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Abstract001

Fine-tuning Large Language Models (LLMs)002
on sensitive datasets poses a significant risk of003
unintended memorization and leakage of Per-004
sonally Identifiable Information (PII), poten-005
tially violating privacy regulations and endan-006
gering individuals. In this work, we examine007
how fine-tuning can expose PII that appears008
only in the inputs, not in the training targets,009
highlighting a critical and underexplored vul-010
nerability in real-world applications. Using011
both synthetic and real-world datasets, we de-012
sign controlled extraction probes to evaluate013
PII memorization and analyze how factors such014
as language, domain, task type, and dataset015
size affect memorization behavior. Addition-016
ally, we benchmark four privacy-preserving017
methods: differential privacy, machine unlearn-018
ing, regularization, and preference alignment.019
Our findings show that post-training methods020
yield more consistent privacy–utility trade-offs,021
while differential privacy achieves the strongest022
leakage reduction in specific cases, albeit with023
training instability.024

1 Introduction and Related Work025

Large Language Models (LLMs) achieve state-of-026

the-art performance across many natural language027

processing tasks, but raise serious privacy concerns028

due to their vast capacity and data-hungry training029

regimes. Most notably, their tendency to memo-030

rize training samples, even if seen only once dur-031

ing training (Carlini et al., 2021). While some032

level of memorization can support generalization in033

long-tailed data distributions (Feldman and Zhang,034

2020), verbatim, token-level memorization of Per-035

sonally Identifiable Information (PII) poses signifi-036

cant privacy risks.037

Prior work has extensively studied memoriza-038

tion dynamics in LLMs, in both pre-training and039

fine-tuning (FT) phases (Morris et al., 2025; Car-040

lini et al., 2021; Hu et al., 2022). For instance,041

Carlini et al. (2022) analyzed how factors such as042
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Figure 1: Overview of our experiment setup depicting
the unintended PII memorization scenario, our attack,
and fine-tuning approaches.

model size, data duplication, and prompt length 043

affect memorization during pre-training. Zeng et al. 044

(2024) explored task-specific memorization during 045

FT. However, these works focus on memorizing 046

task-relevant data. In practice, FT often inadver- 047

tently uses inputs containing PII, otherwise unre- 048

lated to the task output (e.g., names or medical 049

records). Despite growing attention to LLM pri- 050

vacy, the specific risk of unintended PII memo- 051

rization, where PII appears only in inputs and is 052

irrelevant to the downstream task, remains under- 053

explored. 054

Recent work has highlighted the threat of PII 055

leakage under limited-access conditions via black- 056

box probing techniques, and adversarial API 057

querying, reflecting realistic deployment scenar- 058

ios (Nakka et al., 2024b,a; Lukas et al., 2023). Yet, 059

none systematically isolate unintended PII memo- 060

rization or compare mitigation strategies. In this 061

work, we conduct a novel, comprehensive study of 062

unintended PII memorization in fine-tuned LLMs. 063

Specifically, we: 064

• Define and formalize the problem of unintended 065

PII memorization, distinguishing it from general 066

memorization or task-relevant PII usage; 067

• Quantify memorization using synthetic and real- 068

world datasets in a realistic deployment scenario, 069
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also analyzing key influencing factors;070

• Benchmark four common mitigation strategies,071

assessing their privacy-utility tradeoffs: differen-072

tial privacy, regularization, machine unlearning,073

and preference alignment.074

To the best of our knowledge, this is the first075

comprehensive study focused on unintended PII076

memorization in LLM fine-tuning, marking an im-077

portant step toward practical privacy-preserving078

model deployment.079

2 Methodology080

2.1 Unintended PII Memorization081

We define unintended PII memorization as the phe-082

nomenon where a language model fine-tuned on083

sensitive text data like electronic health records084

(EHRs) internalizes PII that is not part of the085

model’s intended output (unrelated to the down-086

stream task). This is distinct from memorization087

during pre-training, where large corpora might con-088

tain public or semi-public PII, and from targeted FT089

tasks, where PII is intentionally part of the model’s090

output space.091

Our work focuses on downstream tasks (classifi-092

cation, information extraction, medical follow-up093

planning) where PII appears only in inputs, not094

training targets. We adopt a realistic black-box095

threat model where adversaries access the model096

only via input-output queries (e.g., API calls). We097

assume a worst-case scenario where attackers have098

partial access to the FT dataset (e.g. anonymized099

EHRs) and can craft adversarial prompts accord-100

ingly (Carlini et al., 2022; Nakka et al., 2024b).101

True-Prefix Attack (TPA) is a method to probe102

memorization in autoregressive LLMs (Carlini103

et al., 2021). Given a true prefix c from the FT104

data immediately preceding a PII span s of N to-105

kens, we say s is extractable if106

s← argmax
s′: |s′|=N

fθ(s
′ | c). (1)107

where fθ(s
′ | c) is the model’s conditional proba-108

bility. We also experiment with an enhanced TPA109

variant, which adds the first character of the PII to110

the prefix. With labeled PII spans, this attack is111

straightforward to construct and evaluate, provid-112

ing an effective measure of model memorization.113

2.2 Mitigating memorization114

We evaluate four prevalent training strategies that115

aim to reduce PII memorization during or after FT.116

Differential Privacy (DP) is a widely used tech- 117

nique for protecting individual data privacy with 118

mathematical guarantees (Kulynych et al., 2025; 119

Dwork, 2006). It introduces noise into the gradient 120

updates and limits individual sample influence, thus 121

bounding sample-level memorization risk. DP has 122

been extensively applied to both LLM pre-training 123

and fine-tuning, providing verifiable guarantees, 124

but at the cost of utility degradation and increased 125

training complexity (Hoory et al., 2021; Li et al., 126

2021; Yu et al., 2021). 127

Machine Unlearning: UnDial (Dong et al., 2024) 128

performs targeted unlearning using self-distillation. 129

It constructs a fixed target distribution by lowering 130

the logits associated with tokens to be forgotten. 131

The distillation loss nudges the model away from 132

the sensitive content without inducing catastrophic 133

forgetting, an issue common in earlier approaches 134

like Gradient Ascent or Negative Preference Opti- 135

mization (Fan et al., 2025; Shi et al., 2024). 136

Regularization Inspired by UnDial (Dong et al., 137

2024), we propose a regularization-based variant 138

that integrates self-distillation into the FT loop. 139

Specifically, we alternate between cross-entropy 140

loss and a regularization loss focused on PII tokens. 141

This focused UnDial loss is applied only on se- 142

lected sensitive spans to discourage memorization. 143

Direct Preference Optimization (DPO) emerges 144

as a computationally and data-efficient alternative 145

to RLHF for aligning models’ outputs with human 146

preferences like privacy or helpfulness (Rafailov 147

et al., 2023; Szep et al., 2024). We adapt DPO to 148

discourage PII leakage by treating original train- 149

ing examples containing PII as rejected and their 150

masked-PII counterparts as preferred. 151

3 Experiments 152

3.1 Datasets 153

We use three datasets varying significantly in na- 154

ture, task complexity, and objectives. The latter two 155

are private medical datasets from German EHRs at 156

the anonymized Institution. For details on data and 157

preprocessing, see Appendix B. 158

GretelAI-Financial (Watson et al., 2024) is a 159

synthetic, multilingual NER dataset focused on PII. 160

After preprocessing, it contains ~30k samples in 161

7 languages with 52 financial text classification 162

labels, which we use for the downstream task. 163

Pathology reports contain 2553 German docu- 164

ments with rich medical terminology and complex 165
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tumor-related information, like intervention type,166

tumor dignity, entity, location, subentity, etc. We167

fine-tune for information extraction formulated as168

a 5-dimensional task in a JSON schema.169

Discharge Summary (DS) contains 26306 Ger-170

man documents with sections focusing on anamne-171

sis, diagnosis, surgery, treatment, etc. We leverage172

the final section for a medical follow-up planning173

generation task. PII are annotated using an LLM-174

based pipeline (§ B.4).175

3.2 Privacy-preserving training176

We quantify the PII memorization during vanilla177

fine-tuning and benchmark different privacy-178

preserving training methods. Further training de-179

tails can be found in Appendix C.180

Supervised Fine-Tuning We establish memo-181

rization baselines by fine-tuning Llama 3.2 1B mod-182

els (Grattafiori et al., 2024) using QLoRA (r = 8)183

in all linear layers over 10−25 epochs (varying per184

dataset), until triggering early stopping. A cosine185

learning rate scheduler with linear warmup of 3%186

of steps is used. Hyperparameters are optimized187

only for downstream performance, without privacy188

considerations.189

Differential Privacy Fine-Tuning We integrate190

(ε, δ)-DP into the QLoRA setup via Opacus’ Pri-191

vacy Engine (Yousefpour et al., 2022), using pri-192

vacy budgets ε ∈ {2, 8} and δ = 10−5. Hyperpa-193

rameter choices follow Li et al. (2021) to maximize194

utility under DP constraints.195

UnDial We apply UnDial to a disjoint subset of196

17692 (40%), 1500 (40%), and 6000 (20%) per-197

son names in the GretelAI, Pathology, and DS198

datasets respectively; none of which overlap with199

the names extracted during our memorization as-200

sessment (see § 3.3). We use the same input-output201

structure for unlearning as for the TPA, with the202

PII being the unlearning target.203

Regularization We apply regularization using204

focused UnDial to compute the regularization loss205

only over the PII tokens, using the same PII subset206

as for unlearning.207

DPO Following FT, we run DPO with a uniform208

system prompt instructing the model to withhold209

all PII. For each corpus, we slide a 150-token con-210

text window over sequences containing at least two211

PII within the following 20 tokens. We mask that212

20-token span to form the preferred response and213

Figure 2: Distribution of per-token log-likelihoods for
ground-truth PII completions.

use the original, unmasked text as the rejected re- 214

sponse. The resulting datasets contain 1489 (Grete- 215

lAI) and 5636 (DS) training samples. 216

3.3 Evaluation 217

To ensure reproducibility and comparability, all 218

evaluations are conducted with greedy decoding. 219

For TPA, generation is capped at 25 tokens follow- 220

ing the prefix (50 tokens). For the medical datasets, 221

we also evaluate by comparing generations to all 222

PII of the same kind in the dataset (instead of the 223

ground-truth). We call this cross-memorization. 224

We use task-specific evaluation metrics: accu- 225

racy for GretelAI, F1-score for Pathology, and 226

BERTScore-F1 for DS. For additional details about 227

memorization and downstream task evaluation, we 228

refer the reader to Appendix D. 229

4 Results 230

Fine-tuned models are more confident in pre- 231

dicting PII tokens. Figure 2 shows the density 232

of per-token negative log-likelihoods for the FT 233

and base models over the same PII (names) in the 234

DS dataset. The fine-tuned model’s distribution 235

mode is shifted substantially closer to zero and has 236

significantly smaller variance compared to the base 237

model. This indicates that FT has increased the 238

model’s confidence across PII tokens. 239

When does unintended token-level memoriza- 240

tion happen? Table 1 shows that fine-tuning sig- 241

nificantly increases PII leakage in the GretelAI 242

and DS datasets, while the effect is much weaker 243

in the Pathology dataset. This may be attributed 244

to its smaller size (10× smaller), sparser PII dis- 245

tribution, and the constrained JSON output for- 246

mat, which limits free-text generation. While 247

models show high PII memorization on English 248
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Model Task
Performance↑

Regular TPA Enhanced TPA LR Effective
Batch SizeTotal PII↓ Distinct PII↓ Total PII↓ Distinct PII↓

G
re

te
lA

I-
Fi

na
nc

ia
l Base 12.08% 3402 1758 - - - -

SFT 87.17% 3601 1720 - - 2e-5 8
DP-ϵ2 66.16% 3304 1654 - - 2e-4 256
DP-ϵ6 74.84% 3563 1767 - - 1e-3 2048
UnDial-40% 76.21% 2717 1323 - - 1e-5 16
Reg-40% 81.12% 3297 1534 - - 1e-5 16
DPO-β0.01 79.24% 2616 1167 - - 3e-6 32

Pa
th

ol
og

y Base 28.89% 0 (6) 0 (4) 0 (7) 0 (6) - -
SFT 86.21% 0 (11) 0 (7) 0 (10) 0 (8) 5e-5 96
DP-ϵ6 55.13% 0 (9) 0 (6) 0 (7) 0 (7) 2e-4 512
UnDial-40% 71.89% 0 (6) 0 (5) 0 (7) 0 (5) 1e-5 16

D
is

ch
ar

ge
Su

m
m

ar
y Base 0.5227 1 (1940) 1 (719) 25 (9638) 15 (3974) - -

SFT 0.7147 1 (1604) 1 (1334) 91 (11754) 15 (4453) 2e-4 128
DP-ϵ2 0.6906 0 (1143) 0 (733) 43 (17405) 16 (5994) 1e-3 1024
DP-ϵ6 0.6993 0 (161) 0 (154) 30 (5624) 11 (1589) 1e-3 1024
UnDial-20% 0.6725 1 (1587) 1 (1103) 31 (9456) 13 (3593) 1e-5 16
Reg-20% 0.6770 2006 (5388) 17 (2227) 6841 (17102) 142 (6601) 1e-5 16
DPO-β0.01 0.7084 1 (1163) 1 (1009) 31 (6298) 13 (2860) 1e-7 32

Table 1: Comparison of PII memorization and task performance across methods and datasets. More details on task
performance and memorization evaluation can be found in § 3.3. Cross-memorization results are in parentheses.

(e.g., GretelAI), results vary across languages (Fig-249

ure 3). The specialized German medical language250

in Pathology likely contributes to lower extraction251

rates, suggesting that both language and domain252

specificity influence memorization.253

Additionally, GretelAI’s high baseline leakage254

indicates that models retain strong pre-training pri-255

ors, amplifying memorization when new inputs256

contain familiar PII tokens. Other contributing fac-257

tors may include task type, PII repetition, model258

capacity, and TPA prefix length (Appendix A).259

Post-training methods offer robustness, but260

DP can outperform in specific cases. Across261

datasets (Table 1), post-training mitigation meth-262

ods such as DPO and UnDial generally yield more263

consistent privacy–utility trade-offs and are more264

robust to hyperparameter variation. They are also265

less resource-intensive than preventive techniques266

like DP and regularization. Differential privacy267

(DP), however, shows strong privacy potential in268

specific scenarios. In the DS task, it reduces cross-269

memorization by over 60%, the highest among all270

methods, even without using seed PII data. Yet,271

DP remains unstable to train, often requiring larger272

batch sizes, higher learning rates, and longer train-273

ing, with results varying substantially across runs.274

We also observe that DP models occasionally pro-275

duce repetitive outputs under TPA, indicating pos-276

sible degradation in generation quality. Regular-277

ization suffers from conflicting training objectives,278

preserving task performance but retaining more PII. 279

Unlearning and alignment methods are sensitive 280

to the quality and size of the seed set, requiring 281

careful tuning to balance effectiveness and utility. 282

Overall, while DP can outperform in isolated cases, 283

post-training methods offer more stable and repro- 284

ducible results. Crucially, even the most effective 285

methods achieve only around a 30% reduction in di- 286

rect PII memorization, indicating substantial room 287

for improvement. 288

5 Discussion 289

This work provides a systematic analysis of unin- 290

tended PII memorization in fine-tuned language 291

models. We identify key influencing factors and 292

evaluate four mitigation strategies with varying 293

trade-offs in privacy, utility, and stability. Fine- 294

tuning on small, domain-specific datasets may 295

lessen memorization but does not remove the 296

risk. Post-training methods such as DPO and Un- 297

Dial generally offer more consistent privacy–utility 298

trade-offs. However, DP achieves the strongest 299

leakage reduction in specific cases, despite being 300

unstable and sensitive to hyperparameters, with 301

occasional output degradation. Unintended mem- 302

orization remains a persistent challenge, and even 303

the best methods yield only moderate improve- 304

ments. This highlights the need for further re- 305

search into scalable, robust, and practical privacy- 306

preserving fine-tuning techniques. 307
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Limitations308

Our study focuses on PEFT (QLoRA) of309

1B-parameter LLaMA models. Exploring larger310

models, deeper architectures, other PEFT tech-311

niques, non-quantized models, or full-model FT312

may reveal different memorization dynamics and313

mitigation behaviors.314

Another limitation of our study is dataset avail-315

ability and label quality. Public, high-quality316

PII-annotated corpora are scarce, so we rely on (1)317

synthetic multilingual financial data, (2) a small,318

manually annotated private dataset, and (3) a larger319

private corpus with PII spans identified via a semi-320

automated local LLM pipeline. Despite this diver-321

sity, synthetic data and semi-automated labeling322

introduce noise, and none of the datasets are struc-323

tured at the individual (e.g., per-patient) level. This324

restricts our ability to explore privacy-preserving325

approaches such as federated learning or user-level326

differential privacy.327

Finally, we do not evaluate robustness against328

adversarial extraction, such as jailbreak prompts,329

instruction-based attacks, or white-box gradient330

leaks, which could undermine DP, UnDial, or DPO331

defenses. Systematic red-teaming and adversar-332

ial threat modeling remain important avenues for333

future validation.334

Ethics Statement335

This study involves the analysis of fine-tuned lan-336

guage models on datasets containing annotated PII337

spans to evaluate memorization risks. All data han-338

dling and annotation procedures were conducted in339

compliance with applicable data protection regula-340

tions and were approved by the institutional ethics341

review board. Sensitive datasets were processed342

exclusively on secure, in-house infrastructure us-343

ing local models, ensuring that no data left the344

organization or was exposed to third-party services.345

Appropriate safeguards were implemented through-346

out to protect individual privacy and maintain data347

confidentiality.348
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A Additional Findings 481

Why does DP not (always) prevent PII leakage? 482

Differential privacy protects against singling out 483

individual records or users. It implicitly assigns 484

a privacy cost to using information in the training 485

dataset at the level of records, not tokens, hence 486

it is oblivious to different occurrences of the same 487

information across records or users. This is an 488

effective method to mitigate risks of disclosing by 489

whom data was contributed, but it does not take into 490

account about whom the content is (Lukas et al., 491

2023). 492

Effect of token length in TPA. Following Car- 493

lini et al. (2022), we evaluate attack success using 494

varying prefix lengths ∈ {10, 25, 50, 100} tokens 495

preceding the target PII (Figure 4). Consistent with 496

their findings, we observe a sharp increase in ef- 497

fectiveness between 25 and 50 tokens, with only 498

marginal gains beyond 50. Based on this, we stan- 499

dardize a 50-token prefix for most evaluations. 500

Figure 4 shows a logarithmic increase in attack 501

success with prefix length for fine-tuned models. 502

The pre-trained model shows a similar trend on 503

GretelAI, but on the DS dataset, success decreases 504

with longer prefixes. While attacks benefit from 505

prefixes up to 200 tokens on GretelAI, they plateau 506

between 50–100 tokens on DS. These patterns align 507

partially with Carlini et al. (2022) but suggest pos- 508

sible dataset-specific trends in unintended PII mem- 509

orization. 510

Comparison of different data-centric attack 511

methods Nakka et al. (2024b) benchmark Tem- 512

plate, In-Context Learning (ICL), and PII-Compass 513

attacks alongside TPA. Template attacks use adver- 514

sarial prompts to query target PII, ICL augments 515

these prompts with examples of known PII in the 516

same format, and PII-Compass combines TPA with 517

Template by adding another true PII prefix. Parallel 518

to TPA, we attempted to construct templates for the 519
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Figure 3: Distribution of PII across languages in the GretelAI dataset training split (left). PII extraction success
ratio across languages (right).

Figure 4: PII extraction success vs. prefix length (in tokens) for LLaMA-3.2-1B base and fine-tuned models. Left:
GretelAI dataset (extraction rate of all training PII). Right: Discharge summaries dataset (approximate count of PII
extracted).

Template, ICL, and PII-Compass attacks in an auto-520

mated manner by extracting co-occurring PII pairs521

(e.g., a “name” span followed within N characters522

by another PII type). Table 2 summarizes the best523

data extraction attempts using the FT model on the524

GretelAI dataset.525

Method 4 examples 8 examples 16 examples 24 examples

ICL Attack 0.686% 1.521% 1.184% 1.101%
ICL Attack - 2 0.692% 1.120% 1.322% 1.104%

Prefix 1 Prefix 2 Prefix 3 Prefix 4

PII-Compass 0.843% 0.885% 0.843% 0.311%

Table 2: Comparison of the amount of trainable parame-
ters in LLaMa-3.2-1B fine-tuned models and their effect
on total memorization and unique PII memorization on
the GretelAI dataset.

Similar to (Nakka et al., 2024a), we found that526

the effectiveness of these attacks is highly sensi-527

tive to template design, example selection, and528

the PII targets. Our initial runs showed TPA 529

memorization rising from 10.0% (pre-trained) to 530

11.3% (fine-tuned), while the template-based at- 531

tacks yielded near-zero recall on both models, 532

likely due to high variance in PII associations and 533

low-quality synthetic templates. We conducted ad- 534

ditional evaluations of these data extraction attacks 535

using more realistic PII and manually selected tem- 536

plates from the Enron dataset, but their effective- 537

ness was still far from TPA. 538

Unintended PII memorization scales with model 539

capacity. As shown in Table 3, an eight-fold in- 540

crease in LoRA rank does not increase the total 541

number of PII extractions, which remains equal 542

under both query numbers per prefix setting. How- 543

ever, the number of distinct PII increases under 544

both settings. This reveals that while additional 545

parameters do not cause higher total memorization, 546

they broaden the memorization of distinct PII. 547
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LoRA
Rank

Trainable
Parameters

Total PII Distinct PII
32 Query 1 Query 32 Query 1 Query

8 5.6M 849 40 165 17
64 45.1M 849 40 199 23

Table 3: Comparison of the amount of trainable parame-
ters in LLaMa-3.2-1B fine-tuned models and their effect
on total memorization and unique PII memorization for
the Discharge summaries.

These findings mirror the findings of Mireshghal-548

lah et al. (2022), where they attribute memoriza-549

tion to the location of the trainable parameters in550

the model, and not the total quantity (i.e., header-551

tuning only causing more memorization than full552

FT). In our case, by scaling the LoRA rank, we still553

fine-tune all linear layers in the model, but increase554

the number of trainable parameters.555

Unintended PII memorization does not directly556

correlate with PII repetitions. Contrary to Car-557

lini et al. (2022), we did not find a direct correla-558

tion between the frequency of PII occurrences in559

the data and unintended memorization rates. We560

hypothesize that memorization is influenced more561

by the PII’s textual context and its utility to the562

downstream task than by raw repetition. For exam-563

ple, in our DS dataset, only the model fine-tuned564

with a learning rate an order of magnitude larger565

reproduced PII contained in the document headers,566

which were some of the most frequent PII in the567

dataset corpus (and most irrelevant to the down-568

stream task).569

Effect of downstream task on PII memoriza-570

tion. Previous research has shown that the nature571

of the target downstream task can affect general572

sequences memorization Zeng et al. (2024). Fully573

fine-tuned LLMs tend to memorize more training574

sequences on generative tasks, such as summariza-575

tion or chat/conversational tasks, than when fine-576

tuned for discriminative tasks, e.g., classification577

or question-answering.578

However, our experimental findings reveal that579

this pattern does not necessarily extend to un-580

intended PII memorization (other factors could581

be just as important). Summarizing our mem-582

orization results presented previously, after FT,583

models memorized significantly more PII in the584

GretelAI (and GretelAI+Enron) dataset, followed585

by the Discharge summaries dataset, and did not586

memorize any PII from the training data in the587

Pathology dataset. The tasks of these datasets588

correspond to document classification, text gen- 589

eration/summarization, and information extrac- 590

tion/classification, respectively. 591

Although we find that the nature of the FT task 592

does not have a direct impact on unintended mem- 593

orization, a closer qualitative analysis at the fine- 594

tuned model’s outputs suggests that the output for- 595

mat of the task might influence memorization, or 596

at least, mitigate the effectiveness of the different 597

data extraction attacks. 598

• Patho Dataset: The FT model often emits 599

JSON-formatted responses even under TPA, 600

Q&A, or translation instructions prompts, in- 601

dicating that the rigid output schema learned 602

during FT constrains free-form PII generation. 603

• Discharge Summary Dataset: Because PII 604

tokens are masked in the training targets, 605

the FT model increasingly produces masked 606

placeholders post-tuning (1788 masked tokens 607

→ 4507 masked tokens), partially reducing di- 608

rect PII exposures. 609

These observations imply that output alignment 610

(i.e. training the model to emit structured or masked 611

formats) can mitigate unintended PII leakage simi- 612

lar to our DPO setup. Designing FT objectives that 613

enforce strict output schemas may thus serve as an 614

additional privacy safeguard when possible. 615

Other PII Types We report additional results on 616

all PII types in both the GretelAI dataset (Table 4 617

and Table 5) and the Pathology dataset (Table 6 and 618

Table 7). The reduced PII leakage in the Pathol- 619

ogy dataset highlights the assumptions about the 620

memorization dynamics on this dataset made in 621

§ 4. 622

Model Total PII Distinct PII Performance

Base 9589 5162 12.08%
SFT 10473 5302 87.17%
DP-ϵ2 9448 4904 66.16%
DP-ϵ6 10001 4846 74.84%
UnDial-40 9889 4969 76.53%
DPO-β0.01 7666 3947 79.24%

Table 4: TPA results in the GretelAI dataset including
all PII types.

Sampling reveals more memorized PII For this 623

experiments, we repeat the TPA, sampling the mod- 624

els 32-times per prefix, setting the model tempera- 625

ture to 1. Our results in Table 8 show an increase 626

in succesfully extracted PII. 627
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Model Name Comp. Email Add. Other

Base 3402 3092 2176 577 342
SFT 3601 2892 2695 990 295
DP-ϵ2 3304 2853 2281 706 304
DP-ϵ6 3563 3030 2332 739 337
UnDial-40 4031 3007 2088 457 306
DPO-β0.01 2616 2024 2586 295 145

Table 5: TPA results in the GretelAI dataset itemized by
PII types: Name, Company, Email, Address, Others.

Model Total PII Distinct PII Performance

Base 265 17 28.89%
SFT 130 21 86.21%
DP-ϵ6 269 19 55.13%

Table 6: Cross-Memorization results of models in the
Pathology dataset including all PII types except dates.

B Data Preprocessing628

B.1 GretelAI - Text classification629

During preprocessing, we excluded from GretelAI-630

Financial1 eight classes with trivial classification631

due to rigid text structure: CSV, EDI, SWIFT Mes-632

sage, FIX Protocol, BAI Format, XBRL, FpML, and633

MT940. We also removed documents with quality634

scores below 90/100. The resulting class distribu-635

tion is shown in Figure 5.636

Upon inspection, we identified AI-generated doc-637

uments and filtered them using heuristic rules.The638

final dataset comprised 27,636 training and 3,136639

test samples (from 50,346 and 5,594 originally).640

PII counts revealed 121,493 total spans with641

51,206 unique entities after filtering spans shorter642

than three characters, and PII of classes not valu-643

able. However, the dataset sometimes exhibits lim-644

ited PII diversity, containing poor quality repet-645

itive synthetic values like "John Doe" or "jane-646

doe@mail.com".647

B.2 Enron - Text classification648

To enhance PII realism in our classification task,649

we created a hybrid dataset by combining sam-650

ples from GretelAI and the Enron Email Corpus.651

The Enron dataset provides authentic email com-652

munications with naturally occurring PII patterns,653

including real name-email pairs and diverse email654

addresses, formatting conventions, and domains.655

We randomly sampled 400 emails from Enron656

(ensuring at least 400 unique name-email pairs)657

1https://huggingface.co/datasets/gretelai/
synthetic_pii_finance_multilingual

Model Name Serial Nr. Location Contact Info

Base 196 37 25 7
SFT 81 31 8 10
DP-ϵ6 172 70 18 9

Table 7: Cross-Memorization results of models in the
Pathology dataset itemized by PII types: Name, Serial
Number, Location and Contact Information.

Model LR 1 Query 32 Queries
Total Distinct Total Distinct

Base - 25 15 815 205
SFT 5e-5 40 17 849 165
SFT 2e-4 91 15 1980 126

Table 8: Comparison of results of the enhanced TPA, us-
ing 1 and 32 queries per True Prefix, on the DS dataset.

and replaced all "EMAIL" class documents in our 658

cleaned GretelAI dataset. This maintained the orig- 659

inal class distribution across document types. 660

B.3 Pathology reports - Information 661

extraction 662

For this dataset, we manually annotated PII (serial 663

number, person name, contact info, date, and lo- 664

cation) and bone tumor-related information with 665

the help of medical professionals, including dig- 666

nity (benign/malignant), intervention type (resec- 667

tion/biopsy/curettage), entity, subentity, and lo- 668

cation. We filter out poor quality reports (very 669

short or very limited tumor-related information; 670

not bone tumor related) and perform extensive 671

preprocessing (removing duplicates, text normal- 672

ization, creating a labeling UI, and performing 673

annotation consistency checks). This resulted in 674

a structured format with pre-annotated PII spans 675

and task labels. We split the 2,552 samples using 676

an 80%/10%/10% train/validation/test distribution, 677

yielding 2,041 training, 255 validation, and 256 678

test samples. 679

B.4 Discharge summaries - Medical 680

Follow-up Planning 681

We applied a consistent cleaning pipeline to raw 682

documents to eliminate formatting artifacts and 683

ensure experimental stability. This included nor- 684

malizing control characters (replacing line breaks, 685

tabs, and non-printable symbols with spaces), col- 686

lapsing consecutive spaces, trimming whitespace, 687

and removing common report headers using regu- 688

lar expressions to isolate the free-text body of each 689

summary. 690
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Figure 5: Distribution of PII types for the GretelAI synthetic dataset (left), the Pathology dataset (middle), and the
Discharge summary dataset (right).

PII Span Labeling. Using Ollama2, we ran691

LLaMa 4 Scout Q4 with structured genera-692

tion to identify PII classes: PERSON_NAME,693

POST_CODE, ADDRESS, DATE, EMAIL, TELE-694

PHONE, and WEBSITE. To remove false posi-695

tives from model hallucinations, we used LLaMa696

4 Scout to review and tag potential false positives,697

followed by manual review.698

After extracting PII spans, we performed local-699

ization to map each instance to its exact character700

offsets in the original text, enabling reliable mask-701

ing and targeted extraction attacks.702

Target Extraction We extracted the Procedere703

section from each document, typically appearing704

near the end and introduced by phrases like "Pro-705

cedere:" or "als weiteres Procedere...". Samples706

with sections under 50 characters or over 2,000707

characters were discarded.708

Since Procedere targets may contain PII, we709

masked all detected PII to preserve the "unin-710

tended" nature of our memorization study and pre-711

vent direct training on sensitive information.712

The resulting dataset consists of 26,306 samples,713

split into 80%-10%-10% train-validation-test splits,714

each with a generation target and annotated PII715

spans.716

C Training details717

All our experiments have been run on an NVIDIA718

A100 80GB GPU. Fine-tuning took at most 24719

hours, while attacks took at most 12 hours.720

C.1 Fine-tuning721

We use HuggingFace’s (HF) SFTTrainer3, a high-722

level wrapper around the HF Trainer API, which723

2https://github.com/ollama/ollama
3https://huggingface.co/docs/trl/en/sft_

trainer

simplifies the FT process by managing the train- 724

ing loop, loss computation, and optimizer updates. 725

We monitor overfitting and guide early stopping 726

on the validation set, using a patience of 3 vali- 727

dation checks. The frequency of validation is ad- 728

justed based on the total number of epochs and 729

specific experimental configurations, as well as 730

the dataset specification. For optimization, we 731

use the paged_adamw_32bit optimizer, a memory- 732

efficient variant of AdamW that supports paged 733

memory loading and uses 32-bit precision for opti- 734

mizer states. Our default FT hyperparameters are 735

LoRA rank r = 8 (1.5M trainable parameters for 736

the 1B model), scaling factor: α = 16, dropout 737

rate of 0.05, and a learning rate of 1× 10−5, with a 738

linear warmup over 3% of training steps followed 739

by cosine decay. 740

C.2 Differential Privacy 741

Our differential privacy experiments aim to match 742

the downstream task performance of SFT models 743

for fair PII memorization comparison. While train- 744

ing for more epochs with a fixed privacy budget 745

spreads the privacy budget across additional steps 746

(reducing the signal-to-noise ratio per update), we 747

found better results by increasing learning rate 748

and batch size instead, following recommendations 749

from Li et al. (2021). 750

C.3 UnDial 751

We apply UnDial using Dong et al. (2024)’s im- 752

plementation4 (with minimal updates for Hugging 753

Face Trainer compatibility). Following the original 754

authors’ guidelines, we began with conservative 755

hyperparameters: learning rate of 10−6 and un- 756

learning strength of 3, the default selection in their 757

repository. However, our experiments revealed 758

4https://github.com/dong-river/LLM_unlearning
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that moderately higher values achieved superior759

privacy-utility tradeoffs. Specifically:760

• Optimal configuration: Learning rate ∈761

[1, 5]× 10−5 (one order of magnitude higher762

than recommended) with unlearning strengths763

of 5-7764

• Performance preservation: UnDial main-765

tained >95% of original accuracy (compared766

to >12% degradation with DP-FT)767

• Memorization reduction: Using 20% of total768

PII for unlearning reduced extractable distinct769

PII from 13.44% to 12.65%770

• Sequence length optimization: 50-token con-771

texts proved most effective, balancing suffi-772

cient context with computational efficiency773

Importantly, we found that aggressive hyperpa-774

rameters (learning rates larger than 10−4 and un-775

learning strength larger than 7) led to substantial776

performance drops without additional privacy ben-777

efits, highlighting the need for careful tuning.778

C.4 DPO779

We use HF’s DPOTrainer 5. A careful balance of780

learning rate and β is required to prevent catas-781

trophic forgetting and maintain the model’s utility782

while achieving the desired alignment goal. While783

a common value for β is 0.1 and learning rate one784

order of magnitude lower than the SFT learning785

rate, our empirical results revealed that a more ag-786

gressive β = 0.01 was required for achieving ap-787

propriate PII masking. Simultaneously, we found788

that learning rates ≥ 5e− 6 resulted in excessive789

token masking, causing catastrophic forgetting.790

D Evaluation details791

D.1 Memorization Assessment792

Prior work has focused on exact matching, but PII793

memorization requires considering approximate794

matches due to the sensitive nature of content and795

its variability. For instance, abbreviations, format-796

ting inconsistencies, or incomplete PII exposure797

can also be a privacy risk.798

To address these challenges, we define two evalu-799

ation strategies depending on the dataset (and mul-800

tiple criteria within the dataset) and type of PII801

under evaluation:802

5https://huggingface.co/docs/trl/main/en/dpo_
trainer

1. Exact-Match (EM) Evaluation For datasets 803

where PII quality is lower and highly uniform 804

(for instance, Gretel-AI’s dataset), we con- 805

sider a PII span memorized only if the model’s 806

normalized output contains an exact substring 807

match of the target PII. 808

2. Approximate-Match Evaluation For real-PII 809

datasets (Pathologie, Discharge Summary), 810

we adopt fuzzy string matching via the Lev- 811

enshtein distance using the thefuzz library6 812

based on the PII type. We set a similarity 813

threshold (e.g., 90%) so that minor variations, 814

such as abbreviations, missing components, 815

or misspellings, still count as memorization. 816

With names, addresses, and similar types, we 817

can apply this approach. However, for phone 818

numbers, postcodes, or other numeric-only 819

PII, we only apply normalization by remov- 820

ing all non-numeric characters. Finally, for 821

other PII, such as email addresses or websites, 822

where EM is important, we use EM. 823

By combining an upper-bound TPA with both 824

exact and approximate matching criteria, we obtain 825

a robust, worst-case estimate of PII memorization 826

across our experimental settings. 827

6https://github.com/seatgeek/thefuzz
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