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Abstract

Conformal prediction methods are a tool for un-
certainty quantification of a model’s prediction,
providing a model-agnostic and distribution-free
statistical wrapper that generates prediction inter-
vals/sets for a given model with finite sample gen-
eralization guarantees. However, these guarantees
hold only on average, or conditioned on the out-
put values of the predictor or on a set of prede-
fined groups, which a-priori may not relate to the
prediction task at hand. We propose a method to
learn a generalizable partition function of the in-
put space (or representation mapping) into inter-
pretable groups of varying sizes where the non-
conformity scores - a measure of discrepancy be-
tween prediction and target - are as homogeneous
as possible when conditioned to the group. The
learned partition can be integrated with any of the
group conditional conformal approaches to pro-
duce conformal sets with group conditional guaran-
tees on the discovered regions. Since these learned
groups are expressed as strictly a function of the
input, they can be used for downstream tasks such
as data collection or model selection. We show the
effectiveness of our method in reducing worst case
group coverage outcomes in a variety of datasets.

1 INTRODUCTION

The interest on the application of Machine Learning (ML)
models on different industrial settings has increased in re-
cent years, in particular given the success of deep neural
networks and the availability of large amounts of data. In
general, predictive ML models are optimized to capture the
behaviour of a target variable based on a finite set of obser-
vations. One of the major concerns when deploying these
models into real-world decision making processes is how

to quantify the uncertainty in their prediction, especially in
high-stakes domains such as health care or finance where
there is a robust penalty for making mistakes.

Typical ML models produce point predictions (e.g., ex-
pected values for regression or most likely label in the case
of classification), these are not a-priori informative on the
range of values the target variable can take within normal op-
eration (i.e. set of values expected to occur with high proba-
bility). Calibrated prediction sets (or interval) can be of great
value for a decision maker that wants to consider worst-case
scenarios. Moreover, understanding how the uncertainty of
a model’s prediction differs across varying subsets of the
available data can inform the data collection process, model
improvements or model selection/assessment.

Conformal prediction methods Vovk et al. [2005] have
gained significant popularity in recent years since they offer
a distribution-free approach to quantify the uncertainty of a
black box model’s prediction with generalization guarantees
Shafer and Vovk [2008], Angelopoulos and Bates [2021].
In particular, split conformal prediction (SCP) Papadopou-
los et al. [2002] is an attractive post-hoc, model-agnostic
approach that only requires access to the model’s prediction
and a calibration dataset. This is especially useful in settings
where retraining or modifying an ML model to produce un-
certainty estimates is infeasible, or when only query access
to an ML model is possible (e.g., LLMs,1).

Given a desired miscoverage level α (i.e. error-rate) con-
formal prediction methods produce prediction sets/intervals
based on a black box model’s prediction that are guaranteed
to contain, on average, the ground truth value of the target
variable with probability larger or equal than 1−α. They of-
ten rely on the quantile estimation of a non-conformity score,
which is a measure of the disagreement between the target
variable and the model prediction (e.g., absolute error), and
only require that the calibration dataset be exchangeable2

with the data samples the model will be tested on. Different

1Large Language Models
2This is a weaker condition than full statistical independence
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(a) Non-conformity region-based prediction framework

(b) Split Conformal Prediction (c) Region-based SCP

Figure 1: (1a) Overview of proposed framework to pro-
duce prediction intervals/sets. We first decompose the input
space into interpretable groups where each group contains
homogeneous predictions of the 1 − α-th quantile of the
non-conformity scores of a ML model’s prediction f(·).
We then build a prediction interval/set, denoted Cτ (X) =
Cα(X, gτ (X)) where Cα is the group-conditional confor-
mal predictor, which depends on both the input X and on
the group prediction gτ (X). Cτ satisfies group conditional
coverage guarantees for the identified groups. (1b) regres-
sion example of heteroskedastic uncertainty in the model’s
prediction (blue line), the x-axis indicates the input variable,
y-axis the target variable, and red dots the test samples. Pre-
diction bands (blue) are produced by standard SCP with a
coverage target of 0.95 (α = 0.05), the desired coverage is
achieved on average but there is significant disparity across
regions of X . (1c) shows the prediction bands obtained with
the proposed region-based approach in conjunction with
SCP. Five groups where identified, and the group condi-
tional coverage is improved significantly w.r.t. SCP.

works have studied how to adapt these methods to scenarios
where the exchangeability assumption is violated, such as
distribution shifts or time series settings Gibbs and Candes
[2021], Stankeviciute et al. [2021], Barber et al. [2023].

A significant amount of work has focused on understanding
the feasibility of more efficient prediction sets and stronger-

than-average coverage guarantees. An ideal goal would be
to achieve input-conditional coverage (i.e., the coverage
guarantees hold for each possible input), which has been
proven to be impossible in practice Vovk [2012], Lei and
Wasserman [2014]. Nonetheless, weaker guarantees such
as local conditional coverage Foygel Barber et al. [2021] or
group and level-set conditional coverage Jung et al. [2022]
are possible. Providing predictions sets with close to condi-
tional coverage guarantees is valuable in settings where the
model’s prediction uncertainty differs significantly across
the input space (heteroskedastic uncertainty). Essentially,
we want to avoid having subsets of samples with under
coverage and/or inefficient prediction sets Romano et al.
[2020]. Marginal-coverage guarantees hold only on average,
and do not prevent high variation in the performance of the
prediction sets across subgroups in the input space.

Many works have addressed relaxations of the conditional
coverage objective by modifying the non-conformity score
Papadopoulos et al. [2011], Lei and Wasserman [2014],
Guan [2023], Han et al. [2022], Amoukou and Brunel
[2023], Seedat et al. [2023], Ghosh et al. [2023], learning
the non-conformity quantile threshold Jung et al. [2022],
Bastani et al. [2022], Gibbs et al. [2023], or using a confor-
mal quantile regression objective when the provided model
can be retrained Romano et al. [2019]. In particular, a line of
work with practical guarantees has focused on the notion of
local or group-conditional coverage for a pre-specified set
of groups that partitions the input space Vovk et al. [2003],
Vovk [2012] and for overlapping groups Foygel Barber et al.
[2021], Jung et al. [2022], Gibbs et al. [2023].

Main Contributions. Most group conditional conformal
prediction approaches presented above rely on pre-defined
groups or propose greedy approaches to slice the input space
Lei and Wasserman [2014] or the prediction space Sesia and
Romano [2021], Boström et al. [2021] into equal-sized re-
gions, which scale poorly to higher dimension inputs. To
address this issue, we propose a method to learn a generaliz-
able partition function of the input space (or representation
mapping) into interpretable groups3 of varying sizes where
the quantiles of the non-conformity scores are as homoge-
neous as possible when conditioned to the group. The main
characteristics of the proposed approach are described next.

• We adopt an adversarial approach where an agent pro-
poses a partition function that approximates the non-
conformity-score conditional quantile; and a judge then
evaluates it based on its worst group conditional mis-
coverage with respect to the one achieved by an inter-
pretable baseline. The agent and the judge use indepen-
dent datasets drawn from the same distribution.

• We define a fitness score denoted as worst group mis-
coverage ratio (MCR) that allows the comparison of

3we use the terms regions, groups, partitions and clusters inter-
changeably



models across different partitions. We use this score to
inform the regularization of a family of interpretable
clustering functions with the goal of selecting the par-
tition that best generalizes in terms of MCR over the
set of partitions that accurately approximate the condi-
tional quantile estimates of the non-conformity scores.

• We learn partitions using decision trees since the iden-
tified groups can be described based on interpretable
input rules—a valuable property for downstream tasks
such as data collection or model selection. The parti-
tion function can be integrated with any of the group
conditional conformal approaches discussed previously
(see Figure 1) to produce conformal sets with group
conditional guarantees on the discovered regions.

The proposed method serves as an inexpensive alternative to
a more strict and costly auditing approach where the auditor
leverages an optimization procedure to find the worst compu-
tationally identifiable miscoverage group for a given model.
In our experiments, we show that we discover meaningful
groups that significantly benefit from their inclusion in a
group conditional conformal approach. Code is available at
https://github.com/trustyai-explainability/

trustyai-model-trust.

Manuscript Organization. Section 2 provides a summary
of conformal prediction definitions that are used throughout
this manuscript and Section 3 summarizes additional related
work. Section 4 describes the proposed objective for discov-
ering the group partition function based on non-conformity
score quantiles. Section 5 provides the method that inte-
grates group identification with conformal prediction. Fi-
nally, Section 6 shows experimental results that validate our
proposed approach.

2 BACKGROUND

Let us consider the supervised machine learning setting
where we have an input variable X ∈ X and a target variable
Y ∈ Y jointly distributed according to an unknown distri-
bution X,Y ∼ p(X)p(Y |X). Given a prediction function
f : X → Y ′, where Y ′ is an output space that approximates
some statistic of p(Y |X), 4, we consider a non-conformity
score function Sf : X × Y → R, that depends on f and
measures the proximity between the prediction f(X) and
the corresponding target Y . We use S to denote the non-
conformity random variable S = Sf (X,Y ) that depends
on the input variable X , target variable Y and model f .

In the split conformal setting we assume we have access
to an i.i.d. calibration dataset Dcal = {(Xi, Yi)}ni=1 ∼
p(X,Y )⊗n that is independent of f . Then, the set of

4e.g., Y ′ = ∆|Y|−1 if f outputs a probability vector over
labels in the classification setting, or Y ′ = Y for regression

non-conformity scores {si = Sf (Xi, Yi)}ni=1 are ex-
changeable with any unseen non-conformity score sample
Sn+1 = Sf (Xn+1, Yn+1). This exchangeabilty property
implies the following for any new sample Xn+1, Yn+1 ∼
P (X)P (Y |X)

1− α ≤ P
(
Sn+1 ≤ Q1−α({si}ni=1)

)
≤ 1− α+ 1

n+1

Q1−α({si}ni=1) = Q1−α(
∑n

i=1
1

n+1δsi +
1

n+1δ∞)
(1)

where Q1−α(·) denotes the 1 − α quantile operator of its
input (for Eq.1 this is the ⌈(1− α)(n+ 1)⌉-th smallest
{si}ni=1), and α ∈ (0, 1) is a pre-specified mis-coverage
level. Conversely, we can define the conformity set for a
given mis-coverage level α based on the non-conformity
score function as

Cf (Xn+1) = {Yn+1 ∈ Y : Sn+1 ≤ Q1−α({si}ni=1)}.
(2)

This satisfies P (Yn+1 ∈ Cf (Xn+1)) ≥ 1− α.

Conditional and Local Coverage Guarantees The set
described in Eq. 2 provides guarantees on average across the
entire data distribution, but not for any particular value of X ,
i.e., P (Yn+1 ∈ Cf (Xn+1)|Xn+1 = x) ≥ 1 − α,∀x ∈ X ,
also known as conditional coverage. This desirable guar-
antee cannot be achieved in practice Vovk [2012], Lei and
Wasserman [2014], Foygel Barber et al. [2021], since it
would require Cf (x) to have infinite expected length at any
non-atom x. A relaxation of this setting is to consider local
coverage over a partition of the support of P (X) denoted
as g : X → G with G a discrete finite set. Then, local con-
ditional guarantees implies P (Yn+1 ∈ Cf (Xn+1)|Xn+1 ∈
gj) ≥ 1− α with gj = {x : g(x) = j} ∀j ∈ G.

Pinball Loss in the Infinite Sample Regime In the ideal
case were the conditional distribution of the non-conformity
scores (P (S|X)) is known, the most efficient prediction
interval for a given X and mis-coverage level α is

C(X) = {y ∈ Y : S(X, y) ≤ F−1
S|X(1− α)} (3)

with F−1
S|X(1 − α) = inf{ŝ ∈ supp(PS|X) : P (S ≤

Ŝ|X) ≥ 1 − α}. We can approximate the 1 − α condi-
tional quantile by minimizing the expected pinball loss

F−1
S|X(1− α) = argmin

q∈Q
Ep(X,S)

[
ℓ1−α(q(X), S)

]
(4)

where Q represents a universal class of functions and
ℓ1−α(·, ·) is the pinball loss, defined as

ℓ1−α(q, s) = max{(1− α)(s− q), α(q − s)}. (5)

Section 4 leverages the pinball loss, in addition to a worst
case generalization objective, to identify a set of disjoint
regions in the input space where the 1−α quantile of the non-
conformity score differs significantly. We use the discovered

https://github.com/trustyai-explainability/trustyai-model-trust
https://github.com/trustyai-explainability/trustyai-model-trust


grouping in this prior step as an input to a group-conditional
split conformal approach which now holds local conditional
guarantees on the identified groups. Section 5 presents an
implementation of this approach based on decision trees,
which provide an interpretable clustering of the input space
based on the input features (or an interpretable embedding
of the same).

3 RELATED WORK

Adaptive Conformal Sets. Input-conditional coverage
guarantees with finite samples are impossible without infi-
nite width intervals Vovk [2012], Lei and Wasserman [2014].
However, an extensive line of work has focused on provid-
ing adaptive conformal sets that can capture heteroskedastic
uncertainty in the model’s prediction Romano et al. [2019],
Kivaranovic et al. [2020]. Some works up-weight the non-
conformity scores of calibration samples based on some
distance notion to the test instance Mao et al. [2022], Guan
[2023], Ghosh et al. [2023] or make assumptions on the data
distribution Lei and Wasserman [2014], Barber et al. [2023].
These approaches do not integrate information about the
non-conformity score in the weighting process. In contrast,
approaches such as Han et al. [2022], Jung et al. [2022],
Amoukou and Brunel [2023] model some statistic of the
(conditional) non-conformity score distribution to re-weight,
correct or learn the quantile threshold.

Local Conditional Coverage. Some works have proposed
split conformal prediction methods for a predefined set of
groups. For non-overlapping groups Mondrian conformal
prediction provides finite sample guarantees Vovk et al.
[2003], Vovk [2012]. The assumption here is that the obser-
vations in each group of the partition are exchangeable. For
overlapping groups Foygel Barber et al. [2021] provides a
conservative approach with finite sample guarantees (largest
set from the groups that contain the test point). The work by
Jung et al. [2022] learns the non-conformity score threshold
conditioned on each group via quantile regression. Their ap-
proach has asymptotic guarantees, while Gibbs et al. [2023]
proposed an alternative with finite sample guarantees.

Group Identification for Local Conformal Prediction.
Lei and Wasserman [2014] proposes a “sandwich slicer”
approach that bins the input features before applying a
group/local conditional conformal approach, while Sesia
and Romano [2021] proposes histogram binning of the ML
model’s output values. These approaches are simple but
greedy, and do not leverage the information of the distri-
bution of the non-conformity scores. Existing kernel-based
localizers for conformal prediction Guan [2023], Han et al.
[2022] do not partition the input space and do not integrate
information about the non-conformity scores. The work by
Amoukou and Brunel [2023] is the closest to our approach.
They propose an adaptive conformal prediction approach
that learns the non-conformity score weights with a random

forest that approximates a statistic of the non-conformity
scores. To achieve this objective, they use a quantile ran-
dom forest that approximates the distribution of the non-
conformity scores on the calibration dataset. Moreover, they
provide an approach to approximate the forest’s weights
with a partition function using a graph clustering method
based on Louvain-Leiden Traag et al. [2019] with Markov
Stability Delvenne et al. [2010]. Therefore, we compare
against two of their variants. It is important to note that
the quantile random forest algorithm by Meinshausen and
Ridgeway [2006] does not minimize (an approximation of)
the quantile objective (1− α) but instead it minimizes the
inter-leaf variance of the non-conformity scores; the leaves
of this QRF algorithm store the entire list of non-conformity
scores of train samples falling in the leave, rather than a
single summary statistic. In our formulation, the learned
partition function approximates the 1 − α quantile of the
non-conformity score, since we minimize pinball loss.

4 REGION IDENTIFICATION BASED ON
NON-CONFORMITY SCORE
QUANTILES

Given a non-conformity score, we want to discover regions
in the input space that maximizes intra-group homogeneity
of the score distribution, but still differ significantly be-
tween groups. These regions, if interpretable, provide useful
insights about the uncertainty of a model’s prediction. More-
over, they can be leveraged on different steps in the ML life
cycle such as data filtering and collection.

Given a mis-coverage objective α we want to learn a map-
ping τ : X → G × R,5, that outputs a computationally-
identifiable set of groups and an estimate of the 1 −
α conformity score quantile for each group, τ(X) =
(gτ (X), qτ (X)). We use gτ (X) to denote the group label
and qτ (X) to denote the corresponding quantile estimate
(i.e., score threshold). We consider τ to belong to a family of
piece-wise constant models T such that ∀τ ∈ T ,∀x1, x2 ∈
X : gτ (x1) = gτ (x2) → qτ (x1) = qτ (x2).

Piece-wise constant models provide an interpretable charac-
terization of the identified groups based on the input features,
this is especially true for models such as trees, where the
decision rules used to identify each group (leaf node) are
clearly laid out. Note that our approach could also be applied
to some interpretable feature space of the input by choosing
τ(ϕ(X)) where ϕ(·) is some mapping into an interpretable
feature space. In particular, ϕ(X) = (X, f(X)) makes the
partitioning depend directly on the output of f . This allows
the implicit identification of different uncertainty regions
based on the model’s prediction.

5we can also consider soft-clustering such that τ : X →
∆|G|−1 × R



4.1 GENERALIZATION OF WORST GROUP
MIS-COVERAGE

We want to learn a partition function τ(·) ∈ T that approx-
imates the conditional quantile F−1

S|X(1− α)6. In practice,
we have access to a finite dataset D, on which the model
family T may be prone to overfitting. Therefore, we want to
choose a regularization parameter for T that ensures that the
generalization properties of the final model are acceptable.
In particular, we want to learn a partition where the worst
group conditional coverage for the identified groups is as
close as possible to 1− α. To do so, we first introduce our
definitions of group conditional mis-coverage (Definition
4.1), worst group mis-coverage ratio (Definition 4.2), and
then our proposed objective.

Definition 4.1. Consider a distance function d : R× R →
R≥0, G a set of groups with membership function g : X →
G, a threshold q ∈ R, and a target coverage 1−α. The group
conditional mis-coverage of threshold function q : X → R
over variable S for a group gj ∈ G based on distance d is

MCα(q, g; gj) = EX,S [d(1− α, P (S ≤ q(X)))|g(X) = gj ]
(6)

Following Definition 4.1, we are interested in measuring
the worst group conditional mis-coverage w.r.t. the marginal
baseline, that is, the model that outputs a single quantile
estimate for the entire input space. This indicates if the
proposed grouping, and corresponding quantile estimates,
provide a significant improvement in terms of worst-group
coverage over a simple, marginal approach. Definition 4.2
presents the proposed worst group mis-coverage ratio.

Definition 4.2. Consider a distance function d : R× R →
R≥0, Gτ the set of groups identified by τ(·), gτ (·), the cor-
responding quantile estimator qτ (·) , and q̂ ≃ F−1

S (1− α)
an empirical estimate of the average 1 − α quantile of S.
Then, we define the worst mis-coverage ratio as

MCRα(τ) =
max

gj∈Gτ
MCα(qτ ,gτ ;gj)

max
gj∈Gτ

MCα(q̂,gτ ;gj)
(7)

For the distance function we consider d(1 − α, p) = |1 −
α − p| or d(1 − α, p) = (1 − α − p)+, where the latter
only considers under-coverage violations. The MCRα(τ) is
less than 1 if the worst group mis-coverage on the proposed
partition Gτ is lower (better) than the worst mis-coverage of
a single quantile estimate. In such case we may prefer the
proposed partition over the baseline model.

Given two different group partitions, MCR allows us to com-
pare which of the two partitions identified a set of groups
that would be most benefited (in the worst group sense) by

6F−1
S|X(1 − α) = inf{ŝ ∈ supp(PS|X) : P (S ≤ Ŝ|X) ≥

1− α}

the new model over a marginal quantile estimate. Note that
we cannot directly compare the worst group mis-coverage
(MC) between two models directly, since the MCs are com-
puted across different group definitions. The MCR uses the
marginal baseline as an intermediary model, and allows us to
compare these two models. The MCR ratio serves a similar
role to the R2 coefficient of determination (which compares
the residual variance of a model against a constant baseline),
but MCR is defined in terms of a pessimistic, worst-case
scenario. MCR serves as a computationally efficient alter-
native to a full auditing approach where an auditor uses a
sophisticated optimization procedure to identify the worst
computationally identifiable group in terms of mis-coverage.

In practice, we observe that the proposed MCR is a better
criteria for model selection and group identification than
average pinball loss or simply worst group mis-coverage
on a held out dataset. As we show in Section 6, selecting
a model based only on average pinball loss on a held-out
dataset tends to favor models with smaller group sizes whose
quantile estimates later fail to generalize, with worst-group
coverages that fall behind even the marginal quantile es-
timate. On the other hand, choosing only based on worst
group mis-coverage (i.e. worst group MC instead of MCR)
tends to discard groups of low probability even in the large
sample regime. This is analized further in Section 6.

4.2 GROUP DISCOVERY OBJECTIVE

We want to learn a generalizable partition function τ(·) ∈
T that provides the best approximation of the conditional
quantile F−1

S|X(1− α). Additionally, we want to ensure that
the worst group mis-coverage across the learned partition
improves over the one achieved with a baseline model over
the same partition. To do this, we consider a regularization
function Rθ(τ) with parameters θ ∈ Θ that controls the
complexity of model τ(·), the strength of the regularization
function is chosen based on the empirical MCR score over a
finite dataset Da. This is shown below

θ∗ ∈ argmin
θ∈Θ

MCRα(τθ;Da)

s.t. : τθ ∈ argmin
τ∈T

EDb

[
ℓ1−α(qτ (X), S))

]
+Rθ(τ).

(8)
The final partition function τ∗ is the one that minimizes the
empirical expected pinball loss with regularization Rθ∗ ,

τ∗ ∈ argmin
τ∈T

EDb

[
ℓ1−α(qτ (X), S))

]
+Rθ∗(τ). (9)

Note that the average pinball loss is estimated over a dataset
Db that is independent from Da but sampled from the same
distribution. The objective we propose in Eq. 8 essentially
chooses the best model in terms of MCR score among the
set of regularized, pinball-loss-minimizing models.

We stress that this objective is meaningful as a finite sample
generalization constraint, since, given access to a sufficiently



large sample set to learn the group-conditional quantiles, the
MCR would be zero. In essence, given sufficient samples,
any quantile estimated for any partition of the input space
would also have sufficient samples such that the estimated
quantile would achieve near-exact group conditional cover-
age. An algorithm to achieve Eq. (8), and a formalization of
the above statement are provided in the following section.

5 DISCOVERING AND
CONFORMALIZING GROUPS IN
PRACTICE

We consider θ to be a regularization parameter that is mono-
tonically decreasing with model complexity. In this setting
we propose Algorithm 1 to find the regularization strength
θ∗ that recovers the pinball loss minimizer with lowest MCR
from a family of clustering methods T . Following this dis-
covery step, we then run a group-conditional conformal pre-
diction mechanism on the discovered regions to conformal-
ize the score quantiles and produce conformal sets/intervals
with local coverage guarantees.

Proposition 5.1 shows that Algorithm 1 is optimal in the
infinite sample regime, where the generalization objective is
easily achieved by any partition. That is, even in the absence
of generalization issues, Algorithm 1 correctly approximates
the conditional quantile F−1

S|X(1 − α) within the desired
model class (and finds the best pinball loss minimizer in
the presence of generalization challenges otherwise). Al-
though this particular result hinges on the ‘infinite sample’
assumption, we stress that Algorithm 1 also performs group-
conditional conformal predictions on each of the recovered
groups (last step in Algorithm 1) which does have finite
sample group conditional guarantees as shown in Eq. 12

Proposition 5.1. Given the objective in Eq. 8, if
Da = P (X,S) (infinite sample regime) and θ0 in Al-
gorithm 1 is the weakest admissible regularization, then
τ∗ = τθ0 , which also minimizes pinball loss over
all admissible regularizations ED

[
ℓ1−α(qτ∗(X), S))

]
≤

ED
[
ℓ1−α(qτθ (X), S))

]
,∀θ ∈ Θ such that θ ≥ θ0.

Learning Generalizable Quantile Score Regions. Al-
gorithm 1 assumes access to a solver for the τθ objective,
denoted as M1−α, and a conformal prediction mechanism
ACP in addition to a dataset (D1) containing input sam-
ples and their corresponding non-conformity scores. The
initial parameter θ0 is the weakest acceptable regularization
due to interpretability purposes (e.g., maximum tree depth),∏

Θ(·) a projection operator into the regularization parame-
ter space, and ∆θ > 0 a step size that guarantees a change
in θt when projected into Θ unless the minimum admissible
complexity bound has been reached. The final clustering
model τ∗(·) = (gτ∗ , qτ∗)(·) is learned using the best regu-
larization parameter θ∗ ∈ Θ in terms of MCR. This simple
approach of steadily increasing regularization strength in

finite increments δθ and stopping when MCR fails to im-
prove is sufficient for our purposes, but more sophisticated
zero-order approaches could substitute this update strategy.

Conformalizing the Conditional Quantiles of the Dis-
covered Regions. The learned clustering function gτ∗(·)
is then fed into a group conditional conformal prediction
mechanism, ACP such as Vovk [2012], Foygel Barber et al.
[2021], Jung et al. [2022], Gibbs et al. [2023] to provide
conformalized thresholds for each identified group.

For example, for clustering functions gτ∗(·) that partition
the space with no overlaps, we consider a standard group
conditional split conformal method where ACP provides
the conformal quantile estimator qτ∗

CP
(·) based on the con-

formal quantile of each identified group. The corresponding
conformal set Cτ (Xn+1) for a new sample is defined as:

Cτ (Xn+1) = {y ∈ Y : Sf (Xn+1, y) ≤ qτcp(Xn+1)}
(10)

where the conformal quantile function qτcp(·) is

qτcp(Xn+1) = Q1−α(

n∑
i=1

1[gn+1 = gi)]

ngi + 1
δsi +

1

ngn+1 + 1
δ∞)

(11)
with gτ∗(xi) = gi, and ngi ,

7 the number of samples of
group gi in dataset D2, ∀i ∈ [n+ 1]

Moreover, for each identified group g ∈ Gτ∗ the coverage
guarantees become

1− α ≤ P
(
Yn+1 ∈ Cτ (Xn+1)|gτ∗(Xn+1) = g

)
≤ 1− α+ 1

ng+1
.

(12)

Note that the upper bound depends on the number of sam-
ples ng of group g in the calibration set.

5.1 LEARNING DECISION-TREE-BASED
REGIONS

Decision trees make a natural candidate for learning parti-
tion functions, since they are inherently interpretable, es-
pecially at lower tree depths. We need access to a solver
M1−α that, given a dataset and a regularization parameter,
provides a tree that minimizes the 1 − α average pinball
loss as in Eq.8. The challenge we face with existing deci-
sion tree regression optimizers is that, as far as we know,
available solvers do not support pinball loss. Therefore, we
first train a surrogate model h∗ ∈ H that does have access
to pinball loss solvers. Then, we approximate the output of
h∗ with the decision tree by minimizing the mean square
error loss against the surrogate model’s predicted (input de-
pendent) quantile. The procedure described here to learn a
decision tree for pinball loss minimization is summarized in

7ngi = |{j : gτ∗(xj) = gi}i∈D2 |



Algorithm 1 Region Identification Meta-Algorithm
Require: i.i.d. dataset D1 of input samples and corresponding

non-conformity scores. M1−α(·, ·) : D ×Θ→ T solver for τ
in Eq. 8.ACP : D×G|D| → R|G| group-conditional conformal
prediction mechanism. θ0 ∈ Θ weakest acceptable regulariza-
tion parameter, ∆θ regularization step size.
// Region Identification
MCR∗ ←∞ Initialize best MCR init
for t = 0, . . . , T do

MCRt ← {} Initialize MCR set t
// K-fold Cross validation
for k = 1, . . . ,K do

Split D1 randomly into Da,k and Db,k

τθ = M1−α(Db,k, θt),
MCRt ← MCRt ∪MCR(τθ,Da,k)

end for
SMCR = mean(MCRt) + std(MCRt)
if SMCR < MCR∗ then

MCR∗ ← SMCR, θ∗ ← θt
end if
θt+1 ←

∏
Θ(θt +∆θ)

end for
τ∗ ←M1−α(D1, θ

∗)
// Conformalize group conditional quantile predictor
qτcp ← ACP (D1, {gτ∗(xi)}i∈D1)

output τcp = (qτcp , gτ∗)

the following objective

τθ ∈ argminτ∈T EDb

[
(qτ (X)− h∗(X))2

]
+Rθ(τ),

s.t. h∗ ∈ argminh∈H EDb

[
ℓ1−α(h(X), S))

]
.

(13)
In our experiments, we take H to be a family of gradient
boosting decision trees that support pinball loss Ke et al.
[2017], and use hyperparameter optimization Akiba et al.
[2019] to minimize overfitting in the surrogate model h∗.

6 EXPERIMENTS

We evaluate the proposed method on a variety of datasets
and show how the proposed MCR-score-based method is
able to identify a set of groups whose local coverage is close
to the desired target, and show that this diminishes the under-
and over-coverage gaps compared to the alternatives.

6.1 REGRESSION DATASET RESULTS

We used Gradient boosting (LGBM) Ke et al. [2017] as our
base regressor f ; the hyperparameters for each dataset were
selected using hyperparameter optimization using Akiba
et al. [2019] to minimize validation loss. Additional results
using Lasso are shown in Appendix A.3. For all experiments,
we split the available training data as follows: 40% train,
40% calibration, 20% test. We use a target coverage/validity
of 0.9 (90%, α = 0.1).

MCR coverage num
model average max group min group groups

Housing: nsamples = 506, nfeatures = 13 | LGBM-Regressor R2 = 0.64 ± 0.03

LCP-RF-G 1.45± 1.14 .8± .04 .91± .07 .64± .15 3.6± .55
RF-G .77± .6 .93± .03 .99± .01 .86± .06 3.6± .55
PB-KMEANS .81± .3 .92± .02 .97± .04 .68± .33 8.4± 8.65
MCR-KMEANS .75± .12 .91± .05 .95± .05 .84± .13 2.2± 1.64
PB_DTREE .68± .31 .89± .02 .94± .03 .83± .04 3.4± .55
MCR_DTREE .65± .17 .92± .03 .95± .04 .88± .07 2.2± 1.3

Concrete: nsamples = 1030, nfeatures = 8 | LGBM-Regressor R2 = 0.82 ± 0.026

LCP-RF-G 1.84± 1.66 .83± .01 .94± .05 .69± .11 4.6± .55
RF-G .82± .68 .9± .05 .97± .02 .81± .11 4.6± .55
PB-KMEANS .66± .48 .91± .05 .97± .05 .83± .07 7.0± 3.24
MCR-KMEANS .88± .27 .91± .05 .92± .06 .88± .05 4.2± 7.16
PB_DTREE .94± .57 .89± .04 .98± .02 .77± .07 6.6± .55
MCR_DTREE .55± .72 .9± .04 .92± .06 .88± .04 2.4± 2.61

Energy: nsamples = 768, nfeatures = 8 | LGBM-Regressor R2 = 0.93 ± 0.05

LCP-RF-G .99± 1.31 .87± .06 .97± .03 .65± 0.05 5.0± 1.0
RF-G .65± .1 .92± .03 .99± .02 0.87± .06 4.8± 1.64
PB-KMEANS 1.04± .34 .85± .07 1.0± .0 .07± .15 47.8± 1.79
MCR-KMEANS .68± .3 .94± .03 .96± .05 .78± .17 1.6± 9.5
PB_DTREE .63± .5 .93± .03 .97± .02 .87± .07 3.6± 1.52
MCR_DTREE .5± .46 .92± .03 .96± .03 .88± .07 3.2± 1.64

Power: nsamples = 9568, nfeatures = 4 | LGBM-Regressor R2 = 0.95 ± 0.01

LCP-RF-G 3.67± 2.26 .82± .05 .86± .03 .78± .07 4.4± 1.95
RF-G .47± .22 .9± .0 .92± .01 .88± .01 5.0± .71
PB-KMEANS .76± .18 .9± .01 .95± .03 .85± .02 15.0± 7.55
MCR-KMEANS .66± .23 .91± .01 .96± .03 .86± .02 16.6± 10.26
PB_DTREE 1.13± .6 .9± .0 .98± .04 .76± .09 17.2± 9.26
MCR_DTREE .57± .2 .9± .01 .92± .03 .88± .03 5.8± 8.56

Protein: : nsamples = 45730, nfeatures = 9 | LGBM-Regressor R2 = 0.46 ± 0.04

LCP-RF-G .83± .56 .9± .01 .94± .05 .85± .02 10.5± 6.4
RF-G .61± .36 .9± .0 .95± .05 .88± .03 11.0± 7.0
PB-KMEANS .59± .57 .9± .0 1.0± .0 .71± .22 4.8± 5.67
MCR-KMEANS .47± .3 .9± .0 .97± .05 .87± .03 11.4± 8.26
PB_DTREE .79± .27 .9± .0 1.0± .0 .81± .01 31.2± .45
MCR_DTREE .17± .14 .9± .0 .91± .01 .89± .01 4.4± .89

kin8mn: : nsamples = 8192, nfeatures = 8 | LGBM-Regressor R2 = 0.62 ± 0.03

LCP-RF-G 2.32± 1.1 .8± .02 .84± .02 .75± .04 4.6± 1.34
RF-G .32± .18 .9± .0 .93± .01 .87± .01 5.2± .45
PB-KMEANS .96± 0.67 .92± .0 1.0± .0 .72± .03 41.0± 8.57
MCR-KMEANS .76± .16 .91± .02 .94± .05 .82± .11 20.6± 7.06
PB_DTREE .73± .39 .9± .01 .97± .03 .8± .07 16.4± 6.58
MCR_DTREE .4± .2 .9± .01 .91± .02 .89± .02 3.0± 1.41

Table 1: Comparison between the group discovery partition
methods. We show MCR, marginal, minimum, and maxi-
mum coverage group coverage on the identified partition.
We also report the number of groups per approach. Standard
deviations are computed across 5 data splits. The proposed
MCR_DTREE is consistently better in terms of MCR, with
values consistently below 1, indicating that the discovered
groups improve worst-group under-coverage w.r.t. to single
threshold SCP. Every dataset uses a LGBM regressor as the
base model. We highlight the lowest MCR and the smallest
average coverage above the objective (0.9) since models
with larger coverages are less efficient. For methods that
achieved the marginal coverage objective we highlight the
max and min group coverage closest to the 0.9 objective.

Datasets. We considered six regression tasks based on
datasets from the UCI repository Asuncion and Newman
[2007]. These are the Boston Housing price prediction (14
attributes, Housing) Harrison Jr and Rubinfeld [1978]; En-
ergy efficiency prediction (12 building parameters, Energy)
Tsanas and Xifara [2012]; Concrete compressive strength
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Figure 2: Scatter and distribution plot of the prediction in-
terval widths (x-axis) versus coverage (y-axis) of the groups
discovered by the proposed MCR_DTREE and PB_DTREE
methods across 6 datasets. We plot all the groups obtained
across 5-Fold realizations. The size of the group’s points
represents the group size. The target coverage is 0.9, we ob-
serve that MCR_DTREE tends to identify a smaller number
of groups of varying sizes, with group-conditional coverages
concentrated around the 0.9 objective. Moreover, the identi-
fied groups show diversity in the range of interval widths.
PB_DTREE detects a significant larger number of (smaller)
groups, with a larger variance in terms of group-conditional
coverage. Additional plots in Appendix A.3.

prediction (8 attributes, Concrete) Yeh [2007]; Estimation
of the size of the residue based on different physical and
chemical properties of protein tertiary structure (Protein)
Rana [2013] ; Net hourly electrical energy output prediction
of a combined cycle power plant (4 features, Power) Tfekci
and Kaya [2014]; Predict the distance of the end-effector
from a target based on the forward kinematics of a robot
arm (kin8mn) Rasmussen et al. [1996], Corke [1996].

Methods. We evaluate the performance of Algorithm 1
choosing τ to be a decision tree that minimizes the pinball
loss as described in Section 5.1. We use standard group-
conditional split conformal (ACP ) Vovk [2012] and denote
the final model as MCR_DTREE. For the MCR score (Eq.
7) we selected d(1 − α, p) = (1 − α − p)+ as our under-
coverage distance function. We constrain our decision trees

to a minimum of 50 samples per leaf and max depth of 5. We
set the cost complexity pruning variable as the regularization
parameter θ with θ0 = 1e− 5 and ∆θt = 9× θt. We com-
pare against a decision tree that minimizes average pinball
loss (i.e., Algorithm 1 where MCR is replaced by average
pinball loss), we denote it as PB_DTREE. Additionally, we
compare against the group-wise random forest localizer con-
formalization method (LCP-RF-G) proposed by Amoukou
and Brunel [2023] which generates a partition using confor-
mity score weights extracted from a random forest, and later
use a standard split conformal approach based on their iden-
tified groups (RF-G). Finally, we examine a simple K-means
clustering in the input space, where the number of clusters
is chosen based on best average pinball loss (PB-KMEANS)
and best MCR (MCR-KMEANS) with cross validation.

Coverage on Identified Groups. Table 1 shows the min-
imum and maximum group coverage for the partitions re-
covered by each approach. We observe that the proposed
MCR_DTREE identifies partitions that consistently provide
the best (or second best) minimum coverage, and smallest
gap between maximum and minimum group coverage, all
while achieving the target marginal coverage of 0.9. In gen-
eral, MCR_DTREE tends to identify a smaller set of groups,
with a wide range of interval widths as shown in Figure 2.
Moreover, it achieves the smallest MCR when compared to
the competing baselines. The MCR of MCR_DTREE is con-
sistently below 1, indicating that a baseline SCP approach
would yield worse results in terms of worst group under-
coverage. We note that the partition identified by RF-G,
once integrated with split conformal prediction, has signifi-
cantly better performance than their LCP-RF-G alternative.
RF-G achieves comparable results in some of the datasets,
with larger disparity in terms of coverage gap between
the identified groups, and worse MCR. PB-KMEANS and
MCR-KMEANS have large variances in their performance,
potentially due to the fact that KMEANS clusters do not
leverage the non-conformity scores.

Size and Efficiency of the Identified Groups. Figure 2
shows the joint distribution of the mean width and coverage
of the identified groups by MCR_DTREE and PB_DTREE ap-
proaches across all datasets. We observe that MCR_DTREE
tends to identify a smaller number of groups when compared
to PB_DTREE. PB_DTREE tends to identify multiple groups
of small sizes, with a wide range of widths and coverage
ranges. MCR_DTREE is able to identify groups with diverse
widths (as we can see in the marginal distribution of the
mean width) but the identified groups have coverages closer
to the desired objective of 0.9.

Interpretable Groups. Figure 3 in Appendix A.3 shows
the trees discovered by MCR_DTREE. The discovered
groups have different interval widths, indicating that the
uncertainty on the model’s prediction is non-uniform across



the input space. Moreover, groups with higher uncertainty
(larger mean width) tend to have a smaller size. This can in-
form a data collection process by encouraging the collection
of samples from the identified high uncertainty minorities.

7 CONCLUSION

Here we propose a method to learn an interpretable parti-
tion of the input space based on the uncertainty of a black
box model’s prediction. We leverage the conformal predic-
tion framework and decision tree models to identify a set
of groups of varying sizes where the quantile of the non-
conformity scores are as homogeneous as possible within
the group but significantly different across different groups.
We propose a fitness criteria (group miscoverage ratio, MCR)
and accompanying algorithm to achieve this and show its
effectiveness in a varying set of regression datasets. Our
proposed method is able to discover a set of groups with
better local coverage performance than competing methods.
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A APPENDIX

A.1 PROOFS

Restatement of Proposition 5.1

Proposition A.1. Given the objective in Eq. 8, if D1 = P (X,S) (infinite sample regime) and θ0 in Algorithm 1 is the
weakest admissible regularization, then τ∗ = τθ0 , which also minimizes pinball loss over all admissible regularizations
ED

[
ℓ1−α(qτ∗(X), S))

]
≤ ED

[
ℓ1−α(qτθ (X), S))

]
,∀θ ∈ Θ such that θ ≥ θ0.

Proof. We first show that in the infinite sample regime the MCR is zero ∀θ ∈ Θ, making all θ equivalent according to the
MCR criteria. Then we show that Algorithm 1 would choose θ∗ = θ0 and since θ0 is the lowest regularization it achieves the
smallest expected pinball loss.

Given access to the real distribution D1 = P (X,S) for any θ ∈ Θ we get a finite set partition Gτθ such that the 1 − α
quantile estimate qτθ (X) is the exact group conditional quantile of the non-conformity score distribution for the group that
contains the instance X .

qτθ (X) = F−1
S|G=gτθ (X)(1− α) (14)

where gτθ (X) ∈ Gτθ ,∀X ∈ X . Then, in this asymptotic regime the group conditional miscoverage (Definition 4.1)
MCα(qτθ , gτθ ; gj) = 0 ∀g ∈ Gτθ , ∀g ∈ Gτθ and ∀θ ∈ Θ. Then MCRα (τθ) as defined in Eq. 7 is 0 ∀θ ∈ Θ.

Since Algorithm 1 terminates on the first θ that achieves the minimum MCR then θ∗ = θ0. Since θ0 is the weakest regulariza-
tion, and we assume infinite sample regime to learn τθ∀θ ∈ Θ then ED

[
ℓ1−α(qτ∗(X), S))

]
≤ ED

[
ℓ1−α(qτθ (X), S))

]
,∀θ ∈

Θ such that θ ≥ θ0.

A.2 EXPERIMENTAL DETAILS

A.2.1 Learning Decision Tree Based Regions

We learn a decision tree that approximates the non-conformity score quantile by optimizing Eq. 13. To do so, we first learn a
surrogate model h that minimizes the pinball loss 1− α of the non-conformity scores.

Step 1: Learn Surrogate Model h In our experiments h is an LGBM quantile regressor that we learn using Optuna Akiba
et al. [2019] with the following hyperparameters over 5-fold validation where the final set of parameters for h∗ is chosen
based on best average pinball loss plus one standard deviation.

• Optimizer Configuration: N_TRIALS = 200, TIMEOUT = 11200.
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• LGBM Model Parameters Exploration: LAMBDA_1 ∼ loguniform(1e − 8, 10.0),LAMBDA_2 ∼ loguniform(1e −
8, 10.0), LEARNING_RATE ∼ loguniform(1e − 8, 10.0), bagging_fraction ∈ [0.4, 1.0], bagging_freq ∈ [1, 7],
num_leaves ∈ [2, 100], num_boost_round ∈ [1, 100], min_child_samples ∈ [50, 200], max_depth = 2 ,

Step 2: Learn The Decision Tree Model τ To learn τ we optimize the mean square error distance w.r.t. the prediction of
the quantile LGBM regressor h∗ learned in the previous step. As stated in Section 6 in Algorithm 1 we consider trees up to a
maximum depth of 5 and at least 50 samples per leaf. The regularization parameter θ is the cost complexity pruning variable.
We set θ0 = 1e− 5 and a step size ∆θt = 9× θt.

A.3 ADDITIONAL EXPERIMENTS

Figure 3b shows the decision trees that were obtain for the different datasets. We observe that the discovered regions have
different prediction interval widths indicating that the model’s prediction uncertainty is significantly different. Figure 4
shows the scatter and joint distribution between the prediction interval widths and coverage of the discovered groups. It
extends Figure 2 in the main manuscript including all datasets and the groups discovered by the RF-G approach proposed
by Amoukou and Brunel [2023]. Table 2 shows the same comparison presented in Table 1 but for a LASSO base model.
We observe that the number of discovered groups by the proposed method MCR_DTREE is larger than those of a LGBM
regression model for the same dataset (Table 1). In most cases, the LGBM model is equal or better than LASSO in terms of r2
score, and therefore reduces the unexplained variance of the target Y |X . This leads to less regions of different uncertainty
and tighter prediction sets.
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Figure 3: Example of decision trees identified for each regression dataset. (3a) In the Housing dataset groups are defined
based on the features corresponding to average number of rooms per dwelling (RM) and weighted distances to five Boston
employment centers (DIS). (3b) In the Concrete dataset the groups are defined based on the Cement and Fine Aggregate
components (kg in a m3 mixture). (3c) the groups in the Energy dataset are defined based on Glazing Area Distribution (X8),
Glazing Area (X7) and Wall Area (X3). (3d) In the Power dataset groups are defined based on Ambient Temperature (AT),
Exhaust Vacuum (V) and Relative Humidity (RH). (3e) In the kin8nm dataset the groups are defined by the measurements
on sensors from links 3, 5 and 6 from the robot arm. (3f) In the protein dataset the groups are defined by the features
corresponding to fractional area of exposed non polar residue (F3) and fractional area of exposed non polar part of residue
(F4).
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Figure 4: Scatter and distribution plot of the prediction interval widths (x-axis) versus coverage (y-axis) of the groups
discovered by the proposed MCR_DTREE, PB_DTREE and RF-G methods across 6 datasets. Here we plot all the groups
obtained across 5-Fold realizations. The size of the groups points represents the group size (number of samples). The
target coverage is 0.9, we observe that MCR_DTREE tends to identify a smaller number of groups of varying sizes, with
group-conditional coverages concentrated around the 0.9 objective. Moreover, the identified groups show diversity in the
range of interval widths. PB_DTREE detects a significant larger number of (smaller) groups, with a larger variance in terms
of group-conditional coverage.



MCR coverage num
model average max group min group groups

Housing: nsamples = 506, nfeatures = 13 | LASSO-Regressor R2 = 0.69 ± 0.04

LCP-RF-G 2.71±0.77 0.8±0.06 0.91±0.08 0.75±0.07 2.6±0.55
RF-G 0.42±0.38 0.91±0.03 0.96±0.03 0.81±0.15 3.2±0.45
PB-KMEANS 1.47±0.49 0.86±0.03 0.98±0.03 0.44±0.43 14.2±15.02
MCR-KMEANS 1.35±0.74 0.88±0.04 0.97±0.03 0.69±0.38 7.4±11.52
PB_DTREE 0.32±0.21 0.88±0.03 0.98±0.05 0.83±0.05 4.0±1.87
MCR_DTREE 0.25±0.39 0.89±0.04 0.95±0.04 0.84±0.07 3.6±2.07

Concrete: nsamples = 1030, nfeatures = 8 | LASSO-Regressor R2 = 0.60 ± 0.05

LCP-RF-G 1.37±1.12 0.83±0.02 0.96±0.04 0.7±0.05 5.4±0.55
RF-G 0.29 ±0.15 0.91±0.02 0.98±0.03 0.8±0.08 5.0±0.71
PB-KMEANS 0.89±0.48 0.9±0.05 1.0±0.0 0.26±0.37 37.2±16.93
MCR-KMEANS 0.43±0.43 0.92±0.02 0.97±0.03 0.7±0.3 15.8±18.98
PB_DTREE 0.25±0.14 0.9±0.03 1.0±0.0 0.8±0.07 7.0±2.24
MCR_DTREE 0.15±0.09 0.9±0.03 1.0±0.0 0.84±0.04 6.8±2.39

Energy: nsamples = 768, nfeatures = 8 | LASSO-Regressor R2 = 0.91 ± 0.005

LCP-RF-G 0.38±0.19 0.88±0.05 0.98±0.03 0.8±0.08 4.8±0.45
RF-G 0.12±0.12 0.94±0.02 1.0±0.0 0.87±0.06 5.0±0.71
PB-KMEANS 1.07±0.77 0.87±0.04 0.99±0.02 0.18±0.4 38.2±19.15
MCR-KMEANS 0.32±0.41 0.94±0.03 0.98±0.04 0.83±0.13 13.0±11.92
PB_DTREE 0.12±0.16 0.94±0.02 0.99±0.03 0.84±0.11 9.0±3.46
MCR_DTREE 0.05±0.09 0.94±0.02 0.98±0.02 0.89±0.03 6.0±3.24

Power: nsamples = 9568, nfeatures = 4 | LASSO-Regressor R2 = 0.93 ± 0.003

LCP-RF-G 2.04±1.26 0.82±0.05 0.86±0.08 0.78±0.05 6.0±2.24
RF-G 0.83±0.57 0.9±0.0 0.93±0.02 0.87±0.01 5.2±0.84
PB-KMEANS 0.73±0.27 0.91±0.01 0.99±0.02 0.78±0.05 37.2±5.22
MCR-KMEANS 0.46±0.15 0.9±0.0 0.93±0.03 0.88±0.03 6.0±7.28
PB_DTREE 0.08±0.05 0.9±0.01 0.94±0.03 0.87±0.02 6.4±4.16
MCR_DTREE 0.06±0.05 0.9±0.0 0.94±0.01 0.88±0.02 7.4±3.71

Protein: : nsamples = 45730, nfeatures = 9 | LASSO-Regressor R2 = 0.28 ± 0.01

LCP-RF-G 0.89±0.56 0.87±0.03 0.92±0.02 0.75±0.04 5.8±1.6
RF-G 0.44±0.37 0.9±0.0 0.95±0.05 0.87±0.02 6.00±1.59
PB-KMEANS 0.71±0.75 0.9±0.0 1.0±0.0 0.65±0.21 42.6±7.86
MCR-KMEANS 0.52±0.21 0.9±0.0 0.96±0.05 0.76±0.24 16.2±12.91
PB_DTREE 0.44±0.37 0.9±0.0 1.0±0.0 0.83±0.02 15.6±0.89
MCR_DTREE 0.2±0.08 0.9±0.0 0.93±0.03 0.89±0.01 5.6±2.19

kin8mn: : nsamples = 8192, nfeatures = 8 | LASSO-Regressor R2 = 0.40 ± 0.007

LCP-RF-G 1.68±0.29 0.79±0.01 0.81±0.01 0.77±0.01 3.0±0.0
RF-G 0.21±0.04 0.9±0.01 0.91±0.01 0.88±0.0 3.2±0.45
PB-KMEANS 0.67±0.16 0.92±0.01 0.99±0.01 0.76±0.04 39.4±14.06
MCR-KMEANS 0.44±0.37 0.9±0.01 0.93±0.04 0.87±0.05 11.6±21.47
PB_DTREE 0.41±0.36 0.89±0.01 0.98±0.04 0.82±0.07 14.2±3.03
MCR_DTREE 0.24±0.18 0.9±0.01 0.94±0.04 0.88±0.02 6.4±5.37

Table 2: Comparison between the group discovery partition methods. We show MCR, marginal, minimum, and maximum
coverage group coverage on the identified partition. We also report the number of groups per approach. Standard deviations
are computed across 5 data splits. The proposed MCR_DTREE is consistently better in terms of MCR, with values consistently
below 1, indicating that the discovered groups improve worst-group under-coverage w.r.t. to single threshold SCP. Every
dataset uses a LASSO regressor as the base model. We highlight the lowest MCR and the smallest average coverage above the
objective (0.9). For methods that achieved the marginal coverage objective we highlight the max and min group coverage
closest to the 0.9 objective.
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