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Abstract

Fine-tuning Large Language Models (LLMs)
on sensitive datasets poses a significant risk of
unintended memorization and leakage of Per-
sonally Identifiable Information (PII), poten-
tially violating privacy regulations and endan-
gering individuals. In this work, we examine
how fine-tuning can expose PII that appears
only in the inputs, not in the training targets,
highlighting a critical and underexplored vul-
nerability in real-world applications. Using
both synthetic and real-world datasets, we de-
sign controlled extraction probes to evaluate
PII memorization and analyze how factors such
as language, domain, task type, and dataset
size affect memorization behavior. Addition-
ally, we benchmark four privacy-preserving
methods: differential privacy, machine unlearn-
ing, regularization, and preference alignment.
Our findings show that post-training methods
yield more consistent privacy—utility trade-offs,
while differential privacy achieves the strongest
leakage reduction in specific cases, albeit with
training instability.

1 Introduction and Related Work

Large Language Models (LLMs) achieve state-of-
the-art performance across many natural language
processing tasks, but raise serious privacy concerns
due to their vast capacity and data-hungry training
regimes. Most notably, their tendency to memo-
rize training samples, even if seen only once dur-
ing training (Carlini et al., 2021). While some
level of memorization can support generalization in
long-tailed data distributions (Feldman and Zhang,
2020), verbatim, token-level memorization of Per-
sonally Identifiable Information (PII) poses signifi-
cant privacy risks.

Prior work has extensively studied memoriza-
tion dynamics in LLMs, in both pre-training and
fine-tuning (FT) phases (Morris et al., 2025; Car-
lini et al., 2021; Hu et al., 2022). For instance,
Carlini et al. (2022) analyzed how factors such as
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Figure 1: Overview of our experiment setup depicting
the unintended PII memorization scenario, our attack,
and fine-tuning approaches.

model size, data duplication, and prompt length
affect memorization during pre-training. Zeng et al.
(2024) explored task-specific memorization during
FT. However, these works focus on memorizing
task-relevant data. In practice, FT often inadver-
tently uses inputs containing PII, otherwise unre-
lated to the task output (e.g., names or medical
records). Despite growing attention to LLLM pri-
vacy, the specific risk of unintended PII memo-
rization, where PII appears only in inputs and is
irrelevant to the downstream task, remains under-
explored.

Recent work has highlighted the threat of PII
leakage under limited-access conditions via black-
box probing techniques, and adversarial API
querying, reflecting realistic deployment scenar-
ios (Nakka et al., 2024b,a; Lukas et al., 2023). Yet,
none systematically isolate unintended PII memo-
rization or compare mitigation strategies. In this
work, we conduct a novel, comprehensive study of
unintended PII memorization in fine-tuned LLMs.
Specifically, we:

* Define and formalize the problem of unintended

PII memorization, distinguishing it from general

memorization or task-relevant PII usage;

* Quantify memorization using synthetic and real-
world datasets in a realistic deployment scenario,



also analyzing key influencing factors;

* Benchmark four common mitigation strategies,
assessing their privacy-utility tradeoffs: differen-
tial privacy, regularization, machine unlearning,
and preference alignment.

To the best of our knowledge, this is the first
comprehensive study focused on unintended PII
memorization in LLM fine-tuning, marking an im-
portant step toward practical privacy-preserving
model deployment.

2 Methodology
2.1 Unintended PII Memorization

We define unintended PII memorization as the phe-
nomenon where a language model fine-tuned on
sensitive text data like electronic health records
(EHRs) internalizes PII that is not part of the
model’s intended output (unrelated to the down-
stream task). This is distinct from memorization
during pre-training, where large corpora might con-
tain public or semi-public PII, and from targeted FT
tasks, where PII is intentionally part of the model’s
output space.

Our work focuses on downstream tasks (classifi-
cation, information extraction, medical follow-up
planning) where PII appears only in inputs, not
training targets. We adopt a realistic black-box
threat model where adversaries access the model
only via input-output queries (e.g., API calls). We
assume a worst-case scenario where attackers have
partial access to the FT dataset (e.g. anonymized
EHRs) and can craft adversarial prompts accord-
ingly (Carlini et al., 2022; Nakka et al., 2024b).

True-Prefix Attack (TPA) is a method to probe
memorization in autoregressive LLMs (Carlini
et al., 2021). Given a true prefix ¢ from the FT
data immediately preceding a PII span s of N to-
kens, we say s is extractable if

s + argmax fa(s' | c). (1)
s't|s'|=N

where fy(s' | ¢) is the model’s conditional proba-
bility. We also experiment with an enhanced TPA
variant, which adds the first character of the PII to
the prefix. With labeled PII spans, this attack is

straightforward to construct and evaluate, provid-
ing an effective measure of model memorization.

2.2 Mitigating memorization

We evaluate four prevalent training strategies that
aim to reduce PII memorization during or after FT.

Differential Privacy (DP) is a widely used tech-
nique for protecting individual data privacy with
mathematical guarantees (Kulynych et al., 2025;
Dwork, 2006). It introduces noise into the gradient
updates and limits individual sample influence, thus
bounding sample-level memorization risk. DP has
been extensively applied to both LLM pre-training
and fine-tuning, providing verifiable guarantees,
but at the cost of utility degradation and increased
training complexity (Hoory et al., 2021; Li et al.,
2021; Yu et al., 2021).

Machine Unlearning: UnDial (Dong et al., 2024)
performs targeted unlearning using self-distillation.
It constructs a fixed target distribution by lowering
the logits associated with tokens to be forgotten.
The distillation loss nudges the model away from
the sensitive content without inducing catastrophic
forgetting, an issue common in earlier approaches
like Gradient Ascent or Negative Preference Opti-
mization (Fan et al., 2025; Shi et al., 2024).

Regularization Inspired by UnDial (Dong et al.,
2024), we propose a regularization-based variant
that integrates self-distillation into the FT loop.
Specifically, we alternate between cross-entropy
loss and a regularization loss focused on PII tokens.
This focused UnDial loss is applied only on se-
lected sensitive spans to discourage memorization.

Direct Preference Optimization (DPO) emerges
as a computationally and data-efficient alternative
to RLHF for aligning models’ outputs with human
preferences like privacy or helpfulness (Rafailov
et al., 2023; Szep et al., 2024). We adapt DPO to
discourage PII leakage by treating original train-
ing examples containing PII as rejected and their
masked-PII counterparts as preferred.

3 Experiments

3.1 Datasets

We use three datasets varying significantly in na-
ture, task complexity, and objectives. The latter two
are private medical datasets from German EHRs at
the anonymized Institution. For details on data and
preprocessing, see Appendix B.
GretelAI-Financial (Watson et al., 2024) is a
synthetic, multilingual NER dataset focused on PII.
After preprocessing, it contains ~30k samples in
7 languages with 52 financial text classification
labels, which we use for the downstream task.
Pathology reports contain 2553 German docu-
ments with rich medical terminology and complex



tumor-related information, like intervention type,
tumor dignity, entity, location, subentity, etc. We
fine-tune for information extraction formulated as
a 5-dimensional task in a JSON schema.

Discharge Summary (DS) contains 26306 Ger-
man documents with sections focusing on anamne-
sis, diagnosis, surgery, treatment, etc. We leverage
the final section for a medical follow-up planning
generation task. PII are annotated using an LLM-
based pipeline (§ B.4).

3.2 Privacy-preserving training

We quantify the PII memorization during vanilla
fine-tuning and benchmark different privacy-
preserving training methods. Further training de-
tails can be found in Appendix C.

Supervised Fine-Tuning We establish memo-
rization baselines by fine-tuning Llama 3.2 1B mod-
els (Grattafiori et al., 2024) using QLoRA (r = 8)
in all linear layers over 10 — 25 epochs (varying per
dataset), until triggering early stopping. A cosine
learning rate scheduler with linear warmup of 3%
of steps is used. Hyperparameters are optimized
only for downstream performance, without privacy
considerations.

Differential Privacy Fine-Tuning We integrate
(e,6)-DP into the QLoRA setup via Opacus’ Pri-
vacy Engine (Yousefpour et al., 2022), using pri-
vacy budgets ¢ € {2,8} and § = 10~°. Hyperpa-
rameter choices follow Li et al. (2021) to maximize
utility under DP constraints.

UnDial We apply UnDial to a disjoint subset of
17692 (40%), 1500 (40%), and 6000 (20%) per-
son names in the GretelAl, Pathology, and DS
datasets respectively; none of which overlap with
the names extracted during our memorization as-
sessment (see § 3.3). We use the same input-output
structure for unlearning as for the TPA, with the
PII being the unlearning target.

Regularization We apply regularization using
focused UnDial to compute the regularization loss
only over the PII tokens, using the same PII subset
as for unlearning.

DPO Following FT, we run DPO with a uniform
system prompt instructing the model to withhold
all PII. For each corpus, we slide a 150-token con-
text window over sequences containing at least two
PII within the following 20 tokens. We mask that
20-token span to form the preferred response and
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Figure 2: Distribution of per-token log-likelihoods for
ground-truth PII completions.

use the original, unmasked text as the rejected re-
sponse. The resulting datasets contain 1489 (Grete-
1AI) and 5636 (DS) training samples.

3.3 Evaluation

To ensure reproducibility and comparability, all
evaluations are conducted with greedy decoding.
For TPA, generation is capped at 25 tokens follow-
ing the prefix (50 tokens). For the medical datasets,
we also evaluate by comparing generations to all
PII of the same kind in the dataset (instead of the
ground-truth). We call this cross-memorization.

We use task-specific evaluation metrics: accu-
racy for GretelAl, Fl-score for Pathology, and
BERTScore-F1 for DS. For additional details about
memorization and downstream task evaluation, we
refer the reader to Appendix D.

4 Results

Fine-tuned models are more confident in pre-
dicting PII tokens. Figure 2 shows the density
of per-token negative log-likelihoods for the FT
and base models over the same PII (names) in the
DS dataset. The fine-tuned model’s distribution
mode is shifted substantially closer to zero and has
significantly smaller variance compared to the base
model. This indicates that FT has increased the
model’s confidence across PII tokens.

When does unintended token-level memoriza-
tion happen? Table 1 shows that fine-tuning sig-
nificantly increases PII leakage in the GretelAl
and DS datasets, while the effect is much weaker
in the Pathology dataset. This may be attributed
to its smaller size (10x smaller), sparser PII dis-
tribution, and the constrained JSON output for-
mat, which limits free-text generation. While
models show high PII memorization on English



Model Task Regular TPA Enhanced TPA LR Effective

Performance? Total PIL] Distinct PII|  Total PIL| Distinct PIL| Batch Size

'S Base 12.08% 3402 1758 - - - -

2 SFT 87.17% 3601 1720 - - 25 8

£ DPe2 66.16% 3304 1654 - 2e-4 256

' DP-¢6 74.84% 3563 1767 - - le-3 2048

< UnDial-40% 76.21% 2717 1323 - - le-5 16

£ Reg-40% 81.12% 3297 1534 - - le-5 16

35 DPO-30.01 79.24% 2616 1167 - - 3e-6 32

z; Base 28.89% 0(6) 04 0 0(6) - -

% SFT 86.21% 0(11) 0(7) 0 (10) 0(8) S5e-5 96

§ DP-¢6 55.13% 0 0(6) 0() 0(7) 2e-4 512

A~ UnDial-40% 71.89 % 0(6) 0(5) 0(7) 0(5) le-5 16

g Base 0.5227 1 (1940) 1(719) 25 (9638) 15 (3974) - -

g SFT 0.7147 1(1604) 1 (1334) 91 (11754) 15 (4453) 2e-4 128

E DP-e2 06906  0(1143)  0(733)  43(17405)  16(3994) 1e-3 1024

o DP-¢6 0.6993 0 (161) 0 (154) 30 (5624) 11 (1589) le-3 1024

g UnDial-20% 0.6725 1 (1587) 1(1103) 31 (9456) 13 (3593) le-5 16

§ Reg-20% 0.6770 2006 (5388) 17 (2227) 6841 (17102) 142 (6601) le-5 16

A DPO-30.01 0.7084 1 (1163) 1 (1009) 31 (6298) 13 (2860) le-7 32

Table 1: Comparison of PII memorization and task performance across methods and datasets. More details on task
performance and memorization evaluation can be found in § 3.3. Cross-memorization results are in parentheses.

(e.g., GretelAl), results vary across languages (Fig-
ure 3). The specialized German medical language
in Pathology likely contributes to lower extraction
rates, suggesting that both language and domain
specificity influence memorization.

Additionally, GretelAI’s high baseline leakage
indicates that models retain strong pre-training pri-
ors, amplifying memorization when new inputs
contain familiar PII tokens. Other contributing fac-
tors may include task type, PII repetition, model
capacity, and TPA prefix length (Appendix A).

Post-training methods offer robustness, but
DP can outperform in specific cases. Across
datasets (Table 1), post-training mitigation meth-
ods such as DPO and UnDial generally yield more
consistent privacy—utility trade-offs and are more
robust to hyperparameter variation. They are also
less resource-intensive than preventive techniques
like DP and regularization. Differential privacy
(DP), however, shows strong privacy potential in
specific scenarios. In the DS task, it reduces cross-
memorization by over 60%, the highest among all
methods, even without using seed PII data. Yet,
DP remains unstable to train, often requiring larger
batch sizes, higher learning rates, and longer train-
ing, with results varying substantially across runs.
We also observe that DP models occasionally pro-
duce repetitive outputs under TPA, indicating pos-
sible degradation in generation quality. Regular-
ization suffers from conflicting training objectives,

preserving task performance but retaining more PII.
Unlearning and alignment methods are sensitive
to the quality and size of the seed set, requiring
careful tuning to balance effectiveness and utility.
Overall, while DP can outperform in isolated cases,
post-training methods offer more stable and repro-
ducible results. Crucially, even the most effective
methods achieve only around a 30% reduction in di-
rect PII memorization, indicating substantial room
for improvement.

5 Discussion

This work provides a systematic analysis of unin-
tended PII memorization in fine-tuned language
models. We identify key influencing factors and
evaluate four mitigation strategies with varying
trade-offs in privacy, utility, and stability. Fine-
tuning on small, domain-specific datasets may
lessen memorization but does not remove the
risk. Post-training methods such as DPO and Un-
Dial generally offer more consistent privacy—utility
trade-offs. However, DP achieves the strongest
leakage reduction in specific cases, despite being
unstable and sensitive to hyperparameters, with
occasional output degradation. Unintended mem-
orization remains a persistent challenge, and even
the best methods yield only moderate improve-
ments. This highlights the need for further re-
search into scalable, robust, and practical privacy-
preserving fine-tuning techniques.



Limitations

Our study focuses on PEFT (QLoRA) of
1B-parameter LLaMA models. Exploring larger
models, deeper architectures, other PEFT tech-
niques, non-quantized models, or full-model FT
may reveal different memorization dynamics and
mitigation behaviors.

Another limitation of our study is dataset avail-
ability and label quality. Public, high-quality
PII-annotated corpora are scarce, so we rely on (1)
synthetic multilingual financial data, (2) a small,
manually annotated private dataset, and (3) a larger
private corpus with PII spans identified via a semi-
automated local LLLM pipeline. Despite this diver-
sity, synthetic data and semi-automated labeling
introduce noise, and none of the datasets are struc-
tured at the individual (e.g., per-patient) level. This
restricts our ability to explore privacy-preserving
approaches such as federated learning or user-level
differential privacy.

Finally, we do not evaluate robustness against
adversarial extraction, such as jailbreak prompts,
instruction-based attacks, or white-box gradient
leaks, which could undermine DP, UnDial, or DPO
defenses. Systematic red-teaming and adversar-
ial threat modeling remain important avenues for
future validation.

Ethics Statement

This study involves the analysis of fine-tuned lan-
guage models on datasets containing annotated PII
spans to evaluate memorization risks. All data han-
dling and annotation procedures were conducted in
compliance with applicable data protection regula-
tions and were approved by the institutional ethics
review board. Sensitive datasets were processed
exclusively on secure, in-house infrastructure us-
ing local models, ensuring that no data left the
organization or was exposed to third-party services.
Appropriate safeguards were implemented through-
out to protect individual privacy and maintain data
confidentiality.
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A Additional Findings

Why does DP not (always) prevent PII leakage?
Differential privacy protects against singling out
individual records or users. It implicitly assigns
a privacy cost to using information in the training
dataset at the level of records, not tokens, hence
it is oblivious to different occurrences of the same
information across records or users. This is an
effective method to mitigate risks of disclosing by
whom data was contributed, but it does not take into
account about whom the content is (Lukas et al.,
2023).

Effect of token length in TPA. Following Car-
lini et al. (2022), we evaluate attack success using
varying prefix lengths € {10, 25,50, 100} tokens
preceding the target PII (Figure 4). Consistent with
their findings, we observe a sharp increase in ef-
fectiveness between 25 and 50 tokens, with only
marginal gains beyond 50. Based on this, we stan-
dardize a 50-token prefix for most evaluations.

Figure 4 shows a logarithmic increase in attack
success with prefix length for fine-tuned models.
The pre-trained model shows a similar trend on
Gretel Al but on the DS dataset, success decreases
with longer prefixes. While attacks benefit from
prefixes up to 200 tokens on GretelAl, they plateau
between 50-100 tokens on DS. These patterns align
partially with Carlini et al. (2022) but suggest pos-
sible dataset-specific trends in unintended PII mem-
orization.

Comparison of different data-centric attack
methods Nakka et al. (2024b) benchmark Tem-
plate, In-Context Learning (ICL), and PII-Compass
attacks alongside TPA. Template attacks use adver-
sarial prompts to query target PII, ICL augments
these prompts with examples of known PII in the
same format, and PII-Compass combines TPA with
Template by adding another true PII prefix. Parallel
to TPA, we attempted to construct templates for the
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Figure 4: PII extraction success vs. prefix length (in tokens) for LLaMA-3.2-1B base and fine-tuned models. Left:
Gretel Al dataset (extraction rate of all training PII). Right: Discharge summaries dataset (approximate count of PII

extracted).

Template, ICL, and PII-Compass attacks in an auto-
mated manner by extracting co-occurring PII pairs
(e.g., a “name” span followed within N characters
by another PII type). Table 2 summarizes the best
data extraction attempts using the FT model on the
GretelAl dataset.

Method 4 examples 8 examples 16 examples 24 examples
ICL Attack 0.686% 1.521% 1.184% 1.101%
ICL Attack - 2 0.692% 1.120% 1.322% 1.104%
Prefix 1 Prefix 2 Prefix 3 Prefix 4
PII-Compass 0.843% 0.885% 0.843% 0.311%

Table 2: Comparison of the amount of trainable parame-
ters in LLaMa-3.2-1B fine-tuned models and their effect
on total memorization and unique PII memorization on
the GretelAl dataset.

Similar to (Nakka et al., 2024a), we found that
the effectiveness of these attacks is highly sensi-
tive to template design, example selection, and

the PII targets. Our initial runs showed TPA
memorization rising from 10.0% (pre-trained) to
11.3% (fine-tuned), while the template-based at-
tacks yielded near-zero recall on both models,
likely due to high variance in PII associations and
low-quality synthetic templates. We conducted ad-
ditional evaluations of these data extraction attacks
using more realistic PII and manually selected tem-
plates from the Enron dataset, but their effective-
ness was still far from TPA.

Unintended PII memorization scales with model
capacity. As shown in Table 3, an eight-fold in-
crease in LoRA rank does not increase the total
number of PII extractions, which remains equal
under both query numbers per prefix setting. How-
ever, the number of distinct PII increases under
both settings. This reveals that while additional
parameters do not cause higher total memorization,
they broaden the memorization of distinct PII.



LoRA Trainable Total PIT Distinct PII

Rank Parameters 32 Query 1 Query 32 Query 1 Query
8 5.6M 849 40 165 17
64 45.1M 849 40 199 23

Table 3: Comparison of the amount of trainable parame-
ters in LLaMa-3.2-1B fine-tuned models and their effect
on total memorization and unique PII memorization for
the Discharge summaries.

These findings mirror the findings of Mireshghal-
lah et al. (2022), where they attribute memoriza-
tion to the location of the trainable parameters in
the model, and not the total quantity (i.e., header-
tuning only causing more memorization than full
FT). In our case, by scaling the LoRA rank, we still
fine-tune all linear layers in the model, but increase
the number of trainable parameters.

Unintended PII memorization does not directly
correlate with PII repetitions. Contrary to Car-
lini et al. (2022), we did not find a direct correla-
tion between the frequency of PII occurrences in
the data and unintended memorization rates. We
hypothesize that memorization is influenced more
by the PII’s textual context and its utility to the
downstream task than by raw repetition. For exam-
ple, in our DS dataset, only the model fine-tuned
with a learning rate an order of magnitude larger
reproduced PII contained in the document headers,
which were some of the most frequent PII in the
dataset corpus (and most irrelevant to the down-
stream task).

Effect of downstream task on PII memoriza-
tion. Previous research has shown that the nature
of the target downstream task can affect general
sequences memorization Zeng et al. (2024). Fully
fine-tuned LLMs tend to memorize more training
sequences on generative tasks, such as summariza-
tion or chat/conversational tasks, than when fine-
tuned for discriminative tasks, e.g., classification
or question-answering.

However, our experimental findings reveal that
this pattern does not necessarily extend to un-
intended PII memorization (other factors could
be just as important). Summarizing our mem-
orization results presented previously, after FT,
models memorized significantly more PII in the
GretelAl (and Gretel Al+Enron) dataset, followed
by the Discharge summaries dataset, and did not
memorize any PII from the training data in the
Pathology dataset. The tasks of these datasets

correspond to document classification, text gen-
eration/summarization, and information extrac-
tion/classification, respectively.

Although we find that the nature of the FT task
does not have a direct impact on unintended mem-
orization, a closer qualitative analysis at the fine-
tuned model’s outputs suggests that the output for-
mat of the task might influence memorization, or
at least, mitigate the effectiveness of the different
data extraction attacks.

* Patho Dataset: The FT model often emits
JSON-formatted responses even under TPA,
Q&A, or translation instructions prompts, in-
dicating that the rigid output schema learned
during FT constrains free-form PII generation.

* Discharge Summary Dataset: Because PII
tokens are masked in the training targets,
the FT model increasingly produces masked
placeholders post-tuning (1788 masked tokens
— 4507 masked tokens), partially reducing di-
rect PII exposures.

These observations imply that output alignment
(i.e. training the model to emit structured or masked
formats) can mitigate unintended PII leakage simi-
lar to our DPO setup. Designing FT objectives that
enforce strict output schemas may thus serve as an
additional privacy safeguard when possible.

Other PII Types We report additional results on
all PII types in both the Gretel Al dataset (Table 4
and Table 5) and the Pathology dataset (Table 6 and
Table 7). The reduced PII leakage in the Pathol-
ogy dataset highlights the assumptions about the
memorization dynamics on this dataset made in
§ 4.

Model Total PII  Distinct PII  Performance
Base 9589 5162 12.08%
SFT 10473 5302 87.17%
DP-e2 9448 4904 66.16%
DP-¢6 10001 4846 74.84%
UnDial-40 9889 4969 76.53%
DPO-50.01 7666 3947 79.24%

Table 4: TPA results in the Gretel Al dataset including
all PII types.

Sampling reveals more memorized PII  For this
experiments, we repeat the TPA, sampling the mod-
els 32-times per prefix, setting the model tempera-
ture to 1. Our results in Table 8 show an increase
in succesfully extracted PII.



Model Name Comp. Email Add. Other Model Name Serial Nr. Location Contact Info
Base 3402 3092 2176 577 342 Base 196 37 25 7

SFT 3601 2892 2695 990 295 SFT 81 31 8 10
DP-e2 3304 2853 2281 706 304  DP-6 172 70 ] 8 9
DP-¢6 3563 3030 2332 739 337

UnDial-40 4031 3007 2088 457 306 . } ot .
DPO-0.01 2616 2024 2586 295 145 Table 7: Cross-Memorization results of models in the

Table 5: TPA results in the Gretel Al dataset itemized by
PII types: Name, Company, Email, Address, Others.

Model Total PII Distinct PII Performance
Base 265 17 28.89%
SFT 130 21 86.21%
DP-¢6 269 ICH 55.13%

Table 6: Cross-Memorization results of models in the
Pathology dataset including all PII types except dates.

B Data Preprocessing

B.1 GretelAl - Text classification

During preprocessing, we excluded from Gretel Al-
Financial' eight classes with trivial classification
due to rigid text structure: CSV, EDI, SWIFT Mes-
sage, FIX Protocol, BAI Format, XBRL, FpML, and
MT940. We also removed documents with quality
scores below 90/100. The resulting class distribu-
tion is shown in Figure 5.

Upon inspection, we identified Al-generated doc-
uments and filtered them using heuristic rules.The
final dataset comprised 27,636 training and 3,136
test samples (from 50,346 and 5,594 originally).

PII counts revealed 121,493 total spans with
51,206 unique entities after filtering spans shorter
than three characters, and PII of classes not valu-
able. However, the dataset sometimes exhibits lim-
ited PII diversity, containing poor quality repet-
itive synthetic values like "John Doe" or "jane-
doe@mail.com".

B.2 Enron - Text classification

To enhance PII realism in our classification task,
we created a hybrid dataset by combining sam-
ples from Gretel Al and the Enron Email Corpus.
The Enron dataset provides authentic email com-
munications with naturally occurring PII patterns,
including real name-email pairs and diverse email
addresses, formatting conventions, and domains.
We randomly sampled 400 emails from Enron
(ensuring at least 400 unique name-email pairs)

1h'ctps ://huggingface.co/datasets/gretelai/
synthetic_pii_finance_multilingual

Pathology dataset itemized by PII types: Name, Serial
Number, Location and Contact Information.

Model LR 1 Query 32 Queries
Total Distinct Total Distinct
Base - 25 15 815 205
SFT 5e-5 40 17 849 165
SFT 2e-4 91 15 1980 126

Table 8: Comparison of results of the enhanced TPA, us-
ing 1 and 32 queries per True Prefix, on the DS dataset.

and replaced all "EMAIL" class documents in our
cleaned Gretel Al dataset. This maintained the orig-
inal class distribution across document types.

B.3 Pathology reports - Information
extraction

For this dataset, we manually annotated PII (serial
number, person name, contact info, date, and lo-
cation) and bone tumor-related information with
the help of medical professionals, including dig-
nity (benign/malignant), intervention type (resec-
tion/biopsy/curettage), entity, subentity, and lo-
cation. We filter out poor quality reports (very
short or very limited tumor-related information;
not bone tumor related) and perform extensive
preprocessing (removing duplicates, text normal-
ization, creating a labeling Ul, and performing
annotation consistency checks). This resulted in
a structured format with pre-annotated PII spans
and task labels. We split the 2,552 samples using
an 80%/10%/10% train/validation/test distribution,
yielding 2,041 training, 255 validation, and 256
test samples.

B.4 Discharge summaries - Medical
Follow-up Planning

We applied a consistent cleaning pipeline to raw
documents to eliminate formatting artifacts and
ensure experimental stability. This included nor-
malizing control characters (replacing line breaks,
tabs, and non-printable symbols with spaces), col-
lapsing consecutive spaces, trimming whitespace,
and removing common report headers using regu-
lar expressions to isolate the free-text body of each
summary.


https://huggingface.co/datasets/gretelai/synthetic_pii_finance_multilingual
https://huggingface.co/datasets/gretelai/synthetic_pii_finance_multilingual

Others (7009)
email (7274)

company (34075)

28.0%

42.6%

17.6% 49.9%

name (51810)

street_address (21325) PERSON

(6318)

Total: 121,493 samples Total: 12,654 samples

SERIAL NR
(3658)

28.9%

LOCATION
(163)

DATE
1.3% (800)

6.3%

13.6%
CONTACT INFO
(1715)

Figure 5: Distribution of PII types for the Gretel Al synthetic dataset (left), the Pathology dataset (middle), and the

Discharge summary dataset (right).

PII Span Labeling. Using Ollama®, we ran
LLaMa 4 Scout Q4 with structured genera-
tion to identify PII classes: PERSON_NAME,
POST_CODE, ADDRESS, DATE, EMAIL, TELE-
PHONE, and WEBSITE. To remove false posi-
tives from model hallucinations, we used LLaMa
4 Scout to review and tag potential false positives,
followed by manual review.

After extracting PII spans, we performed local-
ization to map each instance to its exact character
offsets in the original text, enabling reliable mask-
ing and targeted extraction attacks.

Target Extraction We extracted the Procedere
section from each document, typically appearing
near the end and introduced by phrases like "Pro-
cedere:" or "als weiteres Procedere...". Samples
with sections under 50 characters or over 2,000
characters were discarded.

Since Procedere targets may contain PII, we
masked all detected PII to preserve the "unin-
tended" nature of our memorization study and pre-
vent direct training on sensitive information.

The resulting dataset consists of 26,306 samples,
split into 80%-10%-10% train-validation-test splits,
each with a generation target and annotated PII
spans.

C Training details

All our experiments have been run on an NVIDIA
A100 80GB GPU. Fine-tuning took at most 24
hours, while attacks took at most 12 hours.

C.1 Fine-tuning

We use HuggingFace’s (HF) SFTTrainer?, a high-
level wrapper around the HF Trainer API, which

Zhttps://github.com/ollama/ollama
3https://huggingface.co/docs/trl/en/sft_
trainer
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simplifies the FT process by managing the train-
ing loop, loss computation, and optimizer updates.
We monitor overfitting and guide early stopping
on the validation set, using a patience of 3 vali-
dation checks. The frequency of validation is ad-
justed based on the total number of epochs and
specific experimental configurations, as well as
the dataset specification. For optimization, we
use the paged_adamw_32bit optimizer, a memory-
efficient variant of AdamW that supports paged
memory loading and uses 32-bit precision for opti-
mizer states. Our default FT hyperparameters are
LoRA rank r = 8 (1.5M trainable parameters for
the 1B model), scaling factor: o = 16, dropout
rate of 0.05, and a learning rate of 1 x 1072, with a
linear warmup over 3% of training steps followed
by cosine decay.

C.2 Differential Privacy

Our differential privacy experiments aim to match
the downstream task performance of SFT models
for fair PII memorization comparison. While train-
ing for more epochs with a fixed privacy budget
spreads the privacy budget across additional steps
(reducing the signal-to-noise ratio per update), we
found better results by increasing learning rate
and batch size instead, following recommendations
from Li et al. (2021).

C.3 UnDial

We apply UnDial using Dong et al. (2024)’s im-
plementation* (with minimal updates for Hugging
Face Trainer compatibility). Following the original
authors’ guidelines, we began with conservative
hyperparameters: learning rate of 10~% and un-
learning strength of 3, the default selection in their
repository. However, our experiments revealed

*https://github.com/dong-river/LLM_unlearning
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that moderately higher values achieved superior
privacy-utility tradeoffs. Specifically:

* Optimal configuration: Learning rate €
[1,5] x 1075 (one order of magnitude higher
than recommended) with unlearning strengths
of 5-7

* Performance preservation: UnDial main-
tained >95% of original accuracy (compared
to >12% degradation with DP-FT)

* Memorization reduction: Using 20% of total
PII for unlearning reduced extractable distinct
PII from 13.44% to 12.65%

¢ Sequence length optimization: 50-token con-
texts proved most effective, balancing suffi-
cient context with computational efficiency

Importantly, we found that aggressive hyperpa-
rameters (learning rates larger than 10~ and un-
learning strength larger than 7) led to substantial
performance drops without additional privacy ben-
efits, highlighting the need for careful tuning.

C4 DPO

We use HF’s DPOTrainer . A careful balance of
learning rate and (3 is required to prevent catas-
trophic forgetting and maintain the model’s utility
while achieving the desired alignment goal. While
a common value for /3 is 0.1 and learning rate one
order of magnitude lower than the SFT learning
rate, our empirical results revealed that a more ag-
gressive S = 0.01 was required for achieving ap-
propriate PII masking. Simultaneously, we found
that learning rates > 5e — 6 resulted in excessive
token masking, causing catastrophic forgetting.

D Evaluation details

D.1 Memorization Assessment

Prior work has focused on exact matching, but PII
memorization requires considering approximate
matches due to the sensitive nature of content and
its variability. For instance, abbreviations, format-
ting inconsistencies, or incomplete PII exposure
can also be a privacy risk.

To address these challenges, we define two evalu-
ation strategies depending on the dataset (and mul-
tiple criteria within the dataset) and type of PII
under evaluation:

5https://huggingface.co/docs/trl/main/en/dpo_
trainer
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1. Exact-Match (EM) Evaluation For datasets
where PII quality is lower and highly uniform
(for instance, Gretel-Al’s dataset), we con-
sider a PII span memorized only if the model’s
normalized output contains an exact substring
match of the target PIIL.

. Approximate-Match Evaluation For real-PII
datasets (Pathologie, Discharge Summary),
we adopt fuzzy string matching via the Lev-
enshtein distance using the thefuzz library®
based on the PII type. We set a similarity
threshold (e.g., 90%) so that minor variations,
such as abbreviations, missing components,
or misspellings, still count as memorization.
With names, addresses, and similar types, we
can apply this approach. However, for phone
numbers, postcodes, or other numeric-only
PII, we only apply normalization by remov-
ing all non-numeric characters. Finally, for
other PII, such as email addresses or websites,
where EM is important, we use EM.

By combining an upper-bound TPA with both
exact and approximate matching criteria, we obtain
a robust, worst-case estimate of PII memorization
across our experimental settings.

https://github.com/seatgeek/thefuzz
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