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Abstract
A central question in the theory of machine learning concerns the identification of
classes of data distributions for which one can provide computationally efficient
learning algorithms with provable statistical learning guarantees. Indeed, in the
context of probably approximately correct (PAC) learning, there has been much
interest in exploring intermediate PAC learning models that, unlike the realizable
PAC learning setting, allow for some stochasticity in the labels, and unlike the
fully agnostic PAC learning setting, also admit computationally efficient learning
algorithms with finite sample complexity bounds. Some examples of such models
include random classification noise (RCN), probabilistic concepts, Massart noise,
and generalized linear models (GLMs); in general, most of this work has focused
on binary classification problems. In this paper, we study what we call realizable-
statistic models (RSMs), wherein we allow stochastic labels but assume that some
vector-valued statistic of the conditional label distribution comes from some known
function class. RSMs are a flexible class of models that interpolate between the
realizable and fully agnostic settings, and that also recover several previously
studied models as special cases. We show that for a broad range of RSM learning
problems, where the statistic of interest can be accurately estimated via a convex
‘strongly proper composite’ surrogate loss, minimizing this convex surrogate loss
yields a computationally efficient learning algorithm with finite sample complexity
bounds. We then apply this result to show that various commonly used (and in some
cases, not so commonly used) convex surrogate risk minimization algorithms yield
computationally efficient learning algorithms with finite sample complexity bounds
for a variety of RSM learning problems including binary classification, multiclass
classification, multi-label prediction, and subset ranking. For the special case
of binary classification with sigmoid-of-linear class probabilities (also a special
case of GLMs), our results show that minimizing the standard binary logistic
loss has a similar sample complexity as the GLM-tron algorithm of Kakade et al.
(2011), but is computationally more efficient. In terms of the distribution over
the domain/instance space, our results are all distribution-independent. To our
knowledge, these are the first such results for PAC learning with stochastic labels
for such a broad range of learning problems.

1 Introduction
The probably approximately correct (PAC) learning model is a cornerstone in the theory of machine
learning. The two most widely studied settings, namely the realizable and fully agnostic settings,
both represent somewhat extreme tradeoffs between computational efficiency and statistical modeling
power: The realizable setting, as originally proposed by Valiant [38], often admits computationally
efficient learning algorithms, but makes the restrictive statistical assumption that examples are labeled
by a deterministic target function (from some known function class); the (fully) agnostic setting
[23, 29] allows for fully general joint probability distributions on the labeled examples, but often fails
to admit computationally efficient learning algorithms. Consequently, there has been much interest
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in exploring intermediate PAC learning models that both allow for some stochasticity in the labels,
and admit computationally efficient learning algorithms with finite sample complexity bounds. Some
examples of such models include random classification noise (RCN) [4, 13, 10, 17, 27, 21, 22, 30, 20],
probabilistic concepts [28], Massart noise [36, 37, 35, 31, 6, 7, 8, 40, 45, 19, 15, 14], and (univariate)
generalized linear models (GLMs) and single index models (SIMs) [26, 25]. In general, most of this
work has focused on binary classification problems.

In this paper, we study what we call realizable-statistic models (RSMs), wherein we allow stochastic
labels but assume that some vector-valued statistic of the conditional label distribution comes from
some known function class. RSMs are a flexible class of models that interpolate between the realizable
and fully agnostic settings, and that also recover several previously studied models as special cases.
We show that for a broad range of RSM learning problems, where the statistic of interest can be
accurately estimated via a convex ‘strongly proper composite’ surrogate loss, minimizing this convex
surrogate loss yields a computationally efficient learning algorithm with finite sample complexity
bounds. We then apply this result to show that various commonly used (and in some cases, not
so commonly used) convex surrogate risk minimization algorithms yield computationally efficient
learning algorithms with finite sample complexity bounds for a variety of RSM learning problems
including binary classification, multiclass classification, multi-label prediction, and subset ranking. In
terms of the distribution over the domain/instance space, our results are all distribution-independent.

Technically, our work involves the following components. First, after defining RSMs, we define the
notion of ‘strongly proper composite’ surrogate losses for estimating a desired statistic τ (generalizing
previous definitions of strongly proper composite surrogate losses for binary and multiclass class
probability estimation [3, 42]).1 Second, we give a general surrogate regret transfer bound for any
RSM learning problem for which the statistic of interest can be accurately estimated via a strongly
proper composite surrogate loss; this allows us to upper bound the target loss based regret in terms of
the surrogate regret. Third, we use uniform convergence techniques to upper bound the surrogate
regret of an (approximate) surrogate risk minimization algorithm, thus also upper bounding the target
loss based regret for such an algorithm. We give two such results: one using d1 covering numbers, and
the other using Rademacher complexities. For the result in terms of Rademacher complexities, we
make use of a vector-contraction inequality due to [32] to upper bound the Rademacher complexities
of the loss function class ψF associated with a vector-valued function class F and a surrogate loss
ψ (that acts on vector-valued predictions and is Lipschitz w.r.t. the Euclidean metric) in terms of
the Rademacher complexities of the real-valued projection classes F j . For the result in terms of
d1 covering numbers, we give a (to our knowledge, new) technical lemma that upper bounds the d1
covering numbers of the loss function class ψF associated with a vector-valued function class F and a
surrogate loss ψ (that acts on vector-valued predictions and is Lipschitz w.r.t. the L1 metric) in terms
of the d1 covering numbers of the projection classes F j ; this lemma may also be of independent
interest. Finally, we show how these results can be applied to a variety of RSM learning problems.

While our results are broadly applicable to many RSM formulations, for each of the applications
we consider, we include specific instantiations to RSM learning problems with sigmoid/softmax-of-
(multi-)linear forms for the statistics of interest, which can also be viewed as (multivariate) GLMs
(see Table 1 for a summary). For the applications to binary classification (with 0-1 loss), multi-label
learning (with Hamming loss), and subset ranking (with discounted cummulative gain (DCG) based
loss), the Rademacher complexity based result gives tighter sample complexity bounds than those
based on d1 covering numbers. For the application to multiclass classification (with 0-1 loss), the
two results are complementary: for n classes and data dimension p, the d1 covering number based
result gives a dimension-dependent sample complexity bound of Õ(np/ϵ2) for achieving squared
estimation error ≤ ϵ; the Rademacher complexity based result gives a dimension-independent bound
of Õ(n2/ϵ2). For the special case of binary classification with sigmoid-of-linear class probabilities,
our results show that minimizing the standard binary logistic loss has a similar sample complexity
as the GLM-tron algorithm of Kakade et al. (2011), but is computationally more efficient. In
particular, the sample complexity for achieving squared estimation error ≤ ϵ is Õ(1/ϵ2) for both
algorithms; however, the computational complexity of GLM-tron is Õ(p/ϵ3), whereas that of the
logistic regression algorithm is Õ(p/ϵ5/2).

1We note that the usage of the term ‘proper’ here is related to that in ‘proper scoring rules’ in the probability
forecasting literature (see for example [12, 33, 34, 39, 1, 2] and references therein), and is distinct from that in
‘proper learner’ as commonly used in the PAC learning literature.
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Table 1: Summary of selected PAC learning results with stochastic labels (results selected for
comparison with ours, which are shown in red). Note that in terms of the distribution on the domain
X , the results shown here are all distribution-independent. Here LTF stands for ‘linear threshold
function’. See Appendix A for details of the assumptions associated with RCN, Massart noise, GLM,
and SIM. See Section 2 for details of notation used in the last row. The computational complexities
listed for RSMs all assume implementations using Nesterov’s accelerated gradient descent (AGD).

Assumption on conditional Learning target Sample Sample Computational
label distribution complexity complexity complexity
P(Y |X = x) (for squared (for target (m = sample

estimation loss based complexity from
error ≤ ϵ) regret ≤ ϵ) column 3 or 4)

Binary classification with 0-1 loss [X ⊆ Rp, Y = Ŷ = {±1}]
Noisy LTF: RCN [10, 17, 21] Best LTF poly(p, 1/ϵ) poly(p, 1/ϵ)

Noisy LTF: Massart noise [15] Upper bound η on Õ(poly(p)/ϵ3) poly(p, 1/ϵ)
Massart noise

GLM [25] Best LTF Õ(1/ϵ2) Õ(m3/2p)

SIM [25] Best LTF (i) Õ(p/ϵ3) (i) Õ(m4/3p)

(ii) Õ(1/ϵ4) (ii) Õ(m5/4p)

Sigmoid-of-linear Best LTF Õ(1/ϵ2) Õ(1/ϵ4) Õ(m5/4p)
[as special case of RSMs]

Multiclass classification with 0-1 loss (n classes) [X ⊆ Rp, Y = Ŷ = [n]]
Softmax-of-multilinear Best multilinear (i) Õ(np/ϵ2) (i) Õ(np/ϵ4) (i) Õ(m5/4np)

[as special case of RSMs] multiclass classifier (ii) Õ(n2/ϵ2) (ii) Õ(n2/ϵ4) (ii) Õ(m5/4np)

Multi-label prediction with Hamming loss (s tags) [X ⊆ Rp, Y = Ŷ = {0, 1}s]
Sigmoid-of-linear marginals Best multilinear multi- Õ(s3/ϵ2) Õ(s5/ϵ4) Õ(m5/4sp)
[as special case of RSMs] label prediction model

Subset ranking with DCG metric (s items, r rating levels) [X ⊆ Rp, Y = {0, 1, . . . , r}s, Ŷ = Πs]
Sigmoid-of-linear scaled Best multilinear Õ(s3/ϵ2) Õ(r4s5/ϵ4) Õ(m5/4sp)
marginal expectations subset ranking model
[as special case of RSMs]

General learning problem (general X , Y , Ŷ) with general loss matrix L ∈ RY×Ŷ
+

RSM: Best prediction model
Õ
(

ρ22d
2+B2

γ2ϵ2

)
Õ
(

κ4(ρ22d
2+B2)

γ2ϵ4

)
Õ(m5/4t)

τ ◦ p ∈ Q, in H ⊆ ŶX , where
where p : X→∆Y with where H = pred ◦ Q where where t = number
py(x) = P(Y = y|X = x), for pred : Rd→Ŷ s.t. Rm(Fj) Rm(Fj) of parameters
τ : ∆Y→Rd and Q ⊆ (Rd)X (τ , pred) is L-calibrated ≤ C√

m
≤ C√

m
to be learned

Organization of the paper. Section 2 sets up the learning problem, defines RSMs, and gives our
main results. Sections 3–6 then apply our results to binary classification, multiclass classification,
multi-label learning, and subset ranking, respectively. All proofs can be found in the Appendix.

Notation. We denote by Z+ the positive integers, and denote R+ = [0,∞), R++ = (0,∞),
R = [−∞,∞], R+ = [0,∞]. For a positive integer n, [n] := {1, . . . , n}, and Πn = {π :
[n]→[n] |π is a bijection}. For a matrix A, we denote by aj the j-th column vector of A. For
a finite set Y , ∆Y := {p ∈ RY

+ |
∑
y∈Y py = 1}; for Y = [n], abbreviate ∆n := ∆[n]. We

denote by 1(·) the indicator function. For a vector u ∈ Rn, argsort(u) := {π ∈ Πn |ui >
uj =⇒ π(i) < π(j)}. For two vectors u1,u2 ∈ Rn, the d1 distance between them is
d1(u1,u2) := 1

n∥u1 − u2∥1. We use N1 to denote d1 covering numbers. For a set X , a class
of real-valued functions F ⊆ {f : X→R}, an integer m ∈ Z+, and an underlying proba-
bility distribution µ on X , we denote the Rademacher complexity of F for sample size m as
Rm(F) := E(X1,...,Xm)∼µm [E(ϵ1,...,ϵm)[supf∈F

1
m

∑m
i=1 ϵif(Xi)]], where ϵi are i.i.d. Rademacher

random variables (each taking values +1 or −1 with probability 1
2 each). For a set C, an objective

function f : C→R, and a positive real number α > 0, an α-approximate minimizer of f over C
returns a solution ĉ ∈ C satisfying f(ĉ) ≤ infc∈C f(c) + α.
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2 Realizable-Statistic Models (RSMs) and Main Results
Section 2.1 sets up the learning problem and formally defines RSMs. Section 2.2 starts by defining
some useful tools and then gives our main results.

2.1 Realizable-Statistic Models (RSMs)

Problem setup. We will consider a fairly general supervised learning setup. Specifically, let X be an
instance space, and Y, Ŷ be finite label and prediction spaces, respectively.2 Let ℓ : Y × Ŷ→R+ be a
target loss function, where for each y ∈ Y , ŷ ∈ Ŷ , the loss ℓ(y, ŷ) is the cost of predicting ŷ when
the true label is y; equivalently, we will represent the loss function via a loss matrix L ∈ RY×Ŷ

+ , with
(y, ŷ)-th element given by Ly,ŷ = ℓ(y, ŷ). Let D ∈ ∆X×Y be a joint probability distribution over
X ×Y , which we will often write as D = (µ,p), where µ ∈ ∆X is the marginal of D over X and p :
X→∆Y denotes the conditional distribution over Y given an instance in X . Given a training sample
S = ((X1, Y1), . . . , (Xm, Ym)) containing labeled examples drawn i.i.d. from D, the goal is to learn
a prediction model h : X→Ŷ with small expected loss on a new example drawn from D, which we
will refer to as the L-error or L-risk of h: erLD[h] = E(X,Y )∼D[LY,h(X)]. In particular, for a class of
models H ⊆ {h : X→Ŷ} and a class of probability distributions D ⊆ ∆X×Y , a learning algorithm
A that maps training samples S ∈ ∪∞

m=1(X × Y)m to prediction models ĥS ∈ H is a probably
approximately correct (PAC) learning algorithm for the learning problem (L,H,D) with target loss
sample complexity function mL

A : R+ × (0, 1]→Z+ if for every ϵ > 0, δ ∈ (0, 1], every probability
distribution D ∈ D and every m ≥ mL

A(ϵ, δ), PS∼Dm

(
erLD[ĥS ] − infh∈H erLD[h] > ϵ

)
< δ, and

moreover, for every ϵ, δ, mL
A(ϵ, δ) is the smallest integer satisfying the above. We will sometimes

denote by erLD[H] := infh∈H erLD[h] the best L-error for D within H.

Realizable-statistic models (RSMs). The essence of our realizable-statistic models (RSMs) is to
allow the labels to be stochastic and assume that some (vector-valued) ‘statistic’ of the conditional
label distribution p(x) =

(
P(Y = y|X = x)

)
y∈Y (associated with the underlying data distribution

D) belongs to some class of (vector-valued) functions Q; in other words, we will assume that a
statistic τ of the conditional label distribution p(x) is ‘Q-realizable’. Formally, for any C ⊆ Rd and
d-dimensional statistic τ : ∆Y→C, and any class of functions Q ⊆ {q : X→C}, define the class of
(τ ,Q)-RSM distributions over X × Y as follows:

D(τ ,Q)-RSM =
{
D = (µ,p) ∈ ∆X×Y

∣∣ ∃ q ∈ Q s.t. τ (p(x)) = q(x) ∀x ∈ X
}
.

We will be interested in solving learning problems of the form (L,H,D(τ ,Q)-RSM). We note that
the realizable and (fully) agnostic PAC learning models can both be recovered as special cases
of RSMs; all the previously studied intermediate PAC learning models listed in Table 1 can also
be recovered as special cases of RSMs (see Appendix B). Our algorithms for solving (certain
types of) RSM learning problems of the form (L,H,D(τ ,Q)-RSM) will typically do the following:
given a training sample S, they will first (sometimes implicitly) find an estimate q̂S : X→C for
the true statistic function q∗(x) = τ (p(x)), and then will return a prediction model ĥS : X→Ŷ
effectively constructed from q̂S . Accordingly, for such an algorithm A, in addition to its target loss
sample complexity mL

A defined above, we will also be interested in its squared τ -estimation error
sample complexity function mτ

A : R+ × (0, 1]→Z+, where for every ϵ > 0, δ ∈ (0, 1], mτ
A(ϵ, δ)

is the smallest integer such that every probability distribution D ∈ D and every m ≥ mτ
A(ϵ, δ),

PS∼Dm

(
EX∼µ[∥q̂S(X)− q∗(X)∥22] > ϵ

)
< δ.

2.2 Main Results

We start by defining some tools that will be needed for our main results – specifically, the tools of
L-calibrated statistics and strongly proper composite surrogate losses. Before doing so, we recall:

Definition 1 (Bayes L-error and Bayes L-optimal model). Let L ∈ RY×Ŷ
+ be any loss matrix. The

Bayes L-error for D, denoted erL,∗D , is the smallest L-error under D over all possible prediction
models: erL,∗D = infh:X→Ŷ erLD[h]. A Bayes L-optimal model for D, denoted hL,∗D : X→Ŷ , is any
prediction model that achieves the Bayes L-error for D: erLD

[
hL,∗D

]
= erL,∗D .

2Our model and results easily extend to more general Y, Ŷ; we take these to be finite for simplicity.
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Definition 2 (L-calibrated statistics [2]). Let L ∈ RY×Ŷ
+ be any loss matrix. Let d ∈ Z+ and

C ⊆ Rd. A statistic τ : ∆Y→C is L-calibrated if ∃ a mapping pred : C→Ŷ such that for all
distributions D = (µ,p) ∈ ∆X×Y , a Bayes L-optimal model for D can be obtained from τ (p(x))

as hL,∗D (x) = pred(τ (p(x))). We will also say the statistic-mapping pair (τ , pred) is L-calibrated.

The convex surrogate risk minimization algorithms we will consider will minimize the empirical
surrogate risk 1

m

∑m
i=1 ψ(yi, f(xi)), for some suitably defined convex surrogate loss ψ : Y ×C′→R+

that acts on vector predictions in some convex set C′ ⊆ Rd′ (for a suitable integer d′), over some class
of vector-valued functions F ⊆ {f : X→C′} to learn a vector-valued function f̂S ∈ F , and then will
return a prediction model ĥS : X→Ŷ of the form ĥS(x) = decode(f̂S(x)) for a suitable decoding
function decode : C′→Ŷ . We will be especially interested in surrogate losses whose minimization
yields accurate estimates of a desired statistic τ : ∆Y→C. To this end, we define below the notion
of strongly proper (composite) surrogate losses ψ for a statistic τ , for which the expected surrogate
loss EY∼p[ψ(Y,u)] is ‘strongly’ minimized at (possibly an invertible transformation of) the correct
statistic value τ (p); this generalizes the definition of strongly proper (composite) surrogate losses for
binary and multiclass class probability estimation [3, 42] to estimation of general statistics:3

Definition 3 (Strongly proper composite surrogate losses for a statistic τ ). Let d ∈ Z+ and
C ⊆ Rd, and let τ : ∆Y→C be any statistic of interest. Let d′ ∈ Z+, and let C′ ⊆ Rd′ be such that C
is in one-to-one correspondence with a subset of C′. If C is in one-to-one correspondence with C′

itself, then let λ : C→C′ be an invertible mapping with inverse λ−1 : C′→C; otherwise, let λ : C→C′

be a one-to-one mapping and let S = {Sq : q ∈ C} be a partition of C′ such that λ(q) ∈ Sq ∀q ∈ C,
and let λ−1 : C′→C denote an ‘extended’ inverse that assigns λ−1(u) = q ∀u ∈ Sq. Let γ > 0. A
surrogate loss ψ : Y × C′→R+ acting on C′ is γ-strongly proper composite for statistic τ with link
function λ if EY∼p[ψ(Y,u)− ψ(Y,λ(τ (p)))] ≥ γ

2 ∥λ
−1(u)− τ (p)∥22 ∀p ∈ ∆Y , u ∈ C′.

We are now ready to state our main results. We start by giving a general surrogate regret transfer bound
for RSM learning problems for which the statistic of interest admits a strongly proper composite
surrogate loss; this allows us to upper bound the target loss based regret in terms of the surrogate
regret. Specifically, the theorem below effectively shows that given a target loss L, an L-calibrated
statistic-mapping pair (τ , pred) satisfying a certain condition (which allows the L-regret to be upper-
bounded by the squared τ -estimation error), a class of ‘statistic’ functions Q, and a strongly proper
composite surrogate loss ψ for τ with link function λ, for any data distribution D ∈ D(τ ,Q)-RSM,
both the squared τ -estimation error of any q ∈ Q and the target L-regret (excess L-risk) of a model
h = pred ◦ q in the class of models H = pred ◦ Q can be upper bounded in terms of the surrogate
ψ-regret (excess ψ-risk) of the vector-valued function f = λ◦q in the class of vector-valued functions
F = λ ◦ Q. The proof of this theorem is inspired by the proof of a surrogate regret transfer bound
given in a different context (Bayes consistent multi-label learning with the F -measure) by [43].
Theorem 1 (Surrogate regret transfer bound for RSMs that admit strongly proper composite
surrogate losses). Let X be any instance space and Y, Ŷ be any label and prediction spaces,
respectively. Let L ∈ RY×Ŷ

+ be a loss matrix. Let d ∈ Z+ and C ⊆ Rd. Let τ : ∆Y→C and
pred : C→Ŷ be such that (τ , pred) is an L-calibrated statistic-mapping pair, and suppose ∃κ > 0
s.t.

EY∼p[LY,pred(q)]−minŷ∈Y EY∼p[LY,ŷ] ≤ κ∥q− τ (p)∥2 ∀p ∈ ∆Y ,q ∈ C .
Let Q ⊆ {q : X→C} be a class of ‘statistic’ functions, and let ψ : Y × Rd→R+ be a γ-strongly
proper composite surrogate loss for τ with link function λ : C→Rd.4 Let H ⊆ {h : X→Ŷ} be
defined as H := pred ◦ Q = {h : X→Ŷ | ∃q ∈ Q s.t. h(x) = pred(q(x)) ∀x ∈ X}, let F ⊆ {f :
X→Rd} be defined as F := λ ◦ Q = {f : X→Rd | ∃q ∈ Q s.t. f(x) = λ(q(x)) ∀x ∈ X}, and

3The reason for introducing a new space C′ ⊆ Rd′ is that often it is easier to minimize a surrogate loss acting
on a space C′ different from C (in many of our examples, we will have C ⊊ Rd, d′ = d and C′ = Rd).

4As in Definition 3, if C is in one-to-one correspondence with Rd itself, then we will assume that λ : C→Rd

is an invertible mapping with inverse λ−1 : Rd→C; otherwise, we will assume that λ : C→Rd is a one-to-one
mapping and S = {Sq : q ∈ C} is a partition of Rd such that λ(q) ∈ Sq ∀q ∈ C, and λ−1 : Rd→C denotes
an ‘extended’ inverse that assigns λ−1(u) = q ∀u ∈ Sq. Note that in the notation of Definition 3, here we have
set d′ = d and C′ = Rd (this is both for simplicity and because this suffices for our examples); however, the
theorem easily extends to any suitable d′ and C′.
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define decode : Rd→Ŷ as decode := pred ◦ λ−1. Suppose that ψ(y, f(x)) ∈ [0, B] ∀x ∈ X , y ∈
Y, f ∈ F for some B > 0. Then for any f ∈ F and any D ∈ D(τ ,Q)-RSM,

erLD[decode ◦ f︸ ︷︷ ︸
h

]−erLD[H] ≤ κ ·
√
EX [∥λ−1(f(X))− τ (p(X))∥22] ≤ κ ·

√
2
γ (erψD[f ]− erψD[F ]) .

In practice, when applying the above theorem, it will often be the case that the class of ‘statistic’
functions Q is of the form Q = σ ◦ F for some pre-specified class of vector-valued functions F
(such as bounded multi-linear functions) and some ‘transfer’ function σ; in such settings, it can be
helpful to choose a strongly proper composite surrogate loss whose inverse link function λ−1 is
matched to σ (we will see several examples of this in the next few sections).

The above result can be combined with any upper bound on the surrogate ψ-regret in F to yield
upper bounds on both the squared τ -estimation error and the target L-regret in H, which in turn
can then be converted to sample complexity bounds. The following two results make this concrete
for standard unregularized surrogate risk minimization; the first result makes use of d1 covering
numbers, while the second makes use of Rademacher complexities. For the result in terms of d1
covering numbers, we make use of standard uniform convergence techniques, together with a (to our
knowledge, new) technical lemma (given in Appendix B) that upper bounds the d1 covering numbers
of the loss function class ψF = {ψf : X × Y→R+ | ∃f ∈ F s.t. ψf (x, y) = ψ(y, f(x))} associated
with a vector-valued function class F and a surrogate loss ψ (that acts on vector-valued predictions
and is Lipschitz w.r.t. the L1 metric) in terms of the d1 covering numbers of the real-valued projection
function classes {F j}j (defined below); this lemma may also be of independent interest. For the result
in terms of Rademacher complexities, we make use of uniform convergence techniques, together
with a vector-contraction inequality due to [32] that upper bounds the Rademacher complexities of
the loss function class ψF associated with a vector-valued function class F and a surrogate loss ψ
(that acts on vector-valued predictions and is Lipschitz w.r.t. the Euclidean metric) in terms of the
Rademacher complexities of the real-valued projection classes {F j}j .
Theorem 2 (RSM learning bounds for surrogate risk minimizers via d1 covering numbers).
Under the conditions of Theorem 1, suppose the surrogate loss ψ is ρ1-Lipschitz in the second
argument with respect to the L1 metric, so that ψ(y,u1) − ψ(y,u2) ≤ ρ1 ∥u1 − u2∥1 ∀y,u1,u2,
and suppose that the function classes F j = {fj : X→R | ∃f ∈ F s.t. fj(x) = (f(x))j ∀x}, j ∈ [d]
each have bounded d1 covering numbers N1(ϵ,F j ,m) (polynomial in m and 1/ϵ). Then a surrogate
risk minimization algorithm A which, given a training sample S of size m, finds an (16B/

√
m)-

approximate minimizer f̂S ∈ F of the empirical surrogate risk 1
m

∑m
i=1 ψ(yi, f(xi)) over F , and

produces a τ -statistic estimate q̂S(x) = λ−1(f̂S(x)) and a prediction model ĥS ∈ H given by
ĥS(x) = decode(f̂S(x)) (or equivalently, ĥS(x) = pred(q̂S(x))), is a PAC learning algorithm for
the RSM learning problem (L,H,D(τ ,Q)-RSM) with squared τ -estimation error sample complexity
mτ

A(ϵ, δ) ≤ min
{
m0 ∈ Z+ : m ≥ m0 =⇒ m ≥ 1152B2

γ2ϵ2

(∑d
j=1 ln

(
N1

(
γϵ

48ρ1d
,Fj , 2m

))
+

ln
(
4
δ

))}
, and with target loss sample complexity mL

A(ϵ, δ) ≤ min
{
m ∈ Z+ : m ≥ m0 =⇒ m ≥

1152κ4B2

γ2ϵ4

(∑d
j=1 ln

(
N1

(
γϵ2

48κ2ρ1d
,F j , 2m

))
+ ln

(
4
δ

))}
. In particular, if the d1 covering numbers

of the function classes F j have upper bounds of the form N1(ϵ,F j ,m) ≤ ϕ(ϵ,F j) (i.e., bounds
independent of sample size m), then mτ

A(ϵ, δ) ≤ 1152B2

γ2ϵ2

(∑d
j=1 ln

(
ϕ
(

γϵ
48ρ1d

,F j
))

+ ln
(
4
δ

))
, and

mL
A(ϵ, δ) ≤ 1152κ4B2

γ2ϵ4

(∑d
j=1 ln

(
ϕ
(

γϵ2

48κ2ρ1d
,F j

))
+ ln

(
4
δ

))
.

Theorem 3 (RSM learning bounds for surrogate risk minimizers via Rademacher complexities).
Under the conditions of Theorem 1, suppose the surrogate loss ψ is ρ2-Lipschitz in the second argu-
ment with respect to the Euclidean metric, so that ψ(y,u1)− ψ(y,u2) ≤ ρ2 ∥u1 − u2∥2 ∀y,u1,u2,
and suppose that the function classes F j = {fj : X→R | ∃f ∈ F s.t. fj(x) = (f(x))j ∀x},
j ∈ [d] each have non-negative, decreasing Rademacher complexities Rm(F j) (decreasing
in m). Then a surrogate risk minimization algorithm A which, given a training sample S of
size m, finds an (B/(2

√
m))-approximate minimizer f̂S ∈ F of the empirical surrogate risk

1
m

∑m
i=1 ψ(yi, f(xi)) over F , and produces a τ -statistic estimate q̂S(x) = λ−1(f̂S(x)) and

a prediction model ĥS ∈ H given by ĥS(x) = decode(f̂S(x)) (or equivalently, ĥS(x) =
pred(q̂S(x))), is a PAC learning algorithm for the RSM learning problem (L,H,D(τ ,Q)-RSM)

with squared τ -estimation error sample complexity mτ
A(ϵ, δ) ≤ min

{
m0 ∈ Z+ : m ≥

6



m0 =⇒ 3
(
2
√
2ρ2 ·

∑d
j=1 Rm(F j) +B

√
ln(2/δ)
m

)
≤ γϵ

2

}
, and with target loss sample complexity

mL
A(ϵ, δ) ≤ min

{
m ∈ Z+ : m ≥ m0 =⇒ 3

(
2
√
2ρ2 ·

∑d
j=1 Rm(F j) +B

√
ln(2/δ)
m

)
≤ γϵ2

2κ2

}
.

In particular, if ∃C > 0 such that the Rademacher complexities of the function classes F j have upper
bounds of the form Rm(F j) ≤ C/

√
m ∀j ∈ [d], thenmτ

A(ϵ, δ) ≤ 36
γ2ϵ2

(
2
√
2ρ2Cd+B

√
ln(2/δ)

)2
,

and mL
A(ϵ, δ) ≤ 36κ4

γ2ϵ4

(
2
√
2ρ2Cd+B

√
ln(2/δ)

)2
.

In Sections 3–6 below, we apply the above results to a variety of RSM learning problems, including
binary classification, multiclass classification, multi-label prediction, and subset ranking. While our
results are broadly applicable to many RSM formulations, for each of the applications below, we
will include specific instantiations to RSM learning problems with sigmoid/softmax-of-(multi-)linear
forms for the statistics of interest. To this end, we will make use of the following upper bounds on
the d1 covering numbers and the Rademacher complexity of (bounded) linear functions:
Proposition 4. Let R,W > 0. Let X ⊆ {x ∈ Rp | ∥x∥2 ≤ R}. Let Flinear = {f : X→R | ∃w ∈
Rp, ∥w∥2 ≤W s.t. f(x) = w⊤x ∀x}. Then for any m ∈ Z+ and any ϵ > 0:

(i) N1(ϵ,Flinear,m) ≤ (1/ϵ)p; (ii) N1(ϵ,Flinear,m) ≤ (4R2W 2/ϵ2 + 1)⌈2R
2W 2/ϵ2⌉; and (iii)

0 ≤ Rm(Flinear) ≤ RW/
√
m.

3 Binary Classification
Consider a binary classification problem with instance space X , label and prediction spaces Y =

Ŷ = {±1}, and the standard 0-1 loss L0-1 ∈ R{±1}×{±1}
+ with ℓ0-1(y, ŷ) = 1(ŷ ̸= y). Let

C = [0, 1], and define the ‘projection-onto-(+1)th-component’ statistic τ+1 : ∆{±1}→[0, 1] and
mapping pred0-1 : [0, 1]→{±1} as

τ+1
(
p ≡ (p+1, p−1)

⊤) = p+1 ; pred0-1(q) = sign(q − 1/2) .

Then (τ+1, pred0-1) is an L0-1-calibrated pair. Moreover, as is well known (also see Appendix C),

EY∼p[L
0-1
Y,pred0-1(q)

]−minŷ∈{±1} EY∼p[L
0-1
Y,ŷ] ≤ 2 |q − p+1| ∀p ∈ ∆{±1}, q ∈ [0, 1] .

Therefore, for any class of ‘statistic’ functions Q ⊆ {q : X→[0, 1]} and corresponding hypothesis
class H = pred0-1 ◦ Q, Theorem 2 establishes that any convex surrogate risk minimization algorithm
minimizing a strongly proper composite surrogate loss for τ+1 over a suitable class of functions
F ⊆ {f : X→R} yields an efficient PAC learning algorithm for the RSM learning problem
(L0-1,H,D(τ+1,Q)-RSM). While this result can be applied to any class Q and suitable surrogate loss ψ,
the following theorem makes this concrete for the class of sigmoid-of-linear models Qsigmoid-of-linear

and the binary logistic loss ψlog (defined below).
Theorem 5 (PAC learning algorithm for binary classification with sigmoid-of-linear class
probabilities). Consider a binary classification problem, with X ⊆ {x ∈ Rp | ∥x∥2 ≤ R} for some
R > 0, Y = Ŷ = {±1}, and with the standard 0-1 loss L0-1 as above. Let τ+1 and pred0-1 be as
defined above. Let σ : R→[0, 1] be the sigmoid function σ(u) = 1/(1 + e−u), and let

Qsigmoid-of-linear = {q : X→[0, 1] | ∃w ∈ Rp, ∥w∥2 ≤W s.t. q(x) = σ(w⊤x) ∀x}

for some W > 0. Let Hlinear := pred0-1 ◦ Qsigmoid-of-linear, i.e. Hlinear = {h : X→{±1} | ∃w ∈
Rp, ∥w∥2 ≤W s.t. h(x) = sign(w⊤x) ∀x}. Let ψlog : {±1} × R→R+ be the binary logistic loss:

ψlog(y, u) = ln(1 + e−yu) .

Let Flinear = {f : X→R | ∃w ∈ Rp, ∥w∥2 ≤ W s.t. f(x) = w⊤x ∀x}. Then an algorithm A
which, given a training sample S of size m, finds an (ln(1 + eRW )/(2

√
m))-approximate minimizer

f̂S ∈ Flinear of the empirical surrogate risk 1
m

∑m
i=1 ψ

log(yi, f(xi)) over Flinear, and produces
a τ+1-statistic estimate q̂S(x) = σ(f̂S(x)) and prediction model ĥS ∈ Hlinear given by ĥS =

sign ◦f̂S (equivalently, ĥS = pred0-1 ◦ q̂S), is a PAC learning algorithm for the RSM learning
problem (L0-1,Hlinear,D(τ+1,Qsigmoid-of-linear)-RSM) with squared τ+1-estimation error sample complexity

mτ+1

A (ϵ, δ) = O
(

1
ϵ2 ln

(
1
δ

))
, and with target loss sample complexity mL0-1

A (ϵ, δ) = O
(

1
ϵ4 ln

(
1
δ

))
.
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4 Multiclass Classification

Consider now a multiclass classification problem with instance space X , label and prediction spaces
Y = Ŷ = [n] for n > 2, and the multiclass 0-1 loss L0-1(n) ∈ Rn×n+ with ℓ0-1(y, ŷ) = 1(ŷ ̸= y). Let
C = ∆n, and define the ‘identity’ statistic τ id : ∆n→∆n and mapping pred0-1(n) : ∆n→[n] as

τ id(p) = p ; pred0-1(n)(q) = argmaxŷ∈[n] qŷ .

Then (τ id, pred0-1(n)) is an L0-1(n)-calibrated pair. Moreover, as shown in Appendix D,

EY∼p[L
0-1(n)
Y,pred0-1(n)(q)

]−minŷ∈[n]EY∼p[L
0-1(n)
Y,ŷ ] ≤

√
2 · ∥q− p∥2 ∀p,q ∈ ∆n .

Therefore, for any class of ‘statistic’ functions Q ⊆ {q : X→∆n} and corresponding hypothesis
class H = pred0-1(n) ◦ Q, Theorem 2 establishes that any convex surrogate risk minimization
algorithm minimizing a strongly proper composite surrogate loss for τ id over a suitable class of
functions F ⊆ {f : X→Rn} yields an efficient PAC learning algorithm for the RSM learning
problem (L0-1(n),H,D(τ id,Q)-RSM). While this result can be applied to any class Q and suitable
surrogate loss ψ, the following theorem makes this concrete for the class of softmax-of-multilinear
models Qsoftmax-of-multilinear and the multiclass logistic loss ψmlog (defined below).

Theorem 6 (PAC learning algorithm for multiclass classification with softmax-of-multilinear
class probabilities). Consider a multiclass classification problem, with X ⊆ {x ∈ Rp | ∥x∥2 ≤
R} for some R > 0, Y = Ŷ = [n], and with the multiclass 0-1 loss L0-1(n) as above. Let
τ id and pred0-1(n) be as defined above. Let σ : Rn→∆n be the softmax function (σ(u))y =
euy/(

∑n
y′=1 e

uy′ ) ∀y ∈ [n], and let

Qsoftmax-of-mlinear = {q : X→∆n | ∃W ∈ Rp×n, ∥wy∥2 ≤W ∀y s.t. q(x) = σ(W⊤x) ∀x}

for some W > 0. Let Hmulticlass-linear := pred0-1(n) ◦ Qsoftmax-of-mlinear, i.e. Hmulticlass-linear = {h :
X→[n] | ∃W ∈ Rp×n, ∥wy∥2 ≤ W ∀y s.t. h(x) ∈ argmaxy∈[n](w

⊤
y x) ∀x}. Let ψmlog : [n] ×

Rn→R+ be the multiclass logistic loss

ψmlog(y,u) = −uy + ln(
∑n
y′=1e

uy′ ) .

Define decode0-1(n) : Rn→[n] as decode0-1(n)(u) ∈ argmaxŷ∈[n] uŷ , and let Fmulticlass-linear =

{f : X→Rn | ∃W ∈ Rp×n, ∥wy∥2 ≤ W ∀y s.t. f(x) = W⊤x ∀x}. Then an algorithm A which,
given a training sample S of size m, finds an ((ln(n) + 2RW )/(2

√
m))-approximate minimizer

f̂S ∈ Fmulticlass-linear of the empirical surrogate risk 1
m

∑m
i=1 ψ

mlog(yi, f(xi)) over Fmulticlass-linear, and
produces a τ id-statistic estimate q̂S(x) = σ(f̂S(x)) and a prediction model ĥS ∈ Hmulticlass-linear

given by ĥS(x) = decode0-1(n)(f̂S(x)) (or equivalently, ĥS(x) = pred0-1(n)(q̂S(x))), is a PAC
learning algorithm for the RSM learning problem (L0-1(n),Hmulticlass-linear,D(τ id,Qsoftmax-of-mlinear)-RSM)

with squared τ id-estimation error sample complexity mτ id

A (ϵ, δ) and target loss sample complexity

mL0-1(n)

A (ϵ, δ) upper bounded as follows:
(i) (Dimension-dependent)
mτ id

A (ϵ, δ) = O
( (lnn)2

ϵ2

(
np ln

(
n
ϵ

)
+ ln

(
1
δ

)) )
; mL0-1(n)

A (ϵ, δ) = O
( (lnn)2

ϵ4

(
np ln

(
n
ϵ

)
+ ln

(
1
δ

)) )
.

(ii) (Dimension-independent)
mτ id

A (ϵ, δ) = O
(

1
ϵ2

(
n2 + (ln(n))2 · ln

(
1
δ

)))
; mL0-1(n)

A (ϵ, δ) = O
(

1
ϵ4

(
n2 + (ln(n))2 · ln

(
1
δ

)))
.

5 Multi-Label Learning

Next, consider a multi-label prediction problem such as in image tagging, with s tags [s] = {1, . . . , s},
several of which can be active in an instance simultaneously, and the goal is to predict for a new
instance which of the s tags are active. Specifically, let X be any instance space, with label and
prediction spaces Y = Ŷ = {0, 1}s (labels are represented as vectors y ∈ {0, 1}s, with yj = 1

indicating that the j-th tag is active), and consider the Hamming loss LHam ∈ R{0,1}s×{0,1}s

+ with
ℓHam(y, ŷ) =

∑s
j=1 1(ŷj ̸= yj). Let C = [0, 1]s, and define the s-dimensional ‘marginals’ statistic
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τmarginals : ∆{0,1}s→[0, 1]s and mapping predHam : [0, 1]s→{0, 1}s as

(τmarginals(p))j =
∑

y∈{0,1}s:yj=1

py ; (predHam(q))j = sign(qj − 1/2) ∀j ∈ [s] .

Then (τmarginals, predHam) is an LHam-calibrated pair. Moreover, as shown in Appendix E,

EY∼p[L
Ham
Y,predHam(q)]− min

ŷ∈{0,1}s
EY∼p[L

Ham
Y,ŷ] ≤ 2

√
s·∥q−τmarginals(p)∥2 ∀p ∈ ∆{0,1}s ,q ∈ [0, 1]s .

Therefore, for any class of ‘statistic’ functions Q ⊆ {q : X→[0, 1]s} and corresponding hypothesis
class H = predHam ◦Q, Theorem 2 establishes that any convex surrogate risk minimization algorithm
minimizing a strongly proper composite surrogate loss for τmarginals over a suitable class of functions
F ⊆ {f : X→Rs} yields an efficient PAC learning algorithm for the RSM learning problem
(LHam,H,D(τmarginals,Q)-RSM). While this result can be applied to any class Q and suitable surrogate
loss ψ, below we make this concrete for the class of sigmoid-of-multilinear models Qsigmoid-of-multilinear

and the ‘binary relevance’ logistic-based multi-label surrogate loss ψBRlog (defined below).5

Theorem 7 (PAC learning algorithm for multi-label prediction with sigmoid-of-multilinear
marginals). Consider a multi-label prediction problem, with X ⊆ {x ∈ Rp | ∥x∥2 ≤ R} for some
R > 0, Y = Ŷ = {0, 1}s, and with the Hamming loss LHam as above. Let τmarginals and predHam be
as defined above. Let σ : R→[0, 1] be the sigmoid function σ(u) = 1/(1 + e−u), and let

Qsigmoid-of-multilinear = {q : X→[0, 1]s | ∃W ∈ Rp×s, ∥wj∥2 ≤W ∀j s.t. qj(x) = σ(w⊤
j x) ∀x, j}

for some W > 0. Let Hsign
multilinear := predHam ◦ Qsigmoid-of-multilinear, i.e. Hsign

multilinear = {h :

X→{0, 1}s | ∃W ∈ Rp×s, ∥wj∥2 ≤ W ∀j s.t. hj(x) = sign(w⊤
j x) ∀x, j}. Let ψBRlog :

{0, 1}s × Rs→R+ be the ‘binary relevance’ logistic-based multi-label surrogate loss defined by

ψBRlog(y,u) =
∑s
j=1 ln(1 + e−(2yj−1)uj ) .

Define decodeHam : Rs→{0, 1}s as (decodeHam(u))j := sign(uj) ∀j ∈ [s] , and let Fmultilinear = {f :
X→Rs | ∃W ∈ Rp×s, ∥wj∥2 ≤W ∀j s.t. f(x) = W⊤x ∀x}. Then an algorithm A which, given a
training sample S of sizem, finds an (s ln(1+eRW )/(2

√
m))-approximate minimizer f̂S ∈ Fmultilinear

of the empirical surrogate risk 1
m

∑m
i=1 ψ

BRlog(yi, f(xi)) over Fmultilinear, and produces a τmarginals-
statistic estimate (q̂S(x))j = σ((f̂S(x))j) and a prediction model ĥS ∈ Hsign

multilinear given by ĥS(x) =
decodeHam(f̂S(x)) (or equivalently, ĥS(x) = predHam(q̂S(x))), is a PAC learning algorithm for
the RSM learning problem (LHam,Hsign

multilinear,D(τmarginals,Qsigmoid-of-multilinear)-RSM) with squared τmarginals-

estimation error sample complexity mτmarginals

A (ϵ, δ) = O
(
s2

ϵ2

(
s+ ln

(
1
δ

)) )
, and with target loss

sample complexity mLHam

A (ϵ, δ) = O
(
s4

ϵ4

(
s+ ln

(
1
δ

)) )
.

6 Subset Ranking
As a final example, consider a subset ranking problem such as those that arise in information retrieval,
wherein each instance contains a query and a subset of s documents, together with some relevance
judgments for each of the s documents as labels, and given a new instance containing a new query
and a new subset of s documents, the goal is to find a good ranking of the s documents for that query.
Specifically, let X be any instance space, and let the label space be Y = {0, 1, . . . , r}s, where each
document is graded on a scale of 0 to r; the prediction space is Ŷ = Πs. A widely used performance
measure for such problems is the discounted cumulative gain (DCG); in loss form, one version of
the DCG loss LDCG is given by ℓDCG(y, π̂) = Z −

∑s
j=1 yj · disc(π̂(j)) , where disc : [s]→[0, 1]

is a non-increasing ‘discount’ function that discounts documents placed lower in the ranking, often
taken to be disc(a) = 1/(log2(a + 1)), and Z is a constant that ensures non-negativity of the loss
[18, 24]. Let C = [0, 1]s, and define the s-dimensional ‘scaled marginal expectations’ property

5The ‘binary relevance’ approach effectively solves s binary problems, one for each tag [41, 11]. One could
also apply Theorem 5 s times (drawing a fresh sample of size O( s

2

ϵ2
(ln( s

δ
))) for each tag), yielding a sample

complexity of O( s
3

ϵ2
(ln( s

δ
))). The result of Theorem 7 improves over this by removing a multiplicative ln(s)

factor. We also note that contrary to popular belief, Theorem 7 indicates that the binary relevance approach does
not require the s tags to be conditionally independent given x in order to be an effective learning algorithm.
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τ sc-marg-exp : ∆{0,1,...,r}s→[0, 1]s and mapping predDCG : [0, 1]s→Πs as

(τ sc-marg-exp(p))j =
EY∼p[Yj ]

r
=

1

r

r∑
k=0

k ·
( ∑

y∈{0,1,...,r}s:yj=k

py

)
; predDCG(q) ∈ argsort(q) .

Then (τ sc-marg-exp, predDCG) is an LDCG-calibrated pair. Moreover, as shown in Appendix F,

EY∼p[L
DCG
Y,predDCG(q)]− min

π̂∈Πs

EY∼p[L
DCG
Y,ŷ ] ≤ 2r · ∥disc∥2 · ∥q− τ sc-marg-exp(p)∥2 ∀p,q ,

where disc = (disc(1), . . . , disc(s))⊤ ∈ [0, 1]s. Therefore, for any class of ‘statistic’ functions
Q ⊆ {q : X→[0, 1]s} and corresponding hypothesis class H = predDCG ◦ Q, Theorem 2 establishes
that any convex surrogate risk minimization algorithm minimizing a strongly proper composite
surrogate loss for τ sc-marg-exp over a suitable class of functions F ⊆ {f : X→Rs} yields an efficient
PAC learning algorithm for the RSM learning problem (LDCG,H,D(τ sc-marg-exp,Q)-RSM). While this
result can be applied to any class Q and suitable surrogate loss ψ, the following theorem makes this
concrete for the class of sigmoid-of-multilinear models Qsigmoid-of-multilinear and a suitably weighted
multivariate logistic-based surrogate loss ψwlog that we introduce here (defined below).
Theorem 8 (PAC learning algorithm for subset ranking with sigmoid-of-multilinear scaled
marginal expectations). Consider a subset ranking problem, with X ⊆ {x ∈ Rp | ∥x∥2 ≤ R} for
someR > 0, Y = {0, 1, . . . , r}s and Ŷ = Πs, and with the DCG loss LDCG as above. Let τ sc-marg-exp

and predDCG be as defined above. Let σ and Qsigmoid-of-multilinear be as defined in Theorem 7, and let
Hsort

multilinear := predDCG ◦ Qsigmoid-of-multilinear, i.e. Hsort
multilinear = {h : X→Πs | ∃W ∈ Rp×s, ∥wj∥2 ≤

W ∀j s.t. h(x) ∈ argsort(W⊤x) ∀x}. Let ψwlog : {0, 1, . . . , r}s × Rs→R+ be a multivariate
weighted logistic-based surrogate loss defined by

ψwlog(y,u) =
∑s
j=1

(yj
r

)
· ln(1 + e−uj ) +

(
1− yj

r

)
· ln(1 + euj ) .

Define decodeDCG : Rs→Πs as decodeDCG(u) ∈ argsort(u) , and let Fmultilinear be as defined
in Theorem 7. Then an algorithm A which, given a training sample S of size m, finds an
(s ln(1 + eRW )/(2

√
m))-approximate minimizer f̂S ∈ Fmultilinear of the empirical surrogate risk

1
m

∑m
i=1 ψ

wlog(yi, f(xi)) over Fmultilinear, and produces a τ sc-marg-exp-statistic estimate (q̂S(x))j =

σ((f̂S(x))j) and a prediction model ĥS ∈ Hsort
multilinear given by ĥS(x) = decodeDCG(f̂S(x)) (or

equivalently, ĥS(x) = predDCG(q̂S(x))), is a PAC learning algorithm for the RSM learning prob-
lem (LDCG,Hsort

multilinear,D(τ sc-marg-exp,Qsigmoid-of-multilinear)-RSM) with squared τ sc-marg-exp-estimation error sam-

ple complexity mτ sc-marg-exp

A (ϵ, δ) = O
(
s2

ϵ2

(
s+ ln

(
1
δ

)) )
, and with target loss sample complexity

mLDCG

A (ϵ, δ) = O
( r4s2·∥disc∥4

2

ϵ4

(
s+ ln

(
1
δ

)) )
= O

(
r4s4

ϵ4

(
s+ ln

(
1
δ

)) )
.

7 Conclusion
We have studied a flexible class of intermediate PAC leaning models that we call realizable-statistic
models (RSMs), wherein we allow labels to be stochastic but assume that some vector-valued statistic
of the conditional label distribution comes from a known function class. RSMs interpolate between
the realizable and fully agnostic settings, and also recover several previously studied intermediate
PAC learning models as special cases. We have shown that for RSMs where the statistic of interest
can be estimated via a convex ‘strongly proper composite’ surrogate loss, minimizing this convex
surrogate loss yields a computationally efficient learning algorithm with finite sample complexity
bounds, and have demonstrated applications of these results to a broad range of RSM learning
problems including binary and multiclass classification, multi-label learning, and subset ranking.

RSMs are also connected to the structured prediction framework studied in [16], where the target loss
function can be written as ℓ(y, ŷ) = ϕ1(y)

⊤Aϕ2(ŷ) for some embedding functions ϕ1 : Y → Rk,
ϕ2 : Ŷ → Rk and matrix A ∈ Rk×k.6 In particular, [16] effectively considers the ‘conditional mean
embedding’ statistic q∗(x) = E[ϕ1(Y )|X = x], and assumes that this statistic belongs to some class
of functions (such as multilinear functions or a vector-valued RKHS); this statistic is then estimated
to produce q̂(x). Thus this setting can also be viewed as a special case of our RSM framework
(indeed, the quadratic surrogate used in [16] is also a strongly proper composite surrogate for the
above statistic; the target loss based sample complexity bounds of [16] are of the form Õ(β/ϵ4),
where β captures problem-dependent parameters, and are therefore comparable to our bounds).

6More generally, [16] allows embedding into a Hilbert space F .
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Appendix

Organization of the Appendix. Appendix A is a supplement to Section 1 (introduction). Appendix B
is a supplement to Section 2 (RSMs and main results). Appendix C is a supplement to Section 3 (binary
classification). Appendix D is a supplement to Section 4 (multiclass classification). Appendix E is
a supplement to Section 5 (multi-label learning). Appendix F is a supplement to Section 6 (subset
ranking). Proofs of all the theorems in the main paper can be found in the relevant sections of this
Appendix.

A Supplement to Section 1 (Introduction)

Here we give details of the assumptions associated with the previously studied intermediate PAC
learning models listed in Table 1.

Noisy LTF with random classification noise (RCN): This model assumes that there is a weight
vector w ∈ Rp and a noise parameter η ∈ (0, 1/2) such that for any instance x, a deterministic binary
label is first generated according to the sign of w⊤x, and then with probability η the label is flipped
to the opposite sign. Equivalently, the model can be viewed as assuming that the conditional label
distribution is of the form P(Y = 1|X = x) = (1− η) · 1(w⊤x ≥ 0) + η · 1(w⊤x < 0).

Noisy LTF with Massart noise: This model assumes that there is a weight vector w ∈ Rp and
a "noise upper bound" parameter η ∈ (0, 1/2) such that for any instance x, a deterministic binary
label is first generated according to the sign of w⊤x, and then with some (unknown) probability
η(x) ≤ η the label is flipped to the opposite sign. Equivalently, the model can be viewed as assuming
that the conditional label distribution satisfies P(Y = 1|X = x) ≥ (1 − η) if w⊤x ≥ 0 and
P(Y = 1|X = x) ≤ η if w⊤x < 0.

Generalized linear model (GLM): The (univariate) GLMs considered in [26, 25] are for real-valued
regression problems with bounded label spaces Y = Ŷ ⊆ [0, 1], and assume that there is a weight
vector w ∈ Rp such that E[Y |X = x] = θ(w⊤x) for some known transfer function θ : R→[0, 1]
(it is often assumed that θ satisfies some condition such as a Lipschitz property). These include as a
special case binary classification by setting Y = {0, 1}.

Single index model (SIM): The assumption here is of a similar form as that for GLMs above,
namely that E[Y |X = x] = θ(w⊤x) for some weight vector w and transfer function θ : R → [0, 1];
however unlike GLMs, where θ is assumed to be known, in SIMs, both the weight vector w and
the transfer function θ are unknown (it is often assumed that θ satisfies some condition such as a
Lipschitz property).

B Supplement to Section 2 (RSMs and Main Results)

B.1 Realizable and Agnostic PAC Learning as Special Cases of RSMs

We note here that both realizable and (fully) agnostic PAC learning can be recovered as extreme cases
of RSMs. In the following, for a finite set Y and y ∈ Y , ey ∈ {0, 1}Y denotes the unit vector with
y-th element equal to 1 and all other elements equal to 0.

Example 1 (Realizable PAC learning as RSM). Let Ŷ = Y , and let H ⊂ {h : X→Y} be
a hypothesis class/class of prediction models. Let C = ∆Y , and consider the identity property
τ id : ∆Y→∆Y defined as τ id(p) = p . Also define the class of functions Qone-hot-H as Qone-hot-H ={
q : X→∆Y

∣∣ ∃h ∈ H s.t. q(x) = eh(x) ∀x ∈ X
}
. Then it can be seen that

D(τ id,Qone-hot-H)-RSM =
{
D = (µ,p) ∈ ∆X×Y

∣∣ ∃h ∈ H s.t. p(x) = eh(x) ∀x ∈ X
}

≡ DH-realizable ,

where DH-realizable denotes the class of probability distributions D = (µ,p) ∈ ∆X×Y wherein the
label Y is (with probability 1) given by a deterministic function of the instance X , with the function
belonging to H. Therefore, realizable PAC learning w.r.t. H for any loss L ∈ RY×Y

+ is equivalent to
the RSM learning problem (L,H,D(τ id,Qone-hot-H)-RSM).
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Example 2 (Agnostic PAC learning as RSM). Let H ⊂ {h : X→Ŷ} be a class of prediction
models. Let C = ∆Y , and consider the identity property τ id : ∆Y→∆Y defined as τ id(p) = p.
Define Dall = ∆X×Y and Qall =

{
q : X→∆Y

}
. Then it can be seen that

D(τ id,Qall)-RSM =
{
D = (µ,p) ∈ ∆X×Y

∣∣ ∃q ∈ Qall s.t. p(x) = q(x) ∀x ∈ X
}

≡ Dall ,

and therefore (fully) agnostic PAC learning w.r.t. H and any loss L ∈ RY×Ŷ
+ is equivalent to the RSM

learning problem (L,H,D(τ id,Qall)-RSM).

B.2 Previously Studied Intermediate PAC Learning Models as Special Cases of RSMs

The RSM framework also recovers as special cases all the previously studied intermediate PAC
learning models listed in Table 1.

Noisy LTF with RCN: Consider the statistic τ+1 defined in Section 3 and the class of statistic
functions QRCN-linear := {q : X → [0, 1] | ∃w ∈ Rp, η ∈ (0, 1/2) s.t. q(x) = (1 − η) · 1(w⊤x ≥
0)+η ·1(w⊤x < 0)}. Then the RSM learning problem (L0−1,Hlinear,D(τ+1,QRCN-linear)-RSM) captures
exactly the problem of learning linear threshold functions with RCN.

Noisy LTF with Massart noise: Consider again the statistic τ+1 defined in Section 3, and
now the class of statistic functions QMassart-linear := {q : X → [0, 1] | ∃w ∈ Rp, η ∈
(0, 1/2) s.t. q(x) ≥ (1 − η) if w⊤x ≥ 0 and q(x) ≤ η if w⊤x < 0}. Then the RSM learn-
ing problem (L0−1, Hlinear,D(τ+1,QMassart-linear)-RSM) captures exactly the problem of learning linear
threshold functions with Massart noise.

GLM: Let θ : R→[0, 1] be a fixed (known) transfer function. Consider again the statistic τ+1 defined
in Section 3, and now the class of statistic functions QθGLM := {q : X → [0, 1] | ∃w ∈ Rp s.t. q(x) =
θ(w⊤x)}. Then the RSM learning problem (L0−1,Hlinear,D(τ+1,Qθ

GLM)-RSM) captures exactly the
problem of learning GLMs with transfer function θ.

SIM: Consider again the statistic τ+1 defined in Section 3, and now the class of statistic functions
QSIM := {q : X → [0, 1] | ∃w ∈ Rp, θ : R→[0, 1] s.t. q(x) = θ(w⊤x)}. Then the RSM learning
problem (L0−1,Hlinear,D(τ+1,QSIM)-RSM) captures exactly the problem of learning SIMs.

B.3 Proof of Theorem 1

Recall that we denote

erLD[h] = E(X,Y )∼D[LY,h(X)] ;

erLD[H] = inf
h∈H

erLD[h] ;

erL,∗D = inf
h:X→Ŷ

erLD[h] ;

erψD[f ] = E(X,Y )∼D[ψ(Y, f(X))] ;

erψD[F ] = inf
f∈F

erψD[f ] ;

erψ,∗D = inf
f :X→Rd

erψD[f ] .

Proof. (of Theorem 1) Let f ∈ F and D = (µ,p) ∈ D(τ ,Q)-RSM. We start by setting up some
notation. Define q∗ ∈ Q as q∗(x) = τ (p(x)); define f∗ ∈ F as f∗(x) = λ(q∗(x)) = λ(τ (p(x)));
and define q ∈ Q as q(x) = λ−1(f(x)).

Now, we have erLD[H] = erL,∗D – to see this, note that since (τ , pred) is an L-calibrated statistic-
mapping pair, the Bayes optimal classifier hL,∗D satisfies

hL,∗D (x) = pred(τ (p(x))) = pred(q∗(x)) ,

and so hL,∗D ∈ pred ◦ Q = H, which gives erL,∗D = erLD[H].

15



Also note that

h(x) = decode(f(x)) = pred(λ−1(λ(q(x)))) = pred(q(x)) .

Thus, we have,

erLD[h]− erLD[H] = erLD[h]− erL,∗D (since erLD[H] = erL,∗D )

= EX

[
EY∼p(X)[LY,h(X)]−min

ŷ∈Y
EY∼p(X)[LY,ŷ]

]
= EX

[
EY∼p(X)[LY,pred(q(X))]−min

ŷ∈Y
EY∼p(X)[LY,ŷ]

]
≤ κ ·EX [∥q(X)− τ (p(X))∥2] (by given condition)

= κ ·EX [∥λ−1(f(X))− τ (p(X))∥2]

≤ κ ·
√
EX [∥λ−1(f(X))− τ (p(X))∥22]

(by Jensen’s inequality applied to the function ϕ(u) = u2)

≤ κ ·

√
2

γ
EX

[(
EY∼p(X)[ψ(Y, f(X))]−EY∼p(X)[ψ(Y,λ(τ (p(X))))]

)]
(by γ-strong proper compositeness of ψ)

= κ ·

√
2

γ
EX

[(
EY∼p(X)[ψ(Y, f(X))]−EY∼p(X)[ψ(Y, f∗(X))]

)]
= κ ·

√
2

γ

(
erψD[f ]− erψD[f∗]

)
= κ ·

√
2

γ

(
erψD[f ]− erψD[F ]

)
(since strong proper compositeness of ψ and the definition of f∗

also imply – for D of the given form – that

E(X,Y )∼D[ψ(Y, f
∗(X))] ≤ E(X,Y )∼D[ψ(Y, f̃(X))] ∀f̃ : X→Rd,

and therefore erψD[f
∗] = erψ,∗D = erψD[F ]) .

B.4 Proof of Theorem 2

Let us start by stating the following uniform convergence result, which relates the empirical and
expected surrogate risks for a bounded surrogate loss ψ acting on vector-valued predictions, uniformly
for all functions in a vector-valued function class F , in terms of the d1 covering numbers of the loss
class ψF . The result follows from a straightforward generalization of standard uniform convergence
results for real-valued function classes (such as given in Chapter 17 of [5]) to vector-valued function
classes.

Theorem 9 (Uniform convergence for bounded (surrogate) loss classes in terms of d1 covering
numbers). Let X be any instance space and Y be any label space. Let d ∈ Z+ and let ψ :
Y × Rd→R+ be a (surrogate) loss function. Let F ⊆ {f : X→Rd} and suppose ψ(y, f(x)) ∈
[0, B] ∀x ∈ X , y ∈ Y, f ∈ F for some B > 0. Then for any m ∈ Z+, any ϵ > 0, and any
D ∈ ∆X×Y ,

PS∼Dm

(
sup
f∈F

∣∣erψD[f ]− êrψS [f ]
∣∣ ≥ ϵ

)
≤ 4N1(ϵ/8, ψF , 2m)e−mϵ

2/(32B2) .

We will now prove the following technical lemma, which upper bounds the d1 covering numbers of
the surrogate loss class ψF – for surrogate losses ψ that act on vector-valued predictions and that
are Lipschitz with respect to the L1 metric – in terms of the d1 covering numbers of the real-valued
‘projection’ function classes F j . This lemma may also be of independent interest.
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Lemma 1 (Bounding d1 covering numbers of loss function classes ψF for Lipschitz losses ψ
acting on vector-valued predictions). Let X and Y be any sets. Let ψ : Y × Rd→R+ be any
(surrogate) loss function that is ρ1-Lipschitz in the second argument with respect to the L1 metric,
and F ⊆ {f : X→Rd} be any class of vector-valued functions on X . Let

ψF := {ψf : X × Y→R+ | ∃f ∈ F s.t. ψf (x, y) = ψ(y, f(x)) ∀x ∈ X , y ∈ Y} .
For each j ∈ [d], let F j = {fj : X→R | ∃f ∈ F s.t. fj(x) = (f(x))j ∀x}. Then for any ϵ > 0 and
m ∈ Z+,

N1(ϵ, ψF ,m) ≤
d∏
j=1

N1(ϵ/(ρ1d),F j ,m) .

Proof. (of Lemma 1) Let ϵ > 0 and m ∈ Z+. Fix any z = (z1, . . . , zm) =
((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m, and denote x = (x1, . . . , xm) ∈ Xm. For each j ∈ [d], let
Cj ⊂ Rm be an (ϵ/ρ1)-cover for (F j)|x with respect to the d1 distance. We will construct an ϵ-cover
C ⊂ Rm for (ψF )|z with respect to the d1 distance of size |C| ≤

∏d
j=1 |Cj |.

Let f ∈ F , and denote (ψf )|z = (ψf (z1), . . . , ψf (zm)) ∈ Rm; moreover, for each j ∈ [d], let
fj : X→R be defined as fj(x) = (f(x))j , and denote (fj)|x = (fj(x1), . . . , fj(xm)). For each
j ∈ [d], let uj = (uj1, . . . , u

j
m) ∈ Cj be such that d1((fj)|x,uj) ≤ ϵ/(ρ1d). For each i ∈ [m],

define the d-dimensional vector ui = (u1i , . . . , u
d
i ) ∈ Rd. Now consider the m-dimensional point

v := ψ|((yi,ui))mi=1
= (ψ(y1,u1), . . . , ψ(ym,um)) ∈ Rm. Then we have

d1((ψf )|z,v) =
1

m

m∑
i=1

|ψf (zi)− vi|

=
1

m

m∑
i=1

|ψ(yi, f(xi))− ψ(yi,ui)|

≤ 1

m

m∑
i=1

ρ1 · d∑
j=1

|fj(xi)− uji |

 (by ρ1-Lipschitzness of ψ w.r.t. L1)

= ρ1 ·
d∑
j=1

d1((fj)|x,u
j)

≤ ρ1 ·
d∑
j=1

(
ϵ

ρ1d

)
= ϵ .

Therefore the set
C =

{
v := ψ|((yi,ui))mi=1

∣∣ uj ∈ Cj ∀j
}
⊂ Rm

is an ϵ-cover for (ψF )|z with respect to the d1 distance. Since |C| ≤
∏d
j=1 |Cj |, the claim follows.

Next, the following result shows that uniform convergence of surrogate risks also implies (surrogate)
learning results for approximate empirical risk minimizers. The proof technique is standard (such as
given in Chapter 19 of [5]); we include a self-contained proof here for completeness.
Theorem 10 (Uniform convergence implies bounded (surrogate) regret of approximate (surro-
gate) risk minimizers). Let X be any instance space and Y be any label space. Let d ∈ Z+ and let
ψ : Y ×Rd→R+ be a (surrogate) loss function. Let F ⊆ {f : X→Rd}. Let muc : R+ × (0, 1]→Z+

be such that for every ϵ > 0, every δ ∈ (0, 1], every m ≥ muc(ϵ, δ), and every D ∈ ∆X×Y ,

PS∼Dm

(
sup
f∈F

∣∣erψD[f ]− êrψS [f ]
∣∣ ≥ ϵ

)
≤ δ .

Let (αm)m∈Z+
be a sequence of positive real numbers such that for every ϵ > 0, every δ ∈ (0, 1], and

every m ≥ muc(ϵ/3, δ), we have αm ≤ ϵ/3. Let A be an approximate surrogate risk minimization
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algorithm which, given a training sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m of size m,
returns an αm-approximate minimizer f̂S ∈ F of the empirical ψ-risk 1

m

∑m
i=1 ψ(yi, f(xi)) over F ,

so that 1
m

∑m
i=1 ψ(yi, f̂S(xi)) ≤ inff∈F

1
m

∑m
i=1 ψ(yi, f(xi)) + αm. Then for every ϵ > 0, every

δ ∈ (0, 1], every m ≥ muc(ϵ/3, δ), and every D ∈ ∆X×Y ,

PS∼Dm

(
erψD [̂fS ]− inf

f∈F
erψD[f ] ≥ ϵ

)
≤ δ .

Proof. (of Theorem 10) Let ϵ > 0, δ ∈ (0, 1], and D ∈ ∆X×Y . Let β > 0, and let f∗ ∈ F be such
that

erψD[f
∗] ≤ inf

f∈F
erψD[f ] + β .

Let m ≥ muc(ϵ/3, δ). Then we have the following with probability at least 1− δ over the draw of
S ∼ Dm:

sup
f∈F

|erψD[f ]− êrψS [f ]| ≤ ϵ ,

and therefore,

erψD [̂fS ] ≤ êrψS [̂fS ] +
ϵ

3

≤
(
inf
f∈F

êrψS [f ] + αm

)
+
ϵ

3

≤ inf
f∈F

êrψS [f ] +
2ϵ

3

≤ êrψS [f
∗] +

2ϵ

3

≤
(

erψD[f
∗] +

ϵ

3

)
+

2ϵ

3

≤ inf
f∈F

erψD[f ] + β + ϵ .

Since the above holds for all β > 0, we have that with probability at least 1− δ over S ∼ Dm,

erψD[f̂S ] ≤ inf
f∈F

erψD[F ] + ϵ .

This proves the claim.

Next, we define the surrogate sample complexity below:

Definition 4 (Surrogate sample complexity). Let C′ ⊆ Rd′ . Let ψ : Y × C′→R+ be any surrogate
loss, F ⊆ {f : X→C′} be a class of surrogate prediction models, and D ⊆ ∆X×Y be a class of
probability distributions. We will say an algorithm A that given a training sample S ∈ ∪∞

m=1(X ×
Y)m returns a surrogate prediction model f̂S ∈ F is a learning algorithm for the surrogate loss
learning problem (ψ,F ,D) with surrogate sample complexity function mψ

A : R+ × (0, 1]→Z+ if for
every ϵ > 0, δ ∈ (0, 1], every distribution D ∈ D, and every m ≥ mψ

A(ϵ, δ),

PS∼Dm

(
erψD [̂fS ]− inf

f∈F
erψD[f ]

)
≤ δ ,

and moreover, for every ϵ, δ, mψ
A(ϵ, δ) is the smallest integer satisfying the above.

Bringing all the above together, under the conditions of Theorem 2, the following result upper bounds
the surrogate sample complexity of an approximate surrogate risk minimization algorithm in terms of
the d1 covering numbers of the real-valued projection classes F j .

Theorem 11 (Upper bounding surrogate sample complexity of an approximate surrogate
risk minimizer via d1 covering numbers). Under the conditions of Theorem 2, the (16B/

√
m)-

approximate surrogate risk minimization algorithm A is a learning algorithm for the surrogate
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learning problem (ψ,F ,∆X×Y) with surrogate sample complexity upper bounded as

mψ
A(ϵ, δ) ≤ min {m0 ∈ Z+ : m ≥ m0 =⇒

m ≥ 288B2

ϵ2

(∑d
j=1 ln

(
N1

(
ϵ

24ρ1d
,F j , 2m

))
+ ln

(
4
δ

))}
.

In particular, if N1(ϵ,F j ,m) ≤ ϕ(ϵ,F j) ∀j ∈ [d], then we have

mψ
A(ϵ, δ) ≤ 288B2

ϵ2

(∑d
j=1 ln

(
ϕ
(

ϵ
24ρ1d

,F j
))

+ ln
(
4
δ

))
.

Proof. (of Theorem 11) Define muc : R+ × (0, 1]→Z+ as

muc(ϵ, δ) := min {m0 ∈ Z+ : m ≥ m0 =⇒

m ≥ 32B2

ϵ2

(∑d
j=1 ln

(
N1

(
ϵ

8ρ1d
,F j , 2m

))
+ ln

(
4
δ

))}
.

Then by Theorem 9 and Lemma 1, we have that for every ϵ > 0, δ ∈ (0, 1], m ≥ muc(ϵ, δ), and
D ∈ ∆X×Y ,

PS∼Dm

(
sup
f∈F

∣∣erψD[f ]− êrψS [f ]
∣∣ ≥ ϵ

)
≤ δ .

Next, define a sequence of positive real numbers (αm)m∈Z+ as

αm :=
16B√
m
.

Then it can be verified that for every ϵ > 0, δ ∈ (0, 1], and m ≥ muc(ϵ/3, δ), we have αm ≤ ϵ/3.
Therefore, by Theorem 10, an αm-approximate surrogate risk minimization algorithm as described
satisfies for every ϵ > 0, δ ∈ (0, 1], m ≥ muc(ϵ/3, δ), and D ∈ ∆X×Y ,

PS∼Dm

(
erψD [̂fS ]− inf

f∈F
erψD[f ] ≥ ϵ

)
≤ δ .

Thus we have

mψ
A(ϵ, δ) ≤ muc(ϵ/3, δ)

≤ min {m0 ∈ Z+ : m ≥ m0 =⇒

m ≥ 288B2

ϵ2

(∑d
j=1 ln

(
N1

(
ϵ

24ρ1d
,F j , 2m

))
+ ln

(
4
δ

))}
.

Moreover, if N1(ϵ,F j ,m) ≤ ϕ(ϵ,F j) ∀j ∈ [d], this yields the stated bound.

Finally, we will also make use of the following proposition, whose proof follows directly from
Theorem 1.

Proposition 12 (Upper bounding squared τ -estimation error sample complexity and target
loss sample complexity in terms of surrogate sample complexity). Under the conditions of
Theorem 1, any learning algorithm A which given a training sample S, finds a surrogate prediction
model f̂S ∈ F and produces a τ -statistic estimate q̂S(x) = λ−1(f̂S(x)) and a prediction model
ĥS(x) = decode(f̂S(x)), satisfies

mτ
A(ϵ, δ) ≤ mψ

A

(γϵ
2
, δ
)
;

mL
A(ϵ, δ) ≤ mψ

A

(
γϵ2

2κ2
, δ

)
.

Proof. (of Proposition 12) Follows directly from Theorem 1.

The proof of Theorem 2 is now immediate:

Proof. (of Theorem 2) Follows directly from Theorem 11 and Proposition 12.
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B.5 Proof of Theorem 3

Let us start by stating the following uniform convergence result, which relates the empirical and
expected surrogate risks for a bounded surrogate loss ψ acting on vector-valued predictions, uniformly
for all functions in a vector-valued function class F , in terms of the Rademacher complexity of the
loss class ψF . The proof is standard (via an application of McDiarmid’s inequality; see e.g., [9]).

Theorem 13 (Uniform convergence for bounded (surrogate) loss classes in terms of Rademacher
complexity). Let X be any instance space and Y be any label space. Let d ∈ Z+ and let ψ :
Y × Rd→R+ be a (surrogate) loss function. Let F ⊆ {f : X→Rd} and suppose ψ(y, f(x)) ∈
[0, B] ∀x ∈ X , y ∈ Y, f ∈ F for some B > 0. Then for any m ∈ Z+, any δ ∈ (0, 1], and any
D ∈ ∆X×Y , we have with probability at least 1− δ over the draw of S ∼ Dm:

sup
f∈F

∣∣erψD[f ]− êrψS [f ]
∣∣ ≤ 2Rm(ψF ) +B

√
ln(2/δ)

m
.

We will make use of the vector-contraction inequality for Rademacher complexities, due to Maurer
[32], which upper bounds the Rademacher complexity of the surrogate loss class ψF – for surrogate
losses ψ that act on vector-valued predictions and that are Lipschitz with respect to the Euclidean
metric – in terms of the Rademacher complexities of the real-valued ‘projection’ function classes F j .

Lemma 2 (Bounding Rademacher complexities of loss function classes ψF for Lipschitz losses ψ
acting on vector-valued predictions [32]). Let X and Y be any sets. Let ψ : Y × Rd→R+ be any
(surrogate) loss function that is ρ2-Lipschitz in the second argument with respect to the Euclidean
metric, and F ⊆ {f : X→Rd} be any class of vector-valued functions on X . Let

ψF := {ψf : X × Y→R+ | ∃f ∈ F s.t. ψf (x, y) = ψ(y, f(x)) ∀x ∈ X , y ∈ Y} .
For each j ∈ [d], let F j = {fj : X→R | ∃f ∈ F s.t. fj(x) = (f(x))j ∀x}. Then for any m ∈ Z+,

Rm(ψF ) ≤
√
2ρ2 ·

d∑
j=1

Rm(F j) .

Bringing the above together, under the conditions of Theorem 3, the following result upper bounds
the surrogate sample complexity of an approximate surrogate risk minimization algorithm in terms of
the Rademacher complexities of the real-valued projection classes F j .

Theorem 14 (Upper bounding surrogate sample complexity of an approximate surrogate risk
minimizer via Rademacher complexities). Under the conditions of Theorem 3, the (B/(2

√
m))-

approximate surrogate risk minimization algorithm A is a learning algorithm for the surrogate
learning problem (ψ,F ,∆X×Y) with surrogate sample complexity upper bounded as

mψ
A(ϵ, δ) ≤ min

{
m0 ∈ Z+ : m ≥ m0 =⇒

3
(
2
√
2ρ2 ·

∑d
j=1 Rm(F j) +B

√
ln(2/δ)
m

)
≤ ϵ
}

In particular, if ∃C > 0 such that the Rademacher complexities of the function classes F j have upper
bounds of the form Rm(F j) ≤ C/

√
m ∀j ∈ [d], then we have

mψ
A(ϵ, δ) ≤ 9

ϵ2

(
2
√
2ρ2Cd+B

√
ln(2/δ)

)2
,

Proof. (of Theorem 14) Define muc : R+ × (0, 1]→Z+ as

muc(ϵ, δ) := min
{
m0 ∈ Z+ : m ≥ m0 =⇒(

2
√
2ρ2 ·

∑d
j=1 Rm(F j) +B

√
ln(2/δ)
m

)
≤ ϵ
}
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Then by Theorem 13 and Lemma 2, we have that for every ϵ > 0, δ ∈ (0, 1], m ≥ muc(ϵ, δ), and
D ∈ ∆X×Y ,

PS∼Dm

(
sup
f∈F

∣∣erψD[f ]− êrψS [f ]
∣∣ ≥ ϵ

)
≤ δ .

Next, define a sequence of positive real numbers (αm)m∈Z+
as

αm :=
B

2
√
m
.

Then it can be verified that for every ϵ > 0, δ ∈ (0, 1], and m ≥ muc(ϵ/3, δ), we have αm ≤ ϵ/3.
Therefore, by Theorem 10, an αm-approximate surrogate risk minimization algorithm as described
satisfies for every ϵ > 0, δ ∈ (0, 1], m ≥ muc(ϵ/3, δ), and D ∈ ∆X×Y ,

PS∼Dm

(
erψD [̂fS ]− inf

f∈F
erψD[f ] ≥ ϵ

)
≤ δ .

Thus we have

mψ
A(ϵ, δ) ≤ muc(ϵ/3, δ)

≤ min
{
m0 ∈ Z+ : m ≥ m0 =⇒

3
(
2
√
2ρ2 ·

∑d
j=1 Rm(F j) +B

√
ln(2/δ)
m

)
≤ ϵ
}
.

Moreover, if Rm(F j) ≤ C/
√
m ∀j ∈ [d], this yields the stated bound.

The proof of Theorem 3 is now immediate:

Proof. (of Theorem 3) Follows directly from Theorem 14 and Proposition ??.

B.6 Proof of Proposition 4

Proof. (of Proposition 4)

(i) This is a well-known result (e.g., see [5]).

(ii) This is a well-known result (e.g., see [44]).

(iii) This is also a well-known result; we provide a self-contained proof here for completeness. The
fact that Rm(Flinear) ≥ 0 follows directly from the fact Flinear is closed under negation. For the upper
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bound, we have

Rm(Flinear) = E

[
sup

w,∥w∥2≤W

(
1

m

n∑
i=1

ϵiw
⊤xi

)]

=
1

m
E

[
sup

w,∥w∥2≤W

(
w⊤

n∑
i=1

ϵixi

)]

≤ 1

m
E

[
sup

w,∥w∥2≤W
∥w∥2

∥∥∥∥∥
n∑
i=1

ϵixi

∥∥∥∥∥
2

]
(by Cauchy-Schwarz)

=
1

m
E

[
W

∥∥∥∥∥
n∑
i=1

ϵixi

∥∥∥∥∥
2

]

=
W

m
E


√√√√( n∑

i=1

ϵixi

)⊤( n∑
i=1

ϵixi

)
=

W

m
E

√√√√ n∑
i=1

n∑
j=1

ϵiϵj
(
x⊤
i xj

)

≤ W

m

√√√√√E

 n∑
i=1

n∑
j=1

ϵiϵj
(
x⊤
i xj

) (by Jensen’s inquality)

=
W

m

√√√√ n∑
i=1

n∑
j=1

E [ϵiϵj ]
(
x⊤
i xj

)

=
W

m

√√√√ n∑
i=1

∥xi∥22

≤ RW√
m

C Supplement to Section 3 (Binary Classification)

Lemma 3. (τ+1, pred0-1) is an L0-1-calibrated statistic-mapping pair, with

EY∼p[L
0-1
Y,pred0-1(q)

]− min
ŷ∈{±1}

EY∼p[L
0-1
Y,ŷ] ≤ 2 |q − p+1| ∀p ∈ ∆{±1}, q ∈ [0, 1] .

Proof. (of Lemma 3) Calibration of (τ+1, pred0-1) for L0-1 is immediate, since the Bayes optimal

classifier for L0-1 is given by hL
0-1,∗

D (x) = sign(p+1(x)− 1
2 ) = pred0-1(τ+1(x)). Moreover, for any
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p ∈ ∆{±1}, q ∈ [0, 1], we have

EY∼p[L
0-1
Y,pred0-1(q)

]− min
ŷ∈{±1}

EY∼p[L
0-1
Y,ŷ]

= EY∼p[1(pred0-1(q) ̸= Y )]− min
ŷ∈{±1}

EY∼p[1(ŷ ̸= Y )]

= p+1 · 1(pred0-1(q) ̸= +1) + (1− p+1) · 1(pred0-1(q) ̸= −1)−min(p+1, 1− p+1)

= p+1 · 1(q <
1

2
) + (1− p+1) · 1(q ≥

1

2
)−min(p+1, 1− p+1)

= (2p+1 − 1) · 1(q < 1

2
, p+1 ≥ 1

2
) + (1− 2p+1) · 1(q ≥

1

2
, p+1 <

1

2
)

= 2 |p+1 −
1

2
| ·
(
1(q <

1

2
, p+1 ≥ 1

2
) + 1(q ≥ 1

2
, p+1 <

1

2
)

)
≤ 2 |q − p+1| .

Proof. (of Theorem 5) Consider the (invertible) logit link function λ : [0, 1]→R and its inverse
λ−1 : R→[0, 1] given by7

λ(p) = ln

(
p

1− p

)
,

λ−1(u) =
1

1 + e−u
.

Note that λ−1 here is equivalent to the sigmoid function σ (defined in the theorem statement). We
will observe/prove the following:

(1) Hlinear = pred0-1 ◦ Qsigmoid-of-linear;

(2) ψlog is a 4-strongly proper composite surrogate loss for τ+1 with link function λ;

(3) sign = pred0-1 ◦ λ−1 ;

(4) Flinear = λ ◦ Qsigmoid-of-linear;

(5) ψlog(y, f(x)) ≤ ln(1 + eRW ) ∀(x, y) ∈ X × Y, f ∈ Flinear;

(6) ψlog is 1-Lipschitz with respect to the L1 metric (equivalently Euclidean metric) on R;

(7) N1(ϵ,Flinear,m) ≤
(
1
ϵ

)p
;

(8) 0 ≤ Rm(Flinear) ≤ RW/
√
m.

The result will then follow from Lemma 3 and Theorem 3.

Parts (1), (3), (4), (5) are immediate from the definitions.

Part (7) is a well-known result (e.g. see [5]).

Part (8) is a well-known result (see Proposition 4).

Part (2): ψlog is known to be a 4-strongly proper composite loss for the property τ+1 (i.e., for binary
class probability estimation) with link function λ as above [3].

Part (6): It is well known (and easy to verify) that the binary logistic loss ψlog is 1-Lipschitz with
respect to the L1 (equivalently Euclidean) metric on R (to verify this, note that the absolute value of
the derivative of ψlog with respect to the second argument is upper bounded by 1).

7Note that in the notation of Definition 3, we use C′ = R here. Technically, we would also need to extend
the definitions of the surrogate loss ψlog (and the mapping decode = sign) to act on R instead of R: we ignore
this issue here for simplicity.
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Combining all the above together with Lemma 3 and applying Theorem 3 (with κ = 2, γ = 4,
ρ2 = 1, d = 1, 0 ≤ Rm(Flinear) ≤ RW/

√
m, and B ≤ ln(1 + eRW )) gives the desired result with

squared τ+1 estimation error sample complexity

mτ+1

A (ϵ, δ) ≤ 9

4ϵ2

(
2
√
2RW + (ln(1 + eRW ))

√
ln(2/δ)

)2
= O

(
1

ϵ2
ln

(
1

δ

))
and with target loss sample complexity

mL0-1
A (ϵ, δ) ≤ 36

ϵ4

(
2
√
2RW + (ln(1 + eRW ))

√
ln(2/δ)

)2
= O

(
1

ϵ4
ln

(
1

δ

))
.

D Supplement to Section 4 (Multiclass Classification)

Lemma 4. (τ id, pred0-1(n)) is an L0-1(n)-calibrated statistic-mapping pair, with

EY∼p[L
0-1(n)
Y,pred0-1(n)(q)

]− min
ŷ∈[n]

EY∼p[L
0-1(n)
Y,ŷ ] ≤

√
2 · ∥q− p∥2 ∀p,q ∈ ∆n .

Proof. (of Lemma 4) Calibration of (τ id, pred0-1(n)) for L0-1(n) is immediate, since the Bayes

optimal classifier for L0-1(n) is given by hL
0-1(n),∗

D (x) = pred0-1(n)(p(x)) = pred0-1(n)(τ id(p(x))).
Moreover, for any p,q ∈ ∆n, we have

EY∼p[L
0-1(n)
Y,pred0-1(n)(q)

]− min
ŷ∈[n]

EY∼p[L
0-1(n)
Y,ŷ ]

=

n∑
y=1

py · L0-1(n)
y,pred0-1(n)(q)

− min
ŷ∈[n]

n∑
y=1

py · L0-1(n)
y,ŷ

= p⊤ℓ
0-1(n)
pred0-1(n)(q)

− min
ŷ∈[n]

p⊤ℓ
0-1(n)
ŷ

= max
ŷ∈[n]

(
p⊤(ℓ

0-1(n)
pred0-1(n)(q)

− ℓ
0-1(n)
ŷ )

)
= max

ŷ∈[n]

(
(p− q)⊤(ℓ

0-1(n)
pred0-1(n)(q)

− ℓ
0-1(n)
ŷ ) + q⊤(ℓ

0-1(n)
pred0-1(n)(q)

− ℓ
0-1(n)
ŷ )

)
≤ max

ŷ∈[n]

(
(p− q)⊤(ℓ

0-1(n)
pred0-1(n)(q)

− ℓ
0-1(n)
ŷ )

)
(by definition of pred0-1(n))

≤ ∥p− q∥2 ·max
ŷ∈[n]

∥ℓ0-1(n)
pred0-1(n)(q)

− ℓ
0-1(n)
ŷ ∥2 (by the Cauchy-Schwarz inequality)

≤
√
2 · ∥q− p∥2

(since the difference between any two columns of L0-1(n) has at most two
non-zero entries, each with magnitude at most 1)
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Proof. (of Theorem 6) Consider the link function λ : ∆n→Rn with extended inverse λ−1 :
Rn→∆n given by8

(λ(p))y = ln(py) ,

(λ−1(u))y =
euy∑n

y′=1 e
uy′

.

Note that λ−1 here is equivalent to the softmax function σ (defined in the theorem statement). We
will observe/prove the following:

(1) Hmulticlass-linear = pred0-1(n) ◦ Qsoftmax-of-mlinear;

(2) ψmlog is a 1-strongly proper composite surrogate loss for τ id with link function λ;

(3) decode0-1(n) = pred0-1(n) ◦ λ−1 ;

(4) Fmulticlass-linear = λ ◦ Qsoftmax-of-mlinear;

(5) ψmlog(y, f(x)) ≤ ln(n) + 2RW ∀(x, y) ∈ X × Y, f ∈ Fmulticlass-linear;

(6) ψmlog is 1-Lipschitz with respect to the L1 metric and 2-Lipschitz with respect to the
Euclidean metric on Rn;

(7) N1(ϵ,Fy
multiclass-linear,m) ≤

(
1
ϵ

)p ∀y ∈ [n];

(8) 0 ≤ Rm(Fy
multiclass-linear) ≤ RW/

√
m ∀y ∈ [n].

The result will then follow from Lemma 4, Theorem 2, and Theorem 3.

Parts (1), (3), (4), (5) are immediate from the definitions.

Part (7) is a well-known result (e.g. see [5]).

Part (8) is a well-known result (see Proposition 4).

Part (2): ψmlog has been shown to be a 1-strongly proper composite loss for the property τ id (i.e., for
multiclass class probability estimation) with link function λ as above [42].9

Part (6): To see that ψmlog is 1-Lipschitz with respect to the L1 metric, note that

∂ψmlog(y,u)

∂uy
= −1 +

euy∑n
y′=1 e

uy′
,

∂ψmlog(y,u)

∂uy′′
=

euy′′∑n
y′=1 e

uy′
∀y′′ ̸= y .

Thus we have,

ψmlog(y,u1)− ψmlog(y,u2) ≤ (∇uψ
mlog(y,u1))

⊤(u1 − u2) (by convexity of ψmlog(y, ·))
≤ ∥∇uψ

mlog(y,u1)∥∞ · ∥u1 − u2∥1 (by Hölder’s inequality)

≤ ∥u1 − u2∥1 (since |∂ψmlog(y,u)/∂uy′′ | ≤ 1 ∀y′′ ∈ [n]) .

8Note that in the notation of Definition 3, we use C′ = Rn
here. Technically, we would also need to extend

the definitions of the surrogate loss ψmlog and the mapping decode0-1(n) to act on Rn
instead of Rn: we ignore

this issue here for simplicity. Also note that here, C = ∆n is in one-to-one correspondence with only a strict
subset of C′ = Rn

, and so we use an extended inverse; in particular, we use the partition S = {Sp : p ∈ ∆n}
of C′ = Rn

given by Sp = {u ∈ Rn | ∃c ∈ R s.t. uy = ln(py) + c ∀y}.
9Note that [42] show this result for a slight variant of ψmlog that acts on Rn−1

rather than Rn
; however,

essentially the same proof works for the variant we use here as well.
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Next, to see that ψmlog is 2-Lipschitz with respect to the Euclidean metric, note that

ψmlog(y,u1)− ψmlog(y,u2) ≤ (∇uψ
mlog(y,u1))

⊤(u1 − u2) (by convexity of ψmlog(y, ·))
≤ ∥∇uψ

mlog(y,u1)∥2 · ∥u1 − u2∥2 (Cauchy-Schwarz inequality)

≤ ∥∇uψ
mlog(y,u1)∥1 · ∥u1 − u2∥2

≤ 2 · ∥u1 − u2∥2
(since |∂ψmlog(y,u)/∂uy| ≤ 1 and∑
y′′ ̸=y

|∂ψmlog(y,u)/∂uy′′ | = 1− euy∑n
y′=1 e

uy′
≤ 1 ∀y′′ ̸= y) .

(i) Combining all the above together with Lemma 4 and applying Theorem 2 (with κ =
√
2, γ = 1,

ρ1 = 1, d = n, N1(ϵ,Fy
multiclass-linear,m) ≤

(
1
ϵ

)p ∀y ∈ [n], and B ≤ ln(n) + 2RW ) gives the
desired result with squared τ id estimation error sample complexity

mτ id

A (ϵ, δ) ≤ 1152 (ln(n) + 2RW )2

ϵ2

(
np ln

(
48n

ϵ

)
+ ln

(
4

δ

))
= O

(
(ln(n))2

ϵ2

(
np ln

(n
ϵ

)
+ ln

(
1

δ

)))
.

and with target loss sample complexity

mL0-1(n)

A (ϵ, δ) ≤ 4608 (ln(n) + 2RW )2

ϵ4

(
np ln

(
96n

ϵ2

)
+ ln

(
4

δ

))
= O

(
(ln(n))2

ϵ4

(
np ln

(n
ϵ

)
+ ln

(
1

δ

)))
.

(ii) Next, combining all the above together with Lemma 4 and applying Theorem 3 (with κ =
√
2,

γ = 1, ρ2 = 2, d = n, 0 ≤ Rm(Fy
multiclass-linear) ≤ RW/

√
m ∀y ∈ [n], and B ≤ ln(n) + 2RW )

gives the desired result with squared τ id estimation error sample complexity

mτ id

A (ϵ, δ) ≤ 36

ϵ2

(
4
√
2RWn+ (ln(n) + 2RW )

√
ln(2/δ)

)2
= O

(
1

ϵ2

(
n2 + (ln(n))2 · ln

(
1

δ

)))
.

and with target loss sample complexity

mL0-1(n)

A (ϵ, δ) ≤ 144

ϵ4

(
4
√
2RWn+ (ln(n) + 2RW )

√
ln(2/δ)

)2
= O

(
1

ϵ4

(
n2 + (ln(n))2 · ln

(
1

δ

)))
.

Combining the above bounds yields the desired results.

E Supplement to Section 5 (Multi-Label Learning)

Lemma 5. (τmarginals, predHam) is an LHam-calibrated statistic-mapping pair, with

EY∼p[L
Ham
Y,predHam(q)]− min

ŷ∈{0,1}s
EY∼p[L

Ham
Y,ŷ] ≤ 2

√
s ∥q−τmarginals(p)∥2 ∀p ∈ ∆{0,1}s ,q ∈ [0, 1]s .

Proof. (of Lemma 5) Calibration of (τmarginals, predHam) for LHam is immediate, since the Bayes
optimal classifier for LHam is given by hL

Ham,∗
D (x) = predHam(τmarginals(p(x))). Moreover, for any
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p ∈ ∆{0,1}s ,q ∈ [0, 1]s, we have

EY∼p[L
Ham
Y,predHam(q)]− min

ŷ∈{0,1}s
EY∼p[L

Ham
Y,ŷ]

=

s∑
j=1

EYj
[L0-1
Yj ,(predHam(q))j

]− min
ŷ∈{0,1}s

s∑
j=1

EYj
[L0-1
Yj ,ŷj

]

(by linearity of expectation; here L0-1 ∈ R{0,1}×{0,1}
+ denotes the

binary loss L0-1
y,ŷ = 1(ŷ ̸= y))

=

s∑
j=1

EYj
[L0-1
Yj ,(predHam(q))j

]−
s∑
j=1

min
ŷj∈{0,1}

EYj
[L0-1
Yj ,ŷj

]

=

s∑
j=1

(
EYj

[L0-1
Yj ,(predHam(q))j

]− min
ŷj∈{0,1}

EYj
[L0-1
Yj ,ŷj

]

)

≤
s∑
j=1

2 |qj − (τmarginals(p))j |

(by well-known result for binary 0-1 loss, as also shown in the proof of Theorem 5)

= 2 ∥q− τmarginals(p)∥1
≤ 2

√
s ∥q− τmarginals(p)∥2 .

Proof. (of Theorem 6) Consider the (invertible) link function λ : [0, 1]s→Rs and its inverse
λ−1 : Rs→[0, 1]s given by10

(λ(q))j = ln

(
qj

1− qj

)
,

(λ−1(u))j =
1

1 + e−uj
.

Note that each component of λ−1 here is equivalent to the sigmoid function σ (defined in the theorem
statement). We will observe/prove the following:

(1) Hsign
multilinear = predHam ◦ Qsigmoid-of-multilinear;

(2) ψBRlog is a 4-strongly proper composite surrogate loss for τmarginals with link function λ;

(3) decodeHam = predHam ◦ λ−1 ;

(4) Fmultilinear = λ ◦ Qsigmoid-of-multilinear;

(5) ψBRlog(y, f(x)) ≤ s ln(1 + eRW ) ∀(x, y) ∈ X × Y, f ∈ Fmultilinear;

(6) ψBRlog is 1-Lipschitz with respect to the L1 metric and
√
s-Lipschitz with respect to the

Euclidean metric on Rs;

(7) N1(ϵ,F j
multilinear,m) ≤

(
1
ϵ

)p ∀j ∈ [s];

(8) 0 ≤ Rm(F j
multilinear) ≤ RW/

√
m ∀j ∈ [s].

The result will then follow from Lemma 5, and Theorem 3.

Parts (1), (3), (4), (5) are immediate from the definitions.
10Note that in the notation of Definition 3, we use C′ = Rs

here. Technically, we would also need to extend
the definitions of the surrogate loss ψ and the mapping decode to act on Rs

instead of Rs: we ignore this issue
here for simplicity.
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Part (7) is a well-known result (e.g. see [5]).

Part (8) is a well-known result (see Proposition 4).

Part (2): The fact that ψBRlog is a 4-strongly proper composite loss for the property τmarginals with
link function λ as above follows from 4-strong proper compositeness of the binary logistic loss
(ψlog as defined in Theorem 5) for binary class probability estimation, applied separately to each
component of the loss [3].

Part (6): The fact that ψBRlog is 1-Lipschitz with respect to the L1 metric follows directly from the
fact that the binary logistic loss (ψlog as defined in Theorem 5) is 1-Lipschitz with respect to the L1

metric, applied separately to each component of the loss. This also implies it is
√
s-Lipschitz with

respect to the Euclidean metric.

Combining all the above together with Lemma 5 and applying Theorem 3 (with κ = 2
√
s, γ = 4,

ρ2 =
√
s, d = s, 0 ≤ Rm(F j) ≤ RW/

√
m ∀j, and B ≤ s ln(1 + eRW )) gives the desired result

with squared τmarginals estimation error sample complexity

mτmarginals

A (ϵ, δ) ≤ 9

4ϵ2

(
2
√
2RWs3/2 + s(ln(1 + eRW ))

√
ln(2/δ)

)2
= O

(
s2

ϵ2

(
s+ ln

(
1

δ

)))
.

and with target loss sample complexity

mLHam

A (ϵ, δ) ≤ 36s2

ϵ4

(
2
√
2RWs3/2 + s(ln(1 + eRW ))

√
ln(2/δ)

)2
= O

(
s4

ϵ4

(
s+ ln

(
1

δ

)))
.

F Supplement to Section 6 (Subset Ranking)

Lemma 6. (τ sc-marg-exp, predDCG) is an LDCG-calibrated statistic-mapping pair, with

EY∼p[L
DCG
Y,predDCG(q)]− min

π̂∈Πs

EY∼p[L
DCG
Y,π̂ ] ≤ 2r · ∥disc∥2 · ∥q− τ sc-marg-exp(p)∥2

∀p ∈ ∆{0,1,...,r}s ,q ∈ [0, 1]s ,

where disc = (disc(1), . . . , disc(s))⊤ ∈ [0, 1]s.

Proof. (of Lemma 6) Calibration of (τ sc-marg-exp, predDCG) for LDCG is immediate, since the
Bayes optimal classifier for LDCG is given by hL

DCG,∗
D (x) ∈ argsort(τ sc-marg-exp(p(x))) =

predDCG(τ sc-marg-exp(p(x))). In the following, for any q ∈ [0, 1]s, we will denote

π̂q := predDCG(q) ∈ Πs ,

and for any π̂ ∈ Πs, we will denote

discπ̂ := (disc(π̂(1)), . . . , disc(π̂(s)))⊤ ∈ [0, 1]s .

[CONTINUED ON NEXT PAGE]
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Then for any p ∈ ∆{0,1,...,r}s ,q ∈ [0, 1]s, we have

EY∼p[L
DCG
Y,predDCG(q)]− min

π̂∈Πs

EY∼p[L
DCG
Y,π̂ ]

= EY∼p

Z −
s∑
j=1

Yj · disc(π̂q(j))

− min
π̂∈Πs

EY∼p

Z −
s∑
j=1

Yj · disc(π̂(j))


= max

π̂∈Πs

s∑
j=1

EY∼p [Yj · disc(π̂(j))]−
s∑
j=1

EY∼p [Yj · disc(π̂q(j))] (by linearity of expectation)

= max
π̂∈Πs

s∑
j=1

EYj
[Yj ] · disc(π̂(j))−

s∑
j=1

EYj
[Yj ] · disc(π̂q(j))

= r max
π̂∈Πs

s∑
j=1

(τ sc-marg-exp(p))j · disc(π̂(j))−
s∑
j=1

(τ sc-marg-exp(p))j · disc(π̂q(j))

= r max
π̂∈Πs

s∑
j=1

(τ sc-marg-exp(p))j ·
(

disc(π̂(j))− disc(π̂q(j))
)

= r max
π̂∈Πs

( s∑
j=1

(
(τ sc-marg-exp(p))j − qj

)
·
(

disc(π̂(j))− disc(π̂q(j))
)

+

s∑
j=1

qj ·
(

disc(π̂(j))− disc(π̂q(j))
))

≤ r max
π̂∈Πs

s∑
j=1

(
(τ sc-marg-exp(p))j − qj

)
·
(

disc(π̂(j))− disc(π̂q(j))
)

(by definition of π̂q)

= r max
π̂∈Πs

(
τ sc-marg-exp(p)− q

)⊤(discπ̂ − discπ̂q

)
≤ r max

π̂∈Πs

∥τ sc-marg-exp(p)− q∥2 · ∥discπ̂ − discπ̂q∥2 (by the Cauchy-Schwarz inequality)

≤ 2r
(
max
π̂∈Πs

∥discπ̂∥2
)
· ∥q− τ sc-marg-exp(p)∥2

= 2r · ∥disc∥2 · ∥q− τ sc-marg-exp(p)∥2 (since ∥discπ̂∥2 = ∥disc∥2 ∀π̂ ∈ Πs) .

Proof. (of Theorem 8) Consider the (invertible) link function λ : [0, 1]s→Rs and its inverse
λ−1 : Rs→[0, 1]s given by11

(λ(q))j = ln

(
qj

1− qj

)
,

(λ−1(u))j =
1

1 + e−uj
.

Note that each component of λ−1 here is equivalent to the sigmoid function σ (defined in the theorem
statement). We will observe/prove the following:

(1) Hsort
multilinear = predDCG ◦ Qsigmoid-of-multilinear;

(2) ψwlog is a 4-strongly proper composite surrogate loss for τ sc-marg-exp with link function λ;

(3) decodeDCG = predDCG ◦ λ−1 ;

(4) Fmultilinear = λ ◦ Qsigmoid-of-multilinear;

11Note that in the notation of Definition 3, we use C′ = Rs
here. Technically, we would also need to extend

the definitions of the surrogate loss ψ and the mapping decode to act on Rs
instead of Rs: we ignore this issue

here for simplicity.
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(5) ψwlog(y, f(x)) ≤ s ln(1 + eRW ) ∀(x, y) ∈ X × Y, f ∈ Fmultilinear;

(6) ψwlog is 1-Lipschitz with respect to the L1 metric and
√
s-Lipschitz with respect to the

Euclidean metric on Rs;

(7) N1(ϵ,F j
multilinear,m) ≤

(
1
ϵ

)p ∀j ∈ [s];

(8) 0 ≤ Rm(F j
multilinear) ≤ RW/

√
m ∀j ∈ [s].

The result will then follow from Lemma 6 and Theorem 3.

Parts (1), (3), (4), (5) are immediate from the definitions.

Part (7) is a well-known result (e.g. see [5]).

Part (8) is a well-known result (see Proposition 4).

Part (2): We show here that ψwlog is a 4-strongly proper composite loss for the property τ sc-marg-exp

with link function λ as above. In particular, we have:

EY∼p[ψ
wlog(Y,u)− ψwlog(Y,λ(τ sc-marg-exp(p)))]

=

s∑
j=1

((
E[Yj ]

r

)
·
(
ln(1 + e−uj )− ln(1 + e−(λ(τ sc-marg-exp(p)))j )

)
+

(
1− E[Yj ]

r

)
·
(
ln(1 + euj )− ln(1 + e(λ(τ sc-marg-exp(p)))j )

))
=

s∑
j=1

(
(τ sc-marg-exp(p))j ·

(
− ln((λ−1(u))j) + ln((τ sc-marg-exp(p))j)

)
+
(
1− (τ sc-marg-exp(p))j

)
·
(
− ln(1− (λ−1(u))j) + ln(1− (τ sc-marg-exp(p))j)

))
(by definition of λ and λ−1)

=

s∑
j=1

(
(τ sc-marg-exp(p))j · ln

(
(τ sc-marg-exp(p))j

(λ−1(u))j

)

+
(
1− (τ sc-marg-exp(p))j

)
· ln
(
1− (τ sc-marg-exp(p))j

1− (λ−1(u))j

))
=

s∑
j=1

DKL

(
(τ sc-marg-exp(p))j

∣∣∣∣∣∣ (λ−1(u))j

)
(by definition of Kullback-Leibler divergence for binary-valued random variables)

≥ 1

2

s∑
j=1

(∣∣∣(λ−1(u))j − (τ sc-marg-exp(p))j

∣∣∣+ ∣∣∣(1− (λ−1(u))j)− (1− (τ sc-marg-exp(p))j)
∣∣∣)2

(by Pinsker’s inequality and properties of the total variation distance)

=
1

2

s∑
j=1

(
2
∣∣∣(λ−1(u))j − (τ sc-marg-exp(p))j

∣∣∣)2
= 2 ∥λ−1(u)− τ sc-marg-exp(p)∥21
≥ 2 ∥λ−1(u)− τ sc-marg-exp(p)∥22 .

Thus ψwlog is a 4-strongly proper composite loss for the property τ sc-marg-exp with link function λ.

Part (6): It is easy to see that the weighted binary logistic loss ψwlog,bin : [0, 1]× R→R+ defined as

ψwlog,bin(α, u) = α · ln(1 + e−u) + (1− α) · ln(1 + eu)

is 1-Lipschitz (in particular, the absolute value of the derivative with respect to u is upper bounded
by 1). The fact that the surrogate loss ψwlog is 1-Lipschitz with respect to the L1 metric then
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follows directly from this observation, applied separately to each component of the loss (with weight
α = yj/r for component j). This also implies it is

√
s-Lipschitz with respect to the Euclidean metric.

Combining all the above together with Lemma 5 and applying Theorem 3 (with κ = 2r · ∥disc∥2,
γ = 4, ρ2 =

√
s, d = s, 0 ≤ Rm(F j) ≤ RW/

√
m ∀j, and B ≤ s ln(1 + eRW )) gives the desired

result with squared τ sc-marg-exp estimation error sample complexity

mτ sc-marg-exp

A (ϵ, δ) ≤ 9

4ϵ2

(
2
√
2RWs3/2 + s(ln(1 + eRW ))

√
ln(2/δ)

)2
= O

(
s2

ϵ2

(
s+ ln

(
1

δ

)))
.

and with target loss sample complexity

mLDCG

A (ϵ, δ) ≤ 36r4 · ∥disc∥42
ϵ4

(
2
√
2RWs3/2 + s(ln(1 + eRW ))

√
ln(2/δ)

)2
= O

(
r4s2 · ∥disc∥42

ϵ4

(
s+ ln

(
1

δ

)))
= O

(
r4s4

ϵ4

(
s+ ln

(
1

δ

)))
(since ∥disc∥2 ≤

√
s) .
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All the results are clearly stated and explained in the paper, and proofs are
provided in the Appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: The paper studies learning problems that in many ways are more general than
those studied in previous work. Both sample and computational complexity bounds are
provided for the algorithms discussed. We do not foresee any significant limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: For all results in the paper, all assumptions are clearly stated and complete
proofs are provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

34

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have made every effort to conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: While this work can lead to a better understanding of various types of learning
problems and their possible solutions, the work is largely theoretical/foundational in nature
and does not have immediate societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks (there are no data or models to be released).

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets of the form described.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components (nor does the writing of the paper use
LLMs in any form).
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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