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Abstract

Existing works have extensively studied adversarial examples,
which are minimal perturbations that can mislead the output of
deep neural networks (DNNs) while remaining imperceptible
to humans. However, in this work, we reveal the existence of
a harmless perturbation space, in which perturbations drawn
from this space, regardless of their magnitudes, leave the net-
work output unchanged when applied to inputs. Essentially, the
harmless perturbation space emerges from the usage of non-
injective functions (linear or non-linear layers) within DNNss,
enabling multiple distinct inputs to be mapped to the same out-
put. For linear layers with input dimensions exceeding output
dimensions, any linear combination of the orthogonal bases of
the nullspace of the parameter consistently yields no change
in their output. For non-linear layers, the harmless perturba-
tion space may expand, depending on the properties of the
layers and input samples. Inspired by this property of DNNs,
we solve for a family of general perturbation spaces that are
redundant for the DNN’s decision, and can be used to hide
sensitive data and serve as a means of model identification.
Our work highlights the distinctive robustness of DNNs (i.e.,
consistency under large magnitude perturbations) in contrast
to adversarial examples (vulnerability for small noises).

Code — https://github.com/csluchen/harmless-perturbations
Extended version — https://arxiv.org/pdf/2402.02095

Introduction

The robustness of Deep Neural Networks (DNNs) against
structured and unstructured perturbations has attracted signif-
icant attention in recent years (Szegedy et al. 2014; Nguyen,
Yosinski, and Clune 2015; Fawzi, Moosavi-Dezfooli, and
Frossard 2016; Salman et al. 2021). In particular, deep learn-
ing models are shown highly vulnerable to adversarial per-
turbations (Szegedy et al. 2014). These well-crafted pertur-
bations, which are imperceptibly small to the human eye,
cause DNNs to misclassify with high confidence (Carlini
and Wagner 2017; Madry et al. 2018; Croce and Hein 2020).
Naturally, an inquiry arises:

Are there perturbations within the input space capable
of preserving network output invariance?
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Unlike vulnerability against adversarial examples, in this
paper, we reveal the robustness of DNNs to specific perturba-
tions that render the network output mathematically strictly
invariant. We demonstrate the existence of such harmless
perturbations that, when introduced onto natural images or
embeddings, regardless of their magnitude, will not affect the
discrimination of the DNN. Such harmless perturbations aris-
ing from the linear layers are universal, as they are instance-
independent and solely determined by the parameter space
of the DNN. These harmless perturbations span a continuous
harmless subspace, embedded within the high-dimensional
feature space. The surprising existence of harmless perturba-
tions reveals a distinctive view of DNN robustness.

For the linear layers of DNNs, we find that when its input
dimension n exceeds the output dimension m, the harm-
less perturbation subspace of this layer can be derived by
computing the nullspace of its parameter matrix A, i.e.,
N(A) = {v € R"|Av = 0}. To this end, the harmless
subspace exhibits a dimension of (n — m) and is embed-
ded within an n-dimensional feature space. Furthermore, the
harmless perturbation space may expand when involving non-
linear layers, depending on the specific non-linear functions
and input samples. Inspired by the harmless subspace of lin-
ear layers, we further investigate the robustness of DNNs
against more general perturbations, i.e., random noises or
adversarial perturbations. We find that a family of those gen-
eral perturbations, irrespective of their magnitude, identically
influence the DNN’s output. This phenomenon stems from
the decomposition of arbitrary perturbations into the sum of
any harmless and harmful components. Consequently, the
network output for general perturbations becomes equiva-
lent to that of harmful perturbations, particularly aligning
with that of components orthogonal to the harmless perturba-
tion subspace (Figure 1(b)). Essentially, for any linear layer
with a harmless subspace, the equivalent feature space is
characterized by identical orthogonal components, leading to
consistent network outputs.

The existence of harmless perturbations and their space
promotes several potential benefits. First, capitalizing on the
disparity between DNNs and human perception, i.e., signif-
icant perturbations perceivable by the human eye may not
affect the recognition of DNNs, we delve into the applica-
tion of harmless perturbations to privacy-preserving data
and model fingerprints. Additionally, as demonstrated in Fig-
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Figure 1: (a) Harmless perturbations added to images completely do not change the network output of the images, regardless of
the magnitude of these harmless perturbations. (b) Illustration of the equivalent effect of any perturbation on the network output.

Given any linear layer with a harmless subspace 7, the network outputs of any perturbations ¢ and b are equivalent to those of

their components ¢ orthogonal to the harmless subspace.

ure 1(a), there exist equivalent adversarial spaces, ensuring
equal attacking capabilities for adversarial perturbations re-
gardless of their magnitude. In other words, the perturbation
magnitude is not a decisive factor in attacking the network.
Instead, focusing on the attack utility of the “effective com-
ponent" of the perturbation facilitates a deeper understanding
of the robustness of DNNs. In summary, this paper makes the
following contributions:

* We demonstrate for the first time the concept of “harm-
less perturbations" and show the existence of a harmless
perturbation space for DNNs. For any linear layer with
the input dimension n exceeding the output dimension m,
there exists a continuous harmless perturbation subspace
of dimension (n — m). The harmless perturbation space
may expand when considering non-linear layers, depend-
ing on the properties of the layers and input samples.

* We present a novel perspective to decompose any general
perturbation (i.e., random noises or adversarial perturba-
tions) into its harmful and harmless counterparts. Given
any linear layer with a harmless subspace, the network
output solely depends on its orthogonal (harmful) compo-
nent, irrespective of its magnitude (innocuous) part.

* We reveal the difference between DNNs and human per-
ception, i.e., significant perturbations captured by humans
may not affect the recognition of DNNs, which highlights
a distinctive aspect of DNN robustness. Based on this
insight, we employ the proposed harmless perturbations
with a large magnitude to hide the sensitive image data
for DNN usage. As harmless perturbations are usually not
transferable across different DNNs, they can also serve as
model fingerprints.

Related Work

Adpversarial Examples and Adversarial Robustness. Ex-
isting literature extensively explored the impact of adver-
sarial perturbations (Szegedy et al. 2014) on the robustness
of DNNs, including their ability to deceive both the digital
and physical scenarios (Kurakin, Goodfellow, and Bengio
2017), fool both the white-box models (Goodfellow, Shlens,
and Szegedy 2015; Madry et al. 2018) and black-box mod-

els (Papernot et al. 2017; Chen et al. 2017), and manifest
as either image-specific or image-agnostic universal per-
turbations (Moosavi-Dezfooli et al. 2017). Many defenses
against these adversarial perturbations have been proposed
but they were susceptible to being broken by more power-
ful or adapted attacks (Carlini and Wagner 2017; Athalye,
Carlini, and Wagner 2018). Amongst them, adversarial train-
ing (Madry et al. 2018) and its variant (Zhang et al. 2019)
still indicated their relatively reliable robustness against more
powerful attack (Croce and Hein 2020).
Adversarial Space. Previous studies have delved into the vul-
nerability of DNNs from the perspective of high-dimensional
input spaces. Goodfellow, Shlens, and Szegedy (2015) argued
that the “highly linear" of DNNs explained their instability
to adversarial perturbations. Fawzi, Moosavi-Dezfooli, and
Frossard (2016) quantified the robustness of classifiers from
the dimensionality of subspaces within the semi-random
noise regime. Gilmer et al. (2018) suggested that adver-
sarial perturbations arised from the high-dimensional ge-
ometry of data manifolds. Tramer et al. (2017) stated that
adversarial transferability arised from the intersection of
high-dimensional adversarial subspaces from different mod-
els. Shafahi et al. (2019) empirically discussed that how di-
mensionality affected the robustness of classifiers to adversar-
ial perturbations. Jetley, Lord, and Torr (2018) identified that
the directions in the input space most vulnerable to attacks
overlap with those used to achieve classification performance.
Unrecognizable Features. A series of prior works (Geirhos
et al. 2019; Ilyas et al. 2019; Tsipras et al. 2019; Jacob-
sen et al. 2019a; Yin et al. 2019; Wang et al. 2020) have
demonstrated that humans and DNNss tend to utilize different
features to make decisions. Besides, producing totally un-
recognizable images (Nguyen, Yosinski, and Clune 2015) or
introducing visually perceptible patches to images (Salman
et al. 2021; Wang et al. 2022; Si et al. 2023) may not alter
the classification categories of DNNSs. In constrast, Tao et al.
(2022) proposed that slight modifications to a misclassified
sample can lead to correct classification.

“Harmless" is a concept similar to Definition 1 in (Jacob-
sen et al. 2019b), which introduced invariant perturbations
for networks and optimized generated images with semanti-



cally meaningful variations from natural images. Unlike this
work, we define and derive exact solutions for the harmless
perturbation space that keep logits invariant for any DNN.

The Space of Harmless Perturbations

We develop a framework to rigorously define “harmless” and
“harmful” perturbations w.rz. the network output. In particular,
we formally define and solve for the subspace for harmless
perturbations in any linear layer of a given DNN. Subse-
quently, the definitions and solutions are extended to non-
linear layers by analyzing the properties of the functions.

Harmless Perturbations for a Linear Layer

Consider a function mapping £ : R™ — R™ on an input
sample x € R™, the goal is to find a set of input perturbations
0 € R” that rigorously do not change the output of the
function. To this end, we define harmless perturbations.

Definition 1 (Harmless perturbations). The set of harmless
perturbations for a function L is defined as S = {6|L(x +
0) = L(x)} subject to ||6]|, <& & > 0.

Definition 1 denotes a set of input perturbations that thor-
oughly do not affect the function output. Then, the set of
harmless perturbations for a linear function £(z) = Az,
where A € R™*" is the parameter matrix, can be formulated
as S = {§|A(z + 9) = Az} = {0] A0 = 0}. It indicates that
the set of harmless perturbations for a single linear layer £
is equivalent to the nullspace of the parameter matrix A, i.e.,
S = N(A) = {v € R"|Av = 0}. £ is application-specific.

Theorem 1 (Dimension of harmless perturbation subspace,
proven by the Rank-Nullity Theorem). Given a linear layer
L(z) = Az € R™ and an input sample x € R™, where the
parameter matrix A € R™*", The dimension of the subspace
Sor harmless perturbations is dim(S) = n — rank(A).

Theorem 1 shows that the subspace for harmless perturba-
tions is the span of dim(S) linearly independent vectors U C
S, ie,S = span(U) = {Z?;T(S) ciugle; € Ryu; € U}
As a special case, the parameter matrix A of a linear layer in
DNNGs learned through an optimization algorithm (e.g., SGD)
starting from an arbitrary initialization, usually possesses
linearly independent (row) vectors (Feng and Zhang 2007).
So the dimension of the harmless perturbation subspace for a
linear layer L(x) = Az € R™ is dim(S) =n — m.

Remark 1 (proven in Appendix A). Consider the case that
the input dimension of the linear layer is less than or equal
to the output dimension, i.e., n < m. In this case, if the
column vectors of the parameter matrix A are linearly in-
dependent, then the dimension of the subspace for harmless
perturbations is dim(S) = 0.

Remark 1 states that there exists no (non-zero) harmless
perturbation that does not affect the output of the linear layer
when n < m and rank(A) = n.

The Space of Harmless Perturbations for DNNs

Extending harmless perturbations from a single linear layer to
the entire DNN is challenging. Consider a DNN f : R"n —
™ on an input sample z € R™», the goal now is to identify

a set of harmless input perturbations § € R™ which ulti-
mately do not alter the network output. Notice that harmless
perturbations solved for the intermediate layers do not influ-
ence subsequent layers. Therefore, we can formally define
the set of harmless perturbations layer by layer for a DNN.

Definition 2 (Set of harmless perturbations for DNNs). The
set of harmless perturbations on the (I + 1)-th layer of a
DNN f is defined as H = {W|f0+D (1) 4 §0) =
JEDEO)).

20 e rn represents the [-th intermediate-layer features
of the input sample z, and 6() denotes the perturbations
added to the features z(!). Definition 2 shows that if the set
of harmless perturbations on the features can be found, these
perturbations leave the network output unaffected. Further-
more, if we identify a set of perturbations on the input P(") :=
{620 460 = (fWo...o fO)(z+05),¥s" € HD} such
that 6 € HO | then P® do not alter the network output.

Lemma 1 (proven in Appendix C). The set of harmless
perturbations on the input for a DNN f with L layers is
derived as P = J}= PO, PO == 4O, P c R,

Lemma 1 suggests that the set of harmless input perturba-
tions for the entire DNN P is the union of the corresponding
set of harmless input perturbations P() on each layer. Be-
sides, P() € PU+1) (proven in Appendix) shows that the set
of harmless input perturbations grows monotonically with
increasing layer [. Theoretically, Lemma 1 does not restrict
whether any layer in the DNN is linear or nonlinear, i.e., given
any layer, if H® and PY can be evaluated, then harmless
input perturbations for this layer can still be obtained. Based
on Lemma 1, we further investigate the effect of a single
layer of nonlinearity on the harmless perturbation space. In
scenarios involving non-linear layers, the harmless perturba-
tion space may expand, depending on the specific non-linear
functions and input samples.

Lemma 1.1 (Harmless perturbations for injective functions,
proven in Appendix C). If the layer f*V) is an injective
function, the set of harmless perturbations on the (1+1)-th
layer of a DNN f is H(") = {0}. Otherwise, H(") # {0}.

Lemma 1.2 (Harmless perturbations for ReLU layers, proven
in Appendix C). Suppose fUt1) is the ReLU layer, HY) =
0, 2 >0
tve < -2y, 2P <o

mined by features z") and hence the input sample x.

{60 vi, 60 = { }, which is deter-

Lemma 1.3 (Harmless perturbations for Softmax layers,
proven in Appendix C). Suppose f+1) is the Softmax layer;
HO ={c-1,c € R}.

Lemma 1.4 (Harmless perturbations for Average Pool-
ing layers, proven in Appendix C). Suppose fU+1) is the
Average Pooling layer, H) = N (Aavg). Aavg is a coefficient
matrix determined by the constraints that must be satisfied
by the perturbations within each averaging region.

Lemma 1.5 (Harmless perturbations for Max Pooling layers,
proven in Appendix C). Suppose f*+1) is the Max Pooling



3000 —— VGGI16 (stride=1, Hy,=Hi,) 3000 —e— MNIST (N,=784)
2500 —o— ResNet18 (stride=2, Hyy=0.5H;,) 2500 —— CIFAR-10 (¥;=3072)
ResNet50 (stride=2, Hy,=0.5H;,) CIFAR-100 (N;,=3072)
£ 2000 EfficientNet (stride=2, H,,=0.5H;,) g 2000 SVHN (N;,=3072)
a —o— ResNet18 (stride=4, H,,=0.25H;,) Z
Q Q
2 1500 2 1500
= £
2 1000 1000
500 300 784 3072
0 0
3 12 24 36 48 1000 2000 3000

Number of kernels C,

(a) Convolutional layer

4000
Number of neurons N,

(b) Fully-connected layer

Figure 2: Dimension of harmless perturbation subspace for (a) convolutional layers and (b) fully-connected layers. When the
input dimension n of the linear layer is larger than the output dimension m, the dimension of the harmless subspace is (n — m).

Otherwise, the dimension is 0.

layer, HV) = {Vp, i, 61(,”7 <cp— z](alz} N {Vp, Hféf(ég; —
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maximum value of features within the k X k region of the p-th
patch. HY is determined by intermediate-layer features ="

and hence the input sample x.

Theorem 2 (Harmless perturbations for two-layer neural
networks, proven in Appendix A). Given a two-layer neural
network f(x) = o(Ax), where o represents any function. If
o is an injective function, the set of harmless perturbations on
the input P for f is P = P©). Otherwise, P = POUPWM) D
PO Here, PV = {§|A5 = 6V, V6 € HD) nC(A)}!
is determined by the function o and the input sample x.

Theorem 2 suggests that the property of the function o
determines whether the set of harmless perturbations for
Az may expand. For instance, if o is an injective func-
tion, such as Sigmoid, Tanh, leaky ReLU (Maas, Hannun,
and Ng 2013), exponential linear unit (ELU) (Clevert, Un-
terthiner, and Hochreiter 2016) and scaled exponential linear
unit (SeLU) (Klambauer et al. 2017) activation functions,
and the linear Batch Normalization (BN) layers at inference
time (Ioffe and Szegedy 2015), the set of harmless perturba-
tions on the input P remains unchanged, compared to that
of Az. Conversely, if o is a non-injective function, such
as ReLLU (Nair and Hinton 2010), Softmax, Average Pool-
ing (LeCun et al. 1990), and Max Pooling layers (Scherer,
Muller, and Behnke 2010) (see Lemmas 1.2 to 1.5 and The-
orem 2 for their P, respectively), the set of harmless pertur-
bations on the input P may expand P 2 P(©), depending
on the specific functions and input samples. Note that, in
the above non-linear layers, the harmless perturbation space
for the ReLU layer is determined by the input sample . In
an extreme case, if every element of Ax is positive, then its
harmless perturbation subspace P = P(?). Otherwise, if ev-
ery element of Az is not positive, P = P yP1) > pO),
(For more details, please refer to Lemma 1.2 in Appendix
C). In summary, the harmless perturbation space on the input
does expand P D PO if there exists at least one harmless
perturbation §(V ¢ HM N C(A)(6() # 0) for the non-
injective function o.

'Note that the equation A5 = 6(§ # 0) has a solution
(meaning at least one solution) if and only if & () is in the column
space of A, i.e., ) € C(A).

Lemma 1.6 (Harmless perturbations for two-layer linear
networks, proven in Appendix C). Given a two-layer lin-
ear network f(x) = AxyAjx, P = PO ypl) o> pO),
Here, P(0) = N(A;) and P = {6|A;6 = 6M) w6 ¢
N(AQ) N C(A1)}

Furthermore, Lemma 1.6 illustrates the expansion of harm-
less perturbations on the input P solely depends on the dimen-
sions of those two linear layers. For two common scenarios
in DNNs, where given A; € R4*™ and Ay € R™*4 when
n,m > d, P = PO, Otherwise, when n,m < d, P = P,
(Please see Lemma 1.6 in Appendix C for the details.)

The Subspace of Harmless Perturbations for Linear
Layers in DNNs

Nevertheless, in this section, we focus on the set of harmless
perturbations for two classical linear layers in DNNG, i.e.,
convolutional layers and fully-connected layers.

Corollary 1 (Harmless perturbation subspace for convolu-
tional layers, proven in Appendix B). Given a convolutional
layer £V with linearly independent vectorized kernels
whose kernel size is not smaller than the stride, 2t =
FUD (20 ¢ ROwxHouxWou gpg (1) ¢ RCn>HuxWa  [f
the input dimension is greater than the output dimension,
then the dimension of the subspace for harmless perturba-
tions is dim(HW) = Ciy HixWin — CouHouWou. Otherwise,
HD = {o}.

Corollary 1 demonstrates the subspace for harmless per-
turbations in a convolutional layer is the span of dim (H (")
linearly independent vectors U < H. Specifically, H)
can be obtained by computing the nullspace of a matrix
A € R(CouHouWou)x(CnHa W) 1 practice, A is affected by
the padding and the stride of the convolutional layer (see
Appendix E for details). Similarly, given a fully-connected
layer z(t) = WT2(0 ¢ RNow and (V) € RN, the harm-
less subspace is the span of dim(H®)) = Nj, — Ny lin-
early independent vectors U < H(") (see Corollary 2 in
Appendix B). Here, #() is computed as the nullspace of a
matrix A =WT.

Experiments on various DNNs verify Corollaries 1 and
2. In Figure 2, the dimension of the harmless perturbation
subspace dim(H V) decreased as the output dimension in-
creased. When the output dimension exceeds the input di-
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Figure 3: The effect of perturbation magnitude on the performance of the network. We trained the CIFAR-10 dataset on various
networks and tested the effect of varying magnitudes on (a) harmless perturbations and (b) the least harmful perturbations.

Table 1: Root mean squared errors between the network outputs of the perturbed and original images on the CIFAR-10 dataset.

€ 2¢ 4e 8e 16€ 32¢
Gaussian noise 0.1226 0.3154 0.8112 1.7871 3.3921 5.0009
Adversarial perturbation (Madry et al. 2018)  6.1994 6.3225 5.5410 5.6122 6.6585 11.2747
Harmless perturbation 3.63e-15  3.70e-15  3.77e-15 4.20e-15 5.38e-15  8.55e-15
Least harmful perturbation 0.0003 0.0007 0.0013 0.0027 0.0053 0.0105

mension, dim(?—l(l)) becomes 0. Specifically, we verified the
dimension of the harmless subspace for convolutional layers
using various DNNG, including ResNet-18/50 (He et al. 2016),
VGG-16 (Simonyan and Zisserman 2014) and Efficient-
Net (Tan and Le 2019), on the CIFAR-10 dataset (Krizhevsky,
Hinton et al. 2009). Here, we modified the feature size of
the output of the first convolutional layer by setting differ-
ent strides (see Appendix F.1). Furthermore, we verified the
dimension of the harmless perturbation subspace for fully-
connected layers using the MLP-5 on various datasets, in-
cluding the MNIST dataset (LeCun and Cortes 2010), the
CIFAR-10/100 dataset (Krizhevsky, Hinton et al. 2009) and
the SHVN dataset (Netzer et al. 2011), to compare the dimen-
sion of the subspace under different input dimensions.

Conversely, there exists no (non-zero) perturbation making
the network output invariant, if the input dimension of a
given linear layer is not greater than the output dimension.
However, the least harmful perturbation can be solved for
such that the layer output is minimally affected, i.e., given
the matrix A with equivalent effect of a linear layer, the least
harmful perturbation is (6())* = argming || A" |2, s..,
6|2 = 1. Hence, the least harmful perturbation (§(V)* is
the eigenvector corresponding to the smallest eigenvalue of
the matrix A" A (see Lemma 2 in Appendix C).

We validated the impact of harmless perturbations and the
least harmful perturbations on network performance across
varying perturbation magnitudes. In Figure 3(a),harmless per-
turbations, regardless of their magnitude, do not affect the
discrimination of DNNs (see Appendix F.2 for details). For
the least harmful perturbations in Figure 3(b), they also have
negligible effects on the network performance, compared
with the Gaussian noise N (0, 1) added to each pixel. Further-
more, we evaluated the root mean squared error (RMSE) be-
tween the network outputs of the perturbed images ¢, and the
network outputs of natural images y, on the ResNet-50, i.e.,
RMSE=E, [ﬁ [|9s — yx||]. Table 1 further demonstrates that

compared to adversarial perturbations and Gaussian noise,
harmless perturbations completely did not change the net-
work output with negligible errors, and the least harmful
perturbation had a weak impact on the network output as the
perturbation magnitude increased.

Projection onto the Harmless Subspace

Inspired by the harmless subspace of linear layers, we can
decompose any given perturbation (i.e., random noise, ad-
versarial perturbations) into its two orthogonal counterparts,
namely, harmful and harmless components. This section ex-
tends the harmless subspace to any given perturbations and
investigates the projections of these perturbations onto their
corresponding harmless subspaces.

Theorem 3 (Arbitrary decomposition of perturbations,
proven in Appendix A). Given the (I + 1)-th linear layer
with harmless subspace H) # {0} and any perturbation
Vo ¢ HW, it can be arbitrarily decomposed into the
sum of a harmless perturbation and a harmful perturbation,
ie, 60 =68 + 50 v5l) € HO and 5" ¢ HY. Then,
FEDEO) = fED ().

Theorem 3 indicates that the network output of any pertur-
bation () ¢ H is equivalent to that of its corresponding
harmful component 55” = (60 =6y ¢ HO sl e O,
no matter how large the {,, norm of harmful component is.
According to Theorem 3, an infinite number of perturbations,
regardless of their magnitude, will induce the equivalence
of a continuous harmful space?. Naturally, an inquiry arises:
what is the extent of these perturbations concerning a given
DNN? Theorem 4 extends the argument by establishing the
existence of a unique perturbation characterized by the small-
est {5 norm (see the proof in Appendix D). This perturbation

. . ()
Note that the harmful space is not a linear subspace of R"™
. . . (1)
since it does not contain 0 € R™ .



is orthogonal to the harmless subspace, and exhibits network
output consistent with the infinite number of perturbations
embedded in the continuous harmful space (Figure 1(b)).

Theorem 4 (Orthogonal decomposition of perturbations,
proven in Appendix A). Given the (I+1)-th linear layer with

harmless subspace and any perturbation ¥6() ¢ HD, it has
a unique decomposition 5 = 5ﬁl) + (55? with the parallel

component 5ﬁl) = P5® € HY and the orthogonal compo-
nent (5@ = (I—P)s® ¢ HW. Then, f(Hl)(é‘(ll)) = 0 and

f(l+1)(5(l)) _ f(l+1)(5$)).

P = UUTU)"'UT represents the projection matrix
onto the harmless subspace HO R"m ,and U €
R xdim(HY) denotes a set of dim (HY) orthogonal bases
for the subspace H ().

As a special case of Theorem 3, Theorem 4 demonstrates
that the network output of a family of features/perturbations
is equivalent to that of the component of this perturbation
family, which is orthogonal to the subspace. In essence, as
expounded in Theorem 5, a collection of perturbations can be
categorized as a perturbation family with identical impact on
the network output, if their orthogonal components exhibit
congruence in both magnitude and direction.

Theorem 5 (Identical impact of a family of perturbations,
proven in Appendix A). Given the (I+1)-th linear layer with
harmless subspace and two different perturbations Y6 #
50 and 60, 60 ¢ HW, if their orthogonal components are
the same, i.e., 5? = 5?, then f+D (D) = A+ (50),

Theorem 5 posits that when a set of features/perturbations
lies equidistant to the harmless subspace and exhibits the
same direction in their orthogonal components, these pertur-
bations form a family that induces uniform network effects.
These perturbations can be analogized to form contour lines
in a topographic map, as these perturbations with the same or-
thogonal components yield the same network output (Figure
6 in Appendix). Notably, this effect remains consistent irre-
spective of the perturbation magnitude. Furthermore, when
the orthogonal components of any two perturbations have
different directions, i.e., 69 #+ a-SY)(a € R), then the layer
outputs are inconsistent £ 1) (50)) £ 0+ (51)) (Lemma
4 in Appendix C). It is also implied that orthogonal compo-
nents with the same magnitude but different directions do not
necessarily corrupt the network to the same output. We be-
lieve that the perturbation decomposition approach presented
in this work allows us to re-examine the intriguing properties
of adversarial examples by decomposing the perturbations
into their harmful and harmless counterparts.

Applications of Harmless Perturbations
Privacy Protection

We first consider a scenario where users may require employ-
ing a pre-trained model on a third-party server to analyze data
containing sensitive information (e.g., facial, medical, and
credit data) (Schick et al. 2023; Shen et al. 2023; Wu et al.
2023; Liang et al. 2023). Specifically, either the third-party

Table 2: Perceptual similarity between the perturbed images
and the original images on the CIFAR-10 dataset.

Harmless perturbation =~ Gaussian noise

SSIM ({) 0.4719 0.6825
LPIPS (1) 0.2031 0.3007
Aaccuracy () 0.00% 32.46%

server or the user provides a pre-trained model, enabling the
user to access the network parameters. Subsequently, the user
locally generates privacy-preserving data using the available
parameters, and then deploys the protected data, along with
the network, to the third-party server. To alleviate information
leakage from sensitive data, harmless perturbations with suf-
ficiently large magnitudes can be added to original samples.
This process renders the generated samples unrecognizable
to humans, effectively obscuring sensitive information within
the images, without compromising network performance.

To be specific, our goal is to generate a visually unrecog-
nizable image, denoted as & € R, to substitute the original
image x, ensuring that its network output is identical with
that of the original image x. Specifically, given a DNN with a
harmless perturbation subspace H(*)  R™n in its first linear
layer, and a set of orthonormal bases {uy, us, - ,uq} of the
subspace H(O) (d = dim(H))), visually unrecognizable
harmless perturbations can simply be generated by maxi-
mizing the dissimilarity between the original image = and
the generated image & := x + Ele ciui, c; € Ryu; € R™n,
Without loss of generality, we quantify the difference between
the two images using the Mean Squared Error (MSE), i.e.,
MAX{c, ey ea} nim || —||3. To make the pixels of the gener-
ated image in the range [0, 1], we add two penalties on the pix-
els out of bounds, i.e., Y. [1(&; < 0)-Z;| + [1(Z; > 1) - &4,
as shown in Figure 1(a). Additional results on various datasets
are presented in Appendix G. Algorithm 1 in Appendix also
shows the pseudo-code of generating harmless perturbations.
Recovering Original Images. Reconstructing the original
image = from the generated image % is a challenging task
even if the attacker can access network parameters. Since the
parameter matrix A uniquely determine the harmless pertur-
bation subspace, it is equivalent to specifying the subspace
#(9). However, according to Theorem 3, the generated im-
age I ¢ H(® can be decomposed into the sum of an infinite
number harmless components §eHO (Figure 1(b)) and

reconstructed images " := & — 5, V6 € H(©). Therefore,
the original image cannot be determined when the magnitude
and direction of the harmless perturbation are unknown.

Visual Indistinguishability. To quantify the capability of the
generated images in preserving privacy for human perception,
we evaluated the perceptual similarity using two similarity
metrics, i.e., the Structural Similarity Index (SSIM) (Wang
et al. 2004) and the Learned Perceptual Image Patch Sim-
ilarity (LPIPS) (Zhang et al. 2018) metrics. Besides, we
evaluated the degradation in classification performance of
the generated images, compared to the original images. We
compared the privacy-preserving capability of the generated
harmless perturbations with the Gaussian noise N(0, 0.12)
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Figure 5: Harmless perturbations (magnified by 16x) can
serve as identity fingerprint for models, allowing for tracking
changes in closed-source models.

added to each pixel on the ResNet-50. Table 2 shows that
the generated harmless perturbations achieved a similar level
of privacy preservation as Gaussian noise, but the harmless
perturbations completely did not change the DNN’s discrimi-
nation of images.

Model Fingerprint

Harmless perturbations also can be used for model finger-
prints (Finlayson, Ren, and Swayamdipta 2024; Zeng et al.
2024) to faithfully reflect the model’s changes, as they are
determined by the parameter space of the DNN. We demon-
strate this usage by considering the simple case of establish-
ing identity fingerprints for two DNNs. Figure 5 illustrates
the network’s response when adding two different harmless
perturbations extracted from two distinct models on input
images. Incorporating significant harmless perturbations gen-
erated by one model into various input samples preserves the
outputs of that model, while applying them to input samples
of another model leads to significant changes in the outputs
of another model. This demonstrates harmless perturbations
can potentially serve as model fingerprints.

Transferability of Harmless Perturbations. Typically,
given two DNNs with different parameters, their harmless
perturbation spaces are not equal, i.e., P; # P>. However,
there may exist few harmless perturbations that are trans-
ferable and serve as harmless perturbations for both DNNGs,
i.e., & € P1 N Py. To avoid choosing those rare transfer-
able harmless perturbations as model fingerprints, we con-
straint the sampling of model fingerprints solely from the non-
intersecting harmless perturbation spaces of the two DNNs,

satisfying 01 € P; — (P1 N'Pz) and d3 € Py — (P1 N Pa).

Intriguing Properties from Harmless Perturbations

Seeing Is Not Always Believing. Surprisingly, we find that
distances within the feature space may exhibit considerable
variation between DNNs and human perception. Human per-
ceptual systems tend to discern non-equivalence when the
magnitude of the perturbation added to a feature significantly
exceeds the feature’s magnitude. In contrast, DNNs tend to
disregard the magnitude of features/perturbations. DNNs are
completely unaffected by such harmless perturbations, high-
lighting a distinctive aspect of DNN robustness. Furthermore,
harmless perturbations invalidate distance-based similarity
metrics, such as the widely used Euclidean and cosine dis-
tances (Mensink et al. 2013; Zhang et al. 2018). For example,
two vectors sampled from harmless/equivalent space, regard-
less of their magnitude or direction, may deemed dissimilar
through these similarity metrics, yet deep networks still re-
gard them as identical. Consequently, there arises a necessity
to reassess whether these similarity metrics faithfully reflect
the true modelling of similarity by deep networks.
Equivalent Adversarial Spaces. We revisit the impact of
perturbation range/magnitude (Madry et al. 2018; Wang et al.
2019) of adversarial examples on the DNNs. Theorems 3
and 4 demonstrate that infinitely large, infinitely numerous
features/perturbations are equivalent to their components or-
thogonal to the harmless subspace. Therefore, for any per-
turbation, there exist equivalent (adversarial) perturbation
spaces, ensuring equal attacking capabilities for perturba-
tions. Compared to the Gaussian noises in Figure 4(b), the
adversarial perturbations which have similar perturbation
magnitudes in Figure 4(a), lead to completely different attack
utilities. Interestingly, all adversarial perturbations for each
sample in Figure 4(a) have the same attack utility, irrespective
of their magnitudes. The equivalent adversarial spaces imply
that: 1) the perturbation magnitude is not a decisive factor
attacking the network, and 2) attention should be paid to the
“effective components" of perturbations, i.e., we can further
decompose the perturbation in a more fine-grained way. We
believe that further exploration of the equivalent space helps
to understand the robustness of DNNs.
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