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ABSTRACT

Deep learning methods incorporate PDE residuals as the loss function for solving
Fokker-Planck equations, and usually impose the proper normalization condition
to avoid a trivial solution. However, soft constraints require careful balancing of
multi-objective loss functions, and specific network architectures may limit rep-
resentation capacity under hard constraints. In this paper, we propose a novel
framework: Fokker-Planck neural network (FPNN) that adopts a score PDE loss
to decouple the score learning and the density normalization into two stages. Our
method allows free-form network architectures to model the unnormalized density
and strictly satisfy normalization constraints by post-processing. We demonstrate
the effectiveness on various high-dimensional steady-state Fokker-Planck (SFP)
equations, achieving superior accuracy and over a 20× speedup compared to state-
of-the-art methods. Without any labeled data, FPNNs achieve the mean absolute
percentage error (MAPE) of 11.36%, 13.87% and 12.72% for 4D Ring, 6D Uni-
modal and 6D Multi-modal problems respectively, requiring only 256, 980, and
980 parameters. Experimental results highlights the potential as a universal fast
solver for handling more than 20-dimensional SFP equations, with great gains in
efficiency, accuracy, memory and computational resource usage.

1 INTRODUCTION

(a) Real NVP

(b) GMM

Figure 1: Left: Strengths and weaknesses for ex-
isting models. Right: Real NVP and GMM with
16 components fail to learn the ring function.
The former consistently leaves a gap, while the
latter exhibits numerous irregular protrusions.

The Fokker–Planck (FP) equation governs the
time-varying response probability density func-
tion (PDF) of dynamical systems driven by
stochastic processes (Risken & Caugheyz, 1991).
It finds wide applications in statistical physics,
chemistry, biology, mathematical finance, and
structural dynamics (De Decker & Nicolis, 2020;
Tu et al., 2020; Hu et al., 2021; Boghosian
et al., 2017). Solving FP equations presents
three main challenges: high-dimensional vari-
ables, unbounded spatial domains, and the nor-
malization condition (NC). Grid-based methods
face the curse of dimensionality, while path in-
tegral methods and Monte Carlo simulations are
limited by noise and computational complexity
(Naess & Moe, 2000; Elman et al., 2014; Chen
& Majda, 2017; Natarajan et al., 2021).
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Deep learning methods, with their grid-free, causality-free, and feature-learning capabilities, have
demonstrated potential in addressing high-dimensional partial differential equations (PDEs) (Han
et al., 2018; Yu et al., 2018; Sirignano & Spiliopoulos, 2018; Liu et al., 2024). Among these promis-
ing methods, physics-informed neural networks (PINNs) (Raissi et al., 2019) leverage automatic
differentiation to enforce the physical constraints of underlying PDEs and achieve great success in
various problems, such as the Navier-Stokes equation, Burgers’ equation, Schrödinger equation, etc.
However, for steady-state Fokker-Planck (SFP) equations, PINN faces a new challenge: the zero so-
lution also satisfies this equation and directly minimizing the plain PDE loss will quickly collapse
the model to a trivial solution.

To mitigate this issue, data-driven methods guide the neural network (NN) to the desired solution by
introducing labeled data or Kullback-Leibler divergence terms (Zhai et al., 2022; Chen et al., 2021).
For 4D Ring problem, FP solver (Zhai et al., 2022) utilizes the direct Monte Carlo method with a
very large number of particles (1010 sample points) to obtain 104 reference points. This method
is computationally intensive and errors in the reference solutions may inversely limit the model’s
performance.

Table 1: Deep learning methods for SFP equations.

Methods Loss function Model Arbitrary
NN?

Whether strictly
satisfy NC?

Data-Driven Jplain + λJlabel pθ(x) = pNN(x; θ) ✓ ✗

Normalization
Condition

Jplain + λJnorm pθ(x) = pNN(x; θ) ✓ ✗

Jplain(pθ) pθ(x) = pKRnet(x; θ), pGMM(x; θ), pTNN(x; θ) · · · ✗ ✓

Jscore(p̃θ) p̃θ(x) = p̃NN(x; θ), pθ(x) =
p̃θ(x)∫
p̃θ(y)dy

✓ ✓

Another strategy that does not require labeled data is to impose normalization constraints in soft or
hard manner. Soft constraints prevent zero solutions by adding a normalization penalty term that
enforces the density integral to unity (Alhussein et al., 2023). While the normalization condition
prevents the approximate solution from being zero across the entire domain, minimizing the plain
PDE loss still has a tendency toward the trivial solution. These conflicting forces result in tortuous
optimization dynamics (Wang et al., 2024; Al-Aradi et al., 2022), requiring delicate balancing of the
multi-objective loss function. Specialized structures, such as normalizing flows (Dinh et al., 2016;
Tang et al., 2022; Feng et al., 2022) and Gaussian mixture model (GMM) (Anderson & Farazmand,
2024), are developed to represent density functions and enforce hard constraints. These methods
shrink the trial solution space and compromise the representation capability, leading to significant
errors and computational burden when learning certain PDFs.

In summary, the former method requires manual balancing of multi-objective losses, while the latter
may constrain the model’s representation capacity. As shown in Figure 1, the ideal method strictly
satisfies normalization constraints without sacrificing representation capacity. To the best of our
knowledge, there is no effective approach to handle this conflict. In this paper, we propose a novel
framework: Fokker-Planck Neural Network (FPNN) to decouple the fitting and normalizing stages
through score PDE loss. FPNN efficiently solves high-dimensional SFP equations and offers the
following advantages:

Adaptive Domain for Complex Systems. High-dimensional state spaces often exhibit intricate
dynamics and interaction patterns. To accurately identify critical features and high-probability
regions, we use the stochastic Runge–Kutta (SRK) method with strong order 1.5 to generate steady-
state training data and adaptively determine the appropriate domain for SFP problems.

Flexible Scaling for Small Solutions. Since the probability density is non-negative and must
integrate to unity over the spatial domain, the solution to high-dimensional problems is typically
quite small and networks struggle to resolve such small yet meaningful scales directly. FPNN
employs a score PDE loss, allowing the network to freely choose an appropriate scale and learn
the unnormalized density. This effect of “data standardization” is infeasible for existing methods
without labeled data or prior knowledge.

Efficient Enforcement of Normalization Constraints. The score loss allows free-form network
architectures to strictly satisfy normalization constraints. FPNN avoids evaluating the density
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function integral during training process and instead calculates the normalizing constant by post-
processing.
Scalability and Improvements in Optimization Dynamics. Without any labeled data or the
enforcement of zero boundary conditions, we successfully solve various 4-20 dimensional SFP
equations for complex physical systems. FPNN circumvents the normalization condition in loss
function which causes difficulty in training, and substantially improves optimization dynamics.
Therefore, a large learning rate (l = 0.01) is allowed for fast descent and stable convergence, and
FPNN achieves over 20× speedup compared to state-of-the-art methods. We get the MAPE of
11.36%, 13.87% and 12.72% for 4D Ring, 6D Unimodal and 6D Multi-modal problems respec-
tively, requiring only 256, 980, and 980 parameters. Our framework demonstrates substantial gains
in efficiency, accuracy, and memory usage.

2 PRELIMINARIES

Fokker–Planck equation. Consider stochastic differential equations (SDEs) (Oksendal, 2013) of
the form

dX = µ(X)dt+ σ(X)dWt, (1)
where the drift coefficient µ(X) ∈ Rd is a vector field, σ(X) ∈ Rd×M is a matrix-valued function
and Wt is an M -dimensional standard Wiener process. The density function p(x)1 of state variable
X represents an invariant distribution, satisfying the steady-state Fokker-Planck (SFP) equation:

∂p(x)

∂t
= Lp := −

d∑
i=1

∂(pµi)

∂xi
+

d∑
i=1

d∑
j=1

∂2(Di,jp)

∂xi∂xj
= −∇ · (pµ) +∇ · [∇ · (Dp)],

i.e. Lp(x) = 0, p(x) → 0 (||x|| → ∞),

∫
Rd

p(x)dx = 1,

(2)

where x ∈ Rd is the spatial variable, D(x) = 1
2σ(x)σ(x)

T is the diffusion matrix, L denotes the
Fokker-Planck differential operator and ||x|| indicates the ℓ2 norm of x.

Physics-informed neural networks. PINN is a deep neural network pθ(x) to approximate the
solution p(x) with the universal approximation theorem (Hornik et al., 1989). The SFP equation in
Eq. (2) can be expressed as,

Lp(x) = 0 x ∈ Ω, Bip(xi) = 0 xi ∈ ∂Ωi, Ip = 1. (3)

Here, Bi are boundary conditions (BCs) for boundaries ∂Ωi ⊂ Ω, and the integral operator I repre-
sents the NC. These physical constraints are incorporated as regularization (typically mean-squared
error terms) in the loss function. To accelerate model training and reduce violations of physical
laws, hard constraints can be used to omit part loss terms.

Score-based generative model. Score matching (Hyvärinen & Dayan, 2005) is a popular method
for learning unnormalized statistical models and score-based generative models have shown promis-
ing performance in both sample quality and sample efficiency, which can be combined with numeri-
cal SDE solvers or fast ODE solvers to generate samples (Song et al., 2021b; Song & Ermon, 2020;
Lu et al., 2022). Score loss are usually optimized by minimizing the Fisher divergence between
the gradients of log-density functions (i.e., scores) and the ground truth scores from data, without
handling the intractable partition functions (Song et al., 2020; Luo, 2022). This idea serves as the
primary inspiration for our score PDE loss.

3 FOKKER–PLANCK NEURAL NETWORKS

Considering that optimization, data, and model form the cores of deep learning approaches, we
introduce the FPNN framework through these three components. First, we define the score-based
Fokker–Planck loss as the objective function to solve SFP equations. Then, steady-state data from

1We mainly focus on the SFP equation, where the stochastic system reaches an invariant equilibrium dis-
tribution and parameters µ, σ are independent of time t. Examples of PDEs, experimental settings, as well as
expressions for µ(x) and σ(x) can be found in Sec. C.

3



Published as a conference paper at ICLR 2025

Model

𝑑𝑋 = 𝜇 𝑋 𝑑𝑡 + 𝜎 𝑋 𝑑𝑊𝑡SDE

ℒ𝑝 = −∇ ⋅ 𝑝𝜇 + ∇ ⋅ ∇ ⋅ 𝑝𝐷 = 0SFP

Score PDE Loss

Minimize score loss:  𝔼𝑝(𝒙) ℱ𝑠𝜃

SRK 

Data

𝒟train, Ω = −1.8,1.8 4

Prediction

Training process: (𝑥1, 𝑥2, 0, 0)

Time: 1.99s 3.91s 5.79s 7.75s 9.37s 10.99s 12.61s 14.58s 16.50s 18.13s

Initial Step 100 Step 200 Step 300 Step 400 Step 500 Step 600 Step 700 Step 800 Step 900 Step 1k

Model 𝑝𝜃

Approximate 
solution 

Estimate partition 
function 

S
o

lu
ti

o
n

s 
o

f 
F

P
N

N

MLP TNN

⋯⋯

Arbitrary 
NN 

Loss𝑠𝜃: = ∇ log 𝑝𝜃

𝑝𝜃 = 𝑝𝜃/𝑍𝜃

𝑍𝜃 ≈ න
Ω

𝑝𝜃 𝒙 𝑑𝒙

Step

Figure 2: FPNN framework for high-dimensional SFP equations. We use the SRK method to simu-
late SDE for generating training dataset Dtrain and domain Ω. Then, the data is fed into a free-form
architecture to produce the score. Next, we train the model by minimizing the score-based FP loss.
With the trained model p̃θ, we compute the partition function and perform normalization once to
obtain the solution of SFP equation.

true distribution is required to evaluate the score loss, for which we simulate SDEs using the SRK
method. Finally, we briefly review the tensor neural network (TNN) and the multi-layer perceptron
(MLP), implementing appropriate modifications to suit our task.

3.1 SCORE-BASED PDE LOSS

Score matching is originally designed for estimating unnormalized probability densities in machine
learning, statistics, and signal processing. The score of density p(x) is defined as ∇ log p(x). When
the model learns a density p̃θ(x) with the partition function Zθ, the approximate solution of SFP
equation is a normalized density denoted by,

pθ(x) =
p̃θ(x)

Zθ
, Zθ =

∫
p̃θ(x)dx (4)

Note that since log pθ(x) = log p̃θ(x) − logZθ and ∇ log pθ(x) = ∇ log p̃θ(x), we immediately
conclude that pθ(x) and p̃θ(x) share the same score, which does not depend on the intractable
partition function Zθ.

Inspired by this fact, we directly model the unnormalized density p̃θ and the score function sθ =
∇ log p̃θ using a neural network, and employ sθ to approximate the true score. Once we reformulate
the plain PDE loss of SFP equations into a score-based form, our model can learn the correct score
function and focus on the shape of PDF without handling NC. With the trained model p̃θ(x), we
compute the partition function only once by post-processing and obtain the approximate solution
pθ(x) via Eq. (4).
Theorem 1 (Score-based FP loss). Assume the approximate solution pθ(x) is differentiable and
positive, satisfying regularity conditions2: for a fixed set of (µ(x),D(x)), E[|Lpθ(x)|] is finite for
any θ. Denote the model score function as sθ(x) := ∇ log p̃θ(x) to approximate ∇ log p(x) and
p(x) is the true solution of SFP equation. The plain PDE loss can be expressed as the following up
to a constant factor

Ep(x)[|Fsθ(x)|] := Ex∼p(x)[|sθ(x) · µ̃(x) +∇ · µ̃(x)|] (5)

where µ̃(x) := µ(x)−∇ ·D(x)−D(x)sθ(x) does not explicitly involve the density. F is named
as the score-based FP operator, and the proposed PDE loss solely depends on the score sθ(x).

2Since solving FP equations with PINN is a well-posed problem, this result can be directly inferred from the
loss function setup. Additionally, the loss functions E[|Lpθ(x)|] and Ep(x)[|Fsθ(x)|] share the same minimum
value (zero) and uniqueness conditions for the solution under NC.
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Proof in Sec. A and we further clarify the connection between the score PDE loss and score match-
ing. By modeling the unnormalized density, we avoid the computational burden caused by frequently
estimating Zθ at each iteration, and also eliminate the interference of NC during training process.
In this way, FPNN decouples the fitting and normalizing stages, ensuring continuous and efficient
training process.

3.2 STEADY-STATE DATA GENERATION

To evaluate the score loss, we need training data from the true distribution p(x) of SFP equation,
which can be sampled through the SDE simulation.

Dataset generation. Since the SDE is described by a steady-state equation, the stochastic system al-
ways reaches an invariant equilibrium distribution under the combined effects of drift and diffusion.
Thus, we can freely choose the initial distribution p0(x) and sample an initial point set. These par-
ticles then evolve according to the SDE dynamics over a long time T 3 to produce a training dataset
Dtrain from the target distribution p ≈ pT .

Algorithm 1 SRK method for steady-state data generation

1: Input: terminal time T , number of time steps N , initial
distribution p0, drift term µ(x) and diffusion term σ(x)

2: // Dataset generation phase
3: Select initial points x0 ∼ p0
4: Compute ∆t = T/N
5: for n = 0, 1, . . . , N − 1 do
6: Sample ∆Wn ∼ N (0,∆t)
7: µ0 = µ(xn), σ0 = σ(xn)
8: σ1 = σ(xn + σ0∆Wn/2)
9: σ2 = σ(xn +µ0(3∆t+∆W2

n)/4 + σ1∆Wn/2)
10: σ3 = σ(xn + µ0(3∆t−∆W2

n)/2 + σ2∆Wn)
11: µ1 = µ(xn + µ0(3∆t−∆W2

n)/2 + σ2∆Wn)
12: µ = (µ0 + µ1)/2
13: σ = (σ0 + 2σ1 + 2σ2 + σ3)/6
14: xn+1 = xn + µ∆t+ σ∆Wn

15: end for
16: Generate training dataset Dtrain = xN ∼ pT
17: // Domain selection phase
18: Find the spatial bounds ai = min(xi), bi = max(xi)

(i = 1, . . . , d) for x ∈ Dtrain

19: Determine the domain Ω =
⊗d

j=1[ai, bi]
20: Output: Dtrain, Ω

Figure 3: Left: Cross-sectional views of the training data distributions for SFP equations with com-
plex patterns. Right: The SRK method consisting of two phases: dataset generation and domain
selection.
Domain selection. Based on these samples, we determine an appropriate domain Ω for SFP prob-
lems, as the regions not covered by dataset Dtrain have very low or near-zero probability density. This
implies that the integral of the true density function outside Ω (i.e., 1−

∫
Ω
p(x)dx) is approximately

zero. And this fact provides a theoretical guarantee for calculating the partition function Zθ over
Ω. Additionally, training FPNN on Ω conserves computational resources and avoids the undefined
value of log p̃θ(x) at p̃θ(x) = 0. There is no need to add gated functions or enforce BCs, because
the correct score model will ensure that pθ is close to 0 at ∂Ω.

We use SRK methods for the strong approximation of SDE, and generate trajectories and samples
with the strong order 1.5 Newton scheme (Newton, 1991). The training dataset Dtrain and problem
domain Ω are adaptively provided by Algorithm 1. Other numerical approximations for SDE simu-

3Specifically,
∫ T

0
|µ(x(t))|dt needs to be sufficiently large to ensure that the particles thoroughly explore

the spatial space and eventually reach a steady state.
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lation are alternatives, such as the Euler-Maruyama method and the Milstein method (Bayram et al.,
2018). For FPNN, we do not require the data points to exactly follow the true distribution p(x), and
our loss function offers a degree of tolerance and flexibility. The SRK method and its generated data
for different SFP equations are given in Figure 3.

3.3 NETWORK ARCHITECTURE

FPNN separates the score model learning from NC, allowing for unrestricted network architectures.
In our implementation, we focus on two general approximators: TNN and MLP to model the un-
normalized density p̃θ(x). The former is considered for its significant reduction in computational
complexity when performing high-dimensional numerical integration for Zθ. The latter is widely
used in deep learning tasks and the integral over domain Ω can be estimated by Monte Carlo sam-
pling. Both networks are modified to better accommodate complex SFP equations.

3.3.1 TENSOR NEURAL NETWORKS

Inspired by SPINN (Cho et al., 2024) and TNN (Wang et al., 2022), we parametrize each spatial
component using an separated neural network fi : R → Rr, which takes the coordinates of i-th axis
as input and produces a r-dimensional feature representation. We propose the power embedding
(PE) to enhance the representation and better capture high-order drift dynamics. In each dimension,
the input xi is transformed into [xi, x

2
i , · · · , xm

i ] before being fed into the network fi (m is a man-
ually specified hyper-parameter). This embedding enables the model to learn complex PDFs more
efficiently and accurately (see Tables 4). The final prediction is obtained by taking an element-wise
product of these r-dimensional features and summing the result:

p̃θ(x) =

r∑
j=1

d∏
i=1

fi,j(xi; θi) (6)

We employ the activation function tanh for all hidden layers and add an additional softplus activa-
tion function before the output layer of the sub-networks fi to make density p̃θ(x) strictly positive. A
k-dimensional TNN can be built with k one-dimensional TNNs and approximate any k-dimensional
vector functions u : Rd → Rk. For details on the approximation properties, refer to Theorem 2.1 of
TNN (Wang et al., 2022) and Appendix D.4 of SPINN (Cho et al., 2024).

Due to the low-rank structure of density representation in TNN, an efficient and accurate quadra-
ture scheme can be designed for high-dimensional integration. Theorem 2 decomposes the high-
dimensional integral of density p̃θ(x) into a series of one-dimensional integrals, and we efficiently
compute it using the piece-wise Gauss-Legendre quadrature rule within 10 subintervals.
Theorem 2 (Partition function calculation). Given the density p̃θ(x) parameterized by TNN, the
partition function Zθ is computed as,

Zθ ≈
r∑

j=1

d∏
i=1

(
Ni∑

ni=1

w
(ni)
i fi,j

(
x
(ni)
i ; θi

))
(7)

where the nodes {x(ni)
i }Ni

ni=1 and weights {w(ni)
i }Ni

ni=1 are used for numerical integration in the i-th
dimension (i = 1, . . . , d).

3.3.2 MULTI-LAYER PERCEPTRON

To illustrate the applicability of our score PDE loss to different network architectures, we parame-
terize the d-dimensional spatial variables using an MLP fθ : Rd → Rr. The tanh function is used
in hidden layers and the softplus function is employed to ensure non-negativity in the output layer.
The r-dimensional features are summed up to produce the final output:

p̃θ(x) =

r∑
j=1

fj(x; θ) (8)

In our experiments, we find that hidden neurons with small activation values are overshadowed and
inadequately trained in the original setup. And the modified MLP demonstrates improved learning
performance.
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Efficient numerical integration in Eq. (7) essentially forms high-dimensional grids using tensor prod-
ucts, which imposes certain requirements on the network architecture. More generally, we provide
the Monte Carlo estimation of partition function:

Zθ ≈
∫
Ω

p̃θ(x)dx = Eq(x)

[
p̃θ(x)

q(x)

]
(9)

For simplicity, we set q(x) as an uniform distribution on Ω, i.e., q(x) = 1
ν(Ω) for x ∈ Ω, where

ν denotes the Lebesgue measure. Since the optimization process does not involve normalization
operations, we are free to choose the quadrature scheme to compute Zθ by post-processing.

4 EXPERIMENT

Consider the challenges of solving high-dimensional SFP equations, we evaluate on several bench-
mark problems with analytical solutions. The 4D Ring is tested in FP solver (Zhai et al., 2022),
while the 6D problems and 10D Multi-modal problem are adapted from TFFN (Wang et al., 2024).
We further construct the 10D Gaussian mixture distribution (Tang et al., 2022) and 20D Gaussian
function to comprehensively test the applicability of our FPNN. Our PDE examples span various
4-20 dimensional steady-state solutions, including ring-shape density, arbitrary potential function,
and Gaussian mixture distribution, with complicated interactions among spatial coordinates.

Notably, few recent works can effectively solve such high-dimensional, challenging and different
types of SFP equations, without the limitations in Table 1. We utilize TFNN as the baseline for
comparison. The models are implemented in PyTorch framework and trained on NVIDIA Quadro
RTX 8000 GPU with 48GB memory. Codes are provided in the supplementary material. We set a
consistent seed across all experiments to ensure the reproducibility of our results.

(a) 4D Ring

(b) 6D Unimodal

(c) 6D Multi-modal

Figure 4: Comparison of efficiency between TFFN and FPNN. The first column displays the true
solution, while columns 2-5 and columns 6-9 show the predicted solutions (top) and corresponding
absolute errors (bottom) for TFFN and FPNN during training. Both models utilize the same error
colorbar for fair comparison.

7



Published as a conference paper at ICLR 2025

4.1 EVALUATION METRICS

Due to the small solutions to high-dimensional problems, mean absolute error (MAE) is insufficient
to accurately evaluate the performance of models in different SFP problems. Even if the network
learns a zero solution, MAE is not noticeable and merely equal the average true density on the test
dataset, making it difficult to identify this error. However, mean absolute percentage error (MAPE)
results in 100%, giving us a great indicator of performance. We incorporate MAPE to measure the
consistency between the predicted and true solutions.

For high-dimensional problems, we are limited to visualizing the results using selected slices.
However, only testing errors on cross-sectional data is insufficient to measure the performance of
high-dimensional solutions due to their multi-modal complexity. Thus, we generate a test dataset
Dtest = {p(x) > ϵ,x ∈ Rd} to globally evaluate error metrics. To avoid the ineffective MAPE,
Dtest is generated by the gradient ascent method on analytical solutions, with a threshold ϵ to reject
extremely small probability densities. This approach is more efficient than the traditional method
of randomly sampling spatial points and filtering out those with densities below ϵ. The same test
dataset and evaluation metrics are used for FPNN and TFFN, ensuring a fair comparison.

Table 2: Experimental results of TFFN and FPNN on 4-6 dimensional SFP equations.

SFP equations Domain Ω
TFFN FPNN (Ours)

MAE MAPE MAE MAPE

4D Ring [−1.8, 1.8]4 3.61× 10−3 49.25% 5.56× 10−4 3.84%
6D Unimodal [−1.2, 1.2]6 4.00× 10−2 293% 1.48× 10−3 4.33%
6D Multi-modal [−2, 2]6 1.84× 10−3 92.90% 1.98× 10−4 12.18%

4.2 EXPERIMENTAL ANALYSIS

Figure 5: Plot of score PDE
loss for 4-20 dimensional SFP
equations during training.

Figure 6: Plot of score PDE
loss and plain PDE loss for
4D Ring.

Score PDE loss. Without the interference from NC, score loss sig-
nificantly improves the optimization dynamics, enabling FPNN to
quickly learn the correct scores and successfully capture the shape
of PDF. This is crucial for the post-process of calculating normaliz-
ing constant and is a key factor in the success of our framework. In
Figure 5, we plot the training loss Jscore of FPNN for various SFP
equations. Unlike the vanilla PINN, the magnitude of Jscore hardly
change with increasing dimensionality or decreasing solutions. The
score PDE loss consistently remains within a stable range of 102 to
10−1, demonstrating numerical stability across dimensions. Empir-
ical evidence shows that when Jscore falls below 1, FPNN generally
learns the density function well. Thus, score loss also serves as an
indicator of training progress and guides the network training re-
gardless of dimensionality.

Noting that both FPNN and TFFN strictly satisfy NC, we compare
two PDE losses Jscore and Jplain for 4D Ring problem in Figure 6.
To balance the numerical scale of loss functions, we evaluate the
plain PDE loss for FPNN and TFFN using 10k samples. These
points are uniformly sampled from Ω and not used for training in
both models. FPNN calculates Zθ for normalization based on the
current model at each step. Under the same evaluation, we observe
that Jplain of FPNN drops faster and lower, indicating that our model
trains more efficiently and stably using the score PDE loss. Moreover, although Jplain of TFFN also
decreases to small values, the shape of approximate solution does not match the true density in
Figure 4a. This deviation grows larger in higher-dimensional problems, leading to the failure or
inapplicability of existing methods such as PINN and TFFN in high-dimensional SFP problems.

Network Architecture. Increasing network capacity and width enhances model performance, re-
sulting in fewer training steps and more accurate solutions. In Table 4 and Table 5, PE shows great
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improvements in learning drift functions with high-order polynomial forms. Surprisingly, MLP-
based FPNN utilizes 256 parameters to handle the complex 4D Ring problem and MAPE is reduced
to 11.36% in only 4.8 minutes. In contrast, TFFN with 33,792 parameters is trained for 27.6 minutes
and still fails to achieve comparable performance, as illustrated in Figure 4a. Given the flexibility in
model, ResNet (He et al., 2016) is also alternative for deeper networks. In Figure 8, we observe that
both TNN-based and MLP-based FPNN correctly capture the two peaks along the x9 axis in 10D
Multi-modal problem, requiring only 200 and 1k steps, respectively.

Table 3: Comparison of network structure for FPNN on high-dimensional SFP equations.

SFP equations Domain Ω Model Parameters MAE MAPE

10D Multi-modal [−1.2, 1.2]10
TNN 84,480 1.26× 10−4 32.00%
MLP 13,184 6.53× 10−5 18.30%

10D Gaussian mixture [−5, 5]10
TNN 126,080 1.84× 10−7 24.50%
MLP 1,480 1.16× 10−7 18.38%

20D Gaussian [−2, 2]20 TNN 252,160 1.22× 10−8 12.79%

(a) MLP-based FPNN

(b) TNN-based FPNN

Figure 7: 10D Gaussian mix-
ture: MAE, MAPE and Zθ at
different |DZ | for FPNN.

Partition Function. For MLP-based FPNN, we employ Monte
Carlo sampling to draw a dataset DZ from the distribution q(x)
and estimate the partition function Zθ in Eq.(9). The size of DZ ,
denoted by |DZ |, determines the accuracy of unbiased estimation
of Zθ, which improves as |DZ | increases. Figure 7a illustrates how
the number of MC samples affects the estimation of Zθ, and subse-
quently, the prediction error of our solution.

Due to the randomness, errors fluctuates significantly with small
dataset DZ , especially in the range |DZ | = 5k ∼ 20k. As |DZ |
increases, the prediction stabilizes. Higher-dimensional densities
require more samples to accurately estimate the partition function.
For all SFP problems, we set |DZ | = 20k, which our experi-
ments show is sufficient for the accuracy of FPNN. However, for
10D Gaussian mixture problem, the expanded domain resulted in a
MAPE of 58.66% with this setting. After increasing |DZ | to 100k,
we get better solution with a MAPE of 18.38%.

For TNN-based FPNN, we also compare the Gauss-Legendre
quadrature scheme in Eq.(7) with the MC sampling method in
Eq.(9). As shown in Figure 7b, with more samples in DZ , the MC
estimation ZMC gradually approaches the numerical integration ZGL
(the rightmost column), and MAPE steadily decreases. More com-
parisons and limitations are provided in Sec. B.

Model Layers Parameters MAE MAPE

TNN

[m, hidden layers, r]
[1, 64, 128] 33,792 7.27× 10−3 99.82%
[3, 20, 20, 20, 20] 5,360 4.25× 10−3 65.41%
[3, 64, 64, 64] 34,304 6.91× 10−4 7.58%
[5, 64, 128] 34,816 8.20× 10−4 5.66%
[8, 64, 128] 35,584 5.56× 10−4 3.84%

MLP

[d, hidden layers]
[4, 8, 8, 8, 8] 256 1.26× 10−3 11.36%
[4, 20, 20, 20, 20] 1,360 9.74× 10−4 8.74%
[4, 64, 64, 64] 8,640 8.81× 10−4 6.48%
[4, 128, 128] 17,152 6.21× 10−4 5.39%

Table 4: 4D Ring: comparison of FPNN with different
networks (10k steps). Figure 8: 10D Multi-modal: predicted

solution of FPNN during training.
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Model Layers Parameters Steps MAE MAPE

TNN

[m, hidden layers, r]
[1, 20, 20, 20, 20] 7,800 10k 1.26× 10−2 30.60%
[1, 64, 64, 64] 50,688 2k 1.33× 10−2 31.84%
[3, 64, 64, 64] 51,456 2k 2.94× 10−3 9.49%
[5, 64, 64, 64] 52,224 2k 2.44× 10−3 8.00%
[8, 64, 128] 53,376 2k 2.18× 10−3 7.03%
[8, 64, 128] 53,376 10k 1.48× 10−3 4.33%

MLP

[d, hidden layers]
[6, 8, 8, 8] 200 4k 2.46× 10−2 41.64%
[6, 20, 20, 20] 980 6k 5.40× 10−3 13.87%
[6, 64, 64, 64] 8,768 10k 2.94× 10−3 8.61%

Table 5: 6D Unimodal: comparison of FPNN with
different networks. Figure 9: 10D Gaussian mixture: pre-

dicted solution of FPNN during training.

Computational Efficiency. Our computational complexity is significantly reduced compared to
existing methods, because the normalization condition does not need to be explicitly considered
during training. For PDE residuals, we only perform an additional logarithmic operation on the
output layer, and the computational costs for Jplain, Jscore and their computational graphs remain
roughly comparable. With the improved optimization dynamics and post-process of normalization,
FPNN reduces both the total number of training epochs and the computational cost per iteration,
achieving faster efficiency and enhanced performance.

Figure 10: 20D Gaussian: predicted solution of FPNN. The first column shows the exact solution and
the changes of MAPE during training. Due to symmetry, the cross-sections of any two dimensions
near the origin exhibit the same shape. The remaining parts display the predicted densities for pairs
of adjacent dimensions, such as (x1, x2, 0, . . . , 0), (0, 0, x3, x4, 0, . . . , 0), and so on.

5 LIMITATIONS AND FUTURE WORK

Despite comprehensive experimental results show the effectiveness of our FPNN framework on
challenging high-dimensional steady-state FP equations, there remain challenges on solving time-
dependent FP equations. Time-varying probability densities are often non-localized and it is difficult
to identify a suitable integration domain at any given time and compute the time-varying normalizing
function. Our exploration is merely a promising start, and we look forward to its applications in
broader fields, such as physics, finance, diffusion models, and mean-field games. In the future, we
aim to develop an efficient solver for general Fokker-Planck equations.

6 CONCLUSION

We propose a novel framework, FPNN, that decouples the normalization condition through score
PDE loss for solving high-dimensional SFP equations. FPNN eliminates the computation and influ-
ence of the partition function for more efficient and stable training. In addition, arbitrary network
architectures are allowed to strictly enforce normalization constraints, without sacrificing represen-
tation power. Our method outperforms existing methods in both training efficiency and prediction
accuracy, demonstrating strong potential and general applicability.
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A LOSS FUNCTIONS FOR SFP EQUATIONS

We first introduce the loss functions and notations listed in Table 1 to provide the background for
SFP equations. Then, we present the derivation of the score-based FP loss, which constitutes the
core innovation and contribution of our work. Furthermore, we explain the relationship between the
score PDE loss of SFP equations and the score-matching loss of generative models.

A.1 RELATED WORKS

PINN is a general deep-learning framework for solving PDEs and has achieved significant success in
various problems, such as the Navier-Stokes equations, Allen-Cahn equation, Schrödinger equation,
etc. However, PINN faces challenges in Fokker-Planck equations, with the plain PDE loss:

Jplain(pθ) = E [|∇ · (pθµ)−∇ · (∇ · (Dpθ))|] (10)

It is evident that the zero solution pθ = 0 also satisfies this equation. Therefore, directly minimizing
Jplain often leads to network collapse, where pθ converges to a trivial solution. Data-driven methods
rely on reference solutions {(xj , pj)}Nj=1 and introduce the regression loss:

Jlabel =
1

N

N∑
j=1

(pθ(xj)− pj)
2 (11)

Without labeled data, existing strategies generally fall into two categories involving normalization
constraints in soft or hard manner. Soft constraints add a normalization penalty term to enforce Zθ =
1, thereby enabling the use of Eq.(9). This involves sampling a dataset Dnorm from the distribution
q(x), with the number of samples given by |Dnorm|. In our experiments, Ω =

⊗d
j=1[ai, bi] is a

hypercube with the volume of ν(Ω) =
∏d

i=1 |bi − ai|. The normalization loss is defined as:

Jnorm =

(
ν(Ω)

|Dnorm|
∑

x∈Dnorm

pθ(x)− 1

)2

(12)

Hard constraints, on the other hand, develop specific structures to represent the density function,
such as normalizing flows and their variants. The flow-based generative modeling is to seek an
invertible mapping z = f(x) and the PDF of x follows the change of variables formula to strictly
adhere NC.

pX(x) = pZ(z)|det∇xf(x)| (13)

However, the former method requires manual balancing of multi-objective losses, while the latter
may constrain the model’s representation capacity. Furthermore, in terms of computational effi-
ciency, TFFN requires estimating Zθ at every iteration, “soft” PINN necessitates computing Jnorm at
each step, and density estimation with normalizing flows involves simultaneous tracking the changes
of both x and log-density.

FPNN deviates from all existing approaches by changing the loss function directly. Our score PDE
loss allows to model the unnormalized density p̃θ and decouples NC from the training process.
Specifically, we replace Jplain with the following score PDE loss:

Jscore(sθ) = E [|∇ log p̃θ · µ̃(x) +∇ · µ̃(x)|] ,
µ̃(x) = µ(x)−∇ ·D(x)−D(x)∇ log p̃θ

(14)

In this form, the trivial solution p̃θ = 0 no longer satisfies the equation. The score PDE loss
maintains equivalence with the plain PDE loss while avoiding a zero solution and circumventing
Jlabel, Jnorm, or the normalization condition in loss function which causes difficulty in training.

A.2 DERIVATION OF SCORE PDE LOSS

Theorem 1 (Score-based FP loss). Assume the approximate solution pθ(x) is differentiable and
positive, satisfying regularity conditions: for a fixed set of (µ(x),D(x)), E[|Lpθ(x)|] is finite for
any θ. Denote the model score function as sθ(x) := ∇ log p̃θ(x) to approximate ∇ log p(x) and
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p(x) is the true solution of SFP equation. The plain PDE loss can be expressed as the following up
to a constant factor

Ep(x)[|Fsθ(x)|] := Ex∼p(x)[|sθ(x) · µ̃(x) +∇ · µ̃(x)|] (15)

where µ̃(x) := µ(x)−∇ ·D(x)−D(x)sθ(x) does not explicitly involve the density. F is named
as the score-based FP operator, and the proposed PDE loss solely depends on the score sθ(x).

Proof. First, for any positive probability density p(x), note that Lp(x) can be expanded to

Lp(x) = −∇ · (p(x)µ(x)) +∇ · [∇ · (D(x)p(x))]

= −∇ · (p(x)µ(x)−∇ · (D(x)p(x)))

= −∇ · (p(x)µ(x)− (∇ ·D(x))p(x)−D(x)∇p(x))

= −∇ · (p(x)(µ(x)−∇ ·D(x)−D(x)∇ log p(x)))

= −∇ · (p(x)µ̃(x)) (16)

i.e.
= −

d∑
i=1

∂

∂xi
[p(x)µ̃i(x)]

where we define
µ̃(x) := µ(x)−∇ ·D(x)−D(x)∇ log p(x) (17)

For an approximate solution pθ(x), the plain FP loss measures the expectation of PDE residuals
Jplain = Eq(x)[|Lpθ(x)|], where q(x) can be selected as the uniform distribution on Ω. Based on
Eq.(16), we can rewrite this loss to obtain

Jplain(pθ) = Eq(x)[|Lpθ(x)|] =
∫
Ω

1

ν(Ω)
|Lpθ(x)|dx (18)

=
1

ν(Ω)

∫
Ω

|∇pθ(x) · µ̃(x) + pθ(x)(∇ · µ̃(x))|dx

=
1

ν(Ω)

∫
Ω

pθ(x)|∇ log pθ(x) · µ̃(x) +∇ · µ̃(x)|dx

=
1

ν(Ω)
Epθ(x)[|∇ log pθ(x) · µ̃(x) +∇ · µ̃(x)|]

≈ 1

ν(Ω)
Ep(x)[|Fsθ(x)|]

=
1

ν(Ω)
Jscore(sθ) (19)

Our goal is to approximate the solution p(x) and score ∇ log p(x) using pθ(x) and sθ(x). Thus,
we replace the expectation of pθ with the ground truth p, allowing us to train the score model
better. For SFP equations, we easily obtain samples from the invariant distribution p(x) through
SDE simulation. When pθ is close to p, we observe that, up to a constant factor of 1/ν(Ω), the
score-based FP loss is equivalent to the plain FP loss of PINN. But this form circumvents the need
to handle the partition function and normalization condition.

If we sample training data over a large spatial domain without prior knowledge, regions with ex-
tremely low density may fall below machine precision, resulting in pθ = 0 and “Not a Number”
(NaN) errors for log pθ. But it has no impact on the prediction stage, as there is no logarithmic
operation. By using the SRK method to generate high-probability training data of the steady-state
distribution, we define the domain of SFP problems and avoid this issue.

To address numerical issues, another effective approach is to directly model the log-density log p
using a neural network, which can be implemented with the score PDE loss. Assuming that the
computer exactly represents positive values in the range [ϵ,K], this gives the maximum range of
density p as the output. When we model log p, the range is [−K,K] and the corresponding density
is in [e−K , eK ], which is significantly larger than the previous range. This approach helps to mitigate
the occurrence of NaN values during training.
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Sometimes, we can enhance training by adding weights w(x) according to the probability density,
and generalize the objective function as Ep(x)[|Fsθ(x)|α], (0 < α ≤ 1). We set α = 1 in our
experiments, i.e., ℓ1 norm for score loss function. Here is the following derivation:

Ep(x)[|Fsθ(x)|α] =
∫
Ω

p(x)|Fsθ(x)|αdx

≈ ν(Ω)

∫
Ω

1

ν(Ω)
p(x)1−α[pθ(x)

α|Fsθ(x)|α]dx

= ν(Ω)Eq(x)[p(x)
1−α|Lpθ(x)|α]

= ν(Ω)Eq(x)[w(x)|Lpθ(x)|α] (20)

A.3 CONNECTION BETWEEN SCORE PDE LOSS AND SCORE MATCHING

To illustrate this connection, we consider a special case where D(x) = Id. If minimizing the score
loss Jscore drives µ̃(x) to zero, the training process becomes equivalent to optimizing the objective
function:

Epdata [∥µ(x)−∇ log p̃θ∥22] (21)
Thus, FPNN inherently integrates score matching while preserving the original Fokker-Planck equa-
tion and corresponding physical laws.

(a) Score ∇𝑥𝑥 log𝑝𝑝data 𝑥𝑥

(b) Drift 𝜇𝜇 𝑥𝑥

4D Ring6D Multi-modal

New samplesScoresData samples

Langevin 
dynamics

Score 
matching

Figure 11: (a) the score in generative models and (b) the drift in SFP equations. Both represent the
gradient information of target distributions and indicate regions of high probability.

Score matching. In Song’s work (Song et al., 2021b), the Noise Conditional Score Network
(NCSN) uses a weighted sum of denoising score matching objectives:

θ∗ = argmin
θ

N∑
i=1

σ2
i Epdata(x)Epσi

(x̃|x)[∥sθ(x̃, σi)−∇x̃ log pσi(x̃|x)∥22] (22)

and Denoising Diffusion Probabilistic Model (DDPM) leverages a re-weighted variant of the evi-
dence lower bound (ELBO):

θ∗ = argmin
θ

N∑
i=1

(1− αi)Epdata(x)Epαi
(x̃|x)[∥sθ(x̃, i)−∇x̃ log pαi

(x̃|x)∥22] (23)

It can be seen that our equivalent score-matching loss:

θ∗ = argmin
θ

Epdata(x)[∥sθ(x)− µ(x)∥22] (24)
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shares a similar form with score-based generative models. These generative models gradually learn
the score of the perturbed data distribution (i.e., conditional Gaussian distribution), while our FPNN
directly learns the known drift µ(x) for solving FP equations.

A.4 GENERATIVE MODELS AND FPNN

For score-based generative modeling, we consider three distinct dynamical equations:

• Forward SDE.
dx = f(x, t)dt+ g(t)dw (25)

The probability density function p(x, t) satisfies the FP equation:

∂p

∂t
= −∇ · (fp) +∇ · ∇ ·

(
1

2
ggT p

)
(26)

• Probability flow ODE.

dx =

(
f(x, t)− 1

2
g(t)gT (t)∇ log p

)
dt (27)

Substituting the drift and zero-diffusion term yields the FP equation:

∂p

∂t
= −∇ ·

[(
f(x, t)− 1

2
g(t)gT (t)∇ log p

)
p

]
(28)

= −∇ · (fp) +∇ · ∇ ·
(
1

2
ggT p

)
(29)

which is identical to Eq.(25). Here, g(t) is independent of x and it is important to empha-
size that ∇ log p must correspond to the score of density p(x, t) induced by the forward
SDE to ensure consistency in simplifying Eq.(28). Since there is no diffusion term, the
probability flow (PF) ODE is reversible, allowing for an efficient denoising process.

• Reverse SDE.
dx =

(
f(x, t)− g(t)gT (t)∇ log p

)
dt+ g(t)dw (30)

Compared to the PF ODE, the reverse SDE introduces additional randomness to denoising
processes, thereby increasing the diversity of samples. Anderson (1982) provided the de-
tailed derivation. Here, we give a less rigorous but intuitive explanation for clarity. Let the
drift term of the PF ODE and the reverse SDE be f̃1(x, t) and f̃2(x, t). We consider a time
reversion t = T−τ and obtain: dx = −f̃2(x, T−τ)dτ+g(T−τ)dw. The corresponding
FP equation is:

∂p

∂τ
= −∇ ·

(
−f̃2p

)
+∇ · ∇ ·

(
1

2
ggT p

)
= ∇ ·

[
(f − ggT∇ log p)p+

(
1

2
ggT

)
∇p

]
= ∇ ·

(
f̃1(x, T − τ)p

)
(31)

When expressed in terms of t, this becomes consistent with Eq.(28):

∂p

∂t
= −∇ ·

(
f̃1(x, t)p

)
(32)

For generative models, both the drift term f and the diffusion term g are typically predefined.
EDM (Karras et al., 2022) replaces the functions f(t) and g(t) with the geometrically meaningful
scale schedule s(t) and noise schedule σ(t). In summary, the forward SDE is only applicable for
progressively adding noise to a dataset and cannot be used for sampling images. To generate high-
quality samples, we need to adopt reversible PF ODE or reverse-time SDE, both of which require
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pre-estimation of the unknown scores via score matching. When the score of the target distribution
is not analytically available, sliced score matching (Song et al., 2020; 2021a) can be used:

Ept(x)[∥sθ(x, t)−∇ log pt(x)∥2]
=Ept(x)[∥sθ(x, t)∥

2 − 2sθ(x, t) · ∇ log pt(x) + ∥∇ log pt(x)∥2]
=Ept(x)[∥sθ(x, t)∥

2 + 2∇ · sθ(x, t)] + C

(33)

θ∗ = argmin
θ

Ept(x)[∥sθ(x, t)∥
2 + 2∇ · sθ(x, t)] (34)

The relative abundance of samples contains the gradient information of the log-density in the data
space. This approach only uses data samples to estimate the correct score. The ultimate goal of both
reverse-time PF ODE and SDE is to map from the prior Gaussian distribution pG(x) to the target
data distribution pdata(x).

Flow matching. Different from score matching, another approach is to learn the vector field
ϕθ(x, t) : Rd+1 → Rd that helps transform the prior distribution pG to the data distribution
pdata. This method bypasses the unknown ∇ log p and directly learns the complete drift term
ϕθ := f − 1

2gg
T∇ log p, resulting in the following equation:

dx

dt
= ϕθ(x, t) (35)

We can train the network ϕθ in various ways. For instance, continuous normalizing flows (Chen
et al., 2018) match the distributions at the endpoint and optimize the network parameters by mini-
mizing the Kullback-Leibler (KL) divergence:

d log p(x(t), t)

dt
= −∇ · ϕθ(x, t) (36)

θ∗ = argmin
θ

KL(pθ0(x)∥pG(x)) (37)

where pθ0(x) is transformed from pdata(x) by the instantaneous change of variables. Alternatively,
we can match trajectories and vector fields at intermediate times, such as flow matching (Lipman
et al., 2022; Liu et al., 2022):

θ∗ = argmin
θ

Et∼U [0,T ],x∼pt(x)[∥ut(x)− ϕθ(x, t)∥2] (38)

where ut is the desired transport velocity and usually produces the straight paths.

Generative models. We provide a new perspective on the relationship between diffusion models and
GANs. If the denoising process of image generation is treated as gradient ascent along ∇ log pt(x),
then score-based diffusion models move x to increase pt while gradually reducing time t, and finally
generate high-probability samples under the distribution p0 := pdata. For generative adversarial
networks (GANs) (Goodfellow et al., 2014; Huang et al., 2025), the discriminator directly models
the data distribution pdata := p0, and the generator training can be regarded as performing gradient
ascent on p0 in the data space to generate high-probability samples.

These methods generate samples from pdata(x), but optimization spaces are different, resulting in
different paths. Diffusion models uses trajectories induced by {pt(x), t : T → 0}, while GANs are
guided by p0(x).

FPNN. The SFP equation is related to a known SDE dx = µ(x)dt + σdw. Traditional PINNs
directly minimize the PDE residual to train an approximate solution. Our approach reformulates the
forward SDE into the PF ODE:

dx =

(
µ(x)− 1

2
σσT∇ log p(x)

)
dt = f̃(x)dt (39)

and introduces the score function associated with the solution of FP equation. Due to the stationary
invariant property, we can set f̃(x) = 0 to train the network and this reduces to Eq.(21) for 1

2σD =

σT = I .

In the PF ODEs, the score of generative models and the drift of FP equations share a formal con-
sistency. The drift term f̃(x, t) is non-zero in the former and drives towards the data distribution,
while f̃(x) = 0 maintains a steady state in the latter. The former is data-driven, whereas the latter
is guided by physical laws.
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Reversible PF ODE
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Figure 12: The tasks of image generation and SFP equations.

B COMPUTATION OF PARTITION FUNCTION

The main proof is derived from Section 3 of Wang et al. (2022). Here, we demonstrate the simplified
integral expression relevant to our work, and the conclusion remains valid for the power embedding.

Theorem 2 (Partition function calculation). Given the density p̃θ(x) parameterized by TNN, the
partition function Zθ is computed as,

Zθ ≈
r∑

j=1

d∏
i=1

(
Ni∑

ni=1

w
(ni)
i fi,j

(
x
(ni)
i ; θi

))
(40)

where the nodes {x(ni)
i }Ni

ni=1 and weights {w(ni)
i }Ni

ni=1 are used for numerical integration in the i-th
dimension (i = 1, . . . , d).

Proof. For the unnormalized density p̃θ(x) represented by TNN, the computation of Zθ can be
decomposed into d one-dimensional integrals:

Zθ ≈
∫
Ω

p̃θ(x)dx

=

∫
Ω

r∑
j=1

d∏
i=1

fi,j(xi)dx

=

r∑
j=1

∫
Ω

d∏
i=1

fi,j(xi)dx (41)

=

r∑
j=1

∫ bd

ad

· · ·
∫ b1

a1

f1,j(x1) · · · fd,j(xd)dx1 · · · dxd

=

r∑
j=1

(∫ b1

a1

f1,j(x1)dx1

)
· · ·

(∫ bd

ad

fd,j(xd)dxd

)
(42)

For simplicity, we omit the parameters θi in network fi. Eq.(41) holds due to the linearity of integral
and Eq.(42) follows the fact that the sub-network fi solely depends only on xi (i = 1, . . . , d). With-
out loss of generality, for the i-th dimension, we use a piece-wise Gauss–Legendre quadrature rule
to compute the one-dimensional integral

∫ bi
ai

fi,j(xi)dxi and then compute Zθ in Eq.(42). Specifi-

cally, we select Ni Gauss points {x(ni)
i }Ni

ni=1 and corresponding weights {w(ni)
i }Ni

ni=1, introducing
the index n = (n1, · · · , nd) ∈ N := {1, . . . , N1} × · · · × {1, . . . , Nd}. Hence, Gauss points and
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weights for numerical integration over the high-dimensional domain Ω are represented as:

{x(n)}n∈N =
{
(x1, · · · , xd)|xi = x

(ni)
i , i = 1, . . . , d

}
{w(n)}n∈N =

{
d∏

i=1

wi|wi = w
(ni)
i , i = 1, . . . , d

} (43)

The partition function is computed by numerical integration:

Zθ ≈
∫
Ω

p̃θ(x)dx

≈
∑
n∈N

w(n)p̃θ(x
(n))

=
∑

(n1,··· ,nd)∈N

w
(n1)
1 · · ·w(nd)

d

r∑
j=1

d∏
i=1

fi,j

(
x
(ni)
i

)

=

r∑
j=1

∑
(n1,··· ,nd)∈N

(
w

(n1)
1 f1,j

(
x
(n1)
1

))
· · ·
(
w

(nd)
d fd,j

(
x
(nd)
d

))

=

r∑
j=1

(
N1∑

n1=1

w
(n1)
1 f1,j

(
x
(n1)
1

))
· · ·

(
Nd∑

nd=1

w
(nd)
d fd,j

(
x
(nd)
d

))
(44)

Since the cost of each one-dimensional integral is independent of the dimensionality, the overall
computational complexity for the high-dimensional integration is the linear scale of dimension d.
And we only calculate the partition function once in FPNN.

The advantages and differences between two computations of Zθ are summarized as follows:

• MLP-based FPNN. The advantages of MLP lie in simpler feature fusion of spatial vari-
ables and faster computation of partition functions Zθ using MC sampling:

Zθ =
ν(Ω)

|Dnorm|
∑

x∈Dnorm

p̃θ(x) (45)

However, in particularly high-dimensional settings or the large range of each interval in Ω,
the volume of Ω, i.e., ν(Ω) =

∏d
i=1 |bi−ai| may exceed machine limits. This issue can be

addressed by narrowing the intervals of interest or using higher numerical precision, such
as ‘float64’.

• TNN-based FPNN. TNN achieves high precision in numerical integration for estimating
Zθ, making it more suitable for higher-dimensional problems. Unlike MLP, TNN can
maintain appropriate values for the integral in each spatial dimension (i.e.,

∫ bi
ai

fi,j(xi)dxi),
regardless of the dimensionality or the interval length. Introducing regularization terms to
guide the learning of smaller unnormalized density is an effective strategy to alleviate the
numerical difficulties associated with the partition function.

C EXPERIMENTAL DETAILS OF PDES

We remark that FPNN is adaptable to a wide range of SFP equations, but most problems are difficult
to obtain analytical solutions for performance evaluation. Inspired by Wang et al. (2024), we use
gradient systems to construct test PDE cases with exact solutions. Given any potential function
H(x) and diffusion term σ(x), we calculate the diffusion matrix D(x) = 1

2σ(x)σ(x)
T and set

the drift term as follows:
µ(x) = −D(x)∇H(x) +∇ ·D(x) (46)
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Table 6: Network structure settings used for visualizing experimental results.

SFP equations Model Layers Parameters Steps

4D Ring
TFFN 4×[1, 64, 64, 64] 33,792 20k
TNN 4×[8, 64, 128] 35,584 10k
MLP [4, 20, 20, 20, 20] 1,360 10k

6D Unimodal
TFFN 6×[1, 64, 64, 64] 50,688 20k
TNN 6×[5, 64, 64, 64] 52,224 5k
MLP [6, 20, 20, 20] 980 20k

6D Multi-modal
TFFN 6×[1, 64, 64, 64] 50,688 20k
TNN 6×[5, 64, 64, 64] 52,224 5k
MLP [6, 32, 32, 32] 2,336 5k

10D Multi-modal TNN 10×[1, 64, 64, 64] 84,480 1k
MLP [10, 64, 64, 64, 64] 13,184 5k

Gaussian mixture TNN 10×[1, 64, 64, 64, 64] 126,080 5k
MLP [10, 20, 20, 20, 20] 1,480 5k

Gaussian TNN 20×[1, 64, 64, 64, 64] 252,160 3k

Then the solution to the SFP equation Lp(x) = 0 with respect to (µ,D) reads

p(x) =
1

Z
e−H(x), Z =

∫
e−H(x)dx (47)

It can be easily verified that

Lp(x) = −∇ · (p(x)µ(x)) +∇ · [∇ · (D(x)p(x))]

= ∇ · (−p(x)µ(x) + (∇ ·D(x))p(x) +D(x)∇p(x))

= ∇ · (−p(x)µ(x) + (∇ ·D(x))p(x)−D(x)∇H(x)p(x))

= 0

(48)

The stochastic system is given by dX = µ(X)dt + σ(X)dWt. We adopt this form to design SFP
equations C.2-C.4. For exact solutions in our experiments, we use the SymPy library to compute
the partition function in Eq.(47). SymPy is a powerful and versatile tool for symbolic mathematics
and provides computer algebra system (CAS) capabilities directly in Python. We point out that
appropriate simplifications (e.g., completing the square and variable substitution) and the choice of
integration order significantly impact the accuracy of results.

In Table 6, we list the network settings used for plotting experimental results, where TNN and MLP
represent the architectures in FPNN framework using score PDE loss.

C.1 4D RING

Consider a stochastic gradient system in four dimensional state space from Zhai et al. (2022). The
deterministic part is a gradient system plus a perpendicular rotation term r(x) = [x2,−x1, 0, 0]

T ,
where the potential function of the gradient flow is H(x) = 2(||x||22−1)2. We use the SFP equation
(2) with the following drift µ(x) and diffusion D:

µ(x) = −∇H(x) + r(x), D =
σ2

2
I4, σ = σI4 (49)

Since r(x) is orthogonal to the equipotential lines of H(x), the rotation term does not change the
invariant probability density function. The invariant probability measure has density function

p(x) =
1

Z
e−H(x)/σ2

, Z = π2

∫ ∞

−1

(t+ 1)e−2t2/σ2

dt (50)
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Figure 13: 4D Ring: the exact solution and predicted solutions of different models. First row: the
exact solution. Second row: TNN-based FPNN. Third row: MLP-based FPNN. Last row: TFFN.

Figure 14: 4D Ring: absolute errors between the exact solution and predicted solutions of different
models. First column: the exact solution. Second column: TNN-based FPNN. Third column: MLP-
based FPNN. Last column: TFFN.

Here, we utilize the polar coordinates, variable substitution, and the surface area formula of a 4D
hypersphere S = 2π2r3. We set σ = 1 and calculate the infinite integral for Z using SymPy library.

We generated a training dataset Dtrain with 20k samples using the 1.5-order SRK method, setting the
terminal time T = 1, the number of time steps N = 500 and a 4-dimensional standard Gaussian dis-
tribution p0(x). Based on the range of the dataset Dtrain, the domain is selected as Ω = [−1.8, 1.8]4.

For the test dataset generation, we sample 10k initial points uniformly within Ω. Then we perform
the gradient ascent using the true solution p(x), with a learning rate of 1 × 10−3 and the threshold
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ϵ = 1 × 10−3. For fair comparison, we use the same test dataset Dtest for TFNN and FPNN with
TNN/MLP architectures.

For all SFP equations in our experiments, FPNNs are trained under consistent settings: we use Adam
optimizer with a learning rate of 0.01 and a batch size of 2k, resulting in 10 iterations per epoch.
The network structure and prediction performance are detailed in Table 4. TFFN consists of four
sub-networks of 3 hidden layers with 64 hidden feature size, updated for 20k steps using the Adam
optimizer with a learning rate of 0.01, as shown in Table 6. Training data are uniformly sampled
from Ω, with 2k points resampled per iteration.

C.2 6D UNIMODAL

In this case, the diffusion D = I6 and the drift µ(x) = −∇H(x) take the form in Eq.(46), where
the potential function H(x) is written as:

H(x) = 3((x4
1 − x2)

2 + 2x2
2 + (x4

3 − x4)
2 + 2x2

4 + (x4
5 − x6)

2 + 2x2
6) (51)

The variables (x1, x2), (x3, x4), and (x5, x6) have distinct interactions in the form of (x4
i −xi+1)

2+
2x2

i+1, i = 1, 3, 5. The specific term results in µ(x) being a polynomial function of degree up to 7,
introducing significant nonlinearity and challenges for training model. Our proposed PE is inspired
by this complexity, and the goal is to alleviate the difficulty of fitting such high-order functions. The
density function is more concentrated with steep gradients, and decays rapidly away from the origin.
Although the density is unimodal, it remains a challenging problem for solving this SFP equation.

Figure 15: 6D Unimodal: the exact solution and predicted solutions of different models. First row:
the exact solution. Second row: TNN-based FPNN. Third row: MLP-based FPNN. Last row: TFFN.

We set the terminal time T = 1 and the number of time steps N = 500. The initial distribution is a
6-dimensional Gaussian distribution with zero mean and covariance matrix 0.01I6. And we generate
20k training points and select the domain Ω = [−1.2, 1.2]6. The test dataset is created by applying
gradient ascent to 10k initial points from uniform distribution within Ω, with a learning rate of
1×10−3 and a threshold ϵ = 1×10−5. We use the same training settings for FPNN, and comparisons
of different network architectures are shown in Table 5. Notably, PE significantly accelerates the
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learning of higher-order densities for TNNs. With appropriate embedding size m, TNN achieves
MAPE below 10% with fewer steps, while MLP demonstrates its advantage by solving the 6D
Unimodal problem with only 980 parameters.

Figure 16: 6D Unimodal: absolute errors between the exact solution and predicted solutions of
different models. First column: the exact solution. Second column: TNN-based FPNN. Third
column: MLP-based FPNN. Last column: TFFN.

C.3 6D MULTI-MODAL

We consider the potential H(x) with a quadratic form, where the SFP equation is given by the
diffusion D = I6 and the drift µ(x) = −∇H(x) in Eq.(46). H(x) involves interactions among
(x1, x2, x3) and (x4, x5, x6), which possesses the following form:

H(x) =2(x2
1 + x2

2 + x2
3 + 0.5(x1x2 + x1x3 + x2x3))− ln(x2

1 + 0.02)

− ln(x2
2 + 0.02) + 0.5(x2

4 + x2
5 + x2

6 + 0.2(x4x5 + x4x6 + x5x6))
(52)

The density function has four modes and we plot the slices of high-density regions from different
dimensions to illustrate the performance.

Table 7: 6D Multi-modal: comparison of FPNN with different networks (5k steps).

Model Layers Parameters MAE MAPE

TNN

[m, hidden layers, r]
[1, 64, 64, 64] 50,688 4.20× 10−4 35.76%
[5, 64, 64, 64] 52,224 3.25× 10−4 23.11%
[8, 64, 128] 53,376 2.30× 10−4 21.59%

MLP

[d, hidden layers]
[6, 20, 20, 20] 980 2.00× 10−4 12.72%
[6, 32, 32, 32] 2,336 2.05× 10−4 12.72%
[6, 64, 64] 4,608 1.98× 10−4 12.18%

We set the terminal time T = 1 and the number of time steps N = 200. The initial distribution
is a 6-dimensional Gaussian distribution with zero mean and covariance matrix 0.1I6. We generate
20k training points and determine domain Ω = [−2, 2]6 for 6D Multi-modal problem. We use a a
learning rate of 1× 10−3 and a threshold ϵ = 1× 10−5 to generate the test dataset with 10k samples
by gradient ascent method.

From the numerical results in Table 7, MLP outperforms TNN in terms of parameter efficiency,
training speed and prediction accuracy, achieving a MAPE of 12%. This may be attributed to the
architectural characteristics of TNNs, which is more suitable for the solutions align with the variable
separation form and quickly learns discrete low-rank features (see Table 5). Conversely, MLP is
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better at fusing features across spatial coordinates in hidden layers. FPNN allows the use of free-
form network architectures, providing greater flexibility in handling SFP equations with diverse
characteristics.

Figure 17: 6D Multi-modal: the exact solution and predicted solutions of different models. First
row: the exact solution. Second row: TNN-based FPNN. Third row: MLP-based FPNN. Last row:
TFFN.

Figure 18: 6D Multi-modal: absolute errors between the exact solution and predicted solutions
of different models. First column: the exact solution. Second column: TNN-based FPNN. Third
column: MLP-based FPNN. Last column: TFFN.

C.4 10D MULTI-MODAL

To evaluate the performance in high dimensions, we conduct experiments using a 10-dimensional
probability density function with two modes. The SFP equation has the diffusion D = I10, and the
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potential function H(x) for the drift µ(x) as follows:

H(x) =2.5(x2
1 + x2

2 + x2
3 + 0.1(x1x2 + x1x3 + x2x3)) + 2(x2

4 + x2
5 + x2

6 + 0.2(x4x5 + x4x6

+ x5x6)) + 3(x2
7 + x2

8 − 0.01x7x8)) + 3(x2
9 + x2

10 − 0.01x9x10))− ln(2x2
9 + 0.02)

(53)

Figure 19: 10D Multi-modal: the exact solution and predicted solutions of FPNN. Top: the exact
solution. Middle: TNN-based FPNN. Bottom: MLP-based FPNN.

Figure 20: 10D Multi-modal: absolute errors between the exact solution and predicted solutions of
different models. Left: the exact solution. Middle: TNN-based FPNN. Right: MLP-based FPNN.

Here, H(x) exhibits complex interactions across the coordinates (x1, x2, x3), (x4, x5, x6), (x7, x8)
and (x9, x10). Due to the component ln(2x2

9 + 0.02), there are two peaks along variable x9. By
plotting the cross-sectional view of the last two dimensions, we can observe this shape.

We generate a training dataset of 20k points using the SRK method, with a terminal time T = 1
and N = 100 time steps. The initial distribution p0(x) is a 10-dimensional standard Gaussian
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distribution and the domain is defined as [−1.2, 1.2]10. The test dataset is created using a learning
rate of 1×10−3 and a threshold of ϵ = 1×10−8 to ensure that densities of all 10k points exceed ϵ. In
FPNN, both TNN and MLP architecture successfully learn the two peaks in the x9 axis, while PINN
and TFFN fail to capture this feature. It is evidenced by the divergence between model predictions
and true solutions for TFFN in Figure 4. The normalization condition influence the representational
capacity and optimization process of models, as discussed in Sec. 1. This results in poor performance
of existing methods for 4-6 dimensional SFP equations and failure in higher-dimensional problems.

C.5 10D GAUSSIAN MIXTURE

Following the test problem with two peaks (Tang et al., 2022), we construct a Gaussian mixture
distribution p(x) = β1p1(x) + β2p2(x), comprised of two 10-dimensional Gaussian distributions
p1 and p2. For k = 1, 2, each pk(x) is defined by a probability density function with mean µk and
covariance matrix Σk:

β1 = 0.55, µ1 = [−1.5,−0.8, 1.3, 0.2,−0.1, 0, 0, 0, 0, 0], Σ1 =

Σ11

Σ12

Σ13

Σ14


Σ11 =

(
2.2 0 0
0 1.2 0
0 0 2

)
, Σ12 =

(
1.5 0.2 0.4
−0.1 1.2 0.4
−0.2 −0.2 0.8

)
, Σ13 =

(
0.4 0.3
0.3 0.9

)
, Σ14 =

(
1 0
0 1

)
(54)

β2 = 0.45, µ2 = [1.2, 1,−1.5, 0, 0, 0.1, 0, 0, 0, 0], Σ2 =

Σ21

Σ22

Σ23

Σ24


Σ21 =

(
2.2 0 0
0 1 0
0 0 1.5

)
, Σ22 =

(
1.2 0.4 −0.2
−0.4 1.2 −0.3
0.2 −0.1 1.2

)
, Σ23 =

(
0.8 0
0 0.3

)
, Σ24 =

(
1 0
0 1

)
(55)

The matrices Σ1 and Σ2 are positive definite. FPNN remains applicable for more randomly con-
structed Gaussian components. To improve visualization, we make some modifications to the mean
µ1, µ2. First, two Gaussian peaks are placed at a certain distance apart and have different relative
positions on the (x1, x2) and (x1, x3) planes. Secondly, we set the last seven components of the
mean near zero, so that we examine the cross-sections (x1, x2, 0, . . . , 0) and (x1, 0, x3, 0, . . . , 0) to
reflect the high-density regions of exact solution. It is straightforward to verify that p(x) serves as
the true solution to following SFP equation:

−∇ · (p(x)∇ log(β1p1(x) + β2p2(x))) +∇2p(x) = 0 (56)

where we get the corresponding drift µ(x) = ∇ log(β1p1(x) + β2p2(x)) and diffusion D = I10.

As the region expands, the stochastic system takes longer to reach a steady state. We select a terminal
time of T = 5 and N = 500 time steps. 20k data points are sampled from a 10-dimensional standard
Gaussian distribution to serve as the initial set, followed by the SRK method to obtain the target
distribution pT and domain Ω = [−5, 5]10. The test dataset with 10k points is sampled from two
Gaussian distributions according to weights.

Notably, even though the true solution has the order of 10−5, simple network architectures such
as TNN and MLP successfully learn the two Gaussian peaks located on the coordinate planes
(x1, x2, 0, . . . , 0) and (x1, 0, x3, 0, . . . , 0) at 600 and 400 steps, ultimately achieving a mean relative
error of 1.86 × 10−7 and 1.16 × 10−7, respectively. And MLP reaches a MAPE of 18.38% with
only 1,480 parameters. The final prediction results and absolute errors are presented in Figure 21
and Figure 22.
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Figure 21: 10D Gaussian mixture: the exact solution and predicted solutions of FPNN. Left: the
exact solution. Middle: TNN-based FPNN. Right: MLP-based FPNN.

Figure 22: 10D Gaussian mixture: absolute errors between the exact solution and predicted solutions
of different models. Left: the exact solution. Middle: TNN-based FPNN. Right: MLP-based FPNN.

C.6 20D GAUSSIAN

Finally, we consider a SFP equation with drift term µ(x) = −ax and diffusion matrix D = σ2

2 Id.
The exact solution is expressed as follows:

p(x) =
( a

πσ2

)d/2
exp

(
−a∥x∥22

σ2

)
(57)

In our experiments, we select d = 20, a = 3 and σ = 1.5 to test our FPNN with TNN network.
So the true PDF is a 20-dimensional Gaussian distribution with zero mean and covariance matrix
σ2

2aI20. The training dataset is generated by the SRK method, yielding 20k samples with T = 1 and
N = 100. Since the initial distribution is chosen as a 20-dimensional standard Gaussian distribution,
the drift effect towards the origin dominates, causing particles to converge towards Ω = [−2, 2]20

during the SDE simulation. The test dataset is directly constructed by sampling 10k points from the
true distribution.
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Figure 23: 20D Gaussian: the predicted solution of FPNN during training.

After 1.5k update steps, FPNN successfully learns a 20-dimensional Gaussian distribution, achieving
a MAPE of 23.29%. As shown in Figure 10, each dimension aligns well with the true solution,
demonstrating both the effectiveness of our method and the validity of evaluation metrics.

Figure 24: 20D Gaussian: absolute errors between the exact solution and predicted solution of
FPNN. The first column shows the exact solution and the changes of MAPE during training.
The remaining parts display errors for pairs of adjacent dimensions, such as (x1, x2, 0, . . . , 0),
(0, 0, x3, x4, 0, . . . , 0), and so on.
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