
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TREE SEARCH FOR SIMULTANEOUS MOVE GAMES VIA
EQUILIBRIUM APPROXIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural network supported tree-search has shown strong results in a variety of
perfect information multi-agent tasks. However, the performance of these methods
on partial information games has generally been below competing approaches.
Here we study the class of simultaneous-move games, which are a subclass of
partial information games which are most similar to perfect information games:
both agents know the game state with the exception of the opponent’s move, which
is revealed only after each agent makes its own move. Simultaneous move games
include popular benchmarks such as Google Research Football and Starcraft.
In this study we answer the question: can we take tree search algorithms trained
through self-play from perfect information settings and adapt them to simultane-
ous move games without significant loss of performance? We answer this question
by deriving a practical method that attempts to approximate a coarse correlated
equilibrium as a subroutine within a tree search. Our algorithm works on coop-
erative, competitive, and mixed tasks. Our results are better than the current best
MARL algorithms on a wide range of accepted baselines.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) algorithms train multiple agents interacting in a shared
environment. The challenge compared to single-player reinforcement learning is that, for each agent,
the actions of the other agents are influencing the received rewards, and therefore the evolution of
other agents’ policies during training causes the environment to appear non-stationary from the
perspective of a single agent. While multi-agent reinforcement learning methods have achieved
great successes for tasks where agents receive full information (see e.g., the survey Zhang et al.
(2021)), successes in partially observable settings have been more muted.

Our study focuses on a subset of partial information tasks most similar to perfect information tasks,
namely simultaneous move tasks; the only information withheld in simultaneous move tasks is the
actions of the other players. Contemporary simultaneous-move algorithms are largely designed
for either cooperative Yu et al. (2021) or competitive tasks Schrittwieser et al. (2019). Most con-
temporary algorithms take advantage of assumptions present when all agents are working together
(cooperative tasks) or agents are competing against one another (competitive tasks) in their design.
The algorithm we develop and present in this study is one of a small group Lowe et al. (2017) that
can be applied to both competitive and cooperative tasks.

Our new MARL algorithm combines a popular method for competitive tasks, namely deep-Monte
Carlo Tree Search (d-MCTS), with online no-regret learning to approximate a coarse correlated equi-
librium (CCE), a concept from game-theory. As we explain later, playing according to a CCE gives
you performance guarantees against any opponent in competitive tasks. Therefore even though our
method is trained purely through self-play, we demonstrate strong performance against all contem-
porary algorithms in the competitive setting, even against algorithms trained with human-injected
knowledge such hand-coded opponents.

Specifically, we demonstrate that our method surpasses several leading multi-agent reinforcement
learning (MARL) algorithms—including Policy Space Response Oracles (PSRO), Multi-Agent
Proximal Policy Optimization (MAPPO), and Multi-Agent Deep Deterministic Policy Gradient
(MADDPG)—as well as numerous other competing approaches. Notably, MAPPO and MADDPG

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

have previously established strong performance benchmarks among competitor algorithms Yu et al.
(2021); Lowe et al. (2017). Our agents learn superior policies in both cooperative and competitive
settings, achieving win rates exceeding 80% in head-to-head evaluations against these baselines.
We evaluated our algorithm on 17 simultaneous-move games with publicly available code that have
been studied in prior research. Our method outperforms all other tested algorithms on 15/17 of these
benchmarks and is competitive on the remaining two (though it is trained with self-play and the
competitor algorithms use human knowledge injection).

2 BACKGROUND

We define an N -player stochastic game (SG) as (S,H, {Ai}i∈N , T, {Ui}i∈N , γ), where S is the set
of all states shared by all N players, H is the horizon (the maximum number of time steps), Ai is
the action space for player i yielding the decomposition A := A1 × · · · ×AN, T : (S ×A)→ S′

is the state transition function, Ui : (S ×A)→ R is the utility function for each player i ∈ N , and
γ is the discount factor. Finally, we denote by ∆(S) a distribution over the starting states.

2.1 BACKGROUND: DEEP MARL TRAINING

Our goal is to train a set of agents, defined by their policies, {πi}i∈N , where each policy, πi : S →
A. Here the simultaneous-move nature of the game will come through, as each policy π takes only
the state (not the actions of the other players that are unknown) as arguments. The game then evolves
from state s with the joint action (π1(s), . . . , πn(s)) played.

Training through deep reinforcement learning is usually comprised of two iterating steps: data gen-
eration and network training. Data generation aims to create a data set,Dt, that the NN samples from
to train. A NN is used to approximate the value function and policy function, given the following
loss functions

L(θt) =
1

|Dt|
Es∼Dt

L(gt(s), ĝθt(s))

where gt is the value or policy function at time step t, ĝθt is the value or policy prediction of the
network at time step t , L is an appropriate loss function, and θt represents the network parameters
at time step t. The data generation is usually accomplished through repeated interaction with the
stochastic game. The recorded interactions are then used to re-train the same NNs Lee et al. (2022).

2.2 NO-REGRET LEARNING AND ONLINE LEARNING

There is a close relationship between multi-agent learning and game theory which we will exploit.

The concept of an equilibrium provides a strong learning objective in multi-agent settings. The most
popular equilibrium, the Nash Equilibrium, describes a set of strategies in a two player zero-sum
(2p0s) game in which neither player gains any benefit from changing strategies. While computing a
NE is ideal, it was shown to be PPAD-complete even in 2p0s games Nisan et al. (2007).

Less restrictive forms of equilibrium can be approximated using no-regret learning. In this study,
we will attempt to approximate an ϵ-coarse correlated equilibrium (CCE). A CCE is defined as

∀i, a′i Es∼σ ci(a) ≤ Es∼σ ci(a
′
i, a−i) + ϵ

where i represents a player, a′i represents an action different from the recommended action, a, and
ci represents the cost of following a strategy. At first glance, this might look the normal definitions
of mixed strategy Nash equilibrium, but observe that the joint state s is being sampled from some
distribution σ. Thus this definition says that there exists a joint distribution of the strategies such
that deviations do not benefit each player, provided that all the remaining players sample from the
same correlated distribution.

It is known that if all players in a SM game use no-regret online learning, then their time-averaged
policies converge to the set of CCEs Tardos (2020); Roughbarden (2016). Here we define the regret
at time step T is defined as

RT = max
i∈[K]

E

[
T∑

t=1

lt,It −
T∑

t=1

lt,i

]

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where the player has an action space of size K, and lt,k represents the loss experienced at time step
t for action k ∈ K. It may seem puzzling that individual actions by each agent using a no-regret
learner made independently converge to a correlated action distribution, but note that agents are
effectively responding to each other so that correlation can be introduced into their time-averaged
policies.

No-regret learning measures the difference in loss compared to the best single action in hindsight.
Successful learning in this framework provides guarantees that the regret grows sub-linearly with
respect to T in expectation or with high probability. Below, we will utilize no-regret learning al-
gorithms, EXP-IX Neu (2015) and EXP-WIX Kocák et al. (2016) which are known to have the
property of no-regret learning with high probability.

2.3 WHY COARSE CORRELATED EQULIBRIUM?

Standard MCTS is tailored to finding min-max solutions. This approach works well for zero-sum,
perfect information games like chess or Go, but when we move into the realm of partial information
games, the min-max paradigm becomes inappropriate. In these games, players don’t have complete
information about the game state or their opponents’ actions, and the optimal strategy often involves
probabilistic decision-making to account for this uncertainty. Moreover, in multi-player or general-
sum games, the strict adversarial assumption of min-max doesn’t hold. Therefore, to effectively use
MCTS for partial information games, we need to modify the algorithm to converge to a different
solution concept, one that is more appropriate for the game-theoretic nature of these scenarios.

The computational limitations of Nash Equilibrium Nisan et al. (2007) suggest Correlated Equilib-
rium (CE) and Coarse Correlated Equilibrium (CCE).

Among these, CCE stands out as a particularly natural choice: the key advantage of CCE lies in
its compatibility with no-regret learning dynamics where players only need to observe their own
payoffs, not the entire game structure or other players’ actions.

3 RELATED WORK

Figure 1: (Top) provides a visualization of how
deep MCTS estimates the value and policy of a
given node. (Bottom) provides a visualization for
how our method (NN-CCE) estimates the value
and policy of a given node. Each node is a state.
A forward connected black edge from one node
to another indicates an action connects the two
states. Red backwards edges indicates that a value
estimate is passed from one node to another

All MARL algorithms fall between two ex-
tremes: decentralized methods and centralized
methods. Decentralized methods train agents
simultaneously but independently. Independent
Q-learning (IQL) Tampuu et al. (2017) and in-
dependent proximal policy optimization (IPPO)
de Witt et al. (2020) are primary examples of
decentralized algorithms. Each agent repeat-
edly improves their Q-value approximations, in
the case of IQL, or their policy, in the case
of IPPO, through repeated interactions with the
environment.

On the other hand, centralized methods learn
a policy over the joint action space, but
are largely restricted to environments where
agents share reward functions. A middle
ground between the two extremes are algo-
rithms with centralized learning and decentral-
ized execution (CTDE). One instance is multi-
agent proximal policy optimization Yu et al.
(2021) (MAPPO). MA-PPO demonstrated su-
perior performance to other popular CTDE
MARL algorithms such as Simplified Action
Decoder (SAD), Value Decomposition (VDN)
and QMIX Rashid et al. (2018) plus its variants
on several benchmarks. These algorithms are
restricted to cooperative environments.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: An overview of the working parts of our methodology and their interactions. A black
directional arrow indicates that information is sent unilaterally from one entity to the other. Each
number corresponds to a black arrow, and are referenced during our explanation in the methodology
section.

Several studies have attempted an obvious expansion from purely cooperative to cooperative-
competitive environments: behave selfishly. Hoever, it turns out that agents that behave selfishly
(i.e. do not consider the policies or actions of other players) will encounter identical states with
different value estimates and will have difficulty learning in mixed cooperative and competitive en-
vironmentsTampuu et al. (2017); Zawadzki et al. (2014); Lee et al. (2022)).

Another method for branching into competitive environments is to freeze the policies of certain
agents during training. This way, the environment becomes stationary with respect to a single agent
Vinyals et al. (2019). A common implementation of this concept is neural fictitious self-play Hein-
rich & Silver (2016), where an agent plays against frozen past iterations of themselves and the pool
of past policies grows during training.

Next, there is a variation of policy freezing where agents either have explicit access to, or maintain
their own approximation of, other agent policies. A popular example of such an algorithm is Multi
Agent Deep Deterministic Policy Gradient (MADDPG)Lowe et al. (2017). This directly addresses
the problem of non-stationary and allows for training on cooperative, competitive, and mixed envi-
ronments. We focus our performance comparisons against MADDPG as it applies to many of the
problem to which our proposed method applies.

Another approach some studies take is to attempt to approximate an equilibrium. Counterfactual
regret minimization Zinkevich et al. (2008); Neller & Lanctot (2013) provides a powerful algorithm
for approximating a Nash-equilibrium in 2p0s tasks. The algorithm aims to minimize regret. Zinke-
vich et al. (2008); Neller & Lanctot (2013) demonstrate that by attempting to minimize the regret,
they also minimize the exploitability of their policy thus approximating a Nash-equilibrium. Policy
Space Response Oracles (PSRO) Lanctot et al. (2017) addresses poor convergence in multi-agent
settings due to other agents’ policies. At each iteration, a new policy is added that approximates the
best response so the meta-strategy of the other players. It has several variations such as joint PSRO
(jPSRO) that are improvements upon the base algorithm. The limitation for equilibrium approxima-
tion algorithms is that they are not easily applied to tasks with larger state and action spaces. The
majority of testing regarding such algorithms have been on small tasks.

Finally there is the method that is most akin to ours, deep Monte Carlo Tree Search (d-MCTS)
and its variants Schrittwieser et al. (2019), Silver et al. (2017). D-MCTS utilizes neural network
guided simulations at every encountered state to estimate a policy and value, which in turn become
training data for future iterations of the neural networks. We provide explicit comparisons for how
our methodology differs from d-MCTS methods.

4 METHODOLOGY

Our method can be summarized in Figure 2. It is comprised of four main pieces (value network,
policy network, environment, and no-regret workers) and two replay buffers. All entities and replay
buffers act asynchronously of one another and remain idle if they do not have an ongoing job.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: The probabilities of actions as a function of time for a single state in from the Multi-
Particle Environment (MPE). In this state there are two players, one with an action space of 125, the
second with an action space of 5. (Left) Probability change of actions for player one with an action
space of 125, only 5 of the 125 actions are shown to reduce clutter in the graph. (Right) Probability
changes of actions for player two displaying 5 of the 5 total actions.

In Figure 2 we see numbers noting the relationship between each of these entities if a relationship
exists. We refer to these numbers in the description below. In (1), we begin with a standard inter-
action between policy network and environment, where the environment sends the policy network
a state, s, and the policy network returns the action to take, a = π(s). Once a full trajectory has
been collected this way from the environment+policy interaction, the trajectory is passed (2) to the
Raw Trajectory Replay Buffer. Here, all unprocessed trajectories are stored until they are passed (3)
to an available no-regret worker. Each no-regret worker takes K trajectories and interacts (4) with
the value network to use no-regret learning in order to estimate a value and policy for each state in
each trajectory. As the worker finishes processing a trajectory, the processed trajectory is sent (5)
to a separate replay buffer, the Processed Replay Buffer. Finally, the value and policy network will
periodically sample data points from the processed replay buffer (6,7) in order to update their own
value and policy estimates, respectively.

Many of the steps outlined above are identical to the process used in other asynchronous reinforce-
ment learning algorithms, including deep-MCTS. The novelty of our algorithm originates from the
introduction of no-regret workers into the loop and these workers’ interaction with the value net-
work. We discuss these in more depth in the next subsection.

4.1 NO-REGRET WORKERS AND THE VALUE NETWORK

We discuss the connection (4) here. Standard MCTS relies on repeated interaction to estimate the
value and policy of a given state, s. Each interaction entails simulating future states, estimating the
value of the future states using a value network, and updating the value and policy of s using the
estimated value. Let us refer to the complete interaction of estimating the a value and policy for a
given state/node as “processing the state/node.”

Our algorithm utilizes multiple EXP3-IX Neu (2015) instances. Let us define K as the number of
actions for each player and T as the total number of time-steps. The core of the EXP3-IX algorithm
revolves around repeated interaction between players and requires each player tracking accumulated
losses for each players individually. For a set of EXP3-IX instances, Es, at a given state, s, all
instances begin with a cumulative loss vector,

L̂t=0,i =
−→
0 , ∀i ∈ [N], |L̂t,i| = K

At time-step t ∈ [T] all players will sample will sample an action, ai ∀i ∈ [N] using their loss vec-
tors using equation 2. We define the joint action of all players as A = {a1 . . . aN}. The joint action is
passed to the value network and the value network outputs a vector of values, Ṽt = {ṽt,1, . . . , ṽt,N}.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We assume that vt,i ∈ [0, 1] ∀i ∈ [N]. This allows us to easily compute a loss vector L̂t =
{Lt,i|Lt,i = 1− vi ∀i ∈ [N]}. We then utilize each players’ current loss to update the cumulative
loss vector via Equation 4

L̂t,i = L̂t−1,i +
Lt,i

Pt−1,i + γ
(1)

Pt,i =
exp(−ηL̂t−1,i)∑K
j=1 exp(−ηL̂t−1,i)

(2)

P̂i =
1

T

T∑
t=1

Pt,i ∀i ∈ [K] (3)

L̂t,i = L̂t−1,i +
Lt,i

Pt−1,i + γ
(4)

V̂i =
1

T

T∑
t=1

Ṽt,i (5)

The value and policy estimates of each player, i, at time
step t are updated via equation 5 and equations 4 and 2
respectively. We use the values for the hyper-parameters
η and γ as explicitly defined in Neu (2015). As an in-
tuition: higher incurred loss for an action results in the
action being selected less often in future iterations.

At the end of T time-steps a policy estimate and value es-
timate are created by time averaging the policy and value
at each time step (equations 3 and 5).

Our method deviates from standard MCTS in two major
ways. First, we do not use UCB-score Schrittwieser et al.
(2019) nor do we use visit count to determine a value and
policy estimate. Second, in order to evaluate the value of
a given node, our method relies much more on the value
estimation provided by the value network compared to
MCTS. We can see in Figure 1 that MCTS (top half) will
visit new nodes beyond its immediate children (depth of 1), whereas we will only visit the immediate
children of a given node. Each simulation is marked by a new time step (t = 0, t = 1, . . .).

This is a trade-off where our method does not enjoy the benefits of experiencing rewards further
down the tree, but we gain speed and parallelization benefits that cannot be achieved with multi-
layer deep simulation. In other words, MCTS methods will encounter rewards during their path
through the environment graph, where as our method is constrained to the rewards of the immediate
child nodes. Both methods will query the value network for an estimate value of particular nodes,
highlighted in light blue.

Before we discuss the benefits we gain through limiting simulation in this way, we first justify why
this trade-off is necessary. Contrasted to deep MCTS, which typically uses up to 800 time steps per
node Schrittwieser et al. (2019), no-regret learning requires significantly more.

Using the regret bound provided by Neu (2015), it becomes clear that 800 time steps is insufficient
for this method. At 800 time steps, the theoretically guarantees provided by EXP3-IX are very poor:
we have not yet found the best action.

Let us consider an example state that has an action space of 125. According to the regret bounds
from Neu (2015), we would need to iterate at least 20,000 times to reliably determine a best action
for each player (and there for CCE). A direct example of this can be in Figure 3. Here, we can see
that the action probabilities for both players at the same state,sampled from MPE, stabilizes past
25,000 iterations.

For this reason, we truncate the immediate simulation depth to 1. Doing this allows us to greatly
speed up the value estimation process. Firstly, we remove the need to access the environment, as we
solely rely on value network evaluation feed back and do not use rewards obtained during simulation.
This is an improvement in terms of speed over model-free deep MCTS, but not model-based deep
MCTS.

Second, we parallelized the learning process across time. All deep MCTS methods use information
from their simulations to choose their next action and begin simulating on the resulting state. Our
method instead relies on a policy network to quickly traverse through a trajectory (shown in Figure
2), then processes all nodes simultaneously. As shown in Figure 4, both our method and MCTS are
able to gather and process nodes (states) using multiple workers. Our method, however, processes
all nodes in a single worker simultaneously, speeding up learning greatly.

4.2 UPDATING POLICY AND VALUE NETWORK

We now discuss the connections in (6) and (7). First, the policy network learns a mapping for each
player, Pi : s → P̂i where P̂i is estimated by Eq. (3). Second, the value network learns a mapping

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

for each player, Vi : s× ai → R(s, ai) + V̂i, where R(s,A) is the reward encountered by the agent
when collecting trajectories after taking action joint action A = {aj |∀j ∈ [N]} at state, s and V̂i is
the value estimate from equation 5.

4.3 METHODOLOGY: HIGH-LEVEL SUMMARY

Figure 4: A diagram highlighting the differences
in parallel processing between our method and
standard deep-MCTS methods. Blue circles in-
dicate nodes (states) that have had their simula-
tions completed. Red circles indicate nodes that
are currently undergoing simulation. Deep-MCTS
requires each worker to serialize (rather than in
parallel) the processing of each node in a trajec-
tory. However our method first constructs the tra-
jectories very quickly, and then processes them all
at once.

We propose an effective way to combine no-
regret learning with neural-network based tree
search. Previous attempts to do this attempt
to compute the value of each child state be-
fore learning the value of the parent Daskalakis
et al. (2022). Given that, as we discussed above,
usage of effective no-regret learning requires
a large number of samples, this sequential ap-
proach makes training extremely time consum-
ing.

By contrast, we propose a new sampling pro-
cess in the tree search paradigm which first
quickly traverses the tree using a policy neu-
ral network and then processes all states in par-
allel across time – without learning the values
of the children before the parents. Our method
greatly increases processing speed compared to
the standard sequential approach.

Usage of no-regret learners allows us to build
subroutines that converge to equilibria within
the tree search. Standard MCTS is implic-
itly tailored towards a min-max solution, which
makes sense in full but not partial information
games. Instead, we use dynamics which con-
verge to a coarse correlated equilibrium among
players. Our method does not use any human
knowledge injection (e.g., in the form of a hand-trained opponent to train against) and is trained
purely through self-play.

5 POINTS OF COMPARISON

5.1 ENVIRONMENTS

Scen. NN-CCE MA-PPO S-MCTS
3v.1 89.00(1.50) 88.03(1.06) 65.01(2.21)
CA(easy) 90.03(1.76) 87.76(1.34) 80.02(2.03)
CA(hard) 79.03(5.85) 77.38(4.81) 55.15(1.22)
Corner 70.03(1.03) 65.53(2.19) 44.19(1.77)
PS 94.2(1.06) 94.92(0.68) 78.09(1.23)
RPS 75.8(1.99) 76.83(1.81) 65.55(0.50)

Table 1: Success rate comparison between NN-CCE and
MAPPO on different scenarios within the GFR environ-
ment. Results for MAPPO are taken from Yu et al. (2021)
Average and standard deviation success rates are reported
over six random seeds for each scenario. S-MCTS results
are based on our own implementation.

In this study we focus on 4 main en-
vironments, where each environment
contains between 2-6 unique scenar-
ios. We define a scenario as a unique
SG within an environment. Each en-
vironment was chosen because it is
an open-source widely used MARL
library with optimized performance
to allow for fast training and was used
by at least three other popular algo-
rithms. Of all environments that fit
this description, these four were the
most well cited and used.

OpenSpiel Lanctot et al. (2019). A
collection of n-player imperfect in-
formation games. Scenarios from this
environment were small enough such

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 5: Left: MPE example observation. Middle-Left: GFR example observation. Middle-Right:
Starcraft MA challenge example observation. Right: Laser tag example observation

that equilibrium approximation methods could converge onto a solution in a reasonable amount of
time. Two scenarios are used: Goofspiel-6 (6-card variant) and Laser Tag.

Google Football Research Kurach et al. (2020). A team based mixed cooperative competitive
football simulation environment. For this study we use smaller scale environments rather than the
full game. We train agents to play as both teams and do not used fixed algorithms in our training
process. Six scenarios are used: 3v1, CA(easy), CA(hard), Corner, PS, and RPS. We will also study
three cooperative version of these scenarios.

Multi Agent Particle Environment Lowe et al. (2017); Mordatch & Abbeel (2017). A multi-agent
particle environment that has a mix of cooperative, competitive, and cooperative-competitive tasks.
We focus on three competitive and cooperative-competitive scenarios: Adv, Tag, and Push.

Starcraft Multi-agent Challenge Samvelyan et al. (2019) A multi-agent version of the popular real-
time strategy game Starcraft. In this variant, all pieces on a single team are controlled simultaneously
at each time step. Three scenarios are used: 3s vs 3z, 3s vs 4z, 5m vs 6m.

Summary: We will evaluate on 17 distinct games across four different environments, chosen for
their open-source availability and prior evaluation by at least three algorithms in previous research.

5.2 COMPARED ALGORITHMS AND EVALUATION METRICS

We divide the set of algorithms we compared against into three main groups. We chose each of the
algorithms tested because it is or was a recent state of the art algorithm for a respective environment,
or it is a generally popular algorithm that serves as a useful benchmark; in addition, all algorithms
we compared against need to be accessible with with open-source code.

Equilibrium Approximation Algorithms: NN-CCE (ours) compared against PSRO, JPSRO, CFR.
Each of the latter three algorithms are not meant to scale to larger environments. Their application
is limited to smaller competitive tasks from the OpenSpiel environment. For a comparison metric,
we compared a direct head-to-head win rate of our algorithm versus the opposing algorithm for each
scenario in OpenSpiel. All scenarios from open-spiel were symmetric 2p0s. In a single trajectory
we labeled recorded the total points accumulated by our agent and the contemporary agent. The
winner was determined as the side that accumulated more points. All algorithms in the comparison
were trained and assessed over 10 random seeds.

Cooperative Algorithms: NN-CCE (ours) compared against MAPPO, MADDPG. Each of these
algorithms are able to be applied to purely cooperative tasks within GFR and SMAC. They are both
popular algorithms with tested open-source implementations. In addition they both demonstrate su-
perior performance against a wide arrange of other contemporary algorithms Yu et al. (2021); Lowe
et al. (2017). For a comparison metric, we compared total accumulated score in testing scenarios of
our algorithm to the competitor.

Competitive Algorithms: NN-CCE (ours) compared against MADDPG, Simultaneous Move
MCTS. All three of these algorithms can be applied to larger scale competitive scenarios within
MPE, GFR and SCMAC. MADDPG has a tested open-source implementation. We implemented
Simultaneous Move MCTS locally, and its detailed are found in the appendix. For a comparison
metric, we compared a direct head-to-head win rate of our algorithm compared to the opposing al-
gorithm for each scenario in the three environments listed. All competitive scenarios from MPE,
GFR, and SMAC were asymmetric and two team-based.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

NN-CCE jPSRO PSRO CFR R
NN-CCE - 62% 70% 91% 100%
jPSRO 38% - 63% 55% 85%
PSRO 30% 37% - 52% 73%
CFR 9% 45% 48% - 74%
R 0% 15% 27 % 26 % -

NN-CCE C Q-Learning JPSRO
NN-CCE - 100% 74%
C Q-Learning 0 % - 7%
JPSRO 26% 93% -
Random 0% 36% 12%

Table 3: Win Rate on “Goofspiel-6” Scenario (Left) and “Laser Tag” Scenario (Right) from Open-
Spiel. (Left) C Q-Learning results are not reported because it failed to beat the random opponent
over many repeated trials. (Right) PSRO and CFR results are not reported because they failed to
converge to a solution in a reasonable amount of time

6 PERFORMANCE RESULTS AND DISCUSSION

MADDPG S-MCTS

MPE
Adv 82% 83 %
Tag 85% 90 %
Push 81% 87 %

GFR
MA-PS 60% 100 %
MA-3v1 63% 99 %
MA-C 60% 100 %

SMAC
3s,vs,3z 61% 100 %
3s,vs,4z 64% 100 %
5m,vs,6m 60% 100 %

Table 2: Win rate on MPE Tasks, Adv - Sim-
ple Adversary, Tag - Simple Tag Environment,
Push - Simple Push. Win rate on “Google Foot-
ball Research” Tasks. PS - Pass and Shoot Sce-
nario, 3v1 - Academy 3 v 1 with keeper Sce-
nario, Counter - Counterattack Easy scenario. All
scenario descriptions can be found in the Google
Football Repository. The tag “MA” refers to the
multi-agent variant of the scenario, where multi-
ple learning agents control all pieces, one agent
per piece. Three tasks were chosen from the
SMAC environment, which represent the number
of pieces controlled by two players.

Comparing to equilibrium approximation
algorithms. First, we apply our algorithm
to the relatively small scenarios of Goofspiel
and Laser Tag from the Openspiel environment.
These results are summarized in Table 3. As
can be seen, NN-CCE has a higher win rate
across all three tasks compared to other equilib-
rium approximation algorithms. All algorithms
we compared against do not scale to larger en-
vironments. Therefore, we compared them in
the smaller scaled scenarios of OpenSpiel.

Comparisons in competitive scenarios. In
the next set of experiments, we assessed
NN-CCE on tasks that involved controlling
multiple pieces in competitive environments:
MPE GFR, and SMAC. In our assessment we
compared against a popular multi-agent algo-
rithm Multi-Agent MADDPG. The results of
these experiments are summarized in Tables 2.
Across all three environments (MPE, GFR, and
SMAC), our algorithm had a higher win rate
compared to MADDPG and SM-MCTS.

Comparisons in cooperative scenarios. In
the final set of experiments we compare our
method against popular cooperative algorithms
over GFR and SMAC environments. We can
see in table 1 that that our method, NN-CCE,
demonstrates marginal to high success-rate improvement over MA-PPO across 6 different scenarios
in GR. It is important to note that MA-PPO trains against a fixed opponent in scenarios where an
opponent is present, such as scenario 3v.1, where as our agent trains against an adaptive policy
(itself) in such a case. Figure 6 also visualize the performance as a function of trajectories learned
by our algorithm, MADDPG, and MAPPO.

Discussion: the key contribution of our work is to develop a single algorithm which is competitive
or superior across each of the 17 benchmarks games we have tested. Our algorithm outperforms on
15/17 benchmarks, and for the remaining two (the cooperative PS and RPS scenarios in the GFR
environment) it is competitive (within 1.5% of best algorithm performance). However, in those two
cases, the best algorithm, which is MA-PPO, is trained against a human-coded opponent and thus
requires an injection of human-knowledge.

7 CONCLUSION AND FUTURE WORK

In this study our aim was to create an algorithm that could perform well in multi-agent scenarios
and trained through self-play with no human-knowledge injection. To accomplish this we proposed

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

a novel method to use NN to estimate a CCE for any given task. We demonstrate that our algorithm
obtains higher performance against competitor algorithms inspired by game theory and deep MARL
across a variety of benchmarks.

Figure 6: Results on GFR against a fixed oppo-
nent. NN-CCE (ours) and MADDPG are trained
via self-play, MAPPO is trained against a fixed al-
gorithm opponent.

We demonstrated an improvement against
other equilibrium estimation algorithms
(PSRO, CFR) for smaller tasks, and and
improvement against the current state of the
art (MADDPG) for cooperative competitive
environments in larger tasks. In conjunction,
we also demonstrate a higher empirical con-
sistency factor to our algorithm compared to
MADDPG; our algorithm is much more likely
to show improvement from baseline across
MPE and GFR tasks. Lastly, we demonstrate
that our algorithm also shows improvement
over contemporary multi-agent algorithm
MAPPO in purely cooperative tasks.

The algorithm addresses two shortcoming of
current MARL algorithms. Firstly, it can adapt
to environments where agents with competing
objectives exists. There is a small pool of al-
gorithms that can successfully work in mixed
cooperative competitive environments; of this
pool our algorithm, NN-CCE, demonstrated
higher performance across a variety of tasks.
Secondly, it further further detaches itself from
the need of human injected knowledge (typi-
cally used in the form of a human-designed agent to train against) and can therefore be used in
environments where a strong fixed policy is not well known.

Future work. One clear drawback of our method is its limitation to discrete data tasks. Although
we have higher performance than MADDPG in this realm, MADDPG boasts the ability to work in
tasks with continuous space and continuous action spaces. A direct application of our method to
continuous action spaces would not be advised, since it relies heavily on repeated visits to the same
state (which will not naturally happen in continuous space).

Second, there is room to improve our method by creating value estimates that take into account
more rewards from the environment itself. Currently, our value estimates are based only upon the
rewards of the immediate next state and the estimate from the value network. However, we could
obtain a much more accurate value estimate if we “unrolled” a trajectory and took into account the
cumulative rewards of multiple time-steps into the future (a computationally expensive endeavor
given the number of simulations our method requires). Unfortunately the solution is not as simple
as one would hope. If the environment has sparse rewards, it could be that looking a few steps
into the future would not yield any additional information (rewards), and thus we would have paid a
computational cost without much gain. Also, there are experiments that must be conducted to ensure
a proper integration of future rewards and the estimate from the value network so that the no-regret
learning algorithm does not degenerate, which is something we have encountered in rudimentary
implementations of this improvement.

Reproducibility Statement and the Appendix. We have made great efforts to ensure the repro-
ducibility of our methodology section, and the appendix. While the methodology section only pro-
vides a brief overview of our method, the appendix describes in great detail each algorithm used
in our methodology as well as the best parameters found through tuning and experimentation. In
addition, the appendix contains a link to an anonymous code repository that contains an implemen-
tation of our method. There are instructions, found by following the link provided, that allow the
download of code and training of agents using our method.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Constantinos Daskalakis, Noah Golowich, and Kaiqing Zhang. The complexity of markov equilib-
rium in stochastic games, 2022.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip H. S.
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge?, 2020.

Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-
information games. CoRR, abs/1603.01121, 2016. URL http://arxiv.org/abs/1603.
01121.

Tomáš Kocák, Gergely Neu, and Michal Valko. Online learning with noisy side observations. In
Arthur Gretton and Christian C. Robert (eds.), Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine Learning Research,
pp. 1186–1194, Cadiz, Spain, 09–11 May 2016. PMLR. URL https://proceedings.
mlr.press/v51/kocak16.html.

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zajac, Olivier Bachem, Lasse Espeholt, Car-
los Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, and Sylvain Gelly. Google
research football: A novel reinforcement learning environment, 2020.

Marc Lanctot, V Zambaldi, A Gruslys, Angeliki Lazaridou, Karl Tuyls, Pérolat Julien, D Silver, and
Thore Graepel. In A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning,
12 2017.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinı́cius Flores Zambaldi, Satyaki Upad-
hyay, Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei,
Daniel Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, János Kramár, Bart De
Vylder, Brennan Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai, Ju-
lian Schrittwieser, Thomas W. Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis.
Openspiel: A framework for reinforcement learning in games. CoRR, abs/1908.09453, 2019.
URL http://arxiv.org/abs/1908.09453.

Ken Ming Lee, Sriram Ganapathi Subramanian, and Mark Crowley. Investigation of independent
reinforcement learning algorithms in multi-agent environments. Frontiers in Artificial Intelli-
gence, 5, 2022. ISSN 2624-8212. doi: 10.3389/frai.2022.805823. URL https://www.
frontiersin.org/articles/10.3389/frai.2022.805823.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, pp. 6382–6393, Red Hook, NY,
USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. arXiv preprint arXiv:1703.04908, 2017.

T. Neller and Marc Lanctot. An introduction to counterfactual regret minimization. 2013. URL
https://api.semanticscholar.org/CorpusID:17509330.

Gergely Neu. Explore no more: Improved high-probability regret bounds for non-stochastic bandits.
In Neural Information Processing Systems, 2015. URL https://api.semanticscholar.
org/CorpusID:5846129.

Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani. Algorithmic Game Theory.
Cambridge University Press, New York, NY, USA, 2007.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent reinforce-
ment learning. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
4295–4304. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
rashid18a.html.

11

http://arxiv.org/abs/1603.01121
http://arxiv.org/abs/1603.01121
https://proceedings.mlr.press/v51/kocak16.html
https://proceedings.mlr.press/v51/kocak16.html
http://arxiv.org/abs/1908.09453
https://www.frontiersin.org/articles/10.3389/frai.2022.805823
https://www.frontiersin.org/articles/10.3389/frai.2022.805823
https://api.semanticscholar.org/CorpusID:17509330
https://api.semanticscholar.org/CorpusID:5846129
https://api.semanticscholar.org/CorpusID:5846129
https://proceedings.mlr.press/v80/rashid18a.html
https://proceedings.mlr.press/v80/rashid18a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tim Roughbarden. Twenty Lectures on Algorithmic Game Theory. Cambridge University Press,
2016.

Mikayel Samvelyan, Tabish Rashid, Christian Schröder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob N. Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. CoRR, abs/1902.04043, 2019. URL http://arxiv.
org/abs/1902.04043.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap,
and David Silver. Mastering atari, go, chess and shogi by planning with a learned model. CoRR,
abs/1911.08265, 2019. URL http://arxiv.org/abs/1911.08265.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of go without human knowledge. Nature, 550:354–, October 2017. URL http:
//dx.doi.org/10.1038/nature24270.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning.
PLOS ONE, 12(4):1–15, 04 2017. doi: 10.1371/journal.pone.0172395. URL https://doi.
org/10.1371/journal.pone.0172395.

Eva Tardos. Lecture 16: Coarse correlated equillibrium, 2020. URL https://www.cs.
cornell.edu/courses/cs6840/2020sp/note/lec16.pdf.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Sil-
ver. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575:350
– 354, 2019. URL https://api.semanticscholar.org/CorpusID:204972004.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre M. Bayen, and Yi Wu. The surprising
effectiveness of ppo in cooperative multi-agent games. In Neural Information Processing Systems,
2021. URL https://api.semanticscholar.org/CorpusID:232092445.

Erik Zawadzki, Asher Lipson, and Kevin Leyton-Brown. Empirically evaluating multiagent learning
algorithms. CoRR, abs/1401.8074, 2014. URL http://arxiv.org/abs/1401.8074.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms, 2021.

Martin Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret minimization in games with
incomplete information. Advances in Neural Information Processing Systems, 20:905–912, 01
2008.

12

http://arxiv.org/abs/1902.04043
http://arxiv.org/abs/1902.04043
http://arxiv.org/abs/1911.08265
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1371/journal.pone.0172395
https://doi.org/10.1371/journal.pone.0172395
https://www.cs.cornell.edu/courses/cs6840/2020sp/note/lec16.pdf
https://www.cs.cornell.edu/courses/cs6840/2020sp/note/lec16.pdf
https://api.semanticscholar.org/CorpusID:204972004
https://api.semanticscholar.org/CorpusID:232092445
http://arxiv.org/abs/1401.8074

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 LINK TO PUBLICLY AVAILABLE IMPLEMENTATION

A link to a publicly available implementation of our work can be found here
https://anonymous.4open.science/r/ImperfectInformationZeroSum-CA5C/CCE/Readme.md

A.2 IN DEPTH METHODOLOGY

Our approach is based on two core ideas. The first idea is to train a separate neural network πi

for each agent: this eliminates the curse of dimensionality. Indeed, although there are |A|n joint
actions, by training πi : S → Ai for all i = 1, . . . , n, we avoid an exponential growth of the action
space. However, this approach comes with a tradeoff: we have effectively made agent decisions
independent of each other – which is clearly highly sub-optimal. Indeed, agents could potentially
gain from correlating their actions, which they cannot do under this strategy.

Out second idea is to mitigate the loss from this by using update rules which approximate a coarse
correlated equilibrium (CCE); we view this as a ”second best” solution to making correlated deci-
sions across agents. Recall that a CCE is similar to a standard mixed Nash equilibrium, except that
there is a joint distribution taken by all the agents which makes deviations gainless. By training agent
policies to learn a CCE, we effectively bypass a major limitation of training independent policies.
The idea is that even though the individual decisions are made separately, the agents are replying to
each other, so that, in the limit, their time-averaged policies converge to a correlated action profile
which is good in the sense of being a CCE.

This leads to the question of how to build dynamics that attain CCE in our setting. We build on
recent work Daskalakis et al. (2022) which shows that EXP-IX, a standard algorithm in online
learning with asymptotically vanishing regret, can learn CCEs. We thus replace the standard value
estimation methods in MCTS based on UCB estimates with EXP-IV based estimates. Details are
given below.

We call our algorithm NN-CCE. It is trained by iterating through three main steps: (1) gathering
trajectories D, (2) processing trajectory information, (3) training a model on D.

We first gather K trajectories in a given environment, each of length H . Next, we process our
trajectories in reverse order. For the set of states in time step H − 1 over all trajectories, we train a
Q-value network, QH−1 : sH−1 × A→ R to output Q-value estimates of state-action pairs. Using
QH−1, we perform Multi-Agent EXP-IX to approximate a CCE policy and value estimate for every
state over all trajectories at time step H − 1, {v(sH−1)}i and {p(sH−1)}i ∀i ∈ [K] (Algorithm 3).

After, we use {v(sH−1)}i∀i ∈ [K], to train a new Q-value network QH−2 : sH−2 × A →
v(sH−1) ∈ R, and repeat CCE approximation and Q-value training until time step h = 0. In
total, we would train H Q-value networks per agent. Each Q-network takes as data the trajectory
info for its respective time-step.

Finally, we train a policy model on all CCE policies calculated during our trajectory processing
phase to form a final model that outputs a policy distribution.

A detailed algorithm is provided in Algorithms 1, 2, and 3.

A.3 EXPERIMENTAL PARAMETERS

All Q-value and policy network parameters are given below. Let us define I as the size of the input,
J as the size of the joint action space, P as the size of the policy space, H as the finite horizon, and
N as the number of players. All networks are trained using an Adam optimizer with learning rate
5e− 5.

13

https://anonymous.4open.science/r/ImperfectInformationZeroSum-CA5C/CCE/Readme.md

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 1 NN-CCE approximation. This is a standard on-policy value-based method except we
train a value network for each time step in reversed time step order.
Input: G, Stochastic Game
Input: H , finite horizon
Input: K, number of trajectories
Input: MH , Q-value network
Input: π0, Initial policy network

1: R← {∅}
2: for t = 1, 2, . . . , T do
3: for i ∈ K do
4: Di ← GenerateDataset(πi, G,K)
5: Let bh′ ∈ Di represent the set of all states from time-step h′ for player i
6: end for
7: for h = H − 1, H − 2, . . . , 0 do
8: vh, πh ←MA-EXP-IX(s,Mh+1) ∀s ∈ bh
9: Mh ← TrainValue({vh′ : h′ = h})

10: end for
11: πt ← TrainPolicy({πh})
12: end for
13: return R

Algorithm 2 GenerateDataset
Input: G, Stochastic Game
Input: H , finite horizon
Input: K, number of trajectories
Input: π, policy network

1: {bh ← {}}h∈H

2: for k = 1, 2, . . . ,K do
3: s1 ← ∆(S) ▷ sample starting state
4: for h = 1, 2, . . . ,H do
5: bh ← bh ∪ sh
6: ah ← π(sh)
7: sh ← T (sh, a) ▷ T represents the transition function
8: end for
9: end for

10: return {bh ← {}}h∈H

Q-value Network Parameters
Sub-Network
Name

Architecture Learning Rate L2-
Regularization

Dropout

Representation
Network

[I , 256, 256, 32] 5e-5 1e-4 0.5

Q-value
prediction
Network

[32 + J , 256, 256, S] 5e-5 1e-4 0.5

Policy Network Parameters
Sub-Network
Name

Architecture Learning Rate L2-
Regularization

Dropout

Representation
Network

[I , 1028, 1028, 64] 5e-5 2e-4 0.6

Q-value
prediction
Network

[64, 1028, 1028, P] 5e-5 2e-4 0.6

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 3 MA-EXP-IX. This is a standard EXP-IX algorithm from Neu (2015) except we provide
additional details because multiple players are all simultaneously using EXP-IX no-regret learning.
Input: A, Number of actions
Input: T , max time step
Input: N , number of players
Input: Q, Q-value estimation network
Input: h, current time horizon
Input: H , max time horizon
Input: s, state
Output: weight matrix, w and value estimate, v

1: w ← −→1 ∈ RN×A

2: v ← −→0 ∈ RN

3: for t = 1, 2, . . . , T do
4: j ← {}
5: for n = 1, 2, . . . , N do
6: pt,i,n =

wt,i,n∑A
j=1 wt,j,n

7: Draw It,n ∼ pt,n = (pt,1,n, pt,2,n, . . . , pt,A,n)
8: j ← j ∪ {It,n}
9: end for

10: if h = H then
11: Observe loss lt,j = (lt,It,1 , . . . , lt,It,n)
12: else
13: lt,j ← Q(s, j)
14: end if
15: for n = 1, 2, . . . , N do
16: vn ← vn + lt,t,n
17: l̃t,i,n ← lt,i,n

pt,i,n+γ I{It=i} for all i ∈ [A]

18: wt+1,i,n ← wt,i,ne
−η ˜lt,i,n for all i ∈ [A]

19: end for
20: end for
21: return w and v

For a given environment, we trained a total of H ∗ N Q-value networks, one for each player and
time step. The number of Q-value networks could be reduced if the game was fully competitive or
fully cooperative. In this type of environment, only H Q-value networks were trained. For every
environment, a total of N policy networks were trained.

A.4 FACTORS INFLUENTIAL TO NN-CCE PERFORMANCE

In this section we provide a series of ablation studies to demonstrate the factors that affect the
performance of our NN-CCE algorithm. Results are given comparing different versions of our agent
against a fully random algorithm and MADDPG in small test scenarios within the multi particle
environment. The specific scenario is “simple” with 2 adversarial agents and 1 good agent. Results
are given in terms of the total reward accumulated during a testing episode. Where either trained
MADDPG or CCE agents control the adversarial players, and the other controls the good player.

These results guided our development and implementation, contributing to the overall success for
the larger tasks and test beds.

A.4.1 NUMBER OF TRAJECTORIES

Our agent uses significantly less environment interactions compared to the MADDPG algorithm.
Because we do significant processing for each trajectory before neural network training, we re-
stricted the number of trajectories sampled to at most half of that of MADDPG.

We then trained MADDPG on a three small test scenarios in MPE and recorded its performance after
10k, 30k, and 50k trajectories through the environment, one for each test scenario. Our algorithm

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

was then trained on the same small test scenarios but limiting the trajectories to 5k, 15k, and 25k
trajectories respectively.

For each small scenario, our algorithm scored at least 10% better than MADDPG using at most half
of the number of trajectories through the environment. For these scenarios we had NN-CCE play
against MADDPG agents in a head-to-head however we recorded the average score

In addition, the ratio of failure cases for MADDPG grew with the number of trajectories. We define
a failure case as an instance where the policy post training does not improve significantly beyond
the performance of a random policy.

Interestingly, the ratio of failure cases for our agent decreased significantly as we increased the
number of trajectories. Our agent makes a trade-off compared to other RL algorithms: we sample
less trajectories from the environment but spend much longer processing the trajectories we do
sample using no-regret learning.

A.4.2 DIVERSITY OF NODES WITHIN A LAYER

Given the results from the previous section, we take significantly less trajectories through any envi-
ronment we are training NN-CCE approximation in. As a result, we initially observed a wider range
of performance for NN-CCE on the same environment over many random seeds.

We discovered that NN-CCE agents that performed higher tended to have a higher spread in the
value estimates for nodes across every layer. We measure spread for value’s in each layer using the
coefficient of variation (CV) for a given layer: σh

µh
.

In order to utilize this observation as a reproducible process, we developed a subroutine within
training that generates a fixed number of trees, measures the CV for each tree and a given layer, and
uses the tree with highest CV for that layer.

While this subroutine does increase the total number of environment trajectories, the agent still only
trains on one of the trees generated. In addition this subroutine did not increase the maximum score
in any of the test environments, instead it made the scores more consistent (less failure cases).

A.4.3 STRATEGIC DOMINANCE ACTION PRUNING

The goal of no-regret learning is to grow the regret with respect to the best action in hindsight sub-
linearly. The algorithm will converge on to what it evaluates as the best action. If all players utilize
no-regret learning, then their learned policies converge to the set of CCEs.

Objectively speaking at a given state with N-players each having K strategies, there are multiple
CCEs that exist, and our agent would converge to one of them. In fact we also found that successful
MADDPG algorithms would converge onto one CCE for a given state as well.

In classical game theory, having two or more competing equilibrium’s for a state is not a problem as
if equilibrium A was strictly better than equilibrium B, equilibrium B would not be an equilibrium
by definition, but in MARL it can be an issue.

This is because the very definition of equilibrium assumes that all other players follow that recom-
mended equilibrium. But in some cases of MARL, such as when our agent controls the 1 good
agent, and MADDPG controls the 2 adversarial agents. Suddenly that assumption is violated, and
the performance of our agent is due to random chance on how well our equilibrium compares to the
opponent equilibrium; in scenarios like this, more than one player is not following the equilibrium
we learned.

Therefore it is important not only to learn how to play one equilibrium, but also learn to adapt to
different equilibrium’s for a given state.

One way we found to improve performance around this problem is to prune the dominated strategies
for all players before no-regret learning. Strategies that were deemed to be dominated by any other
strategy were masked and not allowed for selection and their weights were ignored when converting
weights to policy, thereby receiving a probability of selection of 0.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We found that this optimization did not increase the maximum performance of our agent against
MADDPG across any test scenario, but it did increase the mean performance against MADDPG by
23% from an average score of 15.3 to 18.8 over many repeated test episodes and 10 random seeds.

A.4.4 JOINT VS INDIVIDUAL POLICY OPTIMIZATION

Joint policy optimization has poor scaling to larger tasks but it allows for much higher express-
ability of policies especially for competitive tasks, or tasks with competitive elements compared to
optimizing solo policies. The problem is that in team based competitive tasks, if we view the player
policies is random variables, the players should not be viewed as independent variables. Instead,
they should be viewed as dependent variables (all players on the same team). A joint distribution
created by multiplying the player marginal distributions cannot come close to the complexity of a
joint distribution over all possible actions. It does not allow for coordination amongst the players
and never will allow for such coordination. This is a problem for exploitability of a strategy in
competitive settings.

In cooperative tasks, this lack of express-ability isn’t actually that much of a problem. Because we
are just looking for the best joint action as a needle in the haystack, we don’t need to consider All
joint action futures individually, but can consider each players policy and form a joint distribution
by multiplying the the marginals together (treating the players as independent).

A.4.5 IMBALANCED DATA SETS FOR EQUILIBRIUM VALUE PREDICTION

One of the highest impacting aspects of predicting unknown states’ equilibrium values is the im-
balance in value estimates accrued during simulation. This is particularly true in the first iteration
where the policy sampling the states is effectively a random policy.

We can see here for the MPE environment allowing a random policy to sample leads to the following
value distributions. It is heavily skewed in favor of the value 0, as it is very unlikely for random
policies to collide leading to non-0 rewards for any given trajectory.

When we attempted to train a Q-value network on this heavily biased data set, we found that, as
expected, it primarily predicted a value of 0 for testing data; the errors for non-zero testing data was
extremely high and variable.

Therefore we applied up-sampling to minority values. Initially we separate the continuous value
training data, (X,y) into K classes. Each class is defined as a non-overlapping range of size
range(y)/K. In order to prevent over representation of a small set of data points during sampling,
we maintain a rule that each class except one, ks must contain at least 1000 data points, where ks
is defined as the class with the least data points. We therefore recursively combine the two smallest
classes until the condition is met.

A.4.6 TRAJECTORIES

There is one novel crucial component within the game tree creation algorithm: the partially random
off-policy trajectories. In this component, a subset of players follow their policy but the rest are
randomized. We found that a mix of on-policy and randomized learning agents improved the aver-
age performance of the final agent, compared to fully on-policy and fully random training, across
multiple tasks within the MPE environment.

For the purpose of score comparison between the three variations, we normalize the average and
standard error of the fully random training performance to 1 ± 0.17, respectively. Fully on-policy
training yielded an average performance of 0.8±0.3, while partial randomization yielded an average
performance of 1.3± 0.2.

We attempted to use common place exploration vs. exploitation methods, such as UCB score from
MCTS and epsilon learning from DQNs to improve performance, but neither significantly impacted
performance in our simultaneous-move multi-agent setting.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.4.7 NN SUPPORTED POLICY AND VALUE ESTIMATION

At the core of our algorithm is the estimation of non-stationary policies and values for any state
and time pairing. For any given state, s, at time step h, we run a neural network supported bandit
algorithm for a set number of iterations. During the bandit algorithm, we accumulate an average
value for s, and after the bandit algorithm we obtain our policy for s. Once all states within time
step h have been processed, we train a NN, Nh, on the states of time-step h, and repeat the process
for nodes in time-step h− 1 using Nh as our supplementary network.

Compared to other MARL algorithms, such as MADDPG, PPO, or deep-MCTS, we trade-off a
higher volume of data for attempting to get higher quality data. We can directly compare the effects
of this layer by layer approach by comparing our results to those of stationary policy estimation on
multiple tasks within the MPE environment.

In stationary policy estimation, we no longer take a layer by layer approach, but instead accumulate
value estimation by back propagating visited leaf nodes in the tree through the reverse trajectory used
to reach them. Policy estimations, rather than using bandit algorithms at each state, are accumulated
by visit count to each successor state. This approach is very similar to the approach in deep-MCTS.

By normalizing the average and standard error of the stationary estimation performance to 1± 0.56,
we find that our layer by layer method yields more robust and higher quality results with an average
performance of 2± 0.23.

A.4.8 DATA PROCESSING AND LEARNING OBJECTIVES

After generating a game tree (Algorithm 4) we have a large data structure of states seen through
environment interaction organized by time horizon. We will refer to “layer h” of our tree as as all
nodes that are h time steps away from any of the root nodes.

Contrast to monte carlo tree search based algorithms, we do not attempt to approximate a value and
policy for each state during the search itself, instead we process all nodes in reversed time order
once the tree has been fully created.

SM multi-agent reinforcement learning opens the question as to how we should estimate both the
value and policy of a given state. In classic RL and perfect information multi-agent RL, the value of
a state is estimated using the bellman equation:

Vπ(s) = R(s) + γ ∗maxaVπ(s
′)

where s′ = T (s, a), and the policy can be determined by picking the action that leads to the next
state with highest value for every state.

The application of bellman equation to SM MARL becomes translucent as we would need to know
the policy of all agents in order to make a value estimation. As mentioned previously, other MARL
algorithms address this issue by using a non-learning policy for all other agents (MA-PPO), or
keeping a local policy estimation for all other agents (MA-DDPG). Both of these options lead to
potentially sub-optimal generalization as the performance of the agent is then directly tied to the
opponent they trained with or against.

In our study we begin by processing the nodes in layer h = H , the terminal nodes of the tree. Nodes
in layer H have the unique property that V (s ∈ SH) = R(s ∈ SH) regardless of any policy, since
the episode terminates after reaching state SH .

We begin by updating the associated weights for all nodes in layer H where the loss of a given state,
s, for player n l(s, n) = rn(s)

maxs∈SH
rn(s)

using Algorithm 3, which returns a set of policy weights and
state value estimates, WH , VH .

As we are at h = H , we are only concerned with the value estimates, VH . Combining these value
estimates with the states of their parent nodes, SH−1, we create a dataset for a Q-value estimation
network of tuples (s, a, s′, v) where s ∈ SH−1, s′ ∈ SH , a is a valid action such that T (s, a)→ s′,
and v := V (s′) ∈ VH , and train a network on this data set. The process is then repeated until we
reach h = 1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 4 Generate Game Tree
Input: S, State Space
Input: ∆, Starting State Distribution
Input: S0 ⊆ S, Set of starting states
Input: A, Action Space
Input: H , finite horizon
Input: K, number of simulations
Input: T , Transition Function
Input: M , Neural network model
Output: R, Set of root nodes

1: R← {∅}
2: for k = K,K − 1, . . . , 0 do
3: s0 ← ∆(S0)
4: if s0 /∈ {s′ : N.state ∈ R} then
5: v0, p0 ← Predict(M , s0)
6: N ← Node(s0, v0, w ← p0)
7: R← R ∪ {n}
8: end if
9: N ← GetNode(R, s)

10: s← s0, w ← p0, τ ← 0,
11: N.n← N.n+ 1
12: children← GetChildren(N)
13: while τ = 0 do
14: Sample joint action, j, using wi∑

wi
for all players

15: s′ ← T (s, j)
16: if s′ /∈ children then
17: v′, p′ ← Predict(Model, s′)
18: N ′ ← Node(s′, v′, w′ ← p′)
19: children← children ∪ {n′}
20: τ = 1
21: else
22: s← s′, w ← w′

23: children← GetChildren(N ′)
24: end if
25: end while
26: end for
27: return R

A.5 SIMULTANEOUS-MOVE MCTS

We implemented our own form of Simultaneous-move MCTS based on the algorithm used in
MuZero.

It was adapted to fit simultaneous-move tasks where both teams/players picked a move simultane-
ously before it is sent to the environment. Value was calculated as an accumulated value for all
iterations at a node, and policies were generated by child visit count.

A.5.1 DATA STORAGE AND SAMPLING

After the tree is generated we save every node to a replay buffer. Each node in the replay buffer is
saved as a tuple defined as Transition(Node):

1. {Op} for p = 1...n

2. Node value
3. Node policy
4. Node time step
5. Node player

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

6. Node Visit Count

Where Op is the observation for each player at Node. Because the goal of the NN is to replicate the
tree value and policy estimation, we sample such that every node in the same time step has a uniform
chance of selection. In addition we give each time step equal chance of selection. For instance if
there is a task with 5 time steps, the overall probability would be divided to 20% per time step.
Within each time step, the 20% is divided evenly amongst the nodes associated with that time step.
Note that it is likely different time steps will have a different number of nodes. A further discussion
of this method is given in the ablation studies.

We also do not use priority sampling with our replay buffer. It is an extremely popular method
that has been shown to drastically increase the speed of training (Schaul et al., 2015). However we
believe it does not fit well with our data, and were not impressed with its early empirical results on
training.

Our data is atypical to other reinforcement learning algorithm. Typical RL algorithms store tra-
jectory tuples of the form (s, a, s′, r), however we store information that has been aggregated over
many iterations. Therefore the problem of rare experiences, that prioritized buffers address, is not
as applicable. Sampling uniformly across layers provides better value and policy estimates in future
iterations.

A.5.2 MACHINERY

Neural networks and scenario simulations were performed on a local machine containing a NVIDIA
GeForce RTX 2080 Ti graphics card (GPU) with 11gb of memory. In addition the machine contains
a 3.70GHz Intel(R) CPU with 8 cores.

A.5.3 NEURAL NETWORK TRAINING

Neural network architecture follows a standard DQN structure. It takes as input a batch of local
observations and outputs a value estimate as well as policy estimate. There is a representation
network that is malleable depending on the input type. If the observations are images then it is
generated as a convolutional NN, otherwise it is a deep fully connected NN. The number of layers
in the representation network are flexible to the performance needs, but we find 8 layers each of size
256 to be sufficient for all tasks in this study.

After the data is passed through the representation network it is then passed through two separate
networks, the value and policy network. The value network takes the representation output and
produces a vector of variable size (support size) which is then converted to a scalar value. This
method of estimating a value using a vector operation was popularized in Schrittwieser et al., 2019.
It causes outputs to be between 0 and 1 and thus aids in numeric stability. The policy network also
takes as input the representation output and produces a vector the size of the max action space of all
agents.

During training, the network predictions for each observation are measured against their stored node
information counterparts stored in the replay buffer. We use cross entropy loss with stochastic
gradient descent to optimize the network. Further implementation parameter details can be found in
the appendix.

The total procedure involves iterating between tree generation and neural network training. In order
to measure intermediary progress, we measure the performance of our network against a random
agent after each training session. We use the score against the random agent as both a validation
procedure and termination procedure. If the agent scores worse against the random agent on an iter-
ation, the training is undone and the iteration repeats itself. This is common procedure for iterating
algorithms such as deep MCTS. If the network does not significantly improve its score after a series
of iterations, the training process is terminated, and the last updated model is output.

A.5.4 SAMPLING TRAJECTORIES AND GENERATING A GAME TREE

We define a game tree is a series of Nodes, each representing a state, and directed edges, represent-
ing a transition between nodes. Algorithm 4 provides a detailed account of how the game tree is
generated and stored.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

The algorithm returns a set of nodes, R, which contains the root node of |R| trees generated in
simulation. There is a unique tree for each unique starting state. If a task only has one unique
starting state, then |R| = 1.

Each node, N , stores the following information: s, state, v, value, w, policy weights, children, set
of edges to child nodes, parent, edge to parent node

The simulation begins by choosing a root node from the starting distribution (line 3). If the state is
new, we create a new root object and store it in our set of roots, R (lines 4 - 7). If the state has been
seen in a previous simulation, then we get the corresponding node object (line 9). In either case, we
get the set of children and other variables (lines 10-12).

The next step is to reach a leaf node. We define a leaf node as either a terminal node, or a node
that does not yet exist in the tree. Upon reaching a leaf node, we create a new node and set the
appropriate attributes (lines 16-19).

21

	Introduction
	Background
	Background: deep MARL Training
	No-regret learning and online learning
	Why Coarse Correlated Equlibrium?

	Related Work
	Methodology
	No-Regret Workers and the Value Network
	Updating policy and value network
	Methodology: High-Level Summary

	Points of Comparison
	Environments
	Compared Algorithms and Evaluation Metrics

	Performance Results and Discussion
	Conclusion and Future Work
	Appendix
	Link to publicly available implementation
	In depth methodology
	Experimental Parameters
	Factors influential to NN-CCE Performance
	Number of trajectories
	Diversity of nodes within a layer
	Strategic Dominance Action Pruning
	Joint vs individual policy optimization
	Imbalanced data sets for equilibrium value prediction
	Trajectories
	NN supported policy and value estimation
	Data processing and learning objectives

	Simultaneous-Move MCTS
	Data Storage and Sampling
	Machinery
	Neural Network Training
	Sampling trajectories and generating a game tree

