2022, Kaplan et al., 2020], we can similarly define an “effective compute" which is
determined from the effective parameters and effective data.

2.2 Estimation approach

2.2.1 Model selection

We estimate variants of the augmented scaling law presented in equation (3) on our dataset of language
model evaluations. We perform extensive cross-validation exercises to identify the variant of the
model that fits the data best. The goal of this exercise is to consider different models that capture
different effects (e.g. different scaling behavior across different model architectures, different forms
of algorithmic progress, etc.).

Concretely, we consider dataset-specific coefficients (A,B), rates of algorithmic progress (e.g.
αyear, βyear), different scaling coefficients for different architectures, regularization (αparam, βdata), and
more. The model variants we consider generally do not contain an irreducible loss term (i.e. E = 0)
since this is poorly estimated on our data, and because it does not change our estimated doubling
times in practice—we check the robustness of this change in appendix H. In total, we evaluate around
90 different model specifications through leave-one-out-cross validation and pick the models that
perform best on relevant out-of-sample metrics, see Appendix J for more details. In the end, the
model we select is model 7, where the coefficients A and B are benchmark specific, but estimates of
algorithmic progress and scaling exponents (e.g. α and β) are not. This model achieves an R2 of
around 0.91 between predictions and held-out test data.

A further important consideration is the possibility of alternative forms of algorithmic progress.
In particular, in section 2.1 we model algorithmic progress as causing exponential increases in an
“effective" budget, e.g. of parameters. But one could also observe progress through changes in scaling
exponents (i.e. αparam and βdata). There are a priori reasons to suspect that this might be the case—for
instance, one notable innovation is due to a change in scaling laws such as those introduced in Kaplan
et al. [2020] and Hoffmann et al. [2022]. Different model architectures, such as recurrent neural
networks and transformers, are also known to have different scaling behaviors (see for instance Tay
et al. [2022] and Droppo and Elibol [2021]).

We attempt to account for this possibility in the cross validation analysis. In particular, we introduce
three models (models 13 to 15) which account for different kinds of scaling exponents, including the
possibility of changing exponents over time. Our chosen main model (model 7) outperforms these
models in cross validation, but these alternatives also perform similarly well, typically with an R2 of
between 0.88 and 0.91. This analysis is described in more detail in appendix J.

We also consider other factors that could potentially impact measured perplexity, and thereby mea-
sured rates of algorithmic progress. For example, different tokenization schemes during preprocessing
have been found to improve WT103 perplexity in some instances [Radford et al., 2019], and training
models for multiple epochs has been a common way of improving performance [Muennighoff et al.,
2023]. We find that our core results are broadly the same while varying these degrees of freedom—we
provide more details on these experiments in the appendices.5

2.2.2 Data

Our dataset contains over 400 language models evaluated on WikiText-103 (WT103), WikiText-2
(WT2), and Penn Treebank (PTB), about 60% of which we are able to use in our analysis. In particular,
relevant information was retrieved from around 200 different papers, as well as evaluations of 25
models that we performed ourselves using the framework from Gao et al. [2021]. We then consider
the subset of the data that contains the information necessary to fit our proposed model structure in
equation 3: token-level test perplexity (which determines the cross-entropy loss), publication date,

5In particular, we consider tokenization in appendix E.2.2, epochs in appendix F, and context length in E.2.1.

3

number of model parameters, and training dataset size. This leaves us with around 231 models for
analysis.

In some instances, multiple models are retrieved from the same paper, even if they constitute similar
algorithmic innovations. This could pose problems around autocorrelation, which could result in
underestimating the uncertainty in our individual parameter estimates. In the following main analysis,
we therefore only include up to three models per paper, which results in approximately 50 more
models being excluded. To verify the robustness of this approach, we also consider an alternative
technique that directly accounts for autocorrelation in the analysis, which yields doubling time and
confidence interval estimates that are consistent with our main results (see Appendix I).

3 Empirical results

3.1 Models require 2× less compute roughly every eight months

How quickly are the algorithms underpinning language models improving? Our core approach is to
back out doubling times based on fitting the augmented scaling law introduced in equation (8), and
using the definitions of effective data, effective parameters, and effective compute we introduced in
section 2.1. Here the effective data is given by Deff = D exp

[
βyear

βdata
(Y − Y0)

]
, so the doubling time

for Deff is determined by the time Y − Y0 where Deff = 2D. Thus we have:

TD = Y − Y0 =
βdata

βyear
ln 2. (4)

The doubling times for parameter efficiency can be determined similarly, giving

TN =
αparam

αyear
ln 2, (5)

which we can use to work out the doubling times for effective compute. In particular, since the total
compute in FLOP, C, required during training is approximately 6ND, the growth rates are related via
gC = gN + gD. Here gC is the growth rate in effective compute, gN is the growth rate in effective
parameters, and gD is the growth rate in effective data. Since doubling times are inversely related to
growth rates, we therefore have that

TC =

(
1

TN
+

1

TD

)−1

, (6)

where TC , TN , and TD are the doubling times (due only to algorithmic progress in pre-training)
for effective compute, effective parameters, and effective data respectively. Based on this approach,
using our preferred model, we find that the median doubling time for effective compute is 6.1 months,
with a 90% confidence interval of 3.3 to 11.3 months.

We further check the robustness of this result by looking at the predictions from different models. In
particular, because we perform model selection using leave-one-out cross-validation, we can compare
the predictions of our preferred model with the predictions from other models we considered.6
Concatenating the doubling time estimates from all the models in Figure 1b, we find a median doubling
time of 7.5 months [95% CI: 1.7 to 22.5 months], which is consistent with our preferred model.7 This
estimate falls within the range of confidence intervals of the estimated rates of algorithmic progress in
computer vision [Erdil and Besiroglu, 2022], and sample efficiency improvements in reinforcement
learning [Dorner, 2021].

While the structure of our model is not amenable to analyzing fine-grained speedups or slowdowns in
the rate of algorithmic improvements, we can nevertheless test the possibility of a one-time increase or

6Note that our preferred model is model 7, whereas the model that performs best in cross validation is model
10. We opt for model 7 given that it performs essentially as well in cross validation (MSE test loss of ∼0.048 for
model 7 compared to ∼0.042 for model 10) but uses two fewer parameters. In addition, model 7 can be used to
back out a single rate of algorithmic progress, rather than dataset-specific rates, which makes the results easier to
interpret. More details about the models and their performance can be found in appendix J.

7In both the preferred model and aggregated estimates, the lower range of the confidence interval implies
extremely fast doubling times. While we believe there is reason to be sceptical of these estimates, we provide
the estimates here for transparency. We elaborate on this concern in Section ??.

4

0 5 10 15 20 25
Doubling time (months)

0.00

0.05

0.10

0.15

0.20

Density

Aggregated
Median: 6.1
Model 7
Median: 7.5

(a) Core estimates. Doubling times
from our preferred model, and aggre-
gate across model specifications.

10 11 13 15 7 9 12 5 8 6 4 3 1
Statistical model structure

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Doubling time (years)

Better cross-validation performance Worse cross-validation performance

(b) Robustness across model specification. Swarm plots showing model estimates of the
rate of algorithmic progress across distinct model structures. For each model, we choose
the regularization strength δ that performs best in leave-one-out cross validation.

Degree of Freedom 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Progress in Efficiency Along N ✓ × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓T ✓T

Progress in Efficiency Along D ✓ ✓ × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓T ✓T

Dataset Specific Exponents × × × ✓ ✓ ✓ × × × ✓ ✓ × × × ×
Dataset Specific Constants × × × × × × ✓ ✓ ✓ ✓ ✓ × × × ×

(c) Summary of all model structures and the degrees of freedom included. Efficiency gains are captured by exponential
decrease in the relevant error terms, except models indicated by T , which have time-varying exponents. For a full specification,

see Tables 11 and 12.

Figure 1: Estimates of algorithmic progress of models selected by cross validation. Figure 3a shows aggregated
estimates over doubling times, and Figure 3b illustrates via swarm plots sorted from left to right in order of

decreasing cross validation performance (increasing MSE test loss). Note that model 14 is omitted from Figure
3b —we elaborate on our reasoning in appendix J.2.

decrease in growth rates over the full time period. To this end, we consider a variant of our preferred
model (model 7) where a dummy variable is introduced—this is equal to 0 for any model that is
published before the start of a certain year, and 1 otherwise. This allows us to consider doubling
times before and after a certain year cutoff (e.g. 2017), and we perform this analysis for several such
cutoffs.

The result is shown in Figure 2. Here we see that the difference in estimated doubling time before
and after the start of 2017 is very pronounced, however this is not the case for other choices of the
cutoff year. In each year the median doubling time is faster after the start of the cutoff year, but
usually only marginally so. Overall, this does not provide strong evidence of a drastic speedup in
algorithmic progress. This does not rule out the possibility of weaker effect sizes, since our approach
is statistically under-powered.

2016 2017 2018 2019 2020
Year

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Doubling Time Pre Post

2014 2016 2018 2020 2022

Year

100

102

104

106

108

1010

1012

Effective compute (Relative to 2014)

Algorithmic
progress

Physical
compute scaling

LSTM

GPT-2

Chinchilla

OPT-175B

2.2 × 104

1.7 × 107

Figure 2: Left: Comparison of estimated doubling times for effective compute from algorithmic progress,
before and after set cutoff years from 2016-2020. Shorter doubling times in the "post" period relative to "pre"
indicate an acceleration in the rate of algorithmic progress after that cutoff year. Longer doubling times indicate
a deceleration. Right: A stylized illustration of the relative contribution of compute scaling and algorithmic
progress to effective compute. The physical compute contribution is estimated from the doubling times in Sevilla
et al. [2022], and the algorithmic progress contribution is based on the aggregated doubling time estimate across
model specifications (see section 3.1). We further plot the physical training compute values for several notable
models (e.g. GPT-2) in their publication years.

5

3.2 Most recent performance gains in next-token prediction have been from compute-scaling

Naively extrapolating our estimated doubling times suggests that, between 2014 and 2023, pre-
training algorithmic progress has enabled performance to improve as much as it would have with
around 22,000× more compute.8 At the same time, Sevilla et al. [2022] find that physical compute
budgets have doubled roughly every 6 months since the start of deep learning, including in language
models. This suggests that physical compute has instead grown by a factor of around one-million-fold.
This paints a stylized picture where “effective compute" expanded by about 22-billion-fold since
2014, with slightly under two-thirds of the scaling being due to increased use of actual, physical
computing resources.

There are reasons to be cautious about this naive extrapolation. For one, we do not directly observe
gains of 22, 000× (or even 10, 000×) anywhere in our dataset. However, given that it is unlikely
that early researchers trained language models on very large quantities of compute, it is therefore
improbable that we observe such large declines over the analyzed time period. Nevertheless, the lack
of such observations still raises questions about the reliability of extrapolating these trends between
long multi-year periods.

One specific reason for caution is that the extrapolation neglects the scale-dependence of algorithmic
innovations. It is likely that some algorithmic innovations will become obsolete over time as
models are trained at larger scales of compute—e.g. the effectiveness of specific tokenizers or
hyperparameter settings may diminish, making them less useful for future, larger models. Conversely,
recent innovations might fail to produce large or any benefits when implemented at much smaller
scales than models today. For example, the gains from scaling laws are related to the scale of compute
used (see Appendix B), and older architectures, such as the LSTM and convolutional network,
can exhibit higher efficiency at small scales relative to the transformer [Droppo and Elibol, 2021,
Karpathy, 2022].

While a naive extrapolation of doubling times predicts substantial reductions in compute requirements,
our work does not provide compelling evidence that we can currently or in the future train extremely
small models to achieve the performance of much larger ones by applying the full suite of modern
innovations. The scale-dependence of algorithmic improvements and the lack of direct observations
of such large efficiency gains in our dataset suggest that further research and more comprehensive
data are needed to validate these extrapolations.

Besides doubling times, we can also decompose the relative contributions from algorithms and
compute scaling by evaluating our estimated models directly. We approach this using a Shapley value
analysis, and the results weakly support the stylized picture above that compute scaling has been
more important for explaining performance improvements than algorithmic progress since 2014.

The findings indicate that the relative contribution of algorithmic progress to performance improve-
ments has diminished over time, at least within the dataset of models that have historically been
close to the state-of-the-art. This observation aligns with the stylized representation in Figure 2 and
the findings of Erdil and Besiroglu [2022] for computer vision, where compute scaling has shown
increasing importance over time.

One explanation for the diminishing relative contribution of algorithmic progress is that investments
in expanding physical compute have increased substantially, outpacing the rate of algorithmic
improvements. This framing aligns with the increased emphasis on scaling large language models
over the last few years, particularly since the introduction of GPT-2 in 2019 [Radford et al., 2019],
relative to fundamental algorithmic or architectural changes.9Figure 2 illustrates a stylized version of
this perspective, depicting a sharp increase in physical compute scaling around 2018-2019, followed
by a return to previous compute scaling growth rates.

There are other potential explanations – for example, it is possible that the transformer architecture
was a pivotal innovation (see section 3.3), and subsequent algorithmic advances have been less

8We consider 2014 since this is publication year of the earliest model in our dataset for which the training
compute is known.

9We can provide further support for this interpretation by considering the average growth in compute between
pairs of systems in Table 1. This turns out to be higher for later pairs of systems that we consider: e.g. between
the Transformer and GPT-3 there was an average annual growth rate of 9%, compared to an average growth rate
of 2% between the 2012 RNN and GPT-2.

6

Parameter
scaling

Data
scaling

Data
efficiency

RNN (2012) → LSTM (2016) 16.9% 40.4% 43.8%
RNN (2012) → Transformer (2018) 48.1% 20.6% 32.1%
RNN (2012) → GPT-2 (2019) 47.7% 20.1% 32.9%
RNN (2012) → GPT-3 (2021) 50.2% 26.0% 24.4%
RNN (2012) → Gopher (2021) 54.8% 24.0% 21.7%
LSTM (2016) → Transformer (2018) 82.6% 0.0% 17.9%
LSTM (2016) → GPT-2 (2019) 72.1% 16.1% 12.1%
LSTM (2016) → GPT-3 (2021) 69.9% 20.0% 10.3%
LSTM (2016) → Gopher (2021) 68.8% 17.6% 13.9%
Transformer (2018) → GPT-2 (2019) 56.8% 38.2% 5.0%
Transformer (2018) → GPT-3 (2021) 63.1% 29.7% 7.4%
Transformer (2018) → Gopher (2021) 61.9% 25.4% 12.9%

Table 1: Attribution of progress to pre-training algorithmic progress and compute scaling between model pairs
based on Shapley decomposition in linear space. Numbers may not all add up to 100% due to rounding. These

Shapley values are based on point estimates from our preferred model and as such are meant for illustrative
purposes only. We omit parameter efficiency improvements from the table since these are almost always 0%

and not very informative. The Transformer here is by Baevski and Auli [2018] (the earliest decoder-only
transformer we have in our dataset), who modify the original transformer architecture by Vaswani et al. [2017]

to be decoder-only.

significant in comparison. Alternatively, this observation could also be explained by a secular decline
in the rate of algorithmic innovation. However, we find these two explanations less compelling than
the results of Figure 2, where the rate of algorithmic progress does not clearly decrease after the
release of the transformer (e.g. with a 2018 cutoff). If anything, the rate increases slightly, contrary
to what both of these explanations predict.

3.3 The significance of the transformer architecture

Since its introduction in 2017 [Vaswani et al., 2017], the transformer architecture has become the
dominant algorithmic architecture in language modeling, forming the base of multiple notable systems.
We attempt to quantify the its contribution in terms of the “compute-equivalent gain" over other
architectures in our dataset (LSTMs, RNNs, state space models, among others). This is akin to
the approach outlined in Davidson et al. [2023]—in this context, the compute-equivalent gain is
the amount by which training compute must be scaled to improve benchmark performance as the
same amount as the introduction of the transformer. For example, Hernandez and Brown [2020]
find that a transformer (2017) achieves the same performance as a Seq2Seq (2014) model on the
WMT-14-EN-FR benchmark, with 61× less compute.

To capture the improvement represented by the transformer, we modify our core model as follows:

L =

σ(γT)

(
A

N
αyear
eff

+ B

D
βdata
eff

)
, if transformer,

A
N

αyear
eff

+ B

D
βdata
eff

, otherwise.
(7)

where σ : R → (0, 1) is the sigmoid function, given by σ(x) = 1/(1 + e−x). γT is a constant
and all other terms have the same meaning as in the original model.10 The key intuition is that the
transformer could enable us to use compute (or perhaps data) more efficiently than the architectures
that precede it.

After preprocessing, our dataset contains 103 transformer models, and 127 non-transformer models,
largely consisting of recurrent networks such as the LSTM. Fitting the model on this data reveals that
the transformer architecture typically lowers reducible loss proportionally by 5.4% [90% CI: 3.8%,
6.9%].

We can calculate its contribution in terms of “compute-equivalent gains" numerically: we first
calculate the predicted loss for a transformer with some N and D, and the predicted loss for a

10The sigmoid is introduced to make it easier to fit the model by improving optimizer stability.

7

non-transformer with the same inputs. We then determine reduction in N and D to match this
difference in loss. Compute is then approximated as usual, as C ≈ 6ND. In short, if an innovation
halves the compute needed to achieve a specific loss, then that innovation has a compute-equivalent
gain of 2.

Based on 100 bootstraps, we obtain a median estimate of 9.6× [90% CI: 4.3×, 34.5×] for the
transformer’s compute-equivalent gain.11 This substantial gain indicates that the efficiency offered by
the transformer architecture is equivalent to around log(9.6)/ log(2e4) ≈ 23% of the total gains from
algorithms in the past nine years, or nearly two years of algorithmic progress in the field.12 Moreover,
this could understate the gains if the transformer architecture also provides a convenient vehicle
through which to productively channel compute, thereby facilitating some of the gains through the
scaling of compute that have likely dominated the overall gains we have seen recently.

One caveat here is that the measured significance of the transformer may depend on how it is
evaluated. For example, transformers may be better adapted to long contexts than recurrent networks,
and evaluations using longer contexts (e.g. >1000 tokens) may suggest a larger improvement from
transformers than evaluations using shorter contexts [Kaplan et al., 2020]. We have not explicitly
controlled for context length here, and we discuss the potential impact of this assumption in more
detail in appendix E.2.1.

4 Discussion and conclusion

4.1 Summary of our findings

This paper presents a comprehensive empirical analysis of algorithmic progress in language model
pre-training from 2012 to 2023. By curating a dataset of over 200 language model evaluations on
WikiText and Penn Treebank benchmarks, we quantify the relative contributions of compute scaling
and algorithmic efficiency improvements to the overall performance gains. Our key findings are as
follows:

First, we estimate that the compute required to reach a set language modeling performance level has
halved every 7-8 months on average since 2012. This supports the common intuition that language
modeling is an unusually rapidly-advancing field of computer science.

107 108 109 1010 1011 1012

Training Dataset Size (Tokens)

108

109

1010

1011

Parameters

Predicted requirements for GPT-2 performance

109 1010 1011 1012 1013 1014 1015

Training Dataset Size (Tokens)

1010

1011

1012

1013

1014

1015

1016

1017

Parameters

Predicted requirements for Chinchilla performance

Figure 3: Pareto frontiers for GPT-2 [Radford et al., 2019] and Chinchilla [Hoffmann et al., 2022] level
performance on WT103. We truncate the frontiers to a factor of 1e3 greater or smaller than the existing training

dataset size and parameter size of the actual model since extrapolating further out would not be reliable.

Second, our work reveals that the majority of recent advancements in language modeling stem
more from scaling models and datasets than from pre-training algorithmic innovations. A Shapley

11This assumes compute budgets of frontier models today, at 1025 FLOP. At lower compute budgets, such as
1022 FLOP, the gain is still substantial at 8.4× [90% CI: 4.2×, 19.5×].

12Given the magnitude of this contribution, we also attempted to check the rate of algorithmic progress while
subsetting our data to non-transformers only. However, this roughly halves the data available for fitting, and
our resulting estimates are unfortunately extremely noisy: the estimated doubling times have a 90% confidence
interval of −11.7 to 8.0 months.

8

value-based analysis suggests that 60-95% of the performance gains stem from compute scaling,
while algorithms contribute only 5-40%.

Third, the introduction of the transformer architecture in 2017 was a major algorithmic advance,
representing between 3x and 46x in compute-equivalent gain, which accounts for more than 10% of
the algorithmic innovation in pre-trained language models in the past decade. This highlights the
significance of the transformer as a key architectural breakthrough in the field.

4.2 Limitations

While our analysis is an advance in quantifying algorithmic progress, several limitations reduce the
precision of and temper our confidence in our estimates:

• Lack of estimates of gains from specific innovations. Our model is specified to quantify
algorithmic progress over relatively large time periods (e.g. over several years). However, it
is unable to give reliable fine-grained information, such as progress over shorter time scales,
or the significance of specific innovations. Experimental work is better suited to estimating
efficiency gains for specific algorithmic innovations.

• Limited availability of quality data, resulting in noisy or unrealistic estimates of
progress. The approach we use in our analysis relies heavily on having many data samples
across many years. This proved to be very challenging for a number of reasons—e.g. models
are not always evaluated on the same benchmark, data is relatively sparse prior to 2017, and
papers may not report relevant information such as parameter counts. Among other reasons
this can result in our estimates being very noisy, yielding wide confidence intervals over
doubling times. In addition, algorithmic improvements and scaling have historically been
introduced concurrently, and this correlation between the two in our dataset can make it
hard to disentangle their relative contributions to overall effective compute growth.

• Inconsistencies in model training and evaluations. Inconsistencies in evaluations are
well-known. While we have excluded non-standard evaluations from our dataset, our dataset
spans models with different tokenization schemes, text preprocessing, stride lengths, and
other details. This introduces noise and potential bias in our estimates of algorithmic
progress, as researchers might have adopted more favorable evaluation schemes over time.
However, our estimated reductions in perplexity from algorithmic improvements are large;
likely larger than can be accounted for by changes in evaluation procedures. We expand on
these points in Appendix E.2.3.

• Inability to distinguish between data quality and efficiency in data use. Reduction in
data requirements could be due to both improved data quality and improved algorithms, but
our model is not equipped to distinguish between these effects. Understanding the relative
contributions of each could be a subject of future research.

• Reliance on the Chinchilla scaling law. The scaling law from which our model is derived
applies to dense transformers following a GPT-3 architecture [Hoffmann et al., 2022, Rae
et al., 2021]. However, we use this scaling law to model algorithmic improvements in
different transformer architectures, recurrent neural networks, etc. Future algorithms might
also follow different scaling laws (e.g. GPT-4 is rumored to be a mixture of experts).
However, we believe it is likely that our core results should still hold: for one, neural scaling
is not a phenomenon restricted to transformers (e.g. it is known to happen in RNNs as well,
see Kaplan et al. [2020]). We find that a wide range of statistical model structures provide
consistent estimates, and that alternative methods of estimating pre-training algorithmic
progress also give similar results (see e.g. appendix A), so it is probable that our core results
are robust to the use of the scaling law from Hoffmann et al. [2022].

• Limited insight about future progress. While the results from this paper could be used
to inform one about future progress in language modeling, our paper focuses on historical
improvements. Future rates of progress could be slower (e.g. if one thinks that historical
progress consisted of picking “low hanging-fruit"), but they could potentially also be faster
(e.g. due to increased research interest and investment). Expectations about future progress
need to account for factors such as these, which we do not discuss in depth for the most part.

9

4.3 Conclusion

Using a dataset of over 200 language model evaluations spanning 2012-2023 evaluated on Wikitext
and Penn Treebank, we find that the compute required to reach a fixed performance threshold has
halved approximately every 8 months. This is much faster than the rate associated with Moore’s
law and many other domains of computing. While algorithmic innovations have occurred rapidly,
compute scaling has expanded by over a million-fold in this same period, exceeding the gains from
algorithms and constituting the predominant source of performance improvements in recent years.

Overall, our work provides a quantitative estimate of the rapid pace of progress in language modeling.
It also reveals the dominant role of scale rather than algorithms for recent gains. Future work could
benefit from extending this analysis to additional, specific benchmarks and more closely examining
the impact of data quality improvements and the gains from additional specific innovations. Despite
its limitations, this research demonstrates the valuable insights that can be gained from a detailed
statistical analysis of extensive datasets of machine learning results. By identifying the main drivers of
performance improvements, this work lays the groundwork for further exploration and understanding
of these trends in the field.

Acknowledgments

We thank Tom Davidson, Pablo Villalobos, Josh You, Lukas Finnveden, Eli Lifland, nostalgebraist,
David Schneider-Joseph, Danny Hernandez, Alyssa Vance, Yafah Edelman, Ben Edelman, Matthew
Barnett, Ben Cottier, Keith Wynroe, Markus Anderljung, Carl Shulman, Marius Hobbhahn and
Nikola Jurković for their feedback. We thank Eduardo Roldán and Robert Sandler for helping design
and implement graphs.

References
Uri Alon, Frank Xu, Junxian He, Sudipta Sengupta, Dan Roth, and Graham Neubig. Neuro-symbolic

language modeling with automaton-augmented retrieval. In International Conference on Machine
Learning, pages 468–485. PMLR, 2022.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling.
2018. doi: 10.48550/ARXIV.1809.10853. URL https://arxiv.org/abs/1809.10853.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. 2020. doi: 10.48550/
ARXIV.2005.14165. URL https://arxiv.org/abs/2005.14165.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. 2021. doi: 10.48550/ARXIV.2110.
14168. URL https://arxiv.org/abs/2110.14168.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher R’e. Flashattention: Fast
and memory-efficient exact attention with io-awareness. ArXiv, abs/2205.14135, 2022. URL
https://api.semanticscholar.org/CorpusID:249151871.

Tom Davidson. What a compute-centric framework says about AI takeoff
speeds. https://www.alignmentforum.org/posts/Gc9FGtdXhK9sCSEYu/
what-a-compute-centric-framework-says-about-ai-takeoff, 2023.

10

https://arxiv.org/abs/1809.10853
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2110.14168
https://api.semanticscholar.org/CorpusID:249151871
https://www.alignmentforum.org/posts/Gc9FGtdXhK9sCSEYu/what-a-compute-centric-framework-says-about-ai-takeoff
https://www.alignmentforum.org/posts/Gc9FGtdXhK9sCSEYu/what-a-compute-centric-framework-says-about-ai-takeoff

Tom Davidson, Jean-Stanislas Denain, Pablo Villalobos, and Guillem Bas. Ai capabilities can be
significantly improved without expensive retraining. arXiv preprint arXiv:2312.07413, 2023.

Harm de Vries. In the long (context) run, 2023. URL https://www.harmdevries.com/post/
context-length/.

Florian E Dorner. Measuring progress in deep reinforcement learning sample efficiency. arXiv
preprint arXiv:2102.04881, 2021.

Jasha Droppo and Oguz H. Elibol. Scaling laws for acoustic models. In Interspeech, 2021. URL
https://api.semanticscholar.org/CorpusID:235458551.

Ege Erdil and Tamay Besiroglu. Algorithmic progress in computer vision. 2022. doi: 10.48550/
ARXIV.2212.05153. URL https://arxiv.org/abs/2212.05153.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The Pile: An 800GB dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 2021.

Google Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of to-
kens of context. 2024. URL https://storage.googleapis.com/deepmind-media/gemini/
gemini_v1_5_report.pdf.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. ArXiv,
abs/2312.00752, 2023. URL https://api.semanticscholar.org/CorpusID:265551773.

Danny Hernandez and Tom Brown. Measuring the algorithmic efficiency of neural networks. arXiv
preprint arXiv:2005.04305, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Hugging Face. Perplexity of fixed-length models. https://huggingface.co/docs/
transformers/perplexity, 2023. [Online; accessed 14-Nov-2023].

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Andrej Karpathy. Deep Neural Nets: 33 years ago and 33 years from now. http://karpathy.
github.io/2022/03/14/lecun1989/, 2022. [Online; accessed 21-July-2022].

Rémi Leblond, Felix Gimeno, Florent Altché, Alaa Saade, Anton Ruddock, Corentin Tallec,
George Powell, Jean-Bastien Grill, Maciej Mikuła, Matthias Lochbrunner, Michael Math-
ieu, Paul Caron, et al. Alphacode 2 technical report. Technical report, Google Deep-
Mind, 2023. URL https://storage.googleapis.com/deepmind-media/AlphaCode2/
AlphaCode2_Tech_Report.pdf.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. arXiv preprint arXiv:2203.07814, 2022.

Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and lan-
guage with ringattention. ArXiv, abs/2402.08268, 2024. URL https://api.semanticscholar.
org/CorpusID:267637090.

11

https://www.harmdevries.com/post/context-length/
https://www.harmdevries.com/post/context-length/
https://api.semanticscholar.org/CorpusID:235458551
https://arxiv.org/abs/2212.05153
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://api.semanticscholar.org/CorpusID:265551773
https://huggingface.co/docs/transformers/perplexity
https://huggingface.co/docs/transformers/perplexity
http://karpathy.github.io/2022/03/14/lecun1989/
http://karpathy.github.io/2022/03/14/lecun1989/
https://storage.googleapis.com/deepmind-media/AlphaCode2/AlphaCode2_Tech_Report.pdf
https://storage.googleapis.com/deepmind-media/AlphaCode2/AlphaCode2_Tech_Report.pdf
https://api.semanticscholar.org/CorpusID:267637090
https://api.semanticscholar.org/CorpusID:267637090

Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Noua-
mane Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language
models. ArXiv, abs/2305.16264, 2023. URL https://api.semanticscholar.org/CorpusID:
258888192.

OpenAI. GPT-4 Technical Report. 2023. URL https://cdn.openai.com/papers/gpt-4.pdf.

Dylan Patel and Gerald Wong. Gpt-4 architecture, infrastructure, training dataset, costs, vision, moe,
2023. URL https://www.semianalysis.com/p/gpt-4-architecture-infrastructure.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan,
Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks,
Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron
Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu,
Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen
Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro,
Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch,
Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux,
Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume,
Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas,
Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger,
Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol
Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu,
and Geoffrey Irving. Scaling language models: Methods, analysis & insights from training gopher.
2021. doi: 10.48550/ARXIV.2112.11446. URL https://arxiv.org/abs/2112.11446.

Jaime Sevilla, Lennart Heim, Anson Ho, Marius Hobbhahn, Tamay Besiroglu, and Pablo Villalobos.
Estimating training compute of deep learning models. Technical report, 2022.

Sho Takase, Jun Suzuki, and Masaaki Nagata. Direct output connection for a high-rank language
model. ArXiv, abs/1808.10143, 2018. URL https://api.semanticscholar.org/CorpusID:
52138320.

Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won Chung, William Fedus, Jinfeng Rao, Sharan
Narang, Vinh Q. Tran, Dani Yogatama, and Donald Metzler. Scaling laws vs model architectures:
How does inductive bias influence scaling? ArXiv, abs/2207.10551, 2022. URL https://api.
semanticscholar.org/CorpusID:250920512.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. ArXiv, abs/1706.03762, 2017.

Chenguang Wang, Mu Li, and Alexander J Smola. Language models with transformers. arXiv
preprint arXiv:1904.09408, 2019.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin,
Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oğuz, Madian Khabsa, Han Fang, Yashar
Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov, Mike
Lewis, Sinong Wang, and Hao Ma. Effective long-context scaling of foundation models. ArXiv,
abs/2309.16039, 2023. URL https://api.semanticscholar.org/CorpusID:263134982.

12

https://api.semanticscholar.org/CorpusID:258888192
https://api.semanticscholar.org/CorpusID:258888192
https://cdn.openai.com/papers/gpt-4.pdf
https://www.semianalysis.com/p/gpt-4-architecture-infrastructure
https://arxiv.org/abs/2112.11446
https://api.semanticscholar.org/CorpusID:52138320
https://api.semanticscholar.org/CorpusID:52138320
https://api.semanticscholar.org/CorpusID:250920512
https://api.semanticscholar.org/CorpusID:250920512
https://api.semanticscholar.org/CorpusID:263134982

A Observing improvements in the data

Besides the statistical model that we presented in section 2.1, we can also attempt to obtain doubling
time estimates more directly. For example, we can look at LLMs that achieve close to Megatron-LM’s
or GPT-2’s level of performance over time, and see how much less compute is used. Doing so
reveals that we need between 5-fold and 100-fold less compute per year in 2023 to achieve the same
performance achieved is between 2019 and 2023, amounting to a halving time of between 11 and 17
months. This is within the 90% confidence interval of our aggregate doubling time estimates, from
1.7 to 22.5 months.

2020 2021 2022
Publication Date

300%

100%

30%

10%

3%

1%

Relative training compute

Megatron-LM
Compressive Transformer

ALiBi
Infinity former

Transformer + RD

B2T connection
SRU++ Large

Doubling Time:
11.7 months

(a) Relative training compute
needed for

Megatron-LM level performance

2022 2023
Publication Date

300%

100%

30%

10%

3%

1%

Relative training compute

ALiBi Infinity former
NMST+GPT-2Decaying Fast

Weights TransformerTransformer
+ GFM

B2T connection

Doubling Time:
16.6 months

(b) Relative training compute
needed for

ALiBi level performance

Figure 4: Relative compute (relative to baseline model) used to train models that achieve the same evaluated
perplexity as Megatron-LM and ALiBi respectively. Doubling times of effective compute are 11.7 and 16.6

months using least squares regression for Megatron-LM (cross-entropy range 2.87-3.06) and ALiBi
(cross-entropy range 1.18-1.34), respectively. Circles are proportional to the compute used during training.

This approach provides some insight but it has its issues, which is why we do not rely on it. For
instance, it depends on the particular choice of reference performance. Moreover, this approach
requires identifying models with similar or better performance at later dates, where the training
compute is known. However, the data for the latter is relatively limited. We thus opt for using an
arguably more principled approach with our core model presented in section 2.1 for our main results.

B The gains from better scaling laws

We estimated the compute savings afforded by the Chinchilla scaling law, as proposed by Hoffmann
et al. [2022], in contrast to the previously dominant understanding based on the work of Kaplan et al.
[2020]. First, we defined loss functions L(N,D) for both the Kaplan and Chinchilla scaling laws.
Following this, we minimized these loss functions across variables D and N , considering different
levels of compute budget. For each specified budget, we then calculated the amount of compute
required under the Chinchilla scaling law to achieve a loss equivalent to the minimum loss obtained
under the Kaplan scaling law. The Compute-Equivalent Gain (CEG) was subsequently determined as
the ratio of the original compute budget to the compute required by the Chinchilla scaling to match
the Kaplan loss.

We find that the compute equivalent multiplier from the Chinchilla scaling laws for dense autoregres-
sive transformer models is between 1.25-fold (for GPT-2 scale models) and 1.6-fold (for PaLM-scale
models Chowdhery et al. [2023]).13

13We use PaLM as a reference rather than larger more recent models such as GPT-4 because it was unlikely
that GPT-4 would have been trained without an improvement in our understanding of scaling laws, whereas
PaLM was likely trained prior to the development of updated scaling laws.

13

1019 1020 1021 1022 1023 1024 1025

Compute

1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

Compute multiple equivalent

GPT-2
scale

GPT-3
scale

PaLM
(540B)
scale

Figure 5: Compute equivalent multiplier from optimal scaling from switching from Kaplan et al. [2020] to
Chinchilla (Hoffmann et al. [2022]) scaling laws as a function of training compute for dense autoregressive

transformer models. Note that GPT-3 and PaLM (540B) use around 1.7 and 1.44 tokens/parameter respectively,
close to what the Kaplan scaling laws recommend, suggesting that Kaplan-scaling was close to what was

practiced at the time.

C Core model parameter estimates

The core model that we use was chosen based on leave-one-out cross validation, and is defined
similarly to equation 3 but with a few modifications. The most important change is that A and B are
estimated separately for each benchmark, whereas all other parameters are benchmark-agnostic. In
order to help with model fitting, we normalize N and D to some minimum N0 and D0 values in our
dataset, and reparameterize A and B as exponentials. In full, our model is

L = exp[α′
const−αyear(Y −Y0)−αparam log(N/N0)]+exp[β′

const−βyear(Y −Y0)−βdata log(D/D0)],
(8)

To estimate these in benchmark-specific fashion, we introduce dummy variables xWT2 and xPTB for
WT2 and PTB respectively. We then complete the model definition as follows:

α′
const = αconst + αconst,PTBxPTB + αconst,WT2xWT2,

β′
const = βconst + βconst,PTBxPTB + βconst,WT2xWT2.

Our parameter estimates are summarized in Table 2.

One observation about the parameter estimates in Table 2 is that the confidence intervals for αyear
and βyear are not statistically significant at the 5% significance level, while αparam and βdata are. As
mentioned in section 3.2, the result is that the model fails to obtain statistically significant estimates
of effective parameter and effective data doubling times. However, when we use these estimates to
determine effective compute doubling times, we obtain statistically significant estimates. The reason
for this is illustrated in Figure 6—the estimates for αyear and βyear are clearly negatively correlated.
In particular, when αyear is positive, βyear is negative and vice versa, such that the overall estimated
effective compute doubling time is always positive.

C.1 Comparing our estimates to earlier work

Given that our core model is similar to previously proposed language model scaling laws, we can
compare our estimates to see how well they correspond to prior work. In particular, the estimates
for αparam and βdata in Table 2 suggest that cross entropy loss scales roughly as C−1/20, where C is
training compute. In comparison, Kaplan et al. [2020] find a scaling exponent of around -0.048, and
Hoffmann et al. [2022] estimate values of around -0.3. Given that our model is constructed based on
the scaling law in Hoffmann et al. [2022], we might a priori have expected our estimated to match
those more closely—so what explains the difference?

One way to understand this discrepancy is to consider the scaling laws on the same plot, shown in
Figure 6. Here we observe that the scaling laws strongly diverge for compute values below around

14

Estimate 90% CI

αconst
0.903
(0.232) 0.647, 1.300

αconst,PTB
−0.000
(0.139)

−0.264, 0.206

αconst,WT2
0.000
(0.114) −0.213, 0.164

αyear
−0.001
(0.021)

−0.032, 0.017

αparam
0.083
(0.017) 0.058, 0.102

βconst
0.791
(0.240) 0.197, 1.057

βconst,PTB
0.190
(0.201) −0.010, 0.432

βconst,WT2
0.163
(0.162) −0.001, 0.425

βyear
0.038
(0.022) 0.017, 0.082

βdata
0.030
(0.010) 0.020, 0.050

Table 2: Parameter estimates from the model described in equation 8, rounded to 3 decimal places. We report
90% confidence intervals for all of the parameter estimates by bootstrapping 100 iterations.

1014 1016 1018 1020 1022

FLOP

2

3

4

5

6

Cross entropy loss

3.6 × 1017
FLOP

1.1 × 1022
FLOP

Chinchilla Kaplan Ours

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075
year

0.050

0.025

0.000

0.025

0.050

0.075

0.100

year

94.9%
5.1%

Figure 6: (a) (Left) Comparison of scaling law predictions from our preferred model and previous work,
specifically Kaplan et al. [2020] and Hoffmann et al. [2022]. The grey lines represent scaling laws based on

bootstraps of our proposed model. The two vertical dotted lines indicated the 10th to 90th percentile range of
training compute values in our dataset. (b) (Right) Estimated values of αyear and βyear from 1000 bootstraps.

94.9% of the bootstrapped estimates lie to the right of the line αyear + βyear = 0.

1018 to 1019 FLOP (and the same is true for values greater than 1022 FLOP). However, between these
two regimes the scaling laws appear much more similar in slope.

This observation suggests the possibility that the discrepancy in estimated scaling exponents is due to
the range of fitted data. Indeed, around 80% of our models with known training compute estimates lie
between ∼ 4× 1017 FLOP and 1022 FLOP. This suggests that a large fraction of our data lies within
the regime where it is hard for our model to distinguish between the exponents from Hoffmann et al.
[2022] and Kaplan et al. [2020].

Another possible explanation for this discrepancy that we considered is that it is due to the omission
of an irreducible loss term in our core model, resulting in an omitted variable bias. However we do
not put much weight on this explanation for our fits—in our robustness check using models with an
irreducible loss term (see section H), we obtain very similar scaling exponents to those obtained in
our core model.

15

D Significance of the transformer architecture

Similarly to the doubling times for effective compute, we consider the predicted Compute-Equivalent
Gains by applying the same modification in Equation 7 to different model specifications. Most
models yield estimates within a similar ballpark as our core model (model 7 with δ = 0.0025), with
some models yielding relatively noisy estimates. That said, three models predict a notably larger
efficiency contribution from the transformer, and this suggests that there is plausibly a fairly large
degree of cross-model uncertainty present. These results are shown in Figure 7.

Estimate 90% CI

αconst
0.358
(0.442) 0.000, 1.257

αconst,PTB
0.030
(0.148) −0.234, 0.151

αconst,WT2
0.000
(0.095) −0.184, 0.133

αyear
−0.048
(0.031)

−0.077, 0.018

αparam
0.117
(0.032) 0.052, 0.159

βconst
1.184
(0.381) 0.207, 1.330

βconst,PTB
0.108
(0.161) −0.000, 0.299

βconst,WT2
0.101
(0.142) −0.000, 0.481

βyear
0.052
(0.021) 0.017, 0.085

βdata
0.018
(0.014) 0.012, 0.052

γ 2.910
(0.209) 2.604, 3.238

Table 3: Parameter estimates from the model described in equation 7, reported to 3 decimal places. We report
90% confidence intervals for all of the parameter estimates by bootstrapping 100 iterations.

10 (0.005) 11 (0.001) 15 (0.001) 7 (0.02) 9 (0.02) 12 (0.02) 5 (0.001) 8 (0.005) 6 (0.005) 4 (0.0025) 3 (0.001) 1 (0.001) 2 (0.001)

Model (delta)

100

101

102

103

104

Compute Equivalent Gain (CEG)

Better cross-validation performance Worse cross-validation performance

Figure 7: Contribution of the transformer in terms of Compute Equivalent Gain, as by introducing the structure
in equation 7 to different model specifications.

16

E Dataset

E.1 Performance measure and dataset

A key component of measuring progress in machine learning algorithms is the presence of a per-
formance metric or benchmark. Since our focus is language modeling, token-level perplexity is a
natural choice for this metric, for which we choose three benchmarks: WikiText-103, WikiText-2,
and Penn Treebank. Note that WT2 and WT103 are both constructed from articles on Wikipedia.
The two benchmarks share the same validation and testing set, while WikiText-103 has a much larger
vocabulary and training set. In total, our dataset is constructed from 226 papers, from which we
collect around 410 models that have reported token-level perplexity. Of these models, 370 contain
sufficient information to be considered for analysis (perplexity, parameter size, publication date, and
size of dataset).

Figure 8: Log of perplexity of models used in our work, of over 231 language models analyzed in our work
spanning over 8 orders of magnitude of compute, with each shape representing a model. The size of the shape is

proportional to the compute used during training. Comparable perplexity evaluations are curated from the
existing literature and from our own evaluations.

E.2 Perplexity

A standard metric for LLM performance is the measured test perplexity on standard datasets. For
a language model, this is defined in as the exponential of the cross-entropy L between the model
predictions and the test set, i.e. Perplexity = eL.

We choose this metric for two primary reasons. First, this is a commonly reported measure of
performance, which allows us to gather a large dataset for our analysis. Second, the simple relation
between perplexity and cross entropy L allows us to easily relate our model to neural scaling laws.

If a paper reports the perplexity of just one model, we collect that singular data point. However, when
a paper presents multiple models, only those meeting any of the following criteria are included in our
dataset:

1. The model is trained or evaluated on a different benchmark dataset. A model trained on two
different datasets can be used as a reference to understand how perplexity metrics reported
on different benchmarks relate to one another. This can be helpful e.g. for data imputation

2. The model is constructed with a drastically different parameter size, as such data inform the
impact of scaling

3. The model has a significant difference in the algorithms used than other models in the paper

For papers presenting many (10 or more) models, we exclude some from our dataset to prevent
possible bias from over-representing results from a few studies. We prioritize models with the lowest
perplexity in their category, often highlighted in bold within tables. We also exclude minor algorithm
alterations and ablations that do not impact the parameter count. In Appendix I, we take an alternative
approach by including all models from each paper and explicitly modelling the autocorrelation

17

structure from results from the same paper. In doing so, we find results highly similar to those we
present in the paper.

E.2.1 Context length

Another consideration when analyzing algorithmic innovation in language models pertains to the
context length. For one, measured perplexity on benchmarks can depend on the context length
[Kaplan et al., 2020, Xiong et al., 2023]. Different systems may have been trained or evaluated using
different context lengths, and this might make model perplexity scores less directly comparable.

One way to try and quantify the magnitude of this effect is to look at studies that compare the change
in perplexity given a change in context length. For example, based on the scaling relations relating
loss and context length from Xiong et al. [2023] and Kaplan et al. [2020], back-of-the-envelope
calculations suggest that loss reductions each year due to increasing context length could be 10-60%
as large as the loss reductions from algorithmic progress.

In particular, Xiong et al. [2023] finds a relation between context length c and validation loss for
different versions of the LLaMa 2 language model. We can estimate ballpark values for context
length over time based on data from de Vries [2023], and use this to roughly estimate how expanding
context lengths has decreased loss over time (e.g. a decrease of a few percent per year). We can then
compare the magnitude of this effect to the contribution of algorithmic progress to decreases in loss,
and we typically arrive at values between 10-60% of the overall algorithmic progress contribution.14

We perform a similar analysis with the scaling relation described in Kaplan et al. [2020], with similar
results. If this rough calculation is correct, it suggests that increasing context length may have been a
fairly important dimension along which algorithms have been improving.

On top of measured reductions to averaged perplexity per token, one might also consider the increasing
ability of language models to perform long-context tasks to be largely downstream of algorithmic
progress in itself. Being able to handle long contexts is a key motivator for several recent algorithmic
innovations [Liu et al., 2024, Gu and Dao, 2023, Gemini Team, 2024], and this has likely grown very
substantially since the introduction of FlashAttention [Dao et al., 2022, de Vries, 2023]. We consider
this to be an important avenue for further investigation.

E.2.2 Tokenization

One way to get a sense of the impact of tokenization on measured doubling times is to introduce a
fixed effect that depends on the benchmark vocabulary size into our preferred model. In particular,
we introduce an irreducible loss term to Equation 8, of the form γ log(vocabulary size).

As with the rest of our analysis, we perform bootstraps to obtain a distribution over estimated doubling
times, and further fold this model into our cross validation analysis. In particular, this model predicts
a median effective compute doubling time of 5.5 months, with a 90% confidence interval of 2.6 to
11.8 months. In cross validation, this model performs essentially as well as our preferred model, with
a MSE loss of 0.046–0.048 in both cases (depending on the regularization strength). Both of these
results are very much in line with the results from our main model, lending some weight to the view
that differences in tokenization schemes used in practice do not substantially change our core results.

One possible reason for this is that in practice, the tokenization schemes used for evaluating language
models on the considered benchmarks (i.e. WT103, WT2 and PTB) are typically highly similar, and
so including a contribution from vocabulary size has only a limited effect within each dataset. For
example, typical tokenizers for PTB, WT2 and WT103 have vocabularies of roughly 10k, 22k, and
268k tokens respectively. We illustrate this in Figure 9, where for each benchmark, the majority of
vocabularies fall into the same histogram bin.

E.2.3 Inconsistencies in perplexity evaluations

Inconsistencies in benchmark evaluations is a well-known issue in the machine learning community.
These issues can introduce noise (if inconsistencies are ‘random’), or bias if they systematically
change over time. We curated data so that models were evaluated in roughly comparable ways,
but often the precise details of evaluations were lacking, so that we could not verify the precise

14This of course depends on variables like how quickly context lengths have expanded over time—details of
this calculation can be found in this spreadsheet.

18

https://docs.google.com/spreadsheets/d/1KQBOPWQhgC5sIlu3uhE3j5I12M7uq8WYdLwJ3SkFvXs/edit?usp=sharing

1e4 3e4 1e5 3e5 1e6
0

10

20

30

40

50

60

70

Number of models

PTB

1e4 3e4 1e5 3e5 1e6

Vocabulary

WT2

1e4 3e4 1e5 3e5 1e6

WT103

Figure 9: Histogram showing the most common vocabulary sizes for models in our dataset, separated by
benchmark.

evaluation procedure. However, there are many other subtleties with evaluation setups that may also
cause perplexity results to differ, such as pretraining data, test-time adaptation [Takase et al., 2018],
tokenization schemes, strides, and text preprocessing.

Variation source Significance

Training set Early models in our dataset are often exclusively trained on the benchmark training
set before evaluation, whereas later models are generally pretrained on a larger
pretraining dataset. Since the majority of our dataset involves the latter type of
model, we expect this effect to be minor. The direction of this effect is somewhat
ambiguous: the training set data is likely ‘closer’ to the test distribution relative
to other internet text-corpuses, so not training on the relevant training distribution
could yield lower performance at fixed budgets.
A further subtlety is that large text corpuses often, but not always, contain
Wikipedia data. Pretraining on such distributions could yield larger gains than
otherwise, which could be attributed to algorithmic progress. A small number of
existing results illustrate this effect. For example, in a 1.3B GPT-3 reimplemen-
tation, including Wikipedia and other high-quality data in fixed-size pretraining
reduced WikiText perplexity from 8.27 to 5.59 [Gao et al., 2020, Table 3]. In our
dataset, this effect is likely to show up as a small number of models receiving
worse-than-otherwise perplexities in WikiText, around the time of the transition
to large-scale pretraining but before inclusion of Wikipedia data became common.
This is true of GPT-2, for example.

Word vs sub-word tok-
enization

Changing to a sub-word vocabulary can reduce perplexity substantially in an
otherwise unchanged architecture, for example by ∼30% in a pre-GPT-2 LSTM
[Wang et al., 2019]. In our dataset this is likely to show up as a one-time change,
potentially exaggerating the algorithmic improvement in language models around
GPT onwards.

Preprocessing and run-
time adaptation

Different preprocessing of data can affect results significantly. For example,
inverting word-level tokenization artifacts in WikiText-103 improved perplexity
by ∼10% [Radford et al., 2019]. Runtime adaptation sometimes has similarly
large effects [Alon et al., 2022]. We expect that these sources of variation mostly
act as noise in our dataset, although if these improved over time, they might inflate
estimates of algorithmic efficiency.

Stride length The move to larger models led to evaluations using larger stride for lower com-
putational cost. This can increase perplexity, but only on the order of ∼10% at
realistic settings [Hugging Face, 2023]. We believe this should act as another
source of variation, but without a strong influence on our overall findings.

Table 4: Sources of variation and their significance in language modelling evaluations.

Overall, we do not see these issues substantially undermining our results. Our mainline estimates
imply that 1 year of pre-training algorithmic progress amounts to a reduction of perplexity of around

19

Estimate 90% CI

αconst
1.126
(0.060) 1.008, 1.217

αconst,PTB
0.172
(0.058) 0.070, 0.219

αconst,WT2
0.086
(0.061) −0.003, 0.187

αyear
0.009
(0.008) −0.009, 0.016

αparam
0.052
(0.008) 0.040, 0.067

βconst
0.349
(0.125) 0.221, 0.595

βconst,PTB
0.002
(0.086) −0.001, 0.120

βconst,WT2
0.171
(0.131) −0.000, 0.412

βyear
0.043
(0.022) 0.020, 0.091

βdata
0.037
(0.017) 0.015, 0.060

Table 5: Parameter estimates for our main model, fitted to a dataset of models trained on the training set of
WikiText or PTB, but not the corresponding test sets. We report 90% confidence intervals for all of the

parameter estimates by bootstrapping 100 iterations.

10%, which is a much larger reduction than seems plausible to explain by changes in the average
year-to-year evaluation procedures.

Given that test perplexity on these datasets has persisted as a standard measure of language modeling
performance in the literature, we expect that differences in perplexity will broadly reflect genuine
underlying differences in model capabilities.

We further consider one particular source of variation from Table 4 in more detail, namely the training
set. To do this, we went through all the models in our dataset and classified them into one of three
categories: (1) not trained on either the training or test sets of WikiText, (2) trained on the training set
but not the test set of WikiText, or (3) trained on both the training and test sets of WikiText.15 We
then repeated this procedure for PTB.

Based on this classification, around 2% of models fall into the first category, around 85% of models
are in the second category, and the remaining models are in the third category. To test whether
our results are robust to this change in categories, we fit our model to models only in the second
category. This yields effective compute doubling times of 5.7 months in the median case, with a 90%
confidence interval of [1.7, 12.6] months, consistent with our core results. The parameter estimates
and associated uncertainties are listed in Table 5.

E.3 Dataset Size & Epochs

In reporting training dataset size, we generally record the size of pre-training datasets as well fine-
tuning datasets if the model in question has been fine-tuned. The number of epochs is usually sourced
from the papers which describe the language model in question, but if not provided, we estimate it via

num_epochs =
context_length_tokens · batch_size · training_steps

pretrain_tokens
.

We adjust our epoch and dataset size calculations accordingly for models like GPT-Neo and Pythia,
which report the effective number of tokens seen in training.

E.4 Parameter Size

We use the reported parameter size value if it is stated in the paper. We impute the parameter size from
the previous models for papers that do not specify parameter size but follow known, state-of-the-art

15Note that the test sets for WT103 and WT2 are the same, so we group them together here to consider
“WikiText".

20

models. Otherwise, we rely on other papers referring to the model’s parameter size or manually
compute parameters for certain RNN and LSTM models based on provided details about the model
architecture (e.g. the number and size of hidden layers).

E.5 Inclusion and exclusion criteria

We exclude several models in the dataset from the analysis based on whether they meet any of
the following primary criteria: (1) use of a retrieval mechanism, (2) use of model compression or
pruning, (3) use of neural architecture search, (4) use of teacher-learner or knowledge distillation
mechanisms, (5) use of cache models. These models are excluded because we expect these models to
exhibit significantly different scaling behaviors from other models we analyze. In particular, they can
substantially change the ratio of parameters and data that would “optimally" minimize loss given
some compute budget.

E.6 Dataset review

In a previous version of this paper, our core results had a narrower confidence interval as well as
slightly longer median estimates.16 One reason for this change is that reviewed the data a second time
and fixed any identified errors – while this changed our results, it was well within the uncertainty
ranges we had previously identified in our original paper.

That said, we further decided to modify our model aggregation approach to better represent cross-
model uncertainty. In particular, rather than aggregating over the top 10 model-delta pairs in cross
validation, we instead aggregate across different model numbers (with the regularization strength δ
that yields the best cross validation performance).

F Quantifying training data D

One important degree of freedom in the modeling process is how to define the “training data". In
particular, there we consider three possible definitions:

1. Training dataset size: The number of tokens in the dataset on which the language model
was trained. This definition ignores the possibility of improvements in performance from
training for multiple epochs, and is the approach taken in Erdil and Besiroglu [2022].

2. Tokens seen: The total number of tokens seen during the course of training a language
model—this is the definition adopted in Hoffmann et al. [2022]. This is equivalent to the
training dataset size if the model is trained for one epoch on the training set, which is
fairly common practice but not totally ubiquitous. In fact, it is possible that more recent
models are being pushed towards training with multiple epochs on the same data—e.g.
GPT-4 was reportedly trained for 2 epochs on text and 4 epochs on code [Patel and Wong,
2023]. In cases where the tokens seen is not directly reported in paper, we estimate it via
tokens seen ≈ num. epochs × training dataset size.

3. Tokens seen with diminishing returns: One problem with the previous approach is that
seeing data repeatedly may yield diminishing returns. Muennighoff et al. [2023] find that
the benefits in loss reduction drop significantly when training on more than 4 epochs.

In order to test the robustness of our most important result (compute doubling times) to this degree
of freedom, we repeat our doubling times analysis as in section 3.1 but account for the number of
training epochs. We then replace D either with tokens seen (epochs times training dataset size) or
tokens seen with diminishing returns. For each case we consider two possibilities—either we drop
datapoints for which the epoch number is unknown (this drops around 100 datapoints), or we impute
the epoch number as 1. We report our core parameter estimates in Tables 7 and 8, and our doubling
time estimates in Table 6.

From the results in Table 6, we see that there is substantial overlap between model estimates, but the
estimates are highly noisy. The most similar are the original model based on dataset size, and model

16In particular, our core model had a median doubling time estimate of 8.4 months [4.5, 14.3], and our
aggregate model had a median of 7.8 months [1.5, 17.6]. In contrast, our core model now has a central estimate
of 6.1 months [2.4, 14.8] and our aggregate model has a median estimate of 7.5 months [0.9, 24.6].

21

Definition Ceff doubling times (months)
Dataset size (section 3.1) [2.6, 6.1, 14.8]

Tokens seen [0.9, 3.0, 22.0]
Tokens seen + impute [-7.3, 1.7, 20.2]

Tokens seen w. dim. returns [0.9, 3.4, 10.9]
Tokens seen w. dim. returns + impute [2.4, 5.8, 16.4]

Table 6: Estimated effective compute doubling times using the core model (Equation 8), using three different
definitions of “training data". Numbers in the square brackets correspond to the [2.5th, 50th, and 97.5th

percentile] after bootstrapping 100 times.

with tokens seen with diminishing returns and imputed epochs, where the latter places slightly more
weight on longer doubling times.

In the case of tokens seen with imputed epochs, the model predicts no statistically significant
improvement in compute efficiency. On the other hand we do not observe this without imputation,
which potentially suggests that our imputation strategy (i.e. assuming 1 epoch of training when epoch
counts are unknown) is suboptimal under this definition of training data.

That said, there are strong reasons to be sceptical of using “tokens seen" as a definition given that
diminishing returns to additional training epochs are indeed observed in practice. Indeed, some
papers report training for between 100-1000 epochs, which would result in fairly large variations in
dataset size estimates if diminishing returns are not considered. We ultimately opt to quantify training
data in terms of dataset size for simplicity, although a definition based on diminishing returns is also
feasible.

Estimate 90% CI

αconst
0.215
(0.416) 0.088, 1.342

αconst,PTB
−0.000
(0.210)

−0.471, 0.205

αconst,WT2
0.014
(0.183) −0.043, 0.462

αyear
−0.090
(0.040)

−0.101, 0.011

αparam
0.168
(0.036) 0.077, 0.193

βconst
1.299
(0.406) 0.001, 1.396

βconst,PTB
0.152
(0.210) 0.001, 0.732

βconst,WT2
0.116
(0.250) −0.468, 0.200

βyear
0.070
(0.030) 0.020, 0.113

βdata
0.018
(0.014) 0.012, 0.055

Table 7: D = tokens seen, without imputation of
epochs.

Estimate 90% CI

αconst
0.914
(0.391) −0.000, 1.175

αconst,PTB
−0.000
(0.188)

−0.437, 0.133

αconst,WT2
0.047
(0.166) −0.076, 0.359

αyear
−0.020
(0.035)

−0.101, 0.011

αparam
0.090
(0.035) 0.070, 0.172

βconst
0.779
(0.285) 0.463, 1.316

βconst,PTB
0.233
(0.176) 0.000, 0.467

βconst,WT2
0.122
(0.194) −0.189, 0.313

βyear
0.071
(0.026) 0.028, 0.114

βdata
0.026
(0.012) 0.009, 0.047

Table 8: D = tokens seen with diminishing returns and
without imputation of epochs.

Parameter estimates from the model described in equation 8, to 3 decimal places. We report 90% confidence
intervals for all of the parameter estimates by bootstrapping 100 iterations.

G Doubling times via optimal scaling

In the main paper we calculated doubling times for effective compute based on a closed form
solution for the doubling times, given by Equation 6. However, this equation was derived simply
by considering changes in Deff, and it is not clear a priori whether or not the effective compute is
optimally allocated between Neff and Deff to minimize the cross entropy loss. In addition, calculating
compute efficiency doubling times is less straightforward for models which also include changing
scale exponents αparam and βdata (i.e. models 14 and 15 in our cross validation analysis, see J). We

22

thus supplement our previous calculation with an alternative approach, which instead enforces the
condition of compute-optimal scaling.

We approach this in two stages:

1. First, we calculate the reduction in cross entropy loss ∆L given a doubling in compute
budgets and under compute-optimality. Let the initial compute budget be C. We solve an
optimization problem

L1 = min
(N,D)

L(N,D), (9)

subject to the constraint C = 6ND described in Hoffmann et al. [2022], which is solved
with values N∗

1 and D∗
1 . We then perform the same optimization problem but with a budget

constraint of 2C = 6ND, yielding a corresponding cross entropy loss of L2. The reduction
in cross entropy loss is given by ∆L = L2 − L1 ≤ 0.

2. We then estimate the years of algorithmic progress that would be needed to achieve this
same reduction ∆L. In particular, the optimization problem is

min
δ∈R+

f(δ), (10)

where we have

f =
∣∣ exp[α′

const − αyear(Y + δ − Y0)− αparam log(N/N0)]

+ exp[β′
const − βyear(Y + δ − Y0)− βdata log(D/D0)]− L2

∣∣ (11)

. Here δ can be interpreted as a doubling time for effective compute due to algorithmic
progress in pre-training. α′

const = αconst + αconst,PTBxPTB + αconst,WT2xWT2 and β′
const =

βconst +βconst,PTBxPTB +βconst,WT2xWT2, where xPTB and xWT2 are dummy variables for PTB
and WT2 respectively.

We apply this approach over 100 bootstraps of our dataset, yielding a median doubling time of 6.1
months, and a 90% confidence interval of 3.3 to 11.3 months. This is very similar to the doubling
times estimated using the closed-form approach discussed in section 3.1, which also has a median of
6.1 months [3.3, 11.3] for model 7.

H Irreducible loss

Our main model for estimating doubling times does not estimate the irreducible loss. This is in part
due to empirical difficulties encountered in estimating plausible values for this term, and in part
because the inclusion of this term does not have a bearing on our estimates of the rate of algorithmic
improvements. Since the latter is the focus of our paper, we decided to move forward with the
outlined model without irreducible loss estimates. However, we caution against overinterpretation of
these results—for instance, our parameter estimates are not reliable enough to strongly inform how to
scale models compute-optimally (although they can be somewhat illustrative).

The focus of this section is to justify the robustness of our core doubling time results to this omitted
variable in our model. In particular, we fit a model which incorporates estimates of the irreducible
loss and show that the doubling times remain in line with our previous findings. The model we
consider is

L̂ = γ′+exp(α′
const−αyear(Y−Y0)−αparam logN/N0)+exp(β′

const−βyear(Y−Y0)−βdata logD/D0),
(12)

where γ′ = γ + γPTBxPTB + γWT2xWT2, and the rest of the model is defined in the same way as
in Section 3.1. When we fit this model, we obtain a compute efficiency doubling time of 5.4 months,
with a 90% confidence interval of 2.4 to 10.8 months, consistent with the estimates from our primary
model. Our core parameter estimates are shown in Table 9.

I Autocorrelation

Our dataset was constructed by searching for papers with models that reported perplexity data on
WT103, PTB, or WT2. In our initial data collection, we sometimes also included multiple models

23

Estimate 90% CI

γ 0.000
(0.045) −0.007, 0.070

γPTB
0.214
(0.178) 0.000, 0.460

γWT2
−0.111
(0.147)

−0.409, 0.001

αconst
0.833
(0.246) 0.627, 1.154

αconst,PTB
0.001
(0.097) −0.116, 0.134

αconst,WT2
0.102
(0.103) −0.118, 0.252

αyear
−0.005
(0.022)

−0.034, 0.013

αparam
0.085
(0.019) 0.057, 0.099

βconst
0.882
(0.227) 0.438, 1.091

βconst,PTB
0.076
(0.161) −0.025, 0.324

βconst,WT2
0.113
(0.170) −0.000, 0.476

βyear
0.044
(0.018) 0.026, 0.079

βdata
0.028
(0.009) 0.019, 0.050

Table 9: Parameter estimates from the model described in equation 12, reported to 3 decimal places. We report
90% confidence intervals for all of the parameter estimates by bootstrapping 100 iterations.

originating from the same paper. In some extreme instances, more than ten models from a single
paper were included; for example, we incorporated 14 models from the paper "OPT: Open Pre-trained
Transformer Language Models." This poses concerns of autocorrelation, which might for instance
result in us underestimating the uncertainty in our individual parameter estimates.

In the main body of the paper we approached this issue by retaining only three models per paper
in our analysis, which resulted in the exclusion of approximately 35 models. Here we consider an
alternative approach for addressing autocorrelation, where we explicitly quantify the correlations
between models from the same paper. We then use this information to establish a multivariate normal
likelihood function, which we maximize to obtain parameter estimates.

First, let us define the residuals as ϵ = x− x̂. The original loss function that we are using is the mean
squared error, i.e. where the loss is given by E[ϵT ϵ]. We want to modify our approach so that we
take into account the correlations between different datapoints. The approach we take is to take an
approach similar to generalized least squares and multiplicative attention—rather than consider just
ϵT ϵ, we consider ϵTPϵ, where P is a correlation matrix.

We do this using a maximum-likelihood approach, where ϵTΣϵ placed in a multivariate normal
distribution, given by

f(ϵ; θ) =
1√

(2π)k det(Σ)
exp

(
−1

2
ϵTΣ−1ϵ

)
, (13)

where Σ is a covariance matrix for the data. Our goal is to choose the appropriate parameters θ such
that the resulting ϵ = x− x̄ maximizes this distribution. This includes the original parameters in the
model from equation 3 as well as the correlation ρ between models from the same paper. We define
the loss function as the negative of the logarithm of this distribution (dropping constants which do
not matter for the resulting minimization problem):

l(θ) =
1

2
log detΣ +

1

2
ϵTΣ−1ϵ. (14)

In order to apply this to our data we need to specify the structure of the covariance matrix Σ = σ2nP
(and thus Σ−1 = σ−2nP−1. We can accordingly write the loss function as

l(θ) =
1

2
log detP +

n

2
log σ2 +

1

2σ2n
ϵTP−1ϵ. (15)

24

We are assuming that the models from different papers are uncorrelated, and that different models
from the same paper have a correlation coefficient of ρ. If we order the models such that all the
models from the same paper form a contiguous range of indices, then the correlation matrix looks
block diagonal, where each block has 1s on the diagonal and ρ for the off-diagonal terms. The matrix
elements that are not in blocks are all zero. For example, one example correlation matrix is:

1 ρ 0 0 0 0
ρ 1 0 0 0 0
0 0 1 ρ ρ ρ
0 0 ρ 1 ρ ρ
0 0 ρ ρ 1 ρ
0 0 ρ ρ ρ 1

 (16)

As we can see, we need to determine both the inverse and the determinant of the correlation matrix P
in order to calculate the negative log-likelihood. While this can be done using standard libraries, the
matrices that we are considering here are quite sparse, and thus it is more efficient to simplify our
calculations here. We detail the calculations in sections I.2 and I.3.

I.1 Results

To determine confidence intervals, we bootstrap this model based on clustering over 100 iterations, in
similar fashion to the main results. This yields a median doubling time of 4.5 months, with a 90%
confidence interval of 1.5 to 9.9 months, which is consistent with our core estimates. In practice ρ is
typically on the order of 0.45, which suggests that the degree of autocorrelation is not very strong.
We report our parameter estimates in Table 10.

Estimate 90% CI

αconst
0.355
(0.753) −0.802, 1.513

αconst,PTB
0.058
(0.929) −1.009, 0.267

αconst,WT2
0.125
(0.203) −0.133, 0.582

αyear
−0.052
(0.068)

−0.163, 0.028

αparam
0.120
(0.051) 0.068, 0.214

βconst
1.189
(0.868) −0.707, 1.471

βconst,PTB
0.111
(1.242) −0.109, 1.623

βconst,WT2
0.091
(1.247) −2.397, 0.909

βyear
0.060
(0.029) 0.016, 0.087

βdata
0.020
(0.041) 0.011, 0.034

Table 10: Parameter estimates from the model described in equation 8, but estimated using the clustering
approach described in equation 15. Estimates are rounded to 3 decimal places. We report 90% confidence

intervals for all of the parameter estimates by bootstrapping 100 iterations.

I.2 Determinant

In order to obtain the overall determinant for P we first work this out for a single block. In particular,
the determinant of each (n+ 1)× (n+ 1) block Bn is given by

detBn+1 = (1− ρ)n(1 + nρ). (17)

25

We prove this by considering the associated matrix directly:

Bn+1 =


1 ρ . . . ρ ρ
ρ 1 . . . ρ ρ
...

. . .
...

ρ ρ . . . 1 ρ
ρ ρ . . . ρ 1

 (18)

Since detBn+1 is unchanged under the elementary row operation of adding a multiple of one row to
another, we write

detBn+1 = det
(n+1)×(n+1)


1 ρ . . . ρ ρ
0 1− ρ2 . . . ρ− ρ2 ρ− ρ2

...
. . .

...
0 ρ− ρ2 . . . 1− ρ2 ρ− ρ2

0 ρ− ρ2 . . . ρ− ρ2 1− ρ2

 . (19)

We can thus simplify the determinant as

detBn+1 = (1− p)n det
n×n


1 + ρ ρ . . . ρ ρ
ρ 1 + ρ . . . ρ ρ
...

. . .
...

ρ ρ . . . 1 + ρ ρ
ρ ρ . . . ρ 1 + ρ

 . (20)

To evaluate the determinant of this matrix we follow a similar procedure, where we eliminate most of
the elements in the first column. We then repeat this process as the resulting matrix becomes smaller
and smaller, until we reach a trivial case. The kth step in this iterative procedure has the following
structure (where k = 0, 1, . . . , n− 1, n):

detBn+1 = (1− p)n(1 + kρ) det
(n−k)×(n−k)



1+(k+1)ρ
1+kρ

ρ
1+kρ . . . ρ

1+kρ
ρ

1+kρ
ρ

1+kρ
1+(k+1)ρ

1+kρ . . . ρ
1+kρ

ρ
1+kρ

...
. . .

...
ρ

1+kρ
ρ

1+kρ . . . 1+(k+1)ρ
1+kρ

ρ
1+kρ

ρ
1+kρ

ρ
1+kρ . . . ρ

1+kρ
1+(k+1)ρ

1+kρ


(21)

We now substract ρ
1+(k+1)ρ times the first row from all other rows. In the first column, all except the

first row thus becomes zeros, and there are two main cases we need to consider for the other elements.
In the first case, for diagonal elements, we have we have

1 + (k + 1)ρ

1 + kρ
− ρ

1 + kρ

ρ

1 + (k + 1)ρ
=

[1 + (k + 1)ρ]2 − ρ2

[1 + kρ][1 + (k + 1)ρ]
(22)

=
1 + (k + 2)ρ

1 + (k + 1)ρ
. (23)

In the second case, for off-diagonal elements, we instead have
ρ

1 + kρ
− ρ

1 + kρ

ρ

1 + (k + 1)ρ
=

ρ

1 + kρ

[
1 + (k + 1)ρ− ρ

1 + (k + 1)ρ

]
(24)

=
ρ

1 + (k + 1)ρ
. (25)

Thus we have that

detBn+1 = (1− p)n(1 + kρ) det(n−k)×(n−k)



1+(k+1)ρ
1+kρ

ρ
1+kρ . . . ρ

1+kρ
ρ

1+kρ

0 1+(k+2)ρ
1+(k+1)ρ . . . ρ

1+(k+1)ρ
ρ

1+(k+1)ρ

...
. . .

...
0 ρ

1+(k+1)ρ
1+(k+2)ρ
1+(k+1)ρ

ρ
1+(k+1)ρ

0 ρ
1+(k+1)ρ . . . ρ

1+(k+1)ρ
1+(k+2)ρ
1+(k+1)ρ


(26)

26

= (1−p)n(1+(k+1)ρ) det
(n−(k+1))×(n−(k+1)



1+(k+2)ρ
1+(k+1)ρ

ρ
1+(k+1)ρ . . . ρ

1+(k+1)ρ
ρ

1+(k+1)ρ
ρ

1+(k+1)ρ
1+(k+2)ρ
1+(k+1)ρ . . . ρ

1+(k+1)ρ
ρ

1+(k+1)ρ

...
. . .

...
ρ

1+(k+1)ρ
ρ

1+(k+1)ρ . . . 1+(k+2)ρ
1+(k+1)ρ

ρ
1+(k+1)ρ

ρ
1+(k+1)ρ

ρ
1+(k+1)ρ . . . ρ

1+(k+1)ρ
1+(k+2)ρ
1+(k+1)ρ


.

(27)
If we repeat this argument n times (going from an (n+ 1)× (n+ 1) matrix to the trivial case of a
n× n matrix, then we conclude that

detBn+1 = (1− ρ)n(1 + nρ), (28)

as desired. Now to work out the overall determinant of P , we simply have to multiply the determinants
of the individual blocks, and we are done.

I.3 Inverse

We now want to determine the third term in l(θ), i.e. 1
2σ2n ϵ

TP−1ϵ. One way to reduce the compu-
tational cost of this calculation is to take advantage of P being block diagonal, where the inverse
P−1 can be determined by inverting the individual blocks. That is, for blocks Bi the inverse of the
correlation matrix is

P−1 =


B−1

1 0 . . . 0 0
0 B−1

2 . . . 0 0
...

. . .
...

0 0 . . . B−1
n−1 0

0 0 . . . 0 B−1
n

 . (29)

To invert a single block B, first observe that each block B is such that the elements are

Bij =

{
1 if i = j,

ρ otherwise.
(30)

Now let D be the diagonal matrix with diagonal entries Dii = 1 − ρ. Then we have that B =
D + ρvvT , where v is a vector of ones. We can now calculate the inverse B−1 by application of the
Sherman-Morrison formula. In particular we have

B−1 = (D + ρvvT)−1 = D−1 − ρD−1vvTD−1

1 + ρvTD−1v
. (31)

Since the inverse of D is just D−1
ii = 1

1−ρ , assuming that the correlation ρ ̸= 1. To simplify notation,
we define c = 1

ρ + n
1−ρ . We then have

B−1
ij =

{
1

1−ρ − 1
c(1−ρ)2 i = j

− 1
c(1−ρ)2 i ̸= j

, (32)

and calculating the associated quadratic form 1
2σ2n ϵ

TP−1ϵ follows trivially.

27

J Cross validation for model choice

We determined our primary model for estimating doubling times using formal model selection
procedures. In particular, we considered a range of 15 candidate model numbers and a range
of possible regularization strengths δ ∈ {0, 0.001, 0.0025, 0.005, 0.01, 0.02}. We consider each
“model" as a pair, consisting of a particular model number and a regularization strength δ. We then
perform leave-one-out cross validation on all of these models. Here we show the results of this
analysis.

Our candidate models are defined by varying three degrees of freedom:

1. Which parameters to make benchmark-specific (e.g. having three separate parameters for
the exponent on training dataset size, one for each of WT103, PTB and WT2).

2. Whether to explicitly model algorithmic progress in parameters N , data D, or both.

In general we do not include the irreducible loss in the model (i.e. we usually set E = 0, in the
equation 3)—this is described in more detail in section H. In Tables 11 and 12 we list the definitions
of all models that we looped through in leave-one-out cross validation. For this, we first define some
common terms for simplification:

α′
const = αconst + αconst,PTBxPTB + αconst,WT2xWT2

α′
year = αyear + αyear,PTBxPTB + αyear,WT2xWT2

α′
param = αparam + αparam,PTBxPTB + αparam,WT2xWT2

β′
const = βconst + βconst,PTBxPTB + βconst,WT2xWT2

β′
year = βyear + βyear,PTBxPTB + βyear,WT2xWT2

β′
data = βdata + βdata,PTBxPTB + βdata,WT2xWT2

α∗
param = αparam,NT(1− xT) + αparam,TxT

β∗
data = βdata,NT(1− xT) + βdata,TxT

α†
param = αparam + αrate log Y

β†
data = βdata + βrate log Y

Here xPTB, xWT2, and xT are dummy variables for PTB, WT2, and the transformer respectively. Y is
the year, and αrate and βrate are constants that determine how quickly scaling exponents (αparam and
βdata) change over time.

Models 1 to 11 are all constructed using a similar set of rules:

• αconst and βconst determine the coefficients of the parameter and data reducible loss terms
respectively

• αyear and βyear capture algorithmic progress in parameters and data
• αparam and βdata determine the scaling behavior with respect to N and D respectively

All of these parameters may be set as benchmark-specific (e.g. by writing α′
const in lieu of αconst).

The remaining models are defined using a different set of rules:

• Model 12 is defined in similar fashion but in ‘Hicks-neutral’ fashion, such that the same
degree of efficiency gain is seen across both parameters and data.

• Model 13 models different scaling exponents αparam and βdata for transformer vs non-
transformer models

• Model 14 captures only algorithmic progress via changes in the scaling exponents α†
param

and β†
data

• Model 15 captures algorithmic progress via αyear and βyear, as well as changes in the scaling
exponents

28

Table 11: Model specifications for leave-one-out cross validation (Models 1 to 11).

No. Model specification

1 Algorithmic progress in both N and D
L = exp[αconst−αyear(Y −Y0)−αparam(logN− logN0)]+exp[βconst−βyear(Y −Y0)−
βdata(logD − logD0)]

2 No algorithmic progress in parameters N
L = exp[αconst − αparam(logN − logN0)] + exp[βconst − βyear(Y − Y0)− βdata(logD−
logD0)]

3 No algorithmic progress in data D
L = exp[αconst −αyear(Y − Y0)−αparam(logN − logN0)] + exp[βconst − βdata(logD−
logD0)]

4 Benchmark-specific in αyear
L = exp[αconst−α′

year(Y −Y0)−αparam(logN− logN0)]+exp[βconst−βyear(Y −Y0)−
βdata(logD − logD0)]

5 Benchmark-specific in βyear
L = exp[αconst−αyear(Y −Y0)−αparam(logN− logN0)]+exp[βconst−β′

year(Y −Y0)−
βdata(logD − logD0)]

6 Benchmark-specific in αyear and βyear
L = exp[αconst−α′

year(Y −Y0)−αparam(logN− logN0)]+exp[βconst−β′
year(Y −Y0)−

βdata(logD − logD0)]

7 Benchmark-specific in αconst and βconst
L = exp[α′

const−αyear(Y −Y0)−αparam(logN− logN0)]+exp[β′
const−βyear(Y −Y0)−

βdata(logD − logD0)]

8 Benchmark-specific in αconst and βconst, with no algorithmic progress in N
L = exp[α′

const − αparam(logN − logN0)] + exp[β′
const − βyear(Y − Y0)− βdata(logD−

logD0)]

9 Benchmark-specific in αconst and βconst, with no algorithmic progress in D
L = exp[α′

const −αyear(Y − Y0)−αparam(logN − logN0)] + exp[β′
const − βdata(logD−

logD0)]

10 Benchmark-specific in αconst, αyear, βconst, βyear
L = exp[α′

const−α′
year(Y −Y0)−αparam(logN− logN0)]+exp[β′

const−β′
year(Y −Y0)−

βdata(logD − logD0)]

11 Benchmark-specific in αconst, αyear, αparam, βconst, βyear and βdata
L = exp[α′

const−α′
year(Y −Y0)−α′

param(logN− logN0)]+exp[β′
const−β′

year(Y −Y0)−
β′

data(logD − logD0)]

• Models 16 and 17 do not capture algorithmic progress, and are used as a baseline for
goodness-of-fit comparisons. Model 16 is modeled off equation 34, and model 17 modifies
this to include transformer-specific scaling exponents. This is described in more detail in
Appendix J.2

• Model 18 is a model that only considers the total compute, via the approximation C = 6ND.
This is discussed in more detail in Appendix J.1.

• Model 19 includes a term that accounts for different vocabulary sizes. We discuss this in
Appendix E.2.2.

• Model 20 is the same as model 7, but rather than using purely the training dataset size, it
defines “training data" in a way that accounts for the number of epochs of training. Where
the number of training epochs is unknown, we impute an epoch count of 1. This model is
presented in more detail in Appendix F.

29

Table 12: Model specifications for leave-one-out cross validation (Models 12 to 20).

No. Model specification

12 ‘Hicks-neutral’ model
L = (exp[α′

const + αparam(logN − logN0)] + exp[β′
const + βdata(logD − logD0)]) ·

exp[−αyear(Y − Y0)]

13 Transformer vs non-transformer scaling
L = exp[α′

const−αyear(Y −Y0)−α∗
param(logN− logN0)]+exp[β′

const−βyear(Y −Y0)−
β∗

data(logD − logD0)]

14 Progress only via changing scaling exponents
L = exp[α′

const − α†
param(logN − logN0)] + exp[β′

const − β†
data(logD − logD0)]

15 Changing αyear, βyear, αparam, and βdata

L = exp[α′
const−αyear(Y −Y0)−α†

param(logN− logN0)]+exp[β′
const−βyear(Y −Y0)−

β†
data(logD − logD0)]

16 Benchmark-specific Hoffmann et al. [2022] scaling law (for comparison only)
L = exp[α′

const − αparam(logN − logN0)] + exp[β′
const − βdata(logD − logD0)]

17 Transformer-specific scaling law (for comparison only)
L = exp[α′

const − α∗
param(logN − logN0)] + exp[β′

const − β∗
data(logD − logD0)]

18 Compute-only model (for comparison only)
L = exp[α′

const − αyear(Y − Y0)− αcompute(log(6ND)− log(6N0D0)]

19 Vocabulary fixed-effects (for comparison only)
L = γ log(vocab)+exp[α′

const −αyear(Y −Y0)−αparam(logN − logN0)]+exp[β′
const −

βyear(Y − Y0)− βdata(logD − logD0)]

20 Same as model 7 but with imputed epochs (for comparison only)
L = exp[α′

const−αyear(Y −Y0)−αparam(logN− logN0)]+exp[β′
const−βyear(Y −Y0)−

βdata(logD − logD0)]

We chose to include models 16 to 20 in the cross validation analysis to help the robustness checks
performed in different appendices.

J.1 Compute-only model

Given that our core focus is on estimating doubling times in effective compute, one natural parame-
terization is to directly consider total training compute C, in particular,

L = γ′ + exp[α′
const − αyear(Y − Y0)− αcompute(logC − logC0)]. (33)

Here γ′ is defined similarly to the “primed" constants above, i.e. γ′ = γ + γPTBxPTB + γWT2xWT2,
and we have the approximate relation that C ≈ 6ND [Hoffmann et al., 2022]. However, this model
has a tendency to yield implausible results, in particular with a very small scale exponent αcompute
and a very short effective compute doubling time (on the order of 1-5 months).

We omit this model because we believe there are two reasons to expect this model to be strongly
misspecified. The first reason is that the model scaling does not accurately reflect complementarities
between scaling parameter and data. For illustration, compare the following two equations:

L = E +
A

Nα
+

B

Dβ
(34)

L = E +
A

Cα
= E +

A

(6ND)α
(35)

where E is the irreducible loss, and A,B, α, β are constants. In equation 34, reductions to the loss
are bottlenecked by a lack of sufficient data D. This bottleneck does not exist in the case of 35,
where scaling N arbitrarily would bring you to the irreducible loss E. This model thus unrealistically
suggests equivalent performance between a 1-parameter model trained on 1024 tokens, and a 1012

30

parameter model trained on 1012 tokens. Of course, such extreme choices of parameters N and
dataset size D are implausible in practice, but nevertheless we do see clear variation in how these
values are chosen in practice. For instance, Figure 10 shows a plot log10(N/D) for models across
different years, spanning over five orders of magnitude over this time period. This is in spite of the
estimate by Hoffmann et al. [2022] that N/D should be O(1) for compute-optimal training.

2012 2014 2016 2018 2020 2022 2024
Publication date

10 3

10 2

10 1

100

101

102

Tokens per parameter D/N

GPT-3

Chinchilla

Figure 10: Ratio of parameters N to dataset size D for models in our dataset. We emphasize the ratios
corresponding to GPT-3 [Brown et al., 2020] and Chinchilla models [Hoffmann et al., 2022], which are of
historical importance in determining how to choose this ratio when scaling language models.

A second way in which equation 33 is misspecified is due to its unrealistic scaling behavior. To see
why this is the case, we compare the difference between the reducible loss terms in equations 34 and
35, by writing them as a single fraction with the same denominator (ND)α. For illustration purposes,
we also assume that α = β and A = B, which simplify our argument without changing the core
conclusion. If we then factor out the coefficient A, we then have that

LH ∝ 1

Nα
+

1

Dα
=

Nα +Dα

(ND)α
(36)

LC ∝ 1

(6ND)α
=

6−α

(ND)α
, (37)

where LH is the loss predicted from the scaling law in Hoffmann et al. [2022], and LC is the loss
from only considering compute. Here we observe that in the case of Chinchilla-scaling (equation
36), as N or D is increased the value of the numerator increases, whereas the opposite is true in
the compute-only case (equation 37). As a result, fits of the compute-only model tend to have very
small values of α, since the difference in scaling behaviour between the two expressions tends to be
more pronounced for larger values of α. Indeed, estimates using the compute-only model yield very
small values of α, at 0.004 with a 95% CI of [0.002, 0.012]. We illustrate the difference between the
scaling behavior of equations 36 and 37 in Figure 11.

We nevertheless test the compute-only model in cross validation and find that it performs very poorly
on out-of-sample prediction, far worse than any of the other models that we consider. The results of
this exercise are elaborated upon in section J.3.

J.2 Algorithmic progress through changes in the scale exponents αparam and βdata

As mentioned in Section 2.1, the final model that we use for our core results does not explicitly
account for efficiency improvements through changes in scaling exponents (i.e. αparam and βdata).
The primary reason for our decision is that while this form of algorithmic progress is theoretically
plausible, our model fits to the available data suggest that this effect has not been very large. For
example, if we consider the estimates from model 15, which includes both the form of algorithmic
progress described in Section 2.1 and improvements through changes in scaling exponents, we find
that the overall contribution to algorithmic progress is dominated by the former.

31

106 107 108 109 1010 1011 1012
0.0

0.2

0.4

0.6

0.8

1.0

Normalized value

 =0.01

106 107 108 109 1010 1011 1012

Parameters

 =0.05

106 107 108 109 1010 1011 1012

 =0.3

Chinchilla Compute-only

Figure 11: Comparing the scaling behavior of equations 36 and 37, for α = 0.01, 0.05 and 0.3. For illustration,
we choose N = D, and normalize both expressions to equal 1 when the number of parameters N = 106.
The difference between the scaling laws is smallest when α is set to a smaller value—this is illustrated by the
double-headed arrow in each plot, showing the largest gap between the two curves.

Another piece of supporting evidence is that in cross validation, model 14 appears to perform roughly
as well as models without any algorithmic progress at all (models 16 and 17). Furthermore, the
parameters which determine the rate of changing scale exponents (αrate and βrate) are generally
very small (around 0.001 to 0.01). As such, the model appears to simply be approximating the
equivalent models without algorithmic progress. This suggests that this form of algorithmic progress
is negligible, and is also why we have excluded model 14 from Figure 1.

J.3 Performance metrics

In this section we list the resulting goodness-of-fit metrics from our cross validation analysis. In this
case we report the average out-of-sample MSE loss.

Model/δ-value 0 0.001 0.0025 0.005 0.01 0.02

1 0.04793 0.04778 0.04762 0.04762 0.04788 0.04997
2 0.05112 0.05111 0.05049 0.05293 0.05745 0.05793
3 0.04727 0.04732 0.04758 0.04797 0.048 0.04826
4 0.04716 0.04665 0.04618 0.04656 0.04696 0.04693
5 0.04457 0.04458 0.04502 0.04545 0.04606 0.04709
6 0.04539 0.04561 0.04529 0.04519 0.04669 0.04756
7 0.04795 0.04809 0.04836 0.04676 0.0468 0.04696
8 0.04671 0.04771 0.04666 0.04689 0.04745 0.0501
9 0.04622 0.04705 0.04732 0.0461 0.04686 0.04694

10 0.04405 0.04285 0.04217 0.04642 0.04758 0.04804
11 0.14378 0.04562 0.04402 0.04504 0.04518 0.04613
12 0.04845 0.04669 0.04731 0.04615 0.04656 0.04567
13 0.04381 0.04515 0.04525 0.04454 0.04468 0.04477
14 0.05144 0.06391 0.0637 0.06298 0.06361 0.06424
15 0.04751 0.04884 0.04843 0.04611 0.04612 0.0476
16 0.06448 0.0645 0.06401 0.0629 0.0632 0.06307
17 0.05668 0.05846 0.05879 0.05821 0.05836 0.05842
18 0.05542 0.05541 0.05543 0.05545 0.05551 0.05568
19 0.04643 0.04731 0.04632 0.0467 0.04669 0.04713
20 0.04564 0.04659 0.04929 0.04751 0.04765 0.04827

Table 13: Average mean squared error test loss of all model-δ combinations from cross validation. δ-values
here are the regularization term in the L1 regularization set-up.

32

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We describe the core approach (estimating augmented scaling laws), and the
core things we investigate (the rate of algorithmic progress, the relative contributions of
scaling models vs algorithmic progress) in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This is described under the “Limitations" subsection of the discussion, where
we mention problems like the lack of quality data and the reliance on the Chinchilla scaling
law. We have attempted to be as transparent as possible about the model assumptions and
the challenges in extrapolating our results to future AI progress.
Guidelines:

33

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The only theoretical result in this paper is in appendix I on autocorrelation;
everything else is empirical. We provide the full derivation of our result in that section.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explain the model specification in section 2.1, as well as full details in the
appendices (e.g. the full model equations are listed in appendix J). The data and optimization
strategy used are all described in section 2.2. The key results can all be tested by fitting the
same model specification on the same data, the code and dataset for which are provided.

Guidelines:

34

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All data and code is provided together with this paper submission.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

35

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The methodology (including datasets, statistical model, and optimization
algorithms) are all described in section 2.1. We provide more detail about these in the
appendices, e.g. we go into depth about our dataset in appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide bootstrapped confidence intervals throughout the paper to illustrate
the uncertainty in our results. We also provide information about model uncertainty, by
trying different model variants and showing how predictions vary across these variants.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: Our empirical results are based on statistical models that do not involve running
machine learning experiments. These empirical results are obtained by fitting a dataset in
Google Colab notebooks.

36

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our empirical results do not involve human subjects or participants. Our
dataset consists of data obtained from publicly-accessible machine learning papers, such as
on benchmark performance and model size, and authors are referenced in the database.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the importance of our research for understanding AI trends and
for informing policy in the introduction. We further emphasize potential downsides if our
results are misinterpreted (e.g. extrapolated too far into the future) in the limitations section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

37

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The empirical results in our paper are from fitting a simple statistical model on
publicly available benchmark results, publication dates, and information about dataset size
and parameter counts. As such, our work does not pose serious risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We do not use assets in the typical machine learning sense, with e.g. datasets
for training neural networks or relevant code for training. Perhaps the most relevant asset
we use is to collect certain results (like model size and benchmark performance) from public
papers, and we link all these papers in our dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not create assets for machine learning training or inference, as this
is not the focus of our paper. The most relevant “assets" that we provide are the database
(described in detail in this paper) and IPython notebooks pertaining to each section of this
paper.
Guidelines:

38

paperswithcode.com/datasets

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not perform crowdsourcing experiments or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not perform research with crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

39

	Introduction
	Previous work

	Methodology
	Model definitions
	Estimation approach
	Model selection
	Data

	Empirical results
	Models require 2 less compute roughly every eight months
	Most recent performance gains in next-token prediction have been from compute-scaling
	The significance of the transformer architecture

	Discussion and conclusion
	Summary of our findings
	Limitations
	Conclusion

	Observing improvements in the data
	The gains from better scaling laws
	Core model parameter estimates
	Comparing our estimates to earlier work

	Significance of the transformer architecture
	Dataset
	Performance measure and dataset
	Perplexity
	Context length
	Tokenization
	Inconsistencies in perplexity evaluations

	Dataset Size & Epochs
	Parameter Size
	Inclusion and exclusion criteria
	Dataset review

	Quantifying training data D
	Doubling times via optimal scaling
	Irreducible loss
	Autocorrelation
	Results
	Determinant
	Inverse

	Cross validation for model choice
	Compute-only model
	Algorithmic progress through changes in the scale exponents param and data
	Performance metrics

