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ABSTRACT

4D generation (i.e., dynamic 3D generation) has recently emerged as a rapidly
growing research frontier due to its powerful spatiotemporal modeling capabili-
ties. However, despite notable advances, existing approaches typically fail to cap-
ture the underlying physical principles, producing results that are both physically
inconsistent and visually implausible. To overcome this limitation, we present
CP4D, a novel paradigm for photorealistic 4D scene synthesis with faithful adher-
ence to complex physical dynamics. Drawing inspiration from the compositional
nature of real-world scenes, where immutable static backgrounds coexist with dy-
namic, physically plausible foregrounds, CP4D reformulates 4D generation as the
integration of a static 3D environment with physically grounded dynamic objects.
On this basis, our framework follows a three-stage pipeline: 1) Firstly, we leverage
pre-trained expert models to generate high-fidelity 3D representations of the envi-
ronment and foreground objects respectively. 2) Subsequently, to produce physi-
cally plausible trajectories and realistic interactions for these objects, we propose
a hybrid motion synthesis strategy that integrates priors from physical simula-
tors with the common sense embedded in video diffusion models. 3) Finally, we
develop an automated composition mechanism that seamlessly fuses the static en-
vironment and dynamic objects into coherent, physically consistent 4D scenes.
Extensive experiments demonstrate that CP4D can generate explorable and inter-
active 4D scenes with high visual fidelity, strong physical plausibility, and fine-
grained controllability, significantly outperforming existing methods. The anony-
mous project page: https://anonymous.4open.science/w/CP4D/\

1 INTRODUCTION

Empowered by recent progress in generative models (Ho et al., | 2020; [Song et al.,|2020) and large-
scale data available, 4D generation (i.e., dynamic 3D generation) (Ren et al.; 2023} [Xie et al.,2024b;
YU et al.,[2025;Ma et al.,|2025) has emerged as a prominent research focus. Through joint modeling
of spatial structure and temporal dynamics, 4D generation enables the synthesis of realistic and
coherent 4D scenes, holding great promise for a wide range of applications such as AR/VR (Li
et al.,[20244)), robotics (Liu et al.l [2025a), and world models (Chen et al., [2025b).

Existing approaches for 4D generation can be broadly divided into two categories. The first class
of methods exploits priors distilled from pre-trained video or 3D generative models (Bahmani et al.,
2024bja; Jiang et al.| 2023} |Zeng et al., [2024), employing them as auxiliary supervisory signals to
constrain the generation process and improve fidelity. In contrast, the second class follows a data-
driven paradigm (Xie et al., | 2024b; Ren et al.,[2024; |Liang et al.,|2024; Bai et al.,2025)), where cross-
view videos are directly synthesized as intermediate proxies and subsequently transformed into full
4D content through classical reconstruction pipelines. While producing seemingly plausible results,
these approaches typically lack an explicit characterization of the underlying physical principles. As
a consequence, the generated content often suffers from physical inconsistencies and visual artifacts,
leading to scenes that deviate from realistic dynamics.

To mitigate this issue, inspired by the compositional nature of real-world scenes (Xu et al., 2024
Zhu et al. |2024), where static backgrounds co-exist with physically plausible dynamic foregrounds,
we reformulate 4D scene generation as the integration of a static 3D environment with physically
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Figure 1: Pipeline of CP4D. Given a textual prompt, CP4D constructs a physically faithful 4D
scene via a three-stage pipeline: 1) synthesizing 3D representations for both foreground objects and
background environments (Sec. , 2) simulating foareground motions with physical grounding
to ensure realistic dynamics (Sec%, and 3) automatically composing the foregrounds and back-
ground into a coherent and visually plausible 4D scene (Sec. @)

grounded dynamic 3D objects. Building upon this formulation, there arise three key technical chal-
lenges: 1) How to construct plausible 3D representations of background environments and fore-
ground objects that conform to user-specified instructions? 2) How to model the motion dynamics
of foreground objects that encompass physically plausible trajectories and realistic interactions? 3)
How to seamlessly compose the generated dynamic foregrounds with the static background into a
consistent 4D scene?

To tackle these challenges, in this paper we introduce CP4D, a novel paradigm for photorealistic 4D
scene generation with faithful adherence to complex physical dynamics. Specifically, as shown in
Fig.[T} CP4D follows a three-stage pipeline: 1) Firstly, given a textual prompt, we first synthesize a
background image using a text-to-image generative model, after which an image editing model, con-
ditioned on this background, is employed to generate foregrounds that are visually compatible with
it. Both the background and the foregrounds are then reconstructed into their respective 3D represen-
tations using pre-trained expert models. In contrast to the naive baseline that independently applies
text-to-3D models to each component, our approach enforces stylistic coherence across background
and foreground, thereby mitigating implausible artifacts such as realistic environments juxtaposed
with cartoon-like objects. 2) Secondly, to endow foreground objects with physically plausible tra-
jectories and realistic interactions, we introduce a hybrid motion synthesis strategy. In particular, we
first leverage physical simulators to produce coarse object trajectories that comply with fundamental
physical laws. These initial dynamics are subsequently refined using the commonsense knowledge
embedded in video generative models, thereby enhancing inter-object interactions and yielding mo-
tion that is both more realistic and visually convincing. 3) Thirdly, to seamlessly fuse the dynamic
foregrounds with the static background into a unified 4D scene, we develop an automated compo-
sition mechanism. By leveraging monocular depth estimation and a depth-aware heuristic rule, this
mechanism first estimates the relative spatial attributes of foreground objects (e.g., positions and
scales) within the background, which are subsequently calibrated through optimization to ensure
coherent integration and visually compelling compositions.

Notably, owing to its compositional design, CP4D not only enables the synthesis of 4D scenes
that faithfully comply with physical laws, but also provides strong interactive controllability. In
particular, users are afforded the flexibility to edit different scene elements, such as foreground
objects, background environments, and motion trajectories, thus facilitating diverse 4D generation.
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In summary, our key contributions can be concluded as follows:

* We present CP4D, a novel compositional framework designed to generate photorealistic 4D scenes
with accurate adherence to complex physical dynamics.

* We propose a hybrid motion synthesis strategy that integrates physical priors from differentiable
simulators with commonsense knowledge from video generative models, yielding physically plau-
sible trajectories and realistic interactions.

* We develop an automated composition mechanism that harmoniously fuses dynamic foregrounds
with the static background, producing a coherent and visually compelling 4D scene.

» Extensive experiments demonstrate that CP4D is capable of synthesizing explorable and interac-
tive 4D scenes characterized by high visual fidelity, robust physical realism, and precise control-
lability, consistently outperforming prior methods.

2 RELATED WORKS

2.1 4D GENERATION

Generating 4D assets from textual prompts has drawn growing attention owing to its wide-ranging
applications in AR, VR (Wang et al.||2025), and spatial intelligence. Early approaches (Jiang et al.,
2023; |Zhu et al., 2025; |Li et al., [2024b; [Zeng et al., |2024; |Gao et al., |2024) towards this goal
predominantly relied on distilling knowledge from pre-trained generative models to guide the gen-
eration process. For instance, DreamGaussian4D (Ren et al.|[2023) pioneered the use of SDS (Poole
et al., 2022)) in the 4D generation domain, demonstrating the capability to produce realistic 4D
objects conditioned on text prompts. Consistent4D (Jiang et al., 2023) realized video-to-4D gen-
eration by integrating SDS with dynamic NeRF (Park et al.|, 2021)), and further employed a video
enhancer to improve the quality of the synthesized 4D assets. Recently, the availability of large-scale
datasets (Deitke et al., 2023; Nan et al., 2024) has enabled methods that directly train feed-forward
video diffusion models to synthesize multi-view videos (Xie et al., [2024b} Ren et al., [2024; YU
et al.; 2025; Bai et al.l 2025 |He et al., 2024; Namekata et al., |2024)), which are subsequently re-
constructed into 4D scenes using standard reconstruction techniques (Wu et al.| [2024). However,
despite their ability to produce seemingly plausible results, these approaches generally overlook the
explicit characterization of underlying physical dynamics. Consequently, the generated content of-
ten exhibits physically inconsistent behaviors and visual artifacts. In contrast, we present CP4D,
a physics-aware framework for text-driven 4D scene generation, delivering photorealistic quality,
reliable physical consistency, and precise generation control.

2.2 PHYSICS-BASED SIMULATION

Given an initial 3D representation (e.g., 3D gaussian splatting (Kerbl et al.,[2023))), recent works (Xie
et al 2024a) have explored the use of physical solvers, such as the Material Point Method
(MPM) (Hu et al 2018} Jiang et al., |2017), to update the state of Gaussian primitives under ex-
ternal forces at different timestamps. To automate the specification of material parameters, mul-
timodal large language models (MLLMs) have been employed to infer properties such as density,
Young’s modulus, and Poisson’s ratio (Zhao et al,, [2024; Mao et all [2025). Complementary to
this, other approaches (Huang et al., [2025; [Liu et al.| |2024a; [Lin et al.| 2025} [Liu et al.l 2025b)
exploit implicit physical regularities in video diffusion models by incorporating Score Distillation
Sampling (SDS) (Poole et al.l[2022) to refine these preliminary estimates. While the above methods
assume access to well-defined 3D representations, more recent works (Lin et al., |2024ajb}; |Chen
et al.,2025a; Tan et al.| 2024; Liu et al.,|2024b) aim to generate physics-driven videos directly from
a single image. These methods first generate a full 3D representation using image-to-3D models
(either mesh-based (Chen et al., [2025a) or Gaussian-based (Lin et al.,|2024a:b; Tan et al.}[2024))) be-
fore applying physical simulations as described above. However, existing solutions remain limited:
they typically handle only elastic or rigid bodies, lack support for realistic multi-material |Gao et al.
(2025) and multi-object interactions, and often employ either 2D backgrounds or 3D environments
with fixed viewpoints, restricting the ability to render consistent novel views.
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3 PRELIMINARIES: SCORE DISTILLATION SAMPLING

Score Distillation Sampling (SDS) (Poole et al., [2022)) is a widely used technique for optimizing a
differentiable generator ¢g(#) under the guidance of a pre-trained diffusion model. Its core idea is to
exploit the score function of the diffusion model to supply gradient that steer the generator’s outputs
towards alignment with a target text prompt, without the need for explicit likelihood computation.

Formally, let €, (-, T, ¢) denote the denoiser of a pre-trained text-conditioned diffusion model pa-
rameterized by ¢, with timestep ¢ and text prompt T', the SDS gradient is given by:
0g(0
VoLsps = Ee ¢ |w(C) (€5(9(6), T, C) =€) % 7 ey
where g(f0) denotes the generator’s output (e.g., a rendered video), € is Gaussian noise sampled at
timestep ¢, w(() is a weighting function, and 6 are the learnable parameters of the generator.

4 METHODOLOGY

Overview. Given a textual prompt T, our objective is to synthesize a 4D scene that faithfully ad-
heres to complex physical dynamics while supporting flexible viewpoint changes. To this end, we
adopt a compositional formulation grounded in the nature of real-world scenes (i.e., static back-
grounds coexisting with physically governed, dynamic foregrounds), and cast 4D generation as the
integration of a static 3D environment with physically grounded dynamic objects.

To achieve this goal, we introduce a three-stage pipeline. To begin with, we leverage pre-trained ex-
pert models to construct plausible 3D representations for both the background environment and the
foreground objects (Sec. . T). Subsequently, we propose a hybrid motion synthesis strategy utiliz-
ing physical simulators and video generative models to produce foreground motions with physical
consistency and realistic interactions (Sec. f.2). Finally, we develop an automated composition
mechanism that seamlessly integrates the generated background and foreground into a coherent 4D

scene (Sec. {3).

4.1 STAGE I: BACKGROUND—FOREGROUND 3D REPRESENTATION SYNTHESIS

To achieve text-guided compositional physics-aware 4D scene generation (CP4D), constructing
plausible 3D representations of both the background environment and the foreground objects consti-
tutes an essential prerequisite, providing the foundation for subsequent motion modeling and scene
composition. To this end, we first invoke a large language model (e.g., GPT-40 (Achiam et al.,
2023)) to decompose the input textual prompt T into two sub-prompts (i.e., T = {T;, T}), each
describing the background and foreground to be generated.

Subsequently, to obtain the corresponding 3D representations of the background and foreground,
one intuitive approach is to independently apply pretrained text-to-3D generative models. How-
ever, such a straightforward strategy typically yields implausible outcomes, e.g., generating a real-
istic background paired with cartoon-like foregrounds, which in turn undermines the coherence and
overall quality of the synthesized 4D scene.

To overcome this limitation, we adopt a simple yet effective strategy for 3D representation synthesis.
Specifically, we first synthesize a background image I, from the input prompt T}, using a text-to-
image generative model F ;. Next, conditioned on I and Ty, we employ an image editing model
F.4;: to generate a composite image I ; that simultaneously contains both the background and
foreground in a visually coherent manner. We then apply an image segmentation model F.4 to
I, ; to isolate the foreground region My (M = 1 corresponds to foreground pixels and M = 0
to background pixels), yielding the foreground image I¢. Finally, with the harmonized background
image I, and foreground image I;, we leverage pretrained image-to-3D generative models Fg 4 and

Fg 4 to construct their respective 3D representations. The overall pipeline can be formally expressed
as follows:
Gy = F4,(L,), G = Fi, (1)),

I, = Fi2i(To), Ip = Feqit(In, Tp), {Ir, My} = Feg(Is, ),
where Gy, and G denote the 3D representations of the background and foreground, instantiated
using 3D gaussian splatting. For clarity, we use Gy as a unified notation to represent the foreground
representation, which may correspond to either a single object or multiple different objects.

2)
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(a) Simulation result. (b) Rendering result. (c) Optimized result.

Figure 2: (a) Limited numerical precision in the physics solver leads to erroneous estimation of
foreground geometry. (b) As a result, the solver reports collisions that are not visually manifested,
producing spurious intersections. (¢) Our method eliminates these inconsistencies, enabling interac-
tions that are both visually coherent and physically faithful.

4.2 STAGE II: PHYSICALLY GROUNDED MOTION SIMULATION

Given the generated G, the second stage aims to endow the foreground objects with motions that
are both physically consistent and visually realistic. To this end, we adopt a hybrid motion synthesis
framework: physical simulators are first employed to generate trajectories constrained by fundamen-
tal physical laws, which are subsequently refined using the commonsense priors embedded in video
generative models. This design ensures that the resulting motions remain faithful to physics while
exhibiting naturalistic interactions.

Physical simulator-based motion synthesis. To simulate the dynamics of G conditioned on the
textual description T s, we begin by leveraging vision-language models (VLMs) to infer essential
physical attributes of the objects, including material properties (e.g., Young’s modulus E, Poisson’s
ratio i, and density p) and external forces Q. These inferred parameters provide the initialization
required for physically grounded motion simulation. More details are provided in Appendix B}

We then employ heterogeneous physical solvers ® to simulate object dynamics. Specifically, elas-
tic or flexible objects are handled using an MPM solver ®,,,;,,,,, rigid objects are modeled with a
dedicated rigid-body solver ®,.;4;4, while fluid objects are simulated with a Position-Base-Dynamic
(PBD) solver ® ¢;,,,¢ (More details are provided in Appendix |g) Initialized with the estimated ma-
terial parameters © = {p, E, u} and external forces Q, the solvers evolve the foreground into
deformed 3D representations G? over time ¢, which can be expressed as:

G} = 9(Gy,Q,0,1). A3)

Video generative model-based refinement. Although Eq. [3] produces motions that are broadly
consistent with physical principles, two critical limitations persist. 1) As VLMs are not explicitly
trained on physics-oriented datasets, the inferred material parameters, while generally reasonable,
often lack the numerical accuracy required to reflect precise physical behavior. 2) As shown in
Fig. EL physics solvers generally rely on grid-based approximations of G to model interactions
such as collisions. However, the limited fidelity of these approximations often fails to capture the
intricate geometry of the underlying 3D structures, leading to perceptually implausible outcomes,
e.g., collisions may be registered between objects despite no apparent contact in the rendered scene.

To mitigate these issues, we resort to commonsense knowledge embedded in video diffusion models.
Specifically, to solve the first problem, we employ the SDS loss to optimize the estimated physical
parameters ©, which is denoted as follows:

ov

VeoLlsps = Ec¢ [w(()(ép(V;Ts;C) — 6)% ) 4

where V' denotes the rendered video based on G’}, €y represents the predicted noise using pre-trained
video diffusion model %, w(() is a weighting function over the diffusion timestep (.

To alleviate the second issue, namely the inaccuracies introduced by coarse grid-based approxi-
mations during inter-object interactions, we similarly employ SDS-based optimization. Specifically,
assuming G ¢ comprises K individual objects, {G , }K |, we assign to each object a learnable global
displacement variable AT';, which adjust their relative positions. These displacement variables are
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Figure 3: Illustration of the depth-aware heuristic for initializing the scale S. Left: the foreground
G is independently generated and may exceed the camera frustum at depth P*. Middle: to
ensure full visibility, its projected extent in the x—y plane is constrained by the frustum bounds
(B*min, B, ., BY. ,BY..), yielding the maximum feasible scale S. Right: applying this initial-
ized S guarantees that Gy remains entirely contained within the frustum of the reference view.

optimized via SDS supervision to ensure that the rendered video adheres to the textual prompt T'f
while exhibiting interaction patterns aligned with human perceptual priors, which is formulated as

follows: oV,
Var Lsps = Ee ¢ [w(C) (éw(VAF; Ty, Q) — 6) BAAIE ’

where Var denotes the rendered video after applying displacements AT

(&)

4.3 STAGE III: AUTOMATED 4D SCENE COMPOSITION

After obtaining physically grounded motions of the foreground object(s) G s, our next goal is to fuse
them with the background Gy into a coherent 4D scene. To this end, we introduce an automated
scene composition mechanism that estimates the relative spatial attributes of G ¢ (e.g., its position
and scale) with respect to G} using monocular depth cues and heuristic priors, and further refines
them through optimization to ensure both geometric consistency and visual plausibility. A detailed
illustration is provided below.

Relative spatial attributes initialization. Since G; and G are generated independently by dif-
ferent pre-trained expert models, their 3D representations lie in distinct coordinate spaces, making
direct integration infeasible. Therefore, to reasonably place G into Gy with correct size and loca-
tion, we propose to transform G into an aligned representation G using the following equation:

;:SXGerP, (6)

where S € RT denotes the relative scale and P = (P*, PY, P?) € R3 the relative translation. For
.clarity, we simplify Gras Gy = (ch, G;{, G?) € RU*3, considering only the transformation of
its U spatial coordinates.

Subsequently, to estimate the translation parameter P (i.e., the spatial location of G within Gy),
we employ a monocular depth estimator F gy, on the composite image Iy, ¢ (as defined in Eq. [2)
to recover a dense depth map of the scene. Guided by the foreground mask My, depth values
associated with the target region are isolated, from which the centroid depth of the foreground object
is derived. This depth estimate is further back-projected into 3D space, providing an initialization
of the foreground position P in the coordinate frame of Gy, which can be formulated as follows:

(P*,PY,P?) = ®(Dy (M = 1)cen))s Db, = Faepen(In,f), @)

where Dy, ; denotes the depth map estimated from the composite image I, s, (M = 1), indicates
the centroid pixel of the segmented foreground region, ®(-) represents the back-projection function
that maps a 2D pixel into 3D space based on its depth value. Notably, since we unify the world
coordinate system of the background with the camera coordinate system, the z-coordinate of P (i.e.,
P~?) is directly equal to the corresponding depth value Dy, ¢[(M; = 1)cen)-

For scale estimation, i.e., determining the size of G ; within Gy, we employ a depth-aware heuristic.
The key insight is that, under the reference viewpoint corresponding to I, ¢, the foreground object
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should be entirely visible within the image plane. This implies that, in 3D space, G must be
Sfully contained within the camera frustum of the reference view. Given the estimated depth P?, as
shown in Fig. E], the scale S is constrained such that all points of G f fall within the valid frustum slice
at depth P?, i.e., their z- and y-coordinates remain bounded by the image-plane limits defined at
that depth. Accordingly, we initialize .S as the maximum feasible scale that satisfies these geometric
bounds, which is formulated as follows:

min(min(P® — B%. . B%_ _— P*) min(PY — BY

min? Brynax — Py)) (8)

S = min’ —max
max((G]If)max - (G?)mina (Gz;f)max - (G’!J/”)min) /2
where B, ,BZ .. BY.  BY. . denote the horizontal and vertical boundaries of the camera frustum

at depth P~?, (G})max, (G;’i)min, (Gjyc)max, (szlf)min represent the maximum and minimum 2z- and
y-coordinates of the original foreground representation G s, respectively.

Optimization-based refinement. After obtaining the initial estimates of P and .S, we further
refine them to improve perceptual fidelity. The objective is to ensure that the rendered reference
view of the composed scene closely aligns with the composite image I, ¢. Accordingly, we optimize

P and S by minimizing the discrepancy between the rendered image ib., 7(P,S)and I, ;, formulated
as:
T 2
(P,S):argrglg HIb,f(PaS)_Ib,fHQ- (9)

Notably, our experiments reveal that simultaneously optimizing S and P introduces substantial am-
biguity, often leading to suboptimal local minima. To address this, we employ a sequential refine-
ment strategy: first optimizing the scale S, followed by refining the translation P. This progressive
scheme significantly reduces uncertainty and consistently yields more robust and reliable composi-
tion results.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Implementation details. We curate a dataset of 17 examples for evaluation, where each instance
consists of a foreground prompt Ty and a background prompt T%. Qwen-Image (Wu et al., 2025)
is employed to generate the background image I, from T, and Qwen-Image-Edit is further applied
to synthesize the composite image I ;. The foreground mask My is extracted from I, ; using
SAM (Kirillov et all [2023), and its depth map is estimated with Depth Anything (Yang et al.
2024)). Foreground 3D representations G ¢ are reconstructed with Trellis (Xiang et al., [2025)), and
the background 3D representation Gy, is produced using Viewcrafter (Yu et al., [2024).

Baselines. We compare CP4D against three categories of baselines: physics-driven simulation
methods, conditional video generation models, and text-to-4D approaches. For physics-driven
methods, we include PhysGen (Liu et al., 2024b)), PhysGen3D (Chen et al.| [2025a), and Omni-
PhysGS (Lin et al., [2025). For conditional video generation, we evaluate open-source models such
as CogVideoX (Yang et al., 2025) and Wan (Wan et al.| [2025), as well as proprietary systems in-
cluding Sora (OpenAl, 2024) and Runway (Runway! |2024). Finally, DreamGaussian4D (Ren et al.,
2023)) is selected as a representative text-to-4D baseline.

Metrics. To assess the quality of generated videos, we adopt VBench (Huang et al.,[2024)) for eval-
uating motion smoothness, subject consistency, and image quality. In addition, WorldScore (Duan
et al.,2025) is employed to measure photo consistency, 3D consistency, and motion smoothness. To
further assess prompt adherence, following PhysGen3D (Chen et al.| 2025a), we leverage GPT-40
to score generated videos across three dimensions: physical realism, photorealism, and semantic
alignment with the input prompt. Please refer to more details in Appendix

5.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

As illustrated in Fig. [4] we present two challenging cases for qualitative comparison. In the de-
formable object motion scenario (i.e., the left side of Fig. E]) Sora (OpenAll [2024) demonstrates
limited capability in accurately identifying the target object and modeling its physical dynamics,
and further synthesizes spurious motion patterns involving entities absent from the input image.
PhysGen3D (Chen et al.|, [2025a) reconstructs 3D meshes with low geometric fidelity and spatial
arrangements that violate physical plausibility, substantially degrading visual realism. Wan (Wan
et al.,[2025)) exhibits pronounced temporal instability due to color flickering, and fails to respond to
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With the view from the balcony
features a clear perspective of 4 \ With a simple, modern room with
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the railing and the distant - Sl minimalist furniture and decor
X =] ’
cityscape, the blue T-shirt and ——. the blue bottle fell onto the
white shirt hanging on the balcony ground and rebounds off the ground.

sway in the wind.

Figure 4: Qualitative comparisons. The top row shows the given text prompt and the correspond-
ing generated image. Our method generates temporally consistent and physically plausible videos,
outperforming baseline approaches in both visual fidelity and physical realism.

Model VBench WorldScore
MotionT ConsistencyT Imaging?T Photo Consist] 3D ConsistT Motion Smooth

Runwa; (2024 0.995 0.936 0.644 62.66 86.34 68.43
Sora 1@! m 0.993 0.904 0.592 52.95 64.26 33.44
CogVideoX-12V-5B (Yan. . 0.993 0.932 0.603 70.06 81.90 73.66
Wan2.2-TI2V-5B (Wan et al. 0.991 0.934 0.599 72.66 77.50 47.04
PhysGen (Liu et al.[[2024 0.996 0.966 0.621 88.34 90.04 81.67
PhysGen3D (Chen et al.|[2025a 0.997 0.963 0.599 93.07 92.99 90.95
OmniPhysGS (Lin et al. 0.995 0.960 0.356 22.54 48.80 92.88
DreamGaussian4D (Ren et al.| |2023} 0.969 0.846 0.477 14.59 40.29 34.73
Ours 0.998 0.972 0.641 97.42 95.55 93.52

Table 1: Quantitative comparisons. Bold: Best. Underline: Second Best. Our proposed method
consistently outperforms previous solutions on both VBench and WorldScore.

the motion prompt, resulting in static garments throughout the sequence. In contrast, our method
produces coherent, artifact-free motion grounded in the input image, with significantly improved
physical fidelity and temporal consistency. In the rigid-body collision scenario (i.e., the right side of
Fig.[)), PhysGen3D is restricted to elastic material simulation, causing the bottle to collapse unreal-
istically upon impact. Sora and Wan further undermine plausibility by replacing
the bottle with a different object post-collision, thereby breaking object identity and disrupting mo-
tion continuity. Compared to these methods, our approach preserves object identity throughout the
interaction and yields physically consistent collision outcomes. Kindly refer to more results in Ap-

pendix [Eland [F|

Quantitatively, as shown in Tab. [T} our method achieves superior motion coherence and temporal
smoothness, consistently outperforming both video generative models and physics-driven methods
across key dynamic metrics. Moreover, the generated videos exhibit high static visual quality, rival-
ing or even surpassing the strong closed-source baselines, particularly in terms of 3D consistency.
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Model Physical realism? PhotorealismT Semantic alignment{
Sora (OpenAl|[2024 0.547 0.729 0.665
Runway [Runway [(2024 0.670 0.753 0.732
Wan2.2-TI2V-5B (Wan et al. 2025} 0.576 0.626 0.635
PhysGen (Liu et al.[|2024b) 0.524 0.615 0.588
PhysGen3D (Chen et al.|[2025a 0.624 0.624 0.626
OmniPhysGS (Lin et al. 0.347 0.265 0.170
DreamGaussian4D (Ren et al.| |2023} 0.229 0.112 0.176
Ours 0.694 0.759 0.747

Table 2: GPT-40 Evaluation Results. Our proposed method can achieve the best results.
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Figure 5: Ablation study. Results of ablation  Figure 6: Editing results. Examples of back-
on optimizing VLM-estimated physical param-  ground environment and foreground object edit-
eters and foreground object positions. ing in generated 4D scenes.

Regarding physical plausibility, as demonstrated in Tab. 2} our method surpasses all competing ap-
proaches on the physics realism metric, while simultaneously maintaining strong alignment with the
input text, thereby ensuring high semantic consistency.

5.3 ABLATION STUDY

As illustrated in Sec. [d.2] to address inaccuracies in VLM-estimated physical parameters and the
limited precision of physics simulators, we employ SDS to separately optimize the material param-
eters predicted by VLMs and the relative positions of foreground objects. To verify the necessity
of these designs, we provide ablation studies here. As shown in Fig.[5] omitting material optimiza-
tion causes the VLM-predicted density and Young’s modulus to yield overly compliant simulations,
leading to unstable or non-physical object motion. Without relative position optimization, the simu-
lation of multi-object interactions produces spurious collisions in the absence of true spatial overlap.
When both optimization modules are applied, our method yields more stable dynamics and visually
plausible object interactions. More ablation studies are provided in the Appendix [D]

5.4 APPLICATIONS ON CONTROLLABLE EDITING

The compositional design of our method endows it with the inherent ability to edit individual con-
cepts, e.g., varying background environments and foreground objects with distinct motions. As
shown in Fig.[6] we can seamlessly replace them in a zero-shot manner while preserving scene co-
herence, physical plausibility, and temporal consistency, thereby enabling flexible and diverse 4D
content generation.

6 CONCLUSION

In this work, we have presented CP4D, a novel framework for photorealistic 4D scene generation
with faithful modeling of complex physical dynamics. Drawing inspiration from the compositional
nature of real-world scenes, CP4D follows a three-stage pipeline: 1) constructing 3D representa-
tions of background environments and foreground objects from textual prompts using pre-trained
expert models; 2) producing physically grounded trajectories and realistic interactions through a
hybrid motion synthesis strategy; and (3) seamlessly integrating static environments with dynamic
objects via an automated composition mechanism. Extensive experiments have demonstrated that
our proposed method consistently outperforms state-of-the-art baselines.
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APPENDIX FOR CP4D: COMPOSITIONAL
PHYSICS-AWARE 4D SCENE GENERATION

With the view from the balcony features a clear perspective of the railing and the
distant cityscape, the blue T-shirt and white shirt hanging on the balcony sway in the
wind.

With a simple, modern room with minimalist furniture and decor, the blue bottle fell onto
the ground and rebounds off the ground.

Figure 7: Fixed structural tokens appear in black, background descriptors in red, and motion-related
descriptors of foreground objects in blue.

System Prompt

You are a helpful assistant that pays attention to context and estimates the perceptual quality of a
video based on physical realism, photorealism, and semantic consistency.

User Prompt
(- A

I would like you to evaluate the quality of a generated videos based on the following criteria: physical
realism, photorealism, and semantic consistency. The evaluation will be based on 10 evenly sampled
frames from each video. Given the original image and the following instructions: '{prompt}', please
evaluate the quality of each video on the three criteria mentioned above.

Note that: Physical Realism measures how realistically the video follows the physical rules and whether
the video represents real physical properties like elasticity and friction. Photorealism assesses the
overall visual quality of the video, including the presence of visual artifacts, discontinuities, and
how accurately the video replicates details of texture, and materials. Semantic Consistency evaluates
how well the content of the generated video aligns with the intended meaning of the text prompt.

Please provide the following details for each video, scores should be ranging from 0-1, with 1 to be the
best:
Physical Realism Score: [a score]; Photorealism Score: [a score]; Semantic Consistency Score: [a score]

Note that your output should strictly follow the above format, with a ';' after each score. Do not give
any other explanations.

Figure 8: Prompt used for GPT-40 evaluation.

A  MORE EXPERIMENTAL DETAILS

A.1 DATASET CURATION

To construct a dataset capable of comprehensively evaluating adherence to physical laws, we adapt
textual prompts from VideoPhy Bansal et al.| (2024) and design a set of 17 representative prompts.
These prompts ensure coverage of at least two distinct examples for each physical category, includ-
ing rigid-body, elastic, deformable, and fluid dynamics. All prompts follow a standardized format
that explicitly defines both the background context and the motion of foreground objects, as il-
lustrated in Fig. [/} Given that several baseline methods operate in image-to-video or 3D-to-video
paradigms, we establish unified image and 3D foreground representations to enable fair compari-
son. We employ the Qwen-Image [Wu et al.| (2025) model to generate initial images conditioned
on each text prompt. We then apply Qwen-Image-Edit to produce corresponding background-only
images by removing foreground content. To obtain 3D representations of foreground objects, we
first apply the SAM [Kirillov et al.|(2023)) model to segment candidate regions and combine it with a
VLM to automatically select the segmentation mask that best aligns with the input text. This process
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yields a cropped image containing only the target foreground object. We subsequently use Trellis
to reconstruct a 3D-GS representation, denoted as G ¢, from the segmented foreground image. For
OmniPhysGS |Lin et al.| (2025), which supports only 3D-to-video generation, we use the resulting
G as input for physics simulation. Since this method does not support background conditioning,
its output is restricted to motion sequences rendered against a blank background. Similarly, Dream-
Gaussian4D Ren et al| (2023) inherently isolates the foreground during generation and produces
only 4D motion outputs of the foreground object without incorporating background context.

A.2 IMPLEMENTATION DETAILS

All experiments are conducted on NVIDIA A800 GPUs, each equipped with 40 GB of memory.
For material optimization, we employ distributed training across 8 GPUs to accelerate convergence,
whereas position optimization and all inference tasks are performed on a single GPU for efficiency.
We train the model using the Adam optimizer Kingma (2014), with 5 epochs dedicated to material
optimization and 100 epochs for position optimization. For the initialization of material properties
and external force conditions, our framework offers flexible support for both automatic estimation
using VLMs and manual specification by the user. For instance, in simulating elastic collisions,
users may freely select constitutive models (e.g., elastic or plastic) and manually specify physical
parameters such as density, Young’s modulus, and Poisson’s ratio. These user-provided material
attributes are subsequently refined during training to ensure the rendered output aligns perceptually
with visual expectations. To ensure spatial alignment with the input image, we render the full scene
from the camera viewpoint corresponding to the initial configuration of the background model.

A.3 EVALUATION BY GPT-40

Since no widely accepted, physics-focused evaluation metrics currently exist, we follow the ap-
proach of PhysGen3D |Chen et al.|(2025a) and additionally employ GPT-40 to conduct subjective
assessments. These evaluations score multiple dimensions relevant to physical plausibility, includ-
ing physical realism, photorealism, and semantic alignment. We adopt the evaluation prompt design
originally proposed in PhysGen3D |Chen et al.| (2025a); as their work has empirically demonstrated
strong alignment with human judgment, we apply only minor adaptations to tailor the prompt to our
dataset, without introducing substantial modifications. The complete evaluation prompt is illustrated

in Fig.[§]

B AUTOMATED INITIALIZATION ESTIMATION OF MATERIALS AND
EXTERNAL FORCES

To enable more intelligent initialization of an object’s material properties and external force
conditions aligned with task requirements, we leverage GPT-40 to estimate material parame-
ters—particularly for elastic and deformable materials, for which appropriate elastic and plastic
constitutive models must be selected. We have designed a dedicated prompt template for material
estimation; an example prompt targeting elastic materials is illustrated in Fig[9} Regarding external
loading conditions, we estimate initial parameters including gravity, additional external forces, ini-
tial velocities, and damping coefficients. The corresponding prompt template for these conditions is

presented in Fig[I0]

C HETEROGENEOUS PHYSICAL-SOLVERS

C.1 MPM SOLVER FOR ELASTIC AND FLEXIBLE OBJECTS

To simulate the dynamic behavior of elastic and flexible materials, we employ the Material Point
Method (MPM), a hybrid computational framework that combines the strengths of Lagrangian par-
ticle descriptions and Eulerian grid-based solvers. The continuum is discretized into a collection of
particles, each representing a small material region. These particles track several time-varying La-
grangian quantities, such as position x,,, velocity v, and deformation gradient F},. The conservation
of mass within the Lagrangian particles ensures the invariance of total mass during movement. In
contrast, the conservation of momentum is more intuitively represented in an Eulerian framework,
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You are a materials science expert. Based on the object name and description below, estimate its
physical parameters and select appropriate elasticity/plasticity model combinations for simulation.

Object Name: {object_name}
Object Description: {object_description}

Return exactly one line in this strict format:
density,Young's_modulus,Poisson_ratio," [elasticity _modell,elasticity_model2,...]"," [plasticity_modell,p
lasticity_model2,...]"

Parameter Ranges:

® Density: 50-20000 kg/m3

® Young's Modulus: 1e5-1el2 Pa

® Poisson’s Ratio: 0.0-0.5

Model Options:

® Elasticity: SigmaElasticity, CorotatedElasticity, StVKElasticity, VolumeElasticity, FluidElasticity
® Plasticity: IdentityPlasticity, DruckerPragerPlasticity, SigmaPlasticity, VonMisesPlasticity

Examples:
® Rubber: 1200,1000000,0.49," [SigmaElasticity,CorotatedElasticity]"," [SigmaPlasticity]”
® Water: 1000,2000000000,0.5," [FluidElasticity,VolumeElasticity]"," [IdentityPlasticity]"

Note: Do not explain. Do not add units. Do not use line breaks. Output only the comma-separated line.

Figure 9: Prompt template for automated material estimation.

You are a physics simulation expert specializing in intelligent physical parameter configuration for
physical simulation. Given the original image, the following instruction ‘{prompt}’, the object’s
spatial extent and the definition of coordinate system:

® +X axis: Horizontal direction pointing leftward in the image plane.

® +Y axis: Vertical direction pointing upward in the image plane.

® +7 axis: Orthogonal to the image plane (depth direction).

Please finish the following tasks:

Task:

Based on the object’s geometric properties and the intended simulation objective, determine the

following physical parameters:

® Gravity: According to image and instruction, is gravity required? (Yes/No). If yes, specify its 3D
vector direction (e.g., [0, -9.8, @] for downward gravity) and magnitude (in m/s?).

® External Force: Whether to apply forces other than gravity to the object; if needed, please set the
range and magnitude of the force according to the object's spatial extent.

® Initial Velocity: Is an initial velocity required? (Yes/No). If yes, specify its 3D vector direction
(e.g., [2.0, 0, @] for rightward motion) and magnitude (in m/s).

® Simulation Parameters: Recommend key parameters such as damping coefficients (e.g., global damping,
friction), time step size, justifying your choices based on stability and physical realism.

Please return the configuration in JSON format:

"gravity": [x, y, zl,

"force 1": {“force”: I[x, y, zl, “region”: {[x1, x21, [y1, y21, [x3, y31}} ,
"initial_velocity": [x, y, zl,

“simulation_params”: {“damping”: 0.8, "dt": 0.001}

Figure 10: Prompt template for automated external forces estimation.

which circumvents the need for mesh construction. We adhere to the methodology of Stomakhin et
al. Stomakhin et al.| (2013) to integrate these representations using C' continuous B-spline kernels
for bidirectional transfer. From time step ¢,, to ¢,,+1, the momentum conservation, discretized via
the forward Euler scheme, is expressed as:

(o1

[ ’U:L) 08\:[1 T n exi
AL T T zp: Vo o FoEn) Fpp n VWi, + fi 5 (10)

here, 7 and p denote the fields on the Eulerian grid and the Lagrangian particles, respectively; w;,
is the B-spline kernel defined on the i-th grid evaluated at x7;; Vp0 represents the initial volume, and
At is the time step size. The updated grid velocity field v?“ is subsequently transferred back to the
particle velocity vg“, updating the particle positions to xZ*l =, + Atvg“. We track F'i; rather

than both F' and F'p |Simo & Hughes|(2006), with updates to ng} achieved via:
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p =1000 kg/m?,

E = 1x10%Pa
p =500 kg/m3,
E = 1x10°Pa

p =1000 kg/m?,
E = 1x107Pa

Figure 11: Physical simulation results of elastic bodies under different density and Young’s modulus.

Fptl = (I+ AtVv,) F = <I + At Z vy+1ngT> . (1

This is regularized through an additional return mapping to facilitate plasticity evolution: Fg;l —
Z(FEth.

While the aforementioned methods effectively simulate the dynamics of individual objects, they ex-
hibit limitations when handling multi-object interactions. In the MPM solver, spatial discretization
via Eulerian grids inherently introduces slight geometric expansion of material regions. As a result,
during simulation rendering, collisions may visually manifest as “phantom contacts,” where objects
appear to interact prior to actual physical contact, as illustrated in Fig. 2] To mitigate this positional
artifact in multi-object scenarios, we introduce a post-simulation position refinement module specif-
ically designed for MPM outputs. This module optimizes the visual trajectories using an SDS loss,
thereby enhancing spatial accuracy and perceptual realism in the rendered results.

One critical factor limiting the fidelity of MPM simulations is the inappropriate specification of
material properties. For instance, when an object is assigned a high density but an excessively
low Young’s modulus, it exhibits unrealistically large deformations and overly soft behavior, as
illustrated in the first row of Fig. [[T} Through optimization of the physical parameters, particularly
by increasing the Young’s modulus to better reflect material stiffness, we obtain simulation results
that are significantly more realistic and physically plausible.

C.2 RIGID COLLISION SIMULATION

Our proposed method integrates traditional rigid body dynamics with 3D Gaussian particle render-
ing, establishing a unified framework for physics simulation and visual rendering. The core innova-
tion lies in representing complex 3D objects as collections of Gaussian particles while maintaining
rigid body constraints for physical accuracy.

1) Basic motion representation

The rigid body dynamics follow the Newton-Euler equations: Translational Motion:
F=mv,x=v, (12)
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Figure 12: Multi-puck rigid-body collision cases in shuffleboard simulation.

Rotational Motion: )
T:Iw,q:§q®w, (13)

where ® denotes quaternion multiplication, and F' and 7 represent the net force and torque acting
on the rigid body, respectively.

A key contribution of our approach is the computation of the inertia tensor based on the actual
Gaussian particle distribution rather than simplified geometric approximations:

I= Zmi(rfI—rig)ri), (14)

where m; is the mass of the i-th Gaussian particle, r; is the position vector relative to the center of
mass, and I is the identity matrix. This formulation ensures that the rotational dynamics accurately
reflect the object’s true geometric distribution.

2) Collision detection and response

Ground Collision Detection. Our system implements precise collision detection based on the Gaus-
sian particle distribution. For ground collisions, the system identifies contact particles:

C= {xi LY < hground + 6}; (15)
where hground is the ground height and € is a small tolerance for numerical stability.

Impulse-Based Collision Response. The collision response employs an impulse-based approach:
Linear Impulse:

v-n
J=—14¢)——mF, 16
ey (16)

Angular Impulse:
T=rxJ, 17)

where r is the vector from the center of mass to the collision point, and e is the coefficient of
restitution.

Inter-Body Collision Detection. The system implements pairwise collision detection between rigid
bodies:
dij = lIxi = %5 = (rs +75), (18)

where d;; is the separation distance between bodies ¢ and j, and r;, r; are their respective radii.

C.3 POSITION-BASED DYNAMICS SOLVER FOR FLUID OBJECTS

The PBD framework operates on the fundamental principle of constraint satisfaction rather than
force integration. For fluid simulation, the primary constraint is density preservation:

Ci(Xl,XQ,-.-,Xn) = pPi — Po, (19)

where p; is the current density of particle ¢, and pg is the target density. The position correction is
computed as:

Ax; = Aivci (20)

%
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D

Figure 13: An example of raindrop falling simulated using the PBD solver. Raindrops are visually
scaled up here to facilitate observation of fluid motion dynamics.

where )\; is the Lagrange multiplier associated with the density constraint.
1) Our PBD solver
Our PBD fluid solver incorporates multiple physical effects through configurable parameters:

Cohesion Force:

Fcohesion = Qcohesion * (Xcenter - Xi) . ||Xcente7‘ - xi||7 (21)
where Qconesion 18 the cohesion strength parameter, and X et 1S the center of mass of all particles.

Surface Tension:

Fsurface = Osyrface (Xlocal - Xi)a (22)
where X;,cq; s the local center of neighboring particles within a radius r, and cvsyr face controls
surface tension strength.

Turbulence Force:

sin(wyy;)
Frurbuience = Qurbulence * Cos(wzzi) s (23)
sin(wg ;)
where w,, wy, w, are spatial frequencies, and otzyrbuience cONtrols turbulence intensity.

2) Efficiency optimization. For computational efficiency, we employ a simplified neighbor search
strategy:

M = {.7 : ||X7, - xj” < Tsearch}y 24
where 74cqrcn 18 the search radius, typically set to 3 - 7particle. The neighbor weights are computed
as:

1

- . (25)
1+ ||xl —Xj H/rparticle

Wi

3) Constraint Projection Algorithm Density Constraint Projection. The density constraint pro-
jection follows an iterative approach: Lagrange Multiplier Computation:

CZ‘ (X)

A= (26)
2 IVCi? +e
Position Correction:
Iterative Refinement:
xi T = xF + Ax;, (28)

where k denotes the iteration number, and e is a small regularization term.
Boundary Constraint Handling. Boundary constraints are enforced through position clamping
and velocity reflection: Position Clamping:

clamped

; = clamp(X;, Xmin, Xmaz )- (29)

Velocity Reflection:
v;"eflected =V (_,Ufbounce)y (30)
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(c) Rendered results with both position and scale initialization.

Figure 14: Qualitative comparisons of ablation studies on the position initialization and scale ini-
tialization illustrated in Sec.f.3]

Metrics Refinement (Sec. Composition (Sec.

w/o O,, w/o O, ours w/o O wio O ours
Motion 0.955 0.957 0.958 0.509 0.939 0.975
Consistency 0.962 0.994 0.995 0.689 0.999 0.989
Imaging 0.556 0.627 0.628 0.549 0.543 0.640
PhysReal 0.5 0.0 0.8 04 0.0 0.7
PhotoReal 0.7 0.8 0.9 0.7 0.8 0.8
Align 0.6 0.0 1.0 0.6 0.0 0.9

Table 3: Quantitative ablation study results. Motion Smoothness (Motion) is evaluated using the
WorldScore benchmark, while Subjective Consistency (Consistency) and Imaging quality (Imaging)
metrics are derived from VBench. Physical Realism (PhysReal), Photographic Realism (PhotoReal),
and Semantic Alignment (Align) are assessed by GPT-4o.

where fipounce 1S the boundary bounce coefficient.
Diverse motion effects
The solver incorporates directional flow effects:
Friow = 0fiow - dfiow
where d f;4,, is the flow direction vector, and o f4,, controls flow strength.
Random perturbations are added to simulate natural fluid irregularities:
Froise = Qnoise - N(0,1)

where A/ (0, I) represents Gaussian noise with zero mean and unit variance.

D ADDITIONAL ABLATION STUDIES

To further validate the effectiveness of our design choices, we conduct additional ablation studies.
As illustrated in Fig. [T4] during the stage where background environments and foreground objects
are composed into a coherent 4D scene (i.e., Sec. @), omitting position initialization from the
monocular depth estimator causes foreground objects to be incorrectly occluded by the background,
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thereby degenerating the output into a purely 3D scene. Similarly, removing scale initialization
results in oversized foreground objects, which introduce severe visual artifacts.

As shown in Tab. [3] we also report quantitative comparisons. For the video generative model-based
refinement described in Sec.[d.2] omitting the physical material refinement (O,,,) or the relative po-
sition refinement (O,,) leads to clear performance degradation across multiple metrics, while our full
model achieves the best results. Similarly, for the composition stage described in Sec.[4.3] removing
the scale initialization (O,) or the position initialization (O,) ubstantially degrades performance.
These results highlight the necessity of both refinement and composition strategies for producing
physically plausible and visually coherent 4D scenes.

E MORE VISUAL COMPARISONS WITH BASELINES

As shown in Fig. [T3] Fig. [16] Fig.[I7] and Fig.[I8] we provide additional visual comparisons with
all baseline methods. These results highlight that our method achieves state-of-the-art quality, char-
acterized by high visual fidelity, strong physical plausibility, and fine-grained controllability.

F RESULTS OF RENDERED MULTI-VIEW VIDEOS BY GENERATED 4D SCENE

As shown in Fig. Fig. Fig. and Fig. our method is able to generate complete 4D
scenes and render consistent and physically plausible multi-view videos.

G LIMITATIONS AND FUTURE WORKS

Our approach adopts a stage-wise optimization strategy for each scene, which leads to relatively
long runtimes when generating a complete physically realistic 4D scene. In future work, we plan to
leverage the proposed framework to construct a large-scale 4D physical dataset and use it to train
feed-forward generative models for 4D scene synthesis.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, LLMs were only used to correct grammar and improve readability. They were not
employed in any other part of the research process.

ETHICS STATEMENT

This work does not involve human subjects, animal experiments, or the use of personally identifiable
or sensitive information. The research presents no known risks of harm, bias, discrimination, or
misuse, and raises no concerns regarding privacy, security, legal compliance, or research integrity.
The authors have no conflicts of interest or external sponsorship that could influence the research
outcomes.

REPRODUCIBILITY STATEMENT

‘We have taken steps to ensure the reproducibility of our results. All experimental details and imple-
mentation choices are described in the main text and appendix. The complete source code will be
made publicly available upon publication to facilitate reproduction and further research.
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Figure 15: Qualitative visualization results of our method and the baselines.
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Figure 16: Qualitative visualization results of our method and the baselines.
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Figure 17: Qualitative visualization results of our method and the baselines.
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Figure 18: Qualitative visualization results of our method and the baselines.
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View 1 View 2 View 1

View 2

Figure 19: Visualization results of the motion process observed from different viewpoints

Figure 20: Visualization results of the motion process observed from different viewpoints
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Figure 21: Visualization results of the motion process observed from different viewpoints

Figure 22: Visualization results of the motion process observed from different viewpoints
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