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Abstract

Hierarchical world models have the potential to significantly improve model-
based reinforcement learning (MBRL) and planning by enabling reasoning across
multiple time scales. Nonetheless, the majority of state-of-the-art MBRL methods
still employ flat, non-hierarchical models. The challenge lies in learning suitable
hierarchical abstractions. We propose Temporal Hierarchies from Invariant Context
Kernels (THICK), an algorithm that learns a world model hierarchy based on
discrete latent dynamics. The lower level of the THICK world model selectively
updates parts of its latent state sparsely in time, forming invariant contexts. The
higher level is trained exclusively to predict situations involving these sparse
context state changes. Our experiments demonstrate that THICK learns categorical,
interpretable, temporal abstractions on the high level while maintaining precise low-
level predictions. Furthermore, we show that the developing hierarchical predictive
model can seamlessly enhance the abilities of MBRL or planning methods. We
believe that THICK-like, hierarchical world models will be key for developing more
sophisticated agents capable of exploring, planning, and reasoning about the future
across multiple time scales.
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Figure 1: THICK world models predict on two levels. (a) Level 1 predicts the next input (t+1). Level
2 predicts a future input (t+τ ) that is expected to change an otherwise constant latent state. (b) Exem-
plary situations (bottom) with hierarchical predictions (top) for: opening a door (Multiworld-Door),
pushing a boulder into a river (Minihack-River), and activating a pad (VisualPinPadThree).
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1 Introduction
The intricate hierarchical representations formed in our brains[1–6] through sensorimotor experience
serve as a useful blueprint for enhancing artificial agents’ planning capabilities via hierarchical world
models [7, 8]. A hierarchy facilitates engagement at multiple complexity levels [9–12], contingent
on the context. Humans can plan their behavior on various time scales and flexibly switch between
them, such as picking up a pen for writing an invitation when organizing a party. Accordingly,
the integration of hierarchical models into MBRL can foster more structured, context-dependent
representations that bolster planning efficiency and effectiveness in complex, real-world tasks.

Despite significant advancements in equipping MBRL agents with the capacity to learn world models,
i.e., generative, task-agnostic forward models that encode an agent’s interaction with its environment
from high-dimensional inputs [13–17], these models often lack an explicit hierarchical structure.
Consequently, they are restricted to predictions on predefined time scales, substantially hampering
their capability for long-horizon planning. The main challenge is formalizing suitable methods to
learn higher-level abstractions [18–21]. Seeing that events, and even instances of the same event,
typically have different time durations, fixed nested time scales are inadequate. Conversely, learning
temporal abstractions from rewards like hierarchical RL (HRL) [19, 22] tethers the abstractions to a
specific task, whereas world models ideally should maintain a degree of task-agnosticism.

We present a deep learning architecture that learns hierarchical world models, which we call Temporal
Hierarchies from Invariant Context Kernels (THICK1). THICK adaptively discovers higher-level
time scales by guiding the lower-level world model to update parts of its latent state only sparsely in
time. The high-level model is then trained to predict scenarios involving changes in these low-level
latent states. Thus, we distill a high-level world model from discrete low-level latent state updates. A
depiction of THICK’s world model can be found in Fig. 1a.

We make the following key contributions:
• We encode context-sensitive dynamics by introducing a Context-specific Recurrent State Space

Model (C-RSSM), which enhances Dreamer’s [14, 16] Recurrent State Space Model (RSSM) with
a sparsely changing latent factor, labeled context.

• We introduce a higher level predictive processing module, which learns a hierarchical world
model with flexible time scales based on sparse context changes at the lower level.

• We enable the learning of discrete higher level actions by disambiguating low-level dynamics,
thus enabling goal-directed high-level planning.

• We demonstrate the effectiveness of THICK in two planning scenarios: i) using THICK’s
hierarchical predictions to enhance MBRL in long-horizon tasks, and ii) hierarchical
model-predictive planning (MPC) using THICK’s high-level predictions to set subgoals.

2 Method
2.1 C-RSSM World Model
The RSSM proposed in Hafner et al. [14] is a recurrent neural network (RNN) world model that
is commonly used for model-based reinforcement learning [15–17, 24–26]. RSSM embeds input
images it and actions at into a latent state st, predicting dynamics exclusively within this state.
Inherently, all aspects of this latent state evolve continuously. However, to establish a hierarchy of
world models, we require sparse latent state changes. We propose Context-specific RSSM (C-RSSM),
which integrates a sparsely changing latent state ct as context and a coarse prediction pathway into
RSSM, as illustrated in Fig. 2. The components of C-RSSM with trainable parameters ϕ are:

Latent state: st ← [ct,ht, zt] (1)
Coarse Dyn.: ct = gϕ(at−1, ct−1, zt−1) (2)
Precise Dyn.: ht = fϕ(at−1, ct,ht−1, zt−1) (3)

Posterior: zt ∼ qϕ(zt | ct,ht, it) (4)
Coa. Prior: ẑc

t ∼ pcϕ(ẑc
t | at−1, ct, zt−1) (5)

Pre. Prior: ẑh
t ∼ phϕ

(
ẑh
t | ct,ht

)
(6)

Equations in red are exclusive to the C-RSSM.2 We extend RSSM’s latent state st to include three
parts (Eq. 1): a stochastic state zt, a continuously updated, high-dimensional, deterministic state

1In philosophy, “thickness” refers to descriptions that fuse facts with contextual elements, while “thinness”
denotes factual, neutral descriptions [23]. When adapted to world models, a THICK model presents an accurate
representation of the world with contextual interpretation.

2Removing c in all black equations recovers the equations for the RSSM (Eqns. 1,3,4,6).
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fϕ

Figure 2: C-RSSM world model. Left: The C-RSSM predicts dynamics within a latent states with a
stochastic part zt and two deterministic parts ht and ct The network predicts the next stochastic state
zt via two pathways: It makes coarse predictions ẑct based mainly on ct and precise predictions ẑht
based on ht. Right: Internally, the sparsely changing context ct is updated via a GateL0RD cell [27]
gϕ with a sparsely-operated update gate. A GRU cell [28] fϕ is used to continuously change ht.

ht, and a discretely changing, low-dimensional context ct. At time t the C-RSSM first updates the
context ct (Eq. 2), where actual ct changes only occur sparsely in time. Note that ct updates do not
depend on ht, thus creating a coarse processing pathway that is independent of ht. Next, C-RSSM
updates ht via a GRU [28] cell fϕ (Eq. 3). Using both deterministic components of its latent state,
C-RSSM makes two predictions about the next stochastic state ẑh

t : i) a precise prior based on its
deterministic latent states (Eq. 6), and ii) a coarse prior ẑc

t based on the context, stochastic state, and
action, ignoring ht (Eq. 5). Given the input image it, C-RSSM finally updates its posterior zt (Eq. 4).
Following DreamerV2 [16], we sample zt from a vector of categorical distributions.

C-RSSM encodes its interactions with the world in its latent states st. Besides encoding latent system
dynamics, st is trained to predict observable variables yt of the outside world. Two output heads oϕ
generate precise and coarse predictions:

Precise prediction: ŷt ∼ oϕ(ŷt | st) (7) Coarse prediction: ŷct ∼ ocϕ(ŷct | ct, zt). (8)

We follow DreamerV2 [16] and predict the input image it, the reward rt, and future reward discount
γt

3, i.e. yt ← {it, rt, γt}.
Sparse context updates The latent context code ct should change sparsely in time, ideally at
distinct, environment-specific, transition points. This is why the coarse dynamics gϕ (Eq. 2) are
modeled by a GateL0RD cell [27]. Briefly, GateL0RD is a gated RNN that learns sparsely changing
latent states ct by introducing an update gate and an auxiliary loss term Lsparse, which penalizes
context changes ∆ct via L0-norm regularization. GateL0RD is detailed in Suppl. D.1.

Loss function Given a sequence of length T of input images i1:T , actions a1:t, rewards r1:T , with
discounts γ1:T , the parameters ϕ of C-RSSM are jointly optimized to minimize the loss L(ϕ):

L(ϕ) = Eqϕ

[
βpredLpred(ϕ) + βKLLKL(ϕ) + βsparseLsparse(ϕ)

]
, (9)

including the prediction loss Lpred, the KL loss LKL, and sparsity loss Lsparse with hyperparameters
βpred, βKL, and βsparse scaling their impact. The prediction loss Lpred drives the system to predict
perceptions y via its output heads oϕ. Compared to RSSM, we also account for the coarse predictions
(Eq. 8). The KL loss LKL minimizes the KL divergence between coarse and fine prior predictions
pcϕ and phϕ and the approximate posterior qϕ. The sparsity loss Lsparse encourages consistency of
context ct. The exact loss functions are provided in Suppl. D.2. We set βpred and βKL to DreamerV2
defaults [16] and modify the sparsity loss scale βsparse depending on the scenario (see Suppl. B).

2.2 Hierarchical World Model
To learn a hierarchical world model, we leverage C-RSSM’s discrete context ct updates to create
coarse predictions by means of our Temporal Hierarchies from Invariant Context Kernels (THICK)

3The discount γt is set to 0 if an episode terminates and set to a fixed value γ otherwise.
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Ât

At

zt

ct

cτ(t)
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Figure 3: High-level segmentation: (a) The low-level C-RSSM discretizes sequences into segments
with constant contexts. We use this segmentation to determine inputs and targets for a high level. (b)
The high-level world model predicts the states and actions that lead to a context change at time τ(t)
from latent states zt and ct. High-level actions (At or Ât) distinguish high-level outcomes.

algorithm (Figure 1a). C-RSSM’s world model wϕ segments sequences into periods of stable context
activity (ct = ct+1 = · · · = cτ−1), interspersed with sparse context updates (cf. Fig. 3a). THICK
uses these discrete context dynamics as an adaptive timescale for training its high-level network Wθ.
The core assumption is that states prompting low-level context updates coincide with crucial changes
in latent generative factors. These key states are predicted by the high-level network Wθ, while states
between context updates are ignored.

To train the high-level world model Wθ, we require input-target pairs for a given sequence of T
images i1:T , actions a1:T , and episode termination flags d1:T . The sequence is passed through the
low-level model wϕ to obtain a sequence of contexts c1:T . Targets are defined as all time steps τ with
context changes, i.e., where cτ ̸= cτ−1 or the episode ends. We define the function τ(·) as

τ(t) = min
(
{τ | τ > t ∧ (cτ ̸= cτ−1 ∨ dτ = 1)}

)
. (10)

Thus, τ(·) maps every point t to the next point in time τ(t) with context change, effectively imple-
menting a variable temporal abstraction that generates target predictions τ(t) for every t.

High-level targets We predict all variables at τ(t) ∈ T that may cause a context change or
are needed for planning across a context change: ẑτ(t)−1, âτ(t)−1, ∆τ̂(t), r̂

γ
t:τ(t) (cf. Fig. 3b). In

particular, we predict the stochastic states ẑτ(t)−1 and actions âτ(t)−1 immediately before a context
change at time τ(t), because both can cause an update of cτ(t) (see Eq. 2). Intuitively, this means that
observations, e.g. seeing something falling, as well as actions, e.g. catching something, could cause
ct to change. We furthermore predict the elapsed time ∆τ(t) and the accumulated discounted reward
rγt:τ(t), which allow taking variable duration and rewards into account when evaluating potential
outcomes following a high-level prediction:

Elapsed time: ∆τ(t) = τ(t)− t Accumulated rewards: rγt:τ(t) =

∆τ(t)−1∑

δ=1

γδrt+δ (11)

High-level inputs To predict high-level targets, we use the low-level stochastic state zt and context
ct as inputs. However, we need to disambiguate different potential outcomes, which generally depend
on the world and the policy pursued by the agent. Accordingly, akin to actions on the low level,
we create self-organizing high-level “actions” At, similar to skills or options [19]. At encode a
categorical distribution over probable next context changes. To learn At, the high-level world model
implements a posterior action encoder Qθ and a prior action encoder Pθ (cf. Fig. 3b). Overall, the
high-level world model Wθ can be formalized as

Posterior: At ∼ Qθ(At | ct, zt, cτ(t), zτ(t)) (12)

Action: âτ(t)−1 ∼ F â
θ

(
âτ(t)−1 |At, ct, zt

)
(13)

State: ẑτ(t)−1 ∼ F ẑ
θ

(
ẑτ(t)−1 | At, ct, zt

)
(14)

Prior: Ât ∼ Pθ(Ât | ct, zt) (15)

Time : ∆τ̂(t) ∼ F τ̂
θ

(
∆τ̂(t) |At, ct, zt

)
(16)

Reward: r̂γt:τ(t) ∼ F r̂
θ

(
r̂γt:τ(t) | At, ct, zt

)
(17)

for learnable parameters θ. The posteriorQθ receives not only ct and zt as its input but also privileged
information about the actually encountered next context, i.e. cτ(t) and zτ(t) (Eq. 12), which leads to
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âτ(t)−1

wϕ ẑc
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Figure 4: Temporal abstract predictions of THICK world models. From a low-level context ct
and stochastic state zt, the high level predicts a future stochastic state ẑτ(t)−1 as well as the action
âτ(t)−1. With these predictions, the context cτ(t) is updated on the low level together with the coarse
prior ẑc

τ(t). This process can be repeated (dashed line) to create a temporal abstract roll-out.

the emergence of individualized, result-conditioned action encodings in At. The prior Pθ learns a
distribution over Ât approximating the posterior without the privileged information (Eq. 15). During
training, THICK samples the high-level action At from Qθ. During evaluation we sample from the
prior Pθ instead. We model Ât and At as one-hot encoded categorical variables.

Loss function The high-level world model Wθ with parameters θ is trained to minimize the loss

L(θ) = E
[
αpredLpred(θ) + αKLLKL(θ)

]
, (18)

with hyperparameters αpred and αKL scaling the prediction Lpred and action LKL loss terms, respec-
tively. The prediction loss is the summed negative log-likelihood of the high-level predictions. The
action loss drives the system to minimize the KL divergence between the posterior high-level action
distribution Qθ and the prior distribution Pθ. The exact loss functions can be found in Suppl. D.3.

Summary Our THICK world model augments traditional flat world models by a high-level, which
predicts situations where low-level context changes occur. This augmentation allows for seamless
transitions between coarse, low-level and abstract, high-level predictions. Given a context ct,
stochastic state zt, and sampled high-level action Ât, the high-level model Wθ predicts a scenario
(âτ(t)−1, ẑτ(t)−1) immediately prior to the next context change. By feeding this prediction into
C-RSSM, we can predict the new context cτ(t) (Eq. 2) and compute a coarse prior estimate of the
corresponding stochastic state ẑc

τ(t) (Eq. 5). To create longer temporal abstract roll-outs, we repeat
this process by feeding cτ(t) and ẑc

τ(t) again into Wθ. Fig. 4 visualizes this process.

2.3 Downstream applications of THICK world models
World models have been applied in many downstream tasks, including MBRL [13, 15–17], exploration
[24, 29, 30], or model-predictive control (MPC) [14, 29, 30]. With minimal changes, the hierarchical
roll-outs from THICK can be seamlessly integrated where flat roll-outs were previously utilized. We
exemplify this integration in two key areas: MBRL and MPC.

2.3.1 THICK Dreamer: MBRL with hierarchical rollouts
Dreamer [15–17] learns behavior by training an actor and a critic from “imagined” roll-outs of an
RSSM world model. More specifically, the world model imagines a sequence of states st:t+H from a
starting state st given an actor-generated action sequence at:t+H . Dreamer computes the general
λ−return V λ(st) [31] for every st and the critic vξ is trained to regress V λ(st).

In sparse reward tasks, one challenge is reward propagation for training the critic [32]. Here, Dreamer
faces a difficult trade-off: Long roll-outs (large H) speed up reward propagation but degrade the
quality of the predicted roll-outs. We propose THICK Dreamer, which combines value estimates
from low- and high-level predictions to boost reward propagation. THICK Dreamer maintains
an additional critic vχ to evaluate contexts cτ(t) and stochastic states zτ(t) of temporal abstract
predictions. Like Dreamer, we first imagine a low-level roll-out of H states st:t+H . For every time
step t in the roll-out, we additionally predict a temporal abstract outcome cτ(t) and zτ(t) and estimate
a long horizon value V long as

V long(st) = r̂γt:τ(t) + γ∆t̂
(
r̂cτ(t) + γ̂cτ(t)vχ(ĉτ(t), ẑτ(t))

)
, (19)

with all variables predicted via the THICK world model and immediate rewards via Eq. 8 of C-RSSM
given THICK’s world model predictions (cf. also supplementary Alg. 1). We estimate the value of a
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Figure 5: Context changes. We show the input images it, 16-dim. contexts ct+1 and reconstructions
îcτ(t)−1 of the high-level predictions. For KeyRoom the context changes when picking up a key,
opening a door (here from a diagonally adjacent grid) or exiting the room. In Door the context
changes when the robot grabs the handle. The high level predicts the states before the next changes.

state st as a mixture of short- and long-horizon estimates with
V (st) = ψV λ(st) + (1− ψ)V long(st), (20)

where the hyperparameter ψ controls the trade-off between the two estimates. We set ψ = 0.9 in all
experiments and train both critics vξ and vcχ to regress the value estimate using a squared loss:

L(ϑ) = Epϕ

[ H∑

t=1

1

2

(
vϑ(st)− sg

(
V (st)

))2]
, (21)

for the two critics vϑ ∈ {vξ, vχ} with parameters ϑ ∈ {ξ, χ}, and sg(·) the stop gradient operator.
In sum, to speed up credit assignment when training a critic, THICK Dreamer combines low-level
predictions with temporal abstract predictions to additionally estimate the value of likely long-horizon
outcomes.

2.3.2 THICK PlaNet: Hierarchical MPC
The original RSSM was proposed in PlaNet [14] as a world model for MPC. PlaNet searches for the
optimal action sequence a∗

t:t+H to maximize the predicted returns r̂t:t+H . To find a∗
t:t+H PlaNet

employs zero-order trajectory optimization via the cross entropy method (CEM) [33]. Once a∗
t:t+H

is identified, the initial action a∗
t is executed and the procedure is iteratively continued.

CEM optimizes randomly sampled trajectories. Sampling a good action sequence is exponentially
harder for increasing task horizons. We hypothesize that on a high level such tasks could be solved
with much fewer high-level actions. For this, we propose THICK PlaNet. THICK PlaNet plans on
the high level to solve the task and uses the low level to follow this plan. We define a reward function
R(·) to estimate the return of a high-level action sequence At:K with length K recursively as

R(At:K) = r̂γt:τ(t) + γ∆t̂

{
r̂cτ(t) + γ̂cτ(t)R(Aτ(t):K) for t < K,

r̂cτ(t) for t = K
(22)

with all variables predicted via a temporal abstract rollout (see Sec. 2.2). We search for the optimal
sequence Â∗

t:K maximizing R(·) with Monte Carlo Tree Search [34]. Based on the first action Â∗
t

we sample a subgoal ẑgoal
t ∼ Fθ(ẑ

goal
t |Â∗

t , ct, zt). This subgoal is valid if it has not been reached
or nothing drastically changes in the environment. Thus, we replan on the high level if the context
changes. We apply CEM on the low level to reach zgoal

t while also maximizing task return with

a∗
t:t+H = argmax

at:t+H

t+H∑

t′=t

r̂t′ + κ sim(zt′ , z
goal
t ) with r̂t′ ∼ oϕ(r̂t′ | st′), (23)

for a planning horizon H . The function sim(·) is a similarity measure between subgoal zgoal
t and a

state zt. The hyperparameter κ controls the trade-off between external and internal reward. Previously,
similarity between Gaussian distributed zt of the RSSM was estimated using cosine similarity [25, 35].
However, for the categorically distributed states zt, the cosine similarity can be low even when they
stem from the same distribution. Instead we use the cosine similarity of the logits, i.e.

sim(zt, z
goal
t ) =

lt · lgoalt

∥lt∥∥lgoalt ∥
, (24)
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Figure 6: Visualization of high-level actions At. The top row shows the input image it. Image
reconstructions îcτ(t)−1 are shown for two high-level actions A1

t and A2
t . Red outlines depict which

action Ât was sampled. Exemplar learned high-level actions are: Exiting the dungeon or attacking a
monster (left), grasping or pushing an object (center), stepping on a pad (right).

where · is the dot product and lt and lgoalt are the logits of the distributions that produced zt and
zgoal
t , respectively. Compared to other similarity measures, e.g. KL divergence, cosine similarity

between logits has the desirable property that sim(zt, z
goal
t ) ∈ [0, 1], which simplifies setting the

hyperparameter κ. We set κ = 0.025 to mainly guide the behavior in the absence of external reward.

3 Results

We empirically evaluate THICK to answer the following questions:

• Can THICK learn context-sensitive temporal abstractions? We illustrate that the high-level
world model can discern meaningful and explainable context-sensitive temporal abstractions
across various scenarios (Sec. 3.1).

• Can THICK’s hierarchical predictions improve MBRL? We demonstrate that THICK Dreamer,
employing hierarchical roll-outs, achieves higher returns compared to Dreamer using flat roll-outs
in long-horizon tasks with sparse rewards (Sec. 3.2).

• Can THICK’s world model be used to plan hierarchically? We show that MPC with THICK
world models is better at solving long-horizon tasks compared to flat world models (Sec. 3.3).

We evaluate our THICK world models in various scenarios. MiniHack [36] is a sandbox framework
for designing RL environments based on Nethack [37]. We test our system on benchmark problems as
well as newly created tasks. The problems in MiniHack have hierarchical structures in which subgoals
need to be achieved (e.g. fetch a wand) to fulfill a task (e.g. kill a monster) to exit a dungeon and
receive a sparse reward. The agent’s observation is a pixel-based, ego-centric view of ±2 grid-cells
around the agent. MiniHack uses discrete actions. All problems are described in Suppl. E.1.

VisualPinPad [35] is a suite of visual, long-horizon RL problems. Here an agent (black square)
needs to activate a fixed sequence of pads by stepping on them to receive a sparse reward. We use
three levels of difficulties based on the number of pads and target sequence length (three, four, five).

MultiWorld [38] is a suite of robotic manipulation tasks for visual reinforcement learning [39, 40].
In these tasks a Sawyer robot has to either move an object to a goal position (puck in Pusher or ball
in PickUp) or open a door (Door). We use fixed goals and take the normalized distance between the
to-be-controlled entity and the goal position as dense rewards (in Pusher-Dense, PickUp, Door)
and thresholded distances as sparse rewards (in Pusher-Sparse). Details are provided in Suppl. E.2.

3.1 Explainable Contexts and Hierarchical Predictions

First, we analyze the predictions of THICK world models across diverse tasks. Two example sequences
are displayed in Fig. 5. In MiniHack, context alterations typically coincide with item collection, map
changes, area exploration, or dungeon exits. In Multiworld, context changes occur due to object
interactions or when workspace boundaries are reached. In Visual Pin Pad, stepping on pads can
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Figure 7: MBRL results. Each graphic plots the mean returns during evaluation for several MiniHack
tasks (a-e) and for the Visual Pin Pad suite (f-h) using 7 seeds. Shaded areas depict standard error.

prompt context changes. The high-level model anticipates the states preceding context changes, often
abstracting details, leading to blurry reconstructions. For instance, in KeyRoom, the system forecasts
the agent’s level exit without knowledge of the exact room layout (Fig. 5, t+ 6). Nevertheless, the
low-level model consistently predicts the next frames accurately, as illustrated in Fig. 1b.

Abstract action representations At emerge on the high level, as illustrated in Fig. 6. These actions
seem to categorically encode different agent-world interactions, e.g., grasping or pushing a ball in
PickUp. The prior Qθ learns to sample likely actions based on the likelihood of their outcomes (red
frames in Fig. 6). If there are more actions At than necessary, different actions encode the same
outcome. We provide more examples and analysis of the predictions and contexts in Suppl. F.1 and
on our website.

3.2 Model-Based Reinforcement Learning
We investigate whether hierarchical roll-outs can improve MBRL in various MiniHack tasks. Here we
compare THICK Dreamer, which uses hierarchical predictions to train a flat policy, to DreamerV2 [16]
using non-hierarchical roll-outs. Additionally we compare against Director [35] another hierarchical
method derived from Dreamer, which trains hierarchical policies using a flat world model. Fig. 15c–
7e show that THICK Dreamer matches or outperforms flat Dreamer in all tasks in terms of sample
efficiency or overall rewards. The advantage of THICK Dreamer is more pronounced in long-horizon
tasks that require completing multiple subgoals to accomplish a task (e.g. picking up a ring to gain
access to a key to open a door in EscapeRoom in contrast to the simpler problem of finding a key to
open a door in KeyRoom). Director fails to learn most MiniHack tasks and only manages to solve the
simplest task (WaterCross-Ring).

We further analyze the effect of task horizon on the performance in VisualPinPad. VisualPinPad poses
two challenges: exploration and learning long-horizon behavior. To analyze the latter in isolation,
we sidestep the challenge of discovering the sparse rewards by initially filling the replay buffer
of all models with 1M data points collected from exploration with Plan2Explore [24] (details in
Suppl. F.2). Fig. 7f–7h shows the performance of Director, Dreamer, and THICK Dreamer. THICK
Dreamer matches Dreamer in VisuaLPinPadThree and outperforms its counterparts in terms of
sample efficiency in the more challenging tasks.4 Thus, the integration of hierarchical prediction for
training a flat policy in THICK Dreamer seems to be better suited for learning long-horizon behavior
than the hierarchical policies of Director and the non-hierarchical approach of Dreamer.

4Previously, Hafner et al. [35] reported that Director outperforms Dreamer in VisualPinPad. We hypothesize
that this improvement mainly comes from more sophisticated exploration, which is not necessary in our setting.
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Figure 8: MPC Multiworld results. Each graphic plots the mean returns for zero-shot planning in
Multiworld over training steps using 10 seeds. Shaded areas depict the standard deviation.

3.3 Zero-Shot Model-Predictive Control
Lastly, we analyze whether our hierarchical predictions are suitable for robust planning by comparing
THICK PlaNet and PlaNet [14] in the Multiworld suite. We consider the challenging setup of MPC
for models trained on an offline dataset of 1M samples collected by Plan2Explore [24]. Figure 8
shows the zero-shot performance over training steps. For Pusher-Dense, i.e. a short-horizon task5

with dense rewards, there is no notable difference between applying THICK PlaNet or flat PlaNet.
When rewards are sparse (Pusher-Sparse) or the task horizon is long (Door and PickUp), THICK
PlaNet achieves higher returns than PlaNet. Additionally, the subgoals set by the high level, shown in
Suppl. F.3, are easily interpretable, which makes the behavior of the system more explainable.

4 Related work
Sparsity in RNNs: Learning hierarchical RNNs from sparse activity was proposed in Schmidhuber
[7], where a high level would become active based on low-level errors. Subsequently, there has been
a lot of research on fostering sparsity in RNNs [27, 41–45], which we compare in Suppl. C.

Temporal abstract predictions: One main challenge for learning task-agnostic, temporal abstract
predictions is segmenting a sequence into meaningful units. Discrete latent dynamics were previously
used to model goal-anticipatory gaze behavior [46]. Alternative segmentation techniques are
identifying easy-to-predict bottleneck states [47–49], using a set of fixed time scales [44, 50],
segmenting unexpected prediction errors [51], or training regularized boundary detectors [52, 53]
(further details in Suppl. C).

Hierarchical RL (HRL): HRL is an orthogonal research direction to the hierarchical world models
of this work. In HRL a high-level policy either selects a low-level policy or provides goals or rewards
for a low level [19, 22]. In contrast, our THICK Dreamer uses high-level predictions to train a flat
RL agent. This allows faster credit assignment for tasks with sparse or delayed rewards, which was
previously tackled using reward redistribution [54]. In common HRL approaches, the high level
operates based on fixed time scales [35, 55–57] or task-dependently based on subgoal completion
[58, 59]. In THICK world models, the high level is learned time- and task-independently purely from
predictions and latent state regularization.

Transformer-based world models: Transformers [60] can also improve the learning of long-term
dependencies in world models [61–63]. However, applying Transformers does not result in temporal
abstract predictions that can serve as subgoals for hierarchical planning, necessary for THICK PLaNet.
Importantly, THICK world models provide a practical implementation that allows both.

5 Conclusion
We have introduced C-RSSM and THICK—fully self-supervised learning methods that construct
hierarchical world models. Our method expands previous RSSMs by context-conditioning them.
The resulting context-conditioned C-RSSM learns to develop a sparse, dynamically evolving latent
context. By imposing a sparsity objective, C-RSSM self-organizes its context codes and tends to
update them only at critical time points, where unobservable, prediction-relevant properties of the
environment change, including, for example, agent-object interactions or environmental shifts. As
a result, C-RSSM tends to generate an approximation of a hierarchical, hidden Markov world model,

5Since the puck starts between the gripper and goal, the task can be solved by directly moving to the goal.
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where the context conditions approximate lower-level Markov models. On the higher level, THICK
tends to learn a self-organizing hidden Markov model, which is trained to anticipate context-altering
transition states. To account for multiple possible lower-level context transitions, THICK develops
categorical high-level action representations that both are interpretable and can encode a variety
of outcomes—from controllable actions, like object interactions, to external environmental factors,
such as entering a novel environmental area. As a result, THICK world models enable the generation
of temporally abstract predictions, abstracting over unpredictable or unknown details.

Here, we employed THICK to establish a two-level hierarchy of world models. However, given
THICK’s segmentation approach, which is based on piecewise constant latent states, it could be
applied at any hierarchical level. Consequently, by designing each level as a C-RSSM, THICK could
potentially be extended to seamlessly build an N -level hierarchy of world models. Ideally, though, a
recursive approach may be pursued in the future, such that THICK may be enabled to selectively mix
lower- and higher-level contextual states.

Limitations One restriction of our method is that it relies on setting the hyperparameter βsparse,
which scales the sparsity loss and, thus, determines the high-level segmentation. Ideally, this
hyperparameter should be tuned for every task. However, we found that the same value works well
for all tasks of the same suite. Furthermore, our downstream applications have similar restrictions
to whatever method they build upon, except for improving long-horizon learning. For example, if
Dreamer never discovers a solution to a task, our THICK world models cannot break it down into
components.

Future directions We have shown how to obtain hierarchical models with adaptive temporal
abstraction and how these can improve both MBRL and MPC in long-horizon tasks. We see great
potential of THICK world models as a tool to build sophisticated, hierarchical agents, that explore and
plan their behavior across multiple time scales. For example, THICK world models could be used for
hierarchical RL, by training a high-level policy based on temporal abstract roll-outs to select goals for
a low-level policy, similar to approaches using goal-conditioned Dreamer [25, 35]. Another potential
extension could be temporal abstract uncertainty-based exploration [24, 30], where the agent seeks
out states that cause uncertainty for the high-level predictions.
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A Pseudocode
Algorithm 1 outlines how THICK world models make temporal abstract predictions using both levels
of the hierarchy (also visualized in Fig. 4). Blue parts are only needed for MBRL or MPC (see
Sec. 2.3). For temporal abstract rollouts, which are used in THICK PlaNet, the process can be repeated
K times by using the output states, i.e. cτ(t) and ẑc

τ(t), as inputs again.

Algorithm 1 THICK Temporal Abstract Prediction
1: input: context ct, stochastic state zt
2: Ât ∼ Pθ(Ât | ct, zt) ▷ sample high-level action
3: ẑτ(t)−1 ∼ Fθ

(
ẑτ(t)−1 | Âtct, zt

)
▷ high-level state prediction

4: âτ(t)−1 ∼ Fθ

(
âτ(t)−1 | Âtct, zt

)
▷ high-level action prediction

5: ˆ∆τ(t) ∼ Fθ

( ˆ∆τ(t) | Âtct, zt
)

▷ high-level time prediction
6: (r̂γt:τ(t) ∼ Fθ

(
r̂γt:τ(t) | Âtct, zt

)
▷ high-level reward prediction

7: cτ(t) ← gϕ
(
âτ(t)−1, ct, ẑτ(t)−1

)
▷ low-level context

8: ẑc
τ(t) ∼ pcϕ

(
ẑc
τ(t)−1 | âτ(t)−1, cτ(t), ẑτ(t)−1

)
▷ low-level coarse prior

9: r̂cτ(t), γ̂
c
τ(t) ∼ ocϕ

(
r̂cτ(t), γ̂

c
τ(t) | cτ(t), ẑc

τ(t)

)
▷ coarse reward & discount prediction

10: output: cτ(t), ẑc
τ(t), ∆̂t, r̂

γ
tτ r̂

c
τ(t), γ̂

c
τ(t)

Algorithm 2 describes how to create input-target data for training the high-level world model. In
continual learning environments with no early termination of an episode, we omit the red part.

Algorithm 2 THICK Training Data Generation
1: input: discount factor γ, sequences of contexts c1:T , stochastic states z1:T , actions a1:T ,
2: rewards r1:T , and episode termination flags d1:T
3: initialize: train data D ← {}, unassigned inputs I ← {}
4: for τ ← 1 to T do
5: if cτ ̸= cτ−1 or dτ = 1 then ▷ context change or episode is over at time τ
6: for (ct, zt) ∈ I do
7: compute passed time ∆τ ← τ − t and accumulated rewards rt:τ ←

∑∆t−1
δ=1 γδrt+δ

8: add input-target tuple
(
(ct, zt), (zτ−1,aτ−1,∆t, rt:τ )

)
to D

9: remove (ct, zt) from I
10: add potential input (cτ , zτ ) to I
11: output: train data D

Algorithm 3 describes the general main training and generation of behavior THICK world models.
Red parts are only used for THICK PlaNet. Blue parts are only used for THICK Dreamer. In our
zero-shot planning experiments using THICK PlaNet, we do not add new data to the replay buffer and
only plan and execute actions during evaluation.
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Algorithm 3 THICK World Models
1: initialize neural networks and replay buffer
2: tplan = −I
3: for t← 1 to tend do
4: update low-level world model state st ∼ wϕ(st | st−1,at−1)
5: // Behavior
6: if ct ̸= ct−1 ∧ t ≥ tplan + I then
7: plan subgoal zgoal

t using MCTS and temporal abstract rollouts (Alg. 1)
8: tplan ← t
9: plan new action at using CEM given st and zgoal

t (Eq. 23)
10: sample new action at from actor π given st
11: execute action at in environment and observe rt, it and dt
12: add (it,at, rt, dt) to replay buffer
13: // Train world models
14: draw sequence batch B ← (it′:T ,at′:T , rt′:T , dt′:T ) from replay buffer
15: embed batch in latent state st′:T ∼ wϕ

(
st′:T | B

)
16: update low-level world model wϕ using B (Eq. 9)
17: generate high-level training batch D from (st′:T ,at′:T , rt′:T , dt′:T ) (Alg. 2)
18: update high-level world model Wθ using D (Eq. 18)
19: // Train actor and critic
20: imagine trajectory (st′′:H ,at′′:H , rt′′:H , γt′′:H) using wϕ from random start st′′ ∈ B
21: make temporal abstract predictions for each st′′:H using Wθ and wϕ (Alg. 1)
22: compute value V (Eq. 20)
23: update critics vχ and vξ (Eq. 21)
24: update actor π
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B Hyperparameters

Name Value
MH VPP MW

Low-Level World Model (or Rssm)
Batches (size × sequence length) 16 × 50
Dimensions of ct 16
Dimensions of ht 256
Dimensions of zt 32× 32
MLP features per layer 256
Sparsity loss scale βsparse 10 1 25
Prediction loss scale βpred 1
KL loss scale βKL 1
KL balancing βbal 0.8
Output heads oϕ for it, γt, rt it, rt it, rt
Prioritize ends in replay yes no no
Learning rate 0.0001
High-Level World Model
Qθ & Pθ number of layers × features 3 × 200
Fθ number of layers × features 5 × 1024
Number of actions At 3 5 5
Use terminations dt for segmentation yes no no
Loss for training F â

θ

(
âτ(t)−1 |At, ct, zt

)
CCE CCE NLL

Action prediction loss scale αaτ(t)−1 1 1 0.1
State prediction loss scale αzτ(t)−1 1
Time prediction loss scale α∆τ(t) 1 1 0.1
Reward prediction loss scale αrγ

t:τ(t) 1
KL balancing αbal 0.8
Learning rate 0.0001
Thick Dreamer
Imagination horizon H 15 15
Value estimate balance ψ 0.9 0.9
λ-target of V λ

t 0.95 0.95
Long-horizon critic vχ layers × features 4× 400 4× 400
Long-horizon critic vχ learning rate 0.0002 0.0002
Thick PlaNet
CEM planning horizon H 12
Long-horizon scale κ 0.025
MCTS simulations 100
MCTS discount 0.997
Common
Optimizer Adam
MLP activation functions ELU
Discount γ 0.99

Table 1: Hyperparameter choices. If there is only one centered value it counts for all suites.
Otherwise different values are chosen for MiniHack (MH), VisualPinPad (VPP), or Mulitworld
(MW).
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World model learning hyperparameters For optimizing the world models, i.e. our THICK world
models and the baseline models in Dreamer and Director, we use the default DreamerV2 hyperpa-
rameters [16] – except for minor variations. Specifically, we decreased the model size by setting the
feature size of the RSSM and the dimensionality of ht to 256. Additionally for THICK Dreamer and
Dreamer we did not employ layer normalization for the GRU within the RSSM, because in pre-tests
this showed increased robustness for both approaches.

MBRL hyperparameters For training the actor and critic in THICK Dreamer and Dreamer we use
the default hyperparameters of DreamerV2. For Director we mostly used its default hyperparameters
[35], however we made some minor adjustments to the training frequency to ensure a fair comparison.
Director performs one training update every 16 policy steps instead of every 5 steps in DreamerV2.
This was done to reduce wall-clock time but decreases sample efficiency [15]. We increase the update
frequency (16→ 5) in order to fairly compare sample efficiency between approaches.

MPC hyperparameters For MPC with CEM we use the hyperparameters of PlaNet [14]. In some
tasks, PlaNet repeats the same action multiple times in order to tackle long horizon planning. To
give PlaNet a fair chance for the long-horizon tasks Door and PickUp, we use an action repeat
R = 2 in those tasks for all models. For high-level planning with MCTS, we use MuZero’s [34]
implementation, with the same hyperparameters if not specified otherwise.

Differences between environments The main difference between MiniHack and the other envi-
ronments is that in MiniHack episodes can terminate based on task success or death of the agent.
VisualPinPad and Multiworld are continual learning environments without early episode termination.
As is customary with the use of DreamerV2, for environments that do not feature early episode
termination, we do not predict discounts γt, nor do we prioritize the termination of episodes in the
replay buffer. Importantly, we do not treat episode terminations as context changes. For action
prediction, we use Categorical Cross Entropy Loss (CCE) for predicting discrete actions (Minihack
and VisualPinPad), and scale down the high-level prediction loss for predicting actions and elapsed
time when training purely on task-free offline data (Multiworld). Lastly, the sparsity loss scale βsparse

was tuned for each suite.

Hyperparameter search For determining the sparsity loss scale βsparse, the value estimate balance
ψ, and the long-horizon planning scale κ, we ran a grid search using three random seeds and using
two tasks of each suite (MiniHack: KeyRoom-Fixed-S5, WandOfDeath-Advances; Visual Pin Pad:
VisuaLPinPadFour, VisuaLPinPadFive; Multiworld: Door, PickUp). We determined the best
hyperparameter value for each suite depending on task performance and a qualitative inspection of
the high-level predictions (see Suppl. F.4). For simplicity and to demonstrate robustness, we used the
same values for each suite.

How to tune When tuning THICK world models for a new task, we recommend mainly searching
over the sparsity loss scale βsparse ∈ {0.1, 1, 5, 10, 25, 50}. Typically, one random seed is sufficient
to determine which βsparse leads to few, but not too few, context changes. Depending on horizon
length and reward sparsity of the task, searching for ψ ∈ {0.8, 0.9} and κ ∈ {0.025, 0.1, 0.5} can
also boost performance.

C Extended Related Work
Sparsity in RNNs: Developing hierarchical RNNs based on sparse activity was already proposed in
the 90s by Jürgen Schmidhuber [7]. The Neural History Compressor [7] uses a hierarchical stack of
RNNs, that autoregressively predict the next inputs. The higher levels in the hierarchy remain inactive
until the lower level fails to predict the next input. Recently, there has been increasing interest in
regularizing RNNs towards sparse latent updates. Alternative approaches to the L0-regularization
of GateL0RD [27] are using sparse attention masks [41, 42], competition among submodules [42],
regularizing update gates towards a variational prior [43], or time-dependent updates [44, 45].

Temporal abstractions from regularized latent dynamics: Previously, sparse changes in the latent
states of a low-level model have been used to model temporal abstractions [46, 50]. In contrast to our
work, the temporal abstractions in Gumbsch et al. [46] were learned in much simpler settings with
highly structured observations, instead of the high-dimensional, pixel-based observations examined
in this work. Additionally, these temporal abstractions were only used to model goal-anticipatory
gaze behavior of infants and have not been applied for MPC or MBRL. Separately, Saxena et al.
[50] introduced a hierarchical video prediction model (i.e., without action) that used different clock
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speeds at each level to learn long-term dependencies using pixel-based input. Although, this was
apt at learning slow-moving content at higher levels of the temporal hierarchy, unlike C-RSSM and
THICK, it requires the temporal abstraction factor to be defined explicitly.

Temporal abstractions from predictability: Adaptive Skip Intervals (ASI) [47] is a method for
learning temporal abstract autoregressive predictions. In ASI, a network is trained to predict those
inputs within a predefined horizon, that best allow predicting an extended sequences into the future.
As a result, the model learns to skip a number of inputs towards predictable transitions. Along similar
lines, Temporal-Agnostic Predictions (TAP) [48] identifies frames of a video within a time horizon
that are highly predictable. TAP is then trained to only predict those predictable “bottleneck” frames.
Zakharov et al. [49] provide a learning-free mechanism for detecting context change by evaluating
how predictable future states are. Briefly, their approach detects changes in latent representation
of each layer in the model hierarchy and introduces temporal abstraction by blocking bottom-up
information propagation between different contexts. This is unlike THICK, where context changes are
determined using a learning-based sparsity regularization. An opposing approach is using unexpected
prediction errors of a forward model for self-supervised time series segmentation [51]. Here, the idea
is that in certain states the dynamics of the agent-environment interactions change, e.g. changing the
terrain during locomotion, which lead to a temporary increase in the prediction error.

Temporal abstractions from learning boundary detectors: Besides using indirect measure to
segment a sequence, a straight-forward approach is to train a boundary detector that signals the
boundary of subsequences [52, 53]. Kim et al. [52] train a boundary detectors that is regularized by
specifying the maximum number of subsequences allowed and their maximal length. This requires
prior knowledge about the training data and imposes hard constraints on the time scales of the learned
temporal abstractions. Our sparsity loss instead implements a soft constraint. Conversely, Zakharov
et al. [53] introduced a boundary detection mechanism using a non-parametric posterior over the
latent states. Here, the model learns to transition between states only if a change in the represented
features had been observed – otherwise temporally-persistent states were clustered together.

D THICK World Models: Implementation Details

D.1 GateL0RD

We want the context code ct to only change sparsely in time. Thus, we implement the discrete context
dynamics gϕ as a GateL0RD cell [27]. GateL0RD is an RNN designed to maintain sparsely changing
latent states ct. In order to realize this inductive bias, GateL0RD uses two subnetworks gpϕ and ggϕ
that control ct-updates via an internal update gate Λt. GateL0RD can be summarized as follows:

Candidate proposal: ĉt = gpϕ(at−1, ct−1, zt−1) (25)

Update gate: Λt = ggϕ(at−1, ct−1, zt−1) (26)

Context Update: ct = Λt ◦ ĉt + (1−Λt) ◦ ct−1 (27)

with ◦ denoting the Hadamard product. We use the action at−1 and the last stochastic state zt−1 as
the cell inputs. Based on this cell input and the last context ct−1, GateL0RD proposes a new context
ĉt via its proposal subnetwork gpϕ (Eq. 25). Whether the context is updated depends on an update
gate Λt ∈ [0, 1]m (Eq. 27). This update gate Λt is the output of the gating subnetwork ggϕ (Eq. 26)
which uses a rectified tanh activation function (ReTanh), with ReTanh(x) := max(0, tanh(x)).
This ensures that the gate activations are ∈ [0, 1]m. Note that to compute Λt, the subnetwork ggϕ
internally samples from a Gaussian distribution before applying the ReTanh function. This was
shown to improve robustness [27]. Thus, the context updates are a stochastic process.

Originally [27], GateL0RD used a subnetwork to compute the cell output using multiplicative gating.
We omit this here and instead feed to output to the GRU cell fϕ as shown in Fig. 2 (right).

The centralized gate Λt of GateL0RD makes it easy to determine context changes, i.e. ct ̸= ct−1.
Since all context updates depend on Λt, we know that the context changed if Λt > 0. This is an
advantage over other RNNs that use multiple gates for sparsely changing latent states. We use this
measure to determine context changes when building the world model hierarchy.
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D.2 C-RSSM Loss

The loss of the C-RSSM (Eq. 9) is composed of three parts: the prediction loss Lpred, the KL loss
LKL, and the sparsity loss Lsparse. Expect for the sparsity loss, we adapt these loss terms from the
RSSM. However we always need to account for the coarse prediction pathways of the C-RSSM.

We define the prediction loss Lpred as

Lpred(ϕ) =

T∑

t=1

[ ∑

y∈{it,rt,γt}
− log oϕ(y | st)− log ocϕ(y | ct, zt)

]
. (28)

Equations in red are exclusive to the C-RSSM. Thus, the network is trained to minimize the negative
log likelihood for predicting the images it, rewards rt and future discounts γt. Here we account for
both the precise predictions over the output heads oϕ (Eq. 7), as well as for the coarse predictions
over the output heads ocϕ (Eq. 8). Following the codebase of DreamerV2 [16], in continual learning
environments when there is no early episode termination, we do not predict the discount γt, and
instead use a fixed discount γ = 0.99.

The C-RSSM predicts two prior distributions for the next stochastic state ẑt: fine predictions using
the full state (Eq. 6) and coarse predictions based only on the context, last action and stochastic state
(Eq. 5). We need to account for both types of prediction in the KL loss LKL with

LKL(ϕ) =

T∑

t=1

KL
[
qϕ
(
zt | ht, it

)
||phϕ

(
ẑt | ht

)]
+KL

[
qϕ
(
zt | ht, it

)
||pcϕ(ẑc

t | at−1, ct, zt−1)
]
.

(29)

Thus, we want to minimize the divergence between both the fine prior phϕ and the approximate
posterior qϕ, as well as the divergence between the coarse prior pcϕ and qϕ. As in DreamerV2 [16],
we use KL-balancing, which scales the prior pϕ of each KL divergence by a factor βbal = 0.8, and
the posterior qϕ by 1− βbal. This enables faster learning of the prior to avoid that the posterior is
regularized towards an untrained prior.

We take the sparsity loss Lsparse from GateL0RD [27] which is an L0-regularization of the context
changes ∆ct. This is implemented as

Lsparse(ϕ) =

T∑

t=1

∥∆ct∥0 =

T∑

t=1

Θ
(
Λt

)
(30)

where Θ
(
·
)

denotes the Heaviside step function. That is, an L0-regularization of the context changes
is implemented as the binarization of the update gates Λt (Eq. 27). We estimate the gradient of the
Heaviside step function using the straight-through estimator [64]. The advantage of GateL0RD’s
L0-regularization to other regularization towards sparsity, such as using low variational prior [43, 52],
is that in fully-observable and highly predictable situations, GateL0RD will shut its gates and not
change the context almost regardless of the order of magnitude of βsparse to avoid a punishment.

D.3 High-level World Model Training

The high-level world model with parameters θ is trained to minimize both the prediction loss Lpred,
of predicting the next context change state, and the KL loss LKL between the high-level action
distributions. We define the prediction loss Lpred as the summed negative log likelihood (NLL) of the
to be predicted action aτ(t)−1, stochastic state zτ(t)−1, passed time ∆τ(t), and rewards rγt:τ(t), i.e.

Lpred(θ) =

T∑

t=1

[ ∑

Y ∈{aτ(t)−1,zτ(t)−1,∆τ(t),rγ
t:τ(t)

}
αY − logFθ(Y | At, ct, zt)

]
. (31)

The hyperparameters αY ∈ {αaτ(t)−1 , αzτ(t)−1 , α∆τ(t), α
rγ
t:τ(t)} can be used to scale the individual

prediction losses. As default, we set αY = 1 for all loss terms. When training the network on
task-free exploration, i.e. during zero-shot MPC as described in Sec. 3.3, we found that predicting the
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actions aτ(t)−1 at context changes and elapsed time ∆τ(t) was challenging. To mitigate this, during
task-free exploration we set αaτ(t)−1 = 0.1 and α∆τ(t) = 0.1. For predicting continuous actions
we sample from a Gaussian distribution of predicted actions and compute the NLL as the loss for
action prediction. For discrete actions we predict a Categorical distribution from which we sample
the actions, and compute the Categorical Cross Entropy (CCE) loss.

The KL loss LKL drives the system to minimize the divergence between the posterior high-level
action distribution Qθ(At | ct, zt, cτ(t), zτ(t)), and the prior distribution Pθ(Ât | ct, zt) with

LKL =

T∑

t=1

KL
[
Qθ(At | ct, zt, cτ(t), zτ(t)) || Pθ(Ât | ct, zt)

]
. (32)

Like the KL loss LKL on the low level (see Suppl. D.2), we use KL balancing [16] to scale the prior
part by αbal = 0.8 and the posterior part by 1− αbal.

D.4 THICK Dreamer: Details
THICK Dreamer estimates the overall value V (st) of a state st as a mixture of short- and long-
horizon estimates (Eq. 20). The short-horizon value estimate is computed as the general λ-target as
in DreamerV2 with

V λ(st) = r̂t + γ̂t

{
(1− λ)vξ(ŝt+1) + λV λ(ŝt+1) for t < H,

vξ(ŝt+1) for t = H
(33)

where r̂t and γ̂t are sampled from the output heads oϕ given st (Eq. 7) and λ is a hyperparameter.

The functions V λ and V long compute value targets using the critics vξ and vχ, respectively. Like
DreamerV2, we stabilize critic training by using a copy of the critics during values estimation (in
Eq. 33 and Eq. 19). The copy is updated after every 100 updates.

D.5 THICK PlaNet: Details
For planning on the high level we use a MCTS implementation based on MuZero. However, intuitively
we wouldn’t expect multiple predictions to reach a goal, we decrease the number of simulations to
S = 100.

We only replan on the high level if the context changes, i.e. ct ̸= ct−1. Since all the subgoals zgoal
t

are situations that lead to context changes, no additional criterion for subgoal completion is needed.
Upon reaching a subgoal, e.g. touching an object, the context can sometimes change for multiple
subsequent time steps. This causes the high-level to replan multiple times in a row. Too avoid high
computational load from replanning and to enable smoother trajectories, we inhibit replanning for
I = 3 time steps after setting a new subgoal. While this could potentially degrade performance in
dynamic environments, we found this to work well in Multiworld.

E Environment Details
E.1 MiniHack
Here we provide a detailed explanation of all MiniHack problems we considered. In all settings,
we restricted the action space to the minimum number of actions needed to solve the task. In all
tasks the agents receives a sparse reward of 1 when exiting the room and a small punishment of
−0.01 when performing an action that has no effect, e.g. moving against a wall. In the two easiest
tasks (WaterCrossing-Ring, KeyRoom-Fixed-S5) the agent is allowed 200 time steps to solve the
task. In all other tasks the time limit is set to 400 time steps. For aesthetic reasons we use different
characters in each level.

WaterCrossing-Ring is a newly designed, simple level in which an agent needs to fetch a randomly
placed ring of levitation and float over a river to get to the goal (Fig. 9a). When a ring is picked up in
our tasks, it is automatically worn6. The level is inspired by LavaCross-Levitate-Ring-PickUp

6Usually, to wear a ring in MiniHack a sequence of actions needs to be performed: PUTON → RING →
RIGHT, for putting the ring on the right finger. We simplify this, by automatically applying the action sequence
when the ring is picked up.
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(a) WaterCrossing-Ring (b) KeyRoom-Fixed-S5 (c) WandOfDeath-Advanced

(d) River

Figure 9: MiniHack environments. Staircases with an upwards facing arrows mark the starting
point of the agents. Staircases with downward facing arrows are the exits that need to be reached. In
(a), (b), and (d) start points and exits are randomized.

from the MiniHack benchmark suite, where a river of deadly lava blocks the exit. However, we found
that Dreamer struggles to learn this task, because of the early terminations when entering the lava.

KeyRoom-Fixed-S5 is a benchmark task, in which an agent spawns in a room at a random position
and has to fetch a randomly placed key to open a door and enter a smaller room with a randomly
located exit (Fig. 9b). The door position is fixed. In all our tasks, using the key opens the door from
any grid cell adjacent to the door, even diagonally.

WandOfDeath-Advanced is based on the WandOfDeath benchmark tasks, in which an exit is guarded
by a minotaur, which instantly kills the agent upon contact. The agent needs to pick up a wand to
attack and kill the monster. Thereby, the agent needs to carefully select the direction of the attack,
because if the attack bounces off a wall, it kills the agent instead. WandOfDeath comes in multiple
levels of difficulty. WandOfDeath-Advanced (Fig. 9c) is a self-created level layout, designed to
be more challenging that WandOfDeath-Medium but not as difficult as WandOfDeath-Hard. In
WandOfDeath-Medium the agent can only walk horizontally and the location of the wand is fixed.
In WandOfDeath-Hard the map is very large, which makes this a hard exploration problem. Our
version is of intermediate difficulty, where the number of accessible grids (28) is roughly the same as
in WandOfDeath-Medium (27), while the randomly placed wand needs to be found first.

River is a benchmark task, in which an agent needs get to an exit on the other side of a river (Fig. 9d).
In order to cross the river the agent needs to push boulders into the water to form a small land bridge.
To solve the task the agent needs to move at least two randomly placed boulders into the river.

EscapeRoom is a difficult new problem designed by us, which combines the challenges of many
other problems (Fig. 13a). Via EscapeRoom we test the ability to learn to execute a complex event
sequence. Nonetheless, the task can be learned without extensive exploration or large action spaces.
The agent starts in a small room and the goal is to unlock a door and escape. However, in order to get
the key, the agent needs to first pick up a ring of levitation and float over a small patch of water into a
corridor. In the corridor the agent can exchange the ring of levitation for a key. In order to get back to
the door in the first room, the gent needs to push a boulder into water. While levitating, the agent is
too light to push the boulder. In EscapeRoom, the agent can only carry one new item and picking up
a second item results in dropping the first one.

E.2 Multiworld

All tasks in Multiworld use different action spaces and camera viewpoints for their pixel-based
observation, shown in Fig. 10. In Pusher the 2-dimensional actions control the x− and y−movement
of the endeffector, whereas the gripper is fixed. In Door the robot has a hook instead of a gripper
at its endeffector and the 3-dimensional action controls x−, y−, and z−movement. In PickUp the
3-dimensional action controls the y− and z−movement and the gripper opening. We binarized the
gripper opening, to prevent accidental object drops. In all tasks the goal positions are fixed. In
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(a) Pusher (b) Door (c) PickUp

Figure 10: Multiworld environments. Goal positions for the objects are shown in yellow.

Pusher and PickUp they are visible in the video frames. In Door the goal is to open the door fully.
For Pusher-Dense and PickUp we compute the reward rt for every time step t as

rt = 1− δt
δ1
, (34)

where δt is the euclidean distance between object and goal at time t. For Pusher-Sparse the agent
received a reward of rt = 1 when the distance euclidean distance between puck and goal δt < 0.025,
otherwise rt = 0. For Door the reward rt is the current angle of the door joint.

F Extended Results and Experiment Details

F.1 Analysis of Contexts and Predictions

In this section we provide further examples of high- and low-level predictions and context codes
ct. Figure 11 visualizes the low-level predictions for two example sequences. The low-level world
model predicts the immediate next state and the reconstructions are more accurate than the abstract
high-level predictions (cf. Fig. 5). Figure 12 displays four example sequences with the corresponding
contexts ct and high-level predictions.

We analyze the high-level actions At in more detail for the EscapeRoom problem. EscapeRoom is
a challenging MiniHack level, designed to contain diverse agent-environment interactions, shown
in Fig. 13a and described in detail in Suppl. E.1. To illustrate the emerging high-level action
representations of THICK Dreamer, we show inputs it and image reconstructions of high-level
predictions for all high-level actions At in Fig. 13b for one exemplary sequence.

At specific time steps the three possible high-level actions At encode particular agent-environment
interactions: A1

t encodes picking up the ring of levitation (t = 3) or exiting the level (t ∈ {22, 26}).
A2

t encodes crossing the water after obtaining the ability to levitate (t ∈ {6, 10, 16}). A3
t encodes

pushing the boulder into water (t ∈ {6, 10, 16}) or opening the door (t = 22). For all other time
steps, the high-level actions produce either the identity predictions (e.g. A1

6) or predictions that seem
to encode average scene settings (cf. A2

3 or A1
10). These predictions account for unexpected context

shifts, which can always occur with a small chance due to the stochasticity from sampling zt and the
stochastic update gates of GateL0RD (see Suppl. D.1). The prior Qϕ (red frames in Fig. 13b) mostly

KeyRoom-Fixed-S5 Door

it

LL:

îht+1

t t+ 2 t+ 4 t+ 6 t t+ 4 t+ 8 t+ 12

Figure 11: Low-level predictions. The low-level predictions accurately predict the next frames (cf.
Fig. 5 for high-level predictions and contexts ct of the same sequences).
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WaterCrossing-Ring Pusher-Dense

it

ct+1

HL:

îcτ(t)−1

t t+ 3 t+ 5 t+ 7 t t+ 2 t+ 4 t+ 6
River VisualPinPadFive

it

ct+1

HL:

îcτ(t)−1

t t+ 2 t+ 4 t+ 11 t t+ 6 t+ 10 t+ 14

Figure 12: Context changes and high-level predictions. We show the input images it, 16-dim.
contexts ct+1 and reconstructions îcτ(t)−1 of the high-level predictions. For WaterCrossing-Ring
the context changes when stepping on the ring, picking it up, or arriving on the other side of the shore.
In Pusher the context changes when the robot moves the puck. In River the context changes when
pushing a boulder into water. In VisualPinPadFive the context changes when stepping on a pad.

(a) (b)

EscapeRoom

it

A1
t

A2
t

A3
t

t 3 6 10 16 22 26

Figure 13: High-level action predictions. (a) In the EscapeRoom problem an agent needs to pick
up a ring of levitation, hover over a patch of water to get to a key, exchange the ring for key, push a
boulder into the water, and use the key to unlock a door. (b) Visualization of the high-level actions
for one exemplary sequence. The top row shows the input image it. Image reconstructions îcτ(t)−1

are shown for the three high-level actions At. Red outlines depict which action Ât was sampled.
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Figure 14: Context changes over training. Each graphic plots the mean percentage of time steps per
training batch for which the context ct changes in MiniHack (a) , VisualPinPad (b), and Multiworld
(c). Shaded areas depict the standard deviation.

samples reasonable high-level actions. However, occasionally the prior samples an action Ât leading
to an identity or average prediction (e.g. t = 6) due to the randomness of the process.

To quantify the context changes, we plot the mean percentage of time steps when context changes
occur (i.e., ct ̸= ct−1) over the course of training in Fig. 14. Importantly, the context changes are
somewhat consistent within the same task but, as expected, can vary across tasks of the same suite
despite using the same hyperparameter βsparse. Additionally, we analyze the time between context
changes for some MiniHack tasks. We plot the histogram of time gaps between context changes in
Fig. 15 which illustrates that different tasks also show different distributions of context durations.

Lastly, we analyze whether context changes occur at task-relevant situations for some MiniHack
problems. For this we generate rollouts using the fully trained policy and identify points t∗, that
we consider to be crucial for solving the task. For WandOfDeath-Adv., WaterCross-Ring, and
KeyRoom-Fixed-S5 we take the time points t∗ before picking up an item. For EscapeRoom, we use
points in time t∗ when the agent stands in front of a movable boulder blocking the path to the exit. We
compute the mean percentage of context changes occurring around t∗ (±1 step) over 10 sequences
and take the average over all 7 randomly seeded models. The results are shown in Table 2. The
C-RSSM tends to update its context with a high probability at the identified situations. This suggests
that task-relevant aspects, such as item-pickups or boulder pushes, are encoded in the contexts.

WaterCross-Ring KeyRoom-Fixed-S5 WandOfDeath-Adv. EscapeRoom
% 97.1 (± 4.9) 91.4 (± 6.9) 91.4 ( ± 1.5) 88.57 (± 15.7)

Table 2: Task-relevance of context changes. We list the mean percentage of context changes
ct∗ ̸= ct∗−1 for fully trained policies (7 seeds) at crucial task relevant points in time t∗ in 10
sequences. See text for criterion of t∗. The standard deviation is denoted by ±.
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Figure 15: Context duration during an episode. Each graphic plots a histogram of the mean number
of time steps ∆t between two consecutive context changes during an episode ( over 10 episodes, max
50 steps) for different MiniHack tasks (7 seeds). Shaded areas depict the standard deviation.
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Pusher-Dense Door PickUp

Figure 16: Subgoals proposed in the first time step. We reconstruct images based on the subgoals
zgoal
1 that THICK PlaNet set at the first time step. The subgoals are typically pushing the puck

(Pusher), moving to the door handle (Door), or grasping the ball (PickUp). For PickUp the system
sometimes fails to find a reasonable subgoal (center).

F.2 MBRL: Experiment details

For the Visual Pin Pad suite we generated offline training data to sidestep the challenge of discovering
the very sparse rewards. For the data collection, we used Plan2Explore [24] with the default settings
of the DreamerV2 [16] codebase. We trained two randomly initialized models of Plan2Explore for
1M environment steps in each task of the Visual Pin Pad suite. For each task, we determined the
model that achieved the highest overall returns during training. We used the datasets collected by the
explorative agents to initialize the replay buffers of all new models.

Originally, Visual Pin Pad has four levels of difficulty. However, in VisualPinPadSix Plan2Explore
did not receive any reward during 1M steps of exploration. Besides that, the results in Hafner et al.
[35] suggest that Dreamer is also not able to discover the very sparse rewards of VisualPinPadSix
on its own. Thus, we omitted VisualPinPadSix.

F.3 MPC: Experiment details

To study zero-shot planning, we generated offline datasets for every task. For data collection, we use
Plan2Explore in the same way as described in Suppl. F.2. After determining one dataset for every
task, we train the models purely on this data.

Besides boosting performance for long-horizon tasks, THICK PlaNet provides the additional advantage
that the subgoals proposed by the high-level network, can directly be reconstructed into images
through the low-level output heads ocϕ. The resulting goal images are easily interpretable by humans.
Figure 16 shows exemplary goals selected by the high-level planner in the first time step of an episode.
Thus, the behavior of THICK PlaNet is much more explainable than simply performing MPC in a flat
world model.
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Figure 17: C-RSSM and THICK Dreamer ablations. Each graphic plots the mean returns over
training steps. We compare Dreamer and THICK Dreamer (7 random seeds) against various ablations
(5 seeds each): Dreamer using the C-RSSM (C-RSSM Dreamer), Dreamer using only the coarse
processing pathway of the C-RSSM (C-RSSM Dreamer no ht), and THICK Dreamer using only one
critic (THICK Dreamer no vξ). Shaded areas depict the standard error.
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Figure 18: Effect of hyperparameter ψ. Each graphic plots the mean returns for THICK Dreamer
over training steps for different values of the hyperparameter ψ (5 random seeds). Shaded areas
depict the standard error.

F.4 Ablations and Hyperparameters
Ablations We ablate various components of the C-RSSM and THICK Dreamer within
a MBRL setup. We evaluate the resulting systems using the two exemplary tasks of
MiniHack-WandOfDeath-Advances and VisualPinPadFour. Figure 17 plots the returns of the
ablated systems over environment steps. Using the C-RSSM in DreamerV2 results in roughly the same
performance (WandOfDeath-Advances) or slightly better performance (VisualPinPadFour) than
using the RSSM (i.e. Dreamer). However, removing the deterministic latent state ht and the precise
processing pathway from the C-RSSM (i.e. C-RSSM Dreamer without h) impedes the system from
learning the tasks.7 Omitting vξ, and only using one critic vχ for both the short- and long-horizon
returns (Eq. 20), slightly degrades the performance of THICK Dreamer.

Hyperparameter ψ THICK Dreamer introduces a new hyperparameter ψ which balances the
influence of the short-horizon value estimates V λ and long-horizon value estimates V long on the
overall value V (Eq. 20). Figure 18 shows how ψ affects task performance. Only considering short-
horizon value estimates, i.e. ψ = 1, results in less sample efficient learning than taking small amounts
of long-horizon value estimates into consideration, i.e. ψ = 0.9 for WandOfDeath-Advances and
0.8 ≤ ψ ≤ 0.9 for VisualPinPadFour. However, relying too strongly on long-horizon estimates,
i.e. ψ = 0.5, impedes policy learning. This effect is less pronounced for very long-horizon tasks such
as VisualPinPadFour. We set ψ = 0.9 in all experiments.
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Figure 19: Effect of hyperparameter κ. We plot the
mean returns of THICK PlaNet during zero-shot plan-
ning for different values of the hyperparameter κ (5
random seeds). Shaded areas depict the standard devia-
tion.

Hyperparameter κ THICK PlaNet intro-
duces the hyperparameter κ, which scales
the influence of the subgoal proximity
on the reward estimate of the low-level
planner (Eq. 23). We analyze the effect
of κ on THICK PlaNet’s performance in
Multiworld-Door, shown in Fig. 19. In-
centivizing subgoal proximity too strongly,
i.e. κ = 1, can result in the agent getting
stuck at a subgoal. This reduces overall
task performance. Ignoring the subgoal,
i.e. κ = 0, also decreases performance for
long-horizon tasks such as Door. In Door,
THICK PlaNet works well across a wide
range of κ.

Hyperparameter βsparse Lastly, we
compare the effect of sparsity loss
scale βsparse on THICK Dreamer in
VisualPinPadFour and on THICK
PlaNet in Multiworld-Door.

7For this ablation we picked higher sparsity regularization βsparse for both tasks (βsparse = 50 for
WandOfDeath-Advances, βsparse = 10 for VisualPinPadFour), such that the number of time steps with
open gate roughly matches that of the C-RSSM.
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Figure 20: Effect of sparsity. We plot the the mean return for THICK Dreamer in
VisualPinPadFour (a) and the mean zero-shot planning returns of THICK PlaNet in Door (c)
for different values of the hyperparameter βsparse (5 random seeds). Additionally, we plot the per-
centage of time steps with context changes over training time for both tasks (b, d). We test different
ranges of βsparse for the different tasks. Shaded areas depict the standard deviation.

Figure 20a plots the mean returns of THICK Dreamer or different values for βsparse in
VisualPinPadFour. Figure 20b shows the percentage of time steps with context changes over
training. For THICK Dreamer, regularizing context changes too little is not as detrimental as overly
regularizing context changes. If the contexts are weakly regularized, i.e. small βsparse, then the
context changes in most time steps. As a result, the high-level learns an identity mapping, and during
a temporal abstract prediction the network simply predicts the next state at time t+ 1 (see Alg. 1).
Stronger regularization boost sample efficiency of learning long-horizon behavior. This is even
true, if at some point after the behavior is sufficiently learned, the context is no longer adapted (e.g.
βsparse = 10). However, overly strong regularization, which prohibits context changes early during
training, impedes learning the task (e.g. βsparse = 100). In this case, the high-level predictions are
essentially average state predictions, which simply contributes noisy values for learning the critic.
THICK Dreamer is very robust to the choice of βsparse in VisualPinPadFour.

Figure 20c plots zero-shot planning performance of THICK PlaNet for different values for βsparse,
with the percentage of context changes shown in Fig. 20d. For THICK PlaNet both too strong as
well as too weak regularization degrade performance. However, strongly regularizing the network
towards sparse context changes is slightly less detrimental for THICK PlaNet than a weak sparsity
regularization (cf. βsparse = 100 and βsparse = 5). For weak sparsity regularization the context
changes in every time step, which prevents the high level from finding a useful subgoal sequence
during planning. As a result, the low-level might be guided into the wrong direction by the proposed
subgoals.

G Computation and Code
All experiments were run on an internal computing cluster. Each experiment used one GPU. Ex-
periments using DreamerV2 took roughly 15-20 hours, whereas THICK Dreamer experiments took
around 35-45 hours of wall clock time, depending on the overall number of environment steps.
Zero-shot MPC experiments with PlaNet took at round 30-35 hours for 106 training steps, whereas
THICK PlaNet took roughly 50-60 hours for the same number of training steps. The higher wall
clock time for training THICK world models stems mainly from the larger number of trainable
parameters and more detailed logging. Besides that, THICK PlaNet takes longer to evaluate, due to
the additional computational cost of running MCTS on the high level during planning. The code to
run all experiments will be open-sourced over our website.
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