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Abstract

Large language models (LLMs) have demonstrated remarkable performance in code gen-
eration and evaluation tasks, particularly for Python, which dominates the pre-training
corpora. However, the evaluation of code in low-resource programming languages remains
challenging due to limited data and suboptimal model alignment. In this paper, we pro-
pose CrossPyEval, a novel cross-language code evaluation framework that uses an LLM to
translate code from other languages into Python, verifies consistency with an SMT solver,
and then analyzes the translated code via abstract syntax trees before performing the fi-
nal evaluation. Experiments on public benchmarks and our custom low-resource datasets
demonstrate that CrossPyEval substantially boosts evaluation accuracy for non-Python
languages, achieving up to an 8.83% improvement, and significantly enhances alignment
with human judgments, with the Kendall correlation rising to as high as 0.689.
Keywords: Code Evaluation; Large Language Models; Code Translation; Low-Resource
Programming Languages

1. Introduction

The rapid advancement of large language models (LLMs) has sparked a surge in automated
code generation research, ushering in an era where executable programs can be synthe-
sized with minimal human intervention Chowdhery et al. (2023); Nijkamp et al. (2022).
This progress has made automatic code generation increasingly viable for industrial-scale
applications. As more developers adopt these tools to assist in software development, the
evaluation of generated code remains heavily reliant on manual review, creating a bottle-
neck in the development pipeline. Meanwhile, with the growing popularity of reinforcement
learning (RL), a critical challenge has emerged: how to automatically provide robust re-
ward signals for training code generation models. This further highlights the importance of
developing reliable and automated code evaluation methods.

Traditional n-gram-based metrics, such as CodeBLEU Ren et al. (2009), focus on syn-
tactic consistency with the reference. However, these metrics often produce false positives
for generated code with similar syntax but incorrect execution, and false negatives for code
that executes correctly but differs in implementation from the reference. Recent studies have
highlighted the significant potential of large language models (LLMs) as autonomous eval-
uators. Through innovative approaches, such as training-free methods like adversarial test-
ing Liu et al. (2023), self-supervised iteration Zheng et al. (2023a), social simulation Chan
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et al. (2023), slow thinking Tong and Zhang (2024) and test-case testing Alshahwan et al.
(2024), as well as training-based methods Dong et al. (2025), LLMs have demonstrated
evaluation efficacy comparable to human assessments in value alignment tasks.

Task Details : Python Solution Code :
Circular shift the digits of the integer x, shift the digits right | def circular_shift(x, shift):
by shift and return the result as a string. If shift > number of] n=0; temp=x
digits, return digits reversed. while temp!=0:
) temp=temp//10; n+=1
Source Solution Code : if shiftsn:
#include <stdio.h> return str(x)[::-1]
#include <math.h> | > a=[0]*n; i=6
#include <string> while x!=0:
#include <algorithm> a[i]=x%10; x=x//10; i+=1
#include <stdlib.h> for _ in range(shift):
using namespace std; temp=a[n-1];
for j in range(n-1,0,-1):
string circular_shift(int x, int shift){ a[jl=a[]j-1]; a[@]=temp
int n=0, temp=x;
while(temp!=0){ temp=temp/10; n++; } s="";
if(shift>n){ for i in range(n):
string s=to_string(x); s+=str(a[i])
reverse(s.begin(),s.end()); return s
return s; }
int a[n], i=0; Model Evaluation Output : /
while(x!=0){ a[i]=x%10; x=x/10; i++; } v
for(int i=0;i<shift;i++){ » The shifting loop and reverse-order concatenation are
int temp=a[n-1]; Stron i‘f incorrect, so the code fails to perform the intended
for(int j=n-1;3>0;3--) circular right shift of digits. Consequently, it does not
a[jl=a[j-1]; satisfy the problem's functional requirements.
a[o]=temp; }
string s=""; The snippet returns the digits reversed when shift
for(int i=0;i<n;i++) @ exceeds the number of digits and correctly performs a
s=s+to_string(a[il); \ circular right shift otherwise. It fully meets all the
} return s; N~ functional requirements of the problem statement.

Figure 1: Correcting the Qwen-Coder’s Evaluation of a Faulty Cpp Circular Shift Imple-
mentation via Python Translation.

Nonetheless, these LLM-based code evaluation approaches face three key limitations:
(1) Insufficient cross-language evaluation: Syntax and paradigm differences across
languages significantly impact scoring quality, with Python and Java often outperform-
ing other languages; (2) Limited logical reasoning in multi-requirement scenarios:
LLMs struggle to fully capture code logic in complex or deeply branched tasks, leading
to degraded evaluation accuracy and missed requirements, resulting in partial assessments;
and (3) Lack of a low-resource code evaluation meta-dataset: There is a shortage
of comprehensive datasets specifically designed to evaluate code in low-resource languages,
hindering the effectiveness of LLMs for such tasks.

To address these shortcomings, we propose a novel cross-language code evaluation frame-
work, CrossPyEval, designed to enhance the performance of large language models (LLMs)
on code evaluation tasks, particularly for low-resource languages. First, to bridge the gap
between widely-used languages and low-resource languages, we leverage well-established
methods for code translation using large language models (LLMs) to convert diverse source
languages into Python without losing semantic meaning, thereby creating a unified eval-
uation environment. Next, to further enhance the LLM’s logical reasoning capabilities in
complex, multi-requirement scenarios, we extract path conditions, data-flow dependencies
and function calls from Python Abstract Syntax Trees (ASTs). We then annotate key vari-
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ables along each execution path using def-use chains, merging path conditions with variable-
evolution data to produce a comprehensive logical summary. This summary captures all
possible branches and highlights variable transformations, providing rich semantic context
for subsequent LLM evaluations. Finally, we construct and release a new multilingual code
evaluation dataset covering 810 problems in three low-resource languages (Kotlin, PHP,
and Scala), each annotated with LLM-generated solutions and correctness labels, further
validating the generalizability and practical value of our method.
Our major contributions can be summarized as follows:

e We propose a novel cross-language code evaluation framework that leverages large
language models to translate code from low-resource programming languages into
Python, enabling more accurate and robust assessment by utilizing well-established
Python-based evaluation tools.

e We empirically demonstrate the effectiveness of our approach on the HumanEval-X
benchmark, showing that evaluating translated Python code yields significantly higher
accuracy compared to direct evaluation on the original code in various programming
languages.

e We construct a low-resource language code evaluation benchmark to further assess
the effectiveness of CrossPyEval and address the current lack of a low-resource code
evaluation meta-dataset in the community.

We validate our code translation-based evaluation method across multiple public code
evaluation benchmarks and self-constructed dataset. Experimental results show that: (i)
in cross-language code evaluation scenarios, compared to direct evaluation on the original
language code, our method achieves significant improvements, with accuracy gains of up to
8.83% and Kendall correlation reaching as high as 0.689; and (ii) across all three low-resource
languages, CrossPyEval also significantly outperforms direct source-language evaluation,
achieving its largest accuracy gain of 11% on Kotlin.

2. Related Work
2.1. Match-based Evaluation

Match-based evaluation methods include BLEU Papineni et al. (2002), ROUGE-L Chin-
Yew (2004), METEOR Denkowski and Lavie (2014), and others. In the domain of code,
specialized metrics such as CodeBLEU Ren et al. (2009) and RUBY Tran et al. (2019) have
also been proposed. These match-based metrics mainly capture surface-level similarities
and often fail to reflect the functional correctness or semantic equivalence of code, thereby
limiting their effectiveness in practical code evaluation scenarios.

2.2. Model-based Evaluation

Model-based evaluation methods assess code quality by computing the similarity between
generated and reference code in a semantic space. For example, CodeBERTScore Zhou
et al. (2023) is inspired by BERTScore Zhang et al. (2019) from the machine translation
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field. Compared with traditional match-based methods, model-based approaches can cap-
ture richer semantic information, but their evaluation results still depend on the quality
and diversity of the reference code.

2.3. LLM-based Evaluation

In recent years, with the advent of large language models (LLMs), LLM-based code eval-
uation methods have attracted increasing attention. ICE-Score Zhuo (2023) employs pre-
defined evaluation criteria for multidimensional assessment, CodeScore Dong et al. (2025)
introduces a novel paradigm by evaluating code through its execution behavior, and Code-
Judge Tong and Zhang (2024) adopts a “slow thinking” mechanism, guiding the LLM
through step-by-step analysis before making its judgment.

3. Method

qumo

/
EUNCr.

Code Evaluation

Code Translation Python Translation Python AST Path

o . " e PR '
/ A class Solution: {"paths":[{"conditions":[],
Input Code ] LLM p——> def add(x, y): + "return":"x+y"}], "path_con
ditions":[],"definitions":

. . 3 return x +y
import java.util.*; {"x":2,"y":2},"operations":

import java.lang.*; {},"calls":{}} :
class Solution Verify Related Information
{ public int add(int Translation
x, int y) {
return x +y; } } .

Verfier Code AST Analyze

Figure 2: The CrossPyEval Framework Workflow Overview

Figure 2 illustrates the overall workflow of the CrossPyEval evaluation framework pro-
posed in this study. The framework first translates source code written in other program-
ming languages (e.g. Java) into semantically equivalent Python versions. It then verifies
functional equivalence and logical consistency using a verifier. Next, it analyzes Python
code with abstract syntax trees (AST). Finally, the large language model integrates the
problem description, Python code, and analysis results to evaluate the code.

3.1. Cross-Language Python Translation

Previous research Tong and Zhang (2024) has shown that LLM-based evaluators perform
significantly better on Python code compared to other programming languages. This ad-
vantage is largely due to the abundance of Python training data available during the pre-
training phase of LLMs. We believe that, even when the same functionality is expressed,
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the LLM’s deeper understanding of Python allows it to better simulate code execution.
Therefore, instead of asking the LLM to evaluate code written in other languages directly,
we first prompt it to translate the code into Python.

The key objective of the code translation stage is to ensure that the translated code
behaves identically to the original. One approach is to generate test cases for both versions
and compare their execution results. However, this method requires a full runtime envi-
ronment, which can be resource-intensive. Alternatively, static analysis can be used, but
building a robust cross-language verifier is inherently challenging.

Inspired by the framework proposed in ” Verified Code Transpilation with LLMs” Bhatia
et al. (2024), we argue that invariant-based consistency verification offers a lightweight
means to partially verify translation correctness without relying on runtime execution or
complex static analysis. Many studies have pointed out that handling loops remains a
frequent source of errors for LLMs. As code scenarios grow increasingly complex, loops also
become more prevalent. Therefore, we consider invariant verification to be a reasonable
lower bound for ensuring translation consistency. It avoids the need for both heavy runtime
environments and sophisticated static analysis.

(declare-fun powl® (Int) Int)

(declare-const n Int)

(declare-const i Int)

(declare-const start Int)

(declare-const end Int)
import java.util.*; (declare-const count Int)
import java.lang.*;

powl@(k)=10*powlo(k-1) (k>0)

class Solution { (assert (= (powle 0) 1))
public int startsOneEnds(int (assert (forall ((k Int))
n) { (=> (> k @)
= H = * -
i:t gi::t - ?; while (i < n) { while i < n: ) (= (powt k) (* 10 (pow1 (- k 1))))
int end = 1; start *= 10 start *= 10 )
int i = 1; end *= 10 end *= 10
while (i < n) { count += start count += start (assert (< i n))
start *= 10; count += end count += end
end *= 10; i+=1 i+=1 (assert (and
count += start; } = start (powle (- i 1)))
Fount += end; = end (powlo (- i 1)))
) i++; = count
* 2
return count; ( (/
} (- (powle i) 10)
} 9
)
)
)
))
(a) Source Code (b) Java Loop invariant  (c) Python Loop invariant (d) SMT-LIB formulas

Figure 3: Original java loop code convert to python code and generate loop invariants, then
convert to SMT-LIB formulas.

Specifically, our framework prompts the LLM to extract formal invariants from each
function containing loops and convert them into SMT-LIB formulas. An SMT solver is then
used to verify semantic entailment between the invariants of the original and translated code.
If any discrepancies or missing invariants are detected, the solver provides counterexamples
and diagnostic information, which the LLM uses to generate localized fixes in the form of
diff patches. The revised code is then subjected to the same extraction and verification
process.
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(declare-const n Int)
(declare-const x Int)
(declare-const y Int)
(declare-const result Int)

{ .
"path_id": 1, : E:E;‘ 1
"path_conditions": ["n % 2 == @"], P _
if (n% 2 ==0) { if n% 2 ==0: "post_conditions": ["result == y"] (assert (= (mod n 2) @))
return y; return y 1, (azseEt (; result y))
} else { else: { EC if 'Zal)
return x; return x "path_id": 2, get-model)
} "path_conditions": ["n % 2 != @"], (pop)
"post_conditions": ["result == x"] s Path 2
¥ (push)
] (assert (not (= (mod n 2) @)))
(assert (= result x))
(check-sat)
(get-model)
(pop)
(a) Java Code (b) Python code (c) Java post-state conditions (d) SMT-LIB formulas

Figure 4: Original java loop-free code convert to python code and generate post-state
conditions, then convert to SMT-LIB formulas.

As a complementary approach, for functions without loops, we apply Relational Bounded
Symbolic Execution (RBSE). In this case, the LLM is prompted to symbolically compute
the post-state conditions for each execution path and encode them as SMT-LIB formulas.
This technique is not suitable for loop-containing functions, as the symbolic path conditions
would need to be extended up to n times, where n is the number of loop iterations, leading
to combinatorial explosion. Similar to the loop-invariant pipeline, an SMT solver checks for
semantic consistency between the original and translated post-conditions. If inconsistencies
arise, counterexamples and diagnostics are fed back to the LLM, which then generates
localized fixes. These updates are reprocessed through the same verification loop.

3.2. Python AST analysis

To further enhance the logical reasoning capabilities of LLM-based code evaluation in multi-
requirement scenarios, we propose a logic summarization method based on Abstract Syntax
Trees (ASTs). By constructing ASTs from source code, our approach generates high-fidelity
symbolic representations within a single-language environment (Python).

Specifically, our method performs a depth-first traversal of the AST to accurately cap-
ture all execution paths involving control structures such as if/elif/else, for, while, and
try /except. Each path is annotated with the corresponding sequence of branch conditions
and return expressions, resulting in a comprehensive representation of the program’s branch-
ing logic, which is crucial for understanding behavioral semantics in complex functions.

At the data flow level, we introduce lexical reverse parsing to precisely decompose as-
signment and augmented assignment statements. This includes marking variable definition
points, retaining operator and operand details, and embedding the evolution history of
variables into the path context via def-use chains, thereby enabling fine-grained tracking
of state changes throughout the code. In parallel, we traverse function call nodes in the
AST to record calling expressions and their frequencies. This allows us to capture external



CrossPYEvaL

dependencies, supporting further analyses such as code complexity evaluation and library
usage risk assessment.

The resulting multidimensional logic summary unifies control flow, data flow, and call
relationships into a structured format, significantly enhancing both the information density
and interpretability of the code. This summary is then fed into the LLM to produce the
final evaluation output, enabling more informed and context-aware model judgments.

Logic Summary

{
"paths": [
{"conditions":["for i in 1st"],"return":null},
{"conditions":["for i in 1st","if i in d"],"return":null},
{"conditions":["for i in 1lst","else"],"return”:null},
{"conditions":["exit for i in 1st"],"return”:null},
— {"conditions":["for i in sorted(d,
Python Code reverse=True)"],"return":null},
{"conditions":["for i in sorted(d, reverse=True)","if d[i]
d={} >= i"],"return":null},
for i in 1st: {"conditions":["for i in sorted(d, reverse=True)","if d[i]
if i in d: d[i] +=1 >= i"],"return":"i"},
. else: d[i]dzdl e _ {"conditions":["for i in sorted(d,
or 11n sorted(d, reverse=irue): reverse=True)","else"], "return":null},
retui: ?51] >= i: return i Python AST {"conditions":["exit for i in sorted(d,

reverse=True)"],"return":null},
{"conditions":[],"return":"-1"}
1,
"path_conditions":["else","exit for i in 1st","exit for i
in sorted(d, reverse=True)","for i in 1lst","for i in sorted(d,
reverse=True)","if d[i] »>= i","if i in d"],
"definitions":{"d":3},
"operations":{"d":["d = {}"1},
"calls":{"sorted(d, reverse=True)":1}

¥

Figure 5: An illustrative example of the AST-based logic summarization method applied
to a Python function.

Our approach adopts a unified extraction pipeline that abstracts control structures and
data dependencies above the function level into concise, human-readable summaries. This
eliminates the need for tedious manual feature engineering and provides a plug-and-play
input format for downstream LLM tasks.

4. Experiments Setup

4.1. Self-constructed Dataset: LeetCodeEval-LR

To address the lack of meta-datasets for low-resource programming languages and fur-
ther validate the effectiveness of our proposed framework, we construct a new benchmark
derived from the LeetCode platform. We randomly sampled 810 problems across three low-
resource languages: Kotlin, PHP, and Scala, and used the CodeLlama-13B-Instruct model
to generate solutions based on the provided problem descriptions and predefined function
signatures. The generated code was then uploaded back to the LeetCode platform, where
we leveraged its built-in test cases to evaluate and manually label the correctness of each
solution. Figure 6 presents the summary statistics of our benchmark, LeetCodeEval-LR.
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Problem Difficulty Distribution Top 10 Tags Distribution

string Other

hash-table

math

dynamic-programming

two-pointers
depth-first-search breadth-first-search
sorting tree

MEDIUM

(a) Problem Difficulty Distribution (b) Algorithm Types Distribution

Figure 6: (a) and (b) together provide a comprehensive overview of the LeetCodeEval-
LR benchmark. Specifically, (a) illustrates the relative proportions of Easy, Medium, and
Hard problems, giving insight into the overall difficulty balance of the dataset; while (b)
breaks down the types of algorithms tested—such as Sorting, Dynamic Programming, Graph
Traversal, and others—highlighting the benchmark’s coverage of core algorithmic topics.

4.2. Public Datasets

HumanEval-X Zheng et al. (2023b), is a multilingual extension of the classic HumanEval
benchmark, specifically designed to assess code-generation capabilities across different pro-
gramming languages. The original HumanEval dataset, released by OpenAl in their re-
search on Codex Chen et al. (2021), comprises a series of natural language task descriptions,
human-authored references and test cases. In our experiments, five widely-used program-
ming languages—Java, C++, JavaScript, Go and Python are selected for evaluation.

BigCodeBench Zhuo et al. (2024), is a benchmark dataset for evaluating Python code
generation. It comprises a total of 1,140 moderately complex programming tasks, which
are designed to closely reflect real-world programming scenarios. These tasks involve multi-
library interactions, API calls, and function compositions, aiming to assess the capability of
large language models (LLMs) to invoke and effectively integrate multiple library functions.

APPS Hendrycks et al. (2021), is a benchmark designed for evaluating Python code gener-
ation. It features a diverse set of programming tasks with progressively increasing difficulty,
including entry-level, interview-level, and competition-level problems. These tasks are col-
lected from various mainstream programming competition platforms, providing realistic and
challenging scenarios to assess the code generation capabilities of models. In this study, we
adopt 100 high-difficulty tasks from the dataset.
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4.3. Evaluation Metrics

We employ the standard statistical correlation metric Kendall’s Tau (7) Kendall (1938) to
quantify the consistency between our method’s scores and human judgments, a measure that
has been widely used in recent studies. Meanwhile, we treat the large model’s judgment of
code correctness as a binary classification task and use accuracy as the primary evaluation
metric. Since our dataset has a balanced distribution of positive and negative samples,
accuracy provides an intuitive and effective measure of the model’s overall performance.

4.4. Baselines

We adopt the evaluation methods introduced in Section 2, which are divided into two
categories: six token-based metrics (BLEU, ROUGE-L, METEOR, CodeBLEU, chrF and
RUBY), the model-based metric (CodeBERT) and LLM-based metric CodeJudge.

4.5. Implementation details

To demonstrate the effectiveness of our method across different models and analyze how
model performance affects this approach, we deploy the instruction-tuned code models
CodeLlama-13B-Instruct and Qwen2.5-Coder-14B-Instruct, as well as the general-purpose
language model Llama3.1-Instruct-8B, on a local inference cluster equipped with two NVIDIA
RTX 4090-24 GB GPUs. To assess the impact of stochasticity during inference, we set the
temperature to 0.4 and the nucleus sampling parameter top_p to 0.9. Each experimental
configuration is run three times, and the results are averaged to produce the final score. All
models employ an identical prompt template to ensure comparability and reproducibility.

5. Result

We validate the effectiveness of the proposed CrossPyEval evaluation framework through
extensive experiments. First, we report experimental results on four commonly used pro-
gramming languages in HumanEval-X. Then, we further evaluate the performance of the
Python AST method on the HumanEval, BigCodeBench, and APPS datasets. Finally,
we demonstrate that the framework achieves consistent results on our self-constructed low-
resource test set, in line with previous experiments. In addition, we conduct ablation studies
to verify the effectiveness of the Python AST method for cross-language code evaluation.
Results on Cross-Language Scenarios. Table 1 presents the evaluation results
of our CrossPyEval framework compared with existing methods and the CODEJUDGE
baseline across four popular programming languages (C++, Java, JavaScript, and Go)
on the HumanEval-X dataset. From the results, we can draw the following conclusions:
(1)CrossPyEval outperforms existing automatic metrics and CODEJUDGE across most
languages and models. For example, when using the Qwen2.5-Coder-14b model, CrossPyE-
val achieves the highest Kendall’s 7 scores of 0.689, 0.648, and 0.675 on C++, Java, and
JavaScript respectively, significantly surpassing baseline. This demonstrates the superior
ability of our framework to capture semantic correctness in cross-language code evaluation.
(2)The advantage of CrossPyEval is more pronounced with stronger LLMs. While improve-
ments over CODEJUDGE are visible for CodeLlama-Instruct-13b and Llamad.1-Instruct-
8b, the gains become substantial with Qwen2.5-Coder-14b, indicating that the framework
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Table 1: The Kendall (7) correlations and Accuracy (%) of different models with semantic
correctness on HumanEval-X in four languages. “—” for accuracy indicates that traditional
n-gram or embedding-based metrics do not produce binary scores and thus accuracy is not
applicable.

Metric C++ Java JavaScript Go
T Acce T Acce T Acc T Acc

Existing Methods

BLEU 0.306 — 0.230 — 0.288 — 0.261 —
ROUGE-L 0.305 — 0.249 — 0.329 — 0.260 —
METEOR 0.338 — 0.299 — 0.379 — 0.284 —
CodeBLEU 0.341 — 0.318 — 0.384 — 0.268 —
chrf 0.314 — 0.267 — 0.368 — 0.242 —
RUBY 0.284 — 0.260 — 0.329 — 0.245 —
CodeBERTScore 1 0.334 — 0.282 — 0.318 — 0.308 —
CodeBERTScore 3 0.375 — 0.303 — 0.363 — 0.324 —
CodeLlama-Instruct-13b

CODEJUDGE 0.311  63.13 0.296 56.82 0.285 59.60 0.294 59.35
CrossPyEval 0.373 65.41 0.325 62.62 0.407 64.14 0.259 59.60
- Python Ast 0.276 62.63 0.306 59.09 0.284 62.37 0.227 58.84
Llama3.1-Instruct-8b

CODEJUDGE 0.188 58.34 0.304 61.36 0.304 61.36 0.204 51.77
CrossPyEval 0.373 67.17 0.337 63.40 0.340 65.15 0.301 60.01
- Python Ast 0.287 61.36 0.314 60.60 0.285 62.88 0.277 58.33
Qwen2.5-Coder-14b

CODEJUDGE 0.581 79.30 0.610 81.57 0.605 80.05 0.620 &80.30
CrossPyEval 0.689 85.10 0.648 82.33 0.675 83.33 0.557 82.83
- Python Ast 0.588 80.30 0.625 81.82 0.650 82.58 0.578 79.55

effectively leverages the reasoning capabilities of larger, more capable models. (3)Incorpo-
rating the Python AST analysis module consistently improves evaluation accuracy. The
ablation results show a clear drop in accuracy when the AST-based logic summarization is
removed, across all languages and models. This confirms that the AST analysis enriches the
model’s understanding of program structure and control/data flow, leading to more precise
assessments. (4)Performance varies across languages, reflecting inherent language charac-
teristics and dataset complexity. For instance, Go shows relatively lower Kendall’s 7 scores
compared to other languages, which may be due to its syntactic and semantic differences
or fewer training examples in the LLM pretraining data. Nevertheless, CrossPyEval still
achieves competitive accuracy on Go, demonstrating its generalizability.

Results on Multi-Requirement Scenarios. To support this, we further analyzed
the number of loops present in several widely-used public benchmarks. The results, shown
in Table 5, indicate that loops are commonly distributed across these benchmarks.

Table 2: Average number of loops per case in each benchmark

HumanEval BigCodeBench APPS
Average Loops per Case 0.488 0.491 2.485
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To validate the effectiveness of our AST-based logic summarization method in multi-
requirement scenarios, we compared our approach with the mainstream evaluation baseline
CodeJudge on three representative Python benchmarks: HumanEval, BigCodeBench, and
APPS. Table 3 summarizes the experimental results across different large language models
(LLMs). It can be observed that our method achieves comparable or better performance
than CodeJudge on all benchmarks, with the most significant improvement observed on
BigCodeBench. For example, with the Qwen2.5-Coder-14B-Instruct model, our method
outperforms CodeJudge by 7.3 percentage points on BigCodeBench, while the improvement
on APPS is relatively limited.

Table 3: Performance of Different Large Language Models on Various Python Benchmarks
Using AST Analysis

Method HumanEval BigCodeBench APPS
CodeLlama-13B-Instruct

CodeJudge 72.22 51.17 53.33
Ours 70.71 54.97 55.67
Llama3.1-8B-Instruct

CodeJudge 70.96 52.05 44.00
Ours 71.59 50.88 43.33
Qwen2.5-Coder-14B-Instruct

CodeJudge 87.88 64.92 68.00
Ours 88.64 72.22 66.00

We believe the main reason for this result is that BigCodeBench focuses on practical,
moderately complex programming tasks that emphasize multi-library function calls, API
integration, and function composition—scenarios that closely reflect real-world software
development. Although these tasks are less dense in loops compared to APPS, they require
a stronger grasp of global logic, data flow, and function call relationships. Our AST-based
logic summarization method systematically extracts multidimensional information such as
control flow, data flow, and function calls, providing the LLM with richer context and
reasoning cues. As a result, our method performs better in scenarios like BigCodeBench,
which emphasize multi-module integration and complex dependencies.

In contrast, although the APPS dataset features more complex loop structures, its
problems are mostly algorithmic tasks from programming competitions, where the main
challenge for models lies in the correctness of algorithm implementation and handling of
edge cases. Since the high-difficulty problems in APPS often involve extreme inputs, spe-
cial boundaries, and deeply nested loops, relying solely on AST summarization and static
analysis cannot fully cover all potential errors, thus limiting the overall improvement.

Additionally, the HumanEval dataset mainly consists of basic programming tasks with
relatively simple control flow and dependencies. Therefore, both CodeJudge and our method
achieve high and similar accuracy on this benchmark.

Results on Low-Resource Languages Scenarios. To further evaluate the generaliz-
ability and robustness of our CrossPyEval framework in low-resource language settings, we
conduct experiments on the self-constructed LeetCodeEval-LR benchmark. Table 4 reports
the accuracy of various models and evaluation methods on this dataset.
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Table 4: Accuracy (%) of Various Models on the Self-constructed Dataset LeetCodeEval-LR,

Method Kotlin PHP Scala

CodeLlama-13B-Instruct

CodeJudge 45.00 54.33 41.67
Ours 56.00 56.00 46.00
- Python Ast 51.00 52.00 44.33

Llama3.1-8B-Instruct

CodeJudge 58.00 50.00 45.67
Ours 61.00 58.67 47.33
- Python Ast 57.00 59.00 46.00

Qwen2.5-Coder-14B-Instruct

CodeJudge 67.33 67.67  63.00
Ours 70.00 73.00 65.67
- Python Ast  66.67 72.00 63.66

Experimental results on three programming languages and multiple LLMs show that
our method consistently outperforms the baseline. For example, on the CodeLlama-13B-
Instruct model, our method improves accuracy over CodeJudge by 11.00 and 4.33 percentage
points on Kotlin and Scala, respectively. Similar trends are observed with other LLLM mod-
els, where our method achieves the highest accuracy in Kotlin, PHP, and Scala. Notably,
the ablation study demonstrates that the Python AST-based logic summarization module
contributes a significant portion of the performance gain, highlighting its effectiveness in
enhancing code reasoning and evaluation, even in low-resource language scenarios.

The superior performance of our framework can be attributed to several key factors.
First, by translating code from low-resource languages into Python, we effectively alleviate
the data scarcity and domain shift issues that typically hinder LLM-based code evaluation.
Second, cross-language verification leverages SMT solvers to perform invariant and post-
condition checks, ensuring that the translated Python code preserves the semantics of the
original implementation. This reduces the risk of evaluation errors caused by translation
artifacts or semantic mismatches. Third, the AST-based logic summarization provides the
LLM with a structured and comprehensive view of the program’s control flow, data flow,
and function call relationships, enabling more accurate assessment of code correctness.

It is also worth noting that, while the overall accuracy on low-resource languages is lower
than that on high-resource languages such as Python, the relative improvement brought by
our method is substantial. This demonstrates the potential of CrossPyEval as a practical
and extensible solution for multilingual code evaluation, especially in scenarios where direct
LLM evaluation is unreliable due to limited language-specific training data.

Costs Analysis. Although our method outperforms the baseline in terms of accuracy,
it inevitably incurs additional computational and engineering overhead. Specifically, we con-
ducted a comparative experiment on 132 randomly selected samples from the low-resource
Kotlin dataset, using CodeLlama-13B as the backbone model. Compared with CodeJudge,
our approach increases token consumption by an average of 27.79% and latency by 20.19%.
This demonstrates that relying on large language model generation for code translation
and verification introduces non-negligible computational and time costs. Nevertheless, we
consider these costs acceptable, as the improvement in accuracy provides greater value for
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Table 5: Average number of loops per case in each benchmark

Method Token Costs Time Costs Efficiency
Codejudge 1276.47 9.7992 4.592
Ours 1631.37 11.7781 4.755

ensuring fair evaluation in low-resource language scenarios. In future work, we will explore
more efficient generation and verification mechanisms to further optimize computational
costs while maintaining or even enhancing translation accuracy.

6. Conclusion

In this paper, we introduce CrossPyEval, an LLM-based evaluation framework designed to
improve code evaluation accuracy in low-resource languages. CrossPyEval employs code
translation and SMT solver verification, using the translated Python code alongside AST-
based analysis as the evaluation target. Compared to existing evaluation methods, it sig-
nificantly boosts accuracy for other languages and demonstrates strong adaptability in
low-resource programming environments. This work thus offers a promising direction for
code evaluation in multilingual, low-resource settings.
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Appendix A. Prompt Design

Figures 7, 8 and 9 illustrate three prompt templates: (1) Cross-Language — Python Trans-
lation, preserving original structure and logic; (2) Loop Invariants — SMT-LIB, extracting
invariants and generating assertions; and (3) Loop-Free Code RBSE — SMT-LIB, symbol-
ically exploring branches and outputting SMT-LIB assertions.

Convert Prompt

You are a code translation assistant specializing in
Python and {{LANGUAGE}} programming. Your objective is
to extract and convert the body of a function from
{{LANGUAGE}} into Python.

Rules:
1. Ignore and remove all import/include/library

statements (e.g., “#include’, “import’, “using’, etc.).

2. Do NOT fix bugs, optimize performance, refactor, or
improve readability.

3. Replicate the input function's structure, variable
names, comments, and logic exactly.

4. Carefully review the given source code and write
Python code that fulfills the above requirements.

Output only the Python function definition and its
body; nothing else.

LANGUAGE :
{{LANGUAGE}}

SOURCE CODE:
{{SOURCE_CODE}}

Evaluate Prompt

You are an experienced Python code reviewer who can
accurately determine whether the code snippet meets the
problem's requirements.

You will be provided with a problem statement and a code
snippet that supposedly addresses the problem in Python.
Your task is to check if the code snippet covers the
required functionalities. Do not provide a corrected version.
Evaluation Steps:

1. Read the problem statement carefully and identify the
required functionalities of the implementation. You can
refer to the example to understand the problem better.

2. Read the “Logic Summary”, which lists the path conditions,
defs/uses, and calls of the code snippet; be especially
careful to verify that the return statement at the end of
each path satisfies every requirement of the problem.

3. Read the code snippet and analyze its logic. Check if the
code snippet covers all the required functionalities of the
problem.

4. Finally, based on these information, conclude your
evaluation.

You will be provided with an analysis result of
a code snippet.

If the analysis believes that the code snippet
is correct, output: "Yes". Otherwise, output:
"No".

Figure 7: The complete prompt template for converting code from other languages
Python and evaluating the Python code.

into



Figure 8:
Prompt.

Figure 9: The complete prompt template for loop-free code and generating language-free

Wu Wu L1

Loop Invariants Prompt

You are given the source code of a single function in
{{LANGUAGE}} that may contain one or more loops. Your
task is to:
1. Locate each loop (for/while) in the function.
2. For each loop, identify its loop invariant(s) — i.e.
the property or relation over the loop variables that
holds:

+ Before the first iteration

* At the entry of every subsequent iteration

* After the last iteration
3. Express each invariant in a precise, mathematical
form using variable names exactly as in the code (e.g.
“i 207, “sum = 3_{j=0}"{i-1} a[3]").

Output a JSON array where each element corresponds to
one loop, with fields:

- “loop_header”: the exact loop header text

- “invariants”: a list of formal invariant expressions

LANGUAGE :
{{LANGUAGE}}

SOURCE CODE:
{{SOURCE_CODE}}

Loop Invariant Extraction Prompt and Generate language-loop SMT-LIB Formula

RBSE Prompt

You are given a {{LANGUAGE}} code without any loops. Your
task is to perform relational bounded symbolic execution
(RBSE) on this code. Specifically:

1. Parse the code and identify all branch points (e.g.
if/else, switch).

2. Enumerate every possible execution path through the
function.

3. For each path, symbolically compute the post-state
conditions:

- Introduce fresh symbolic variables for all inputs
and any new local variables.

- Track how each statement transforms the state
(assignments, arithmetic, boolean operations).

- Collect path constraints (branch conditions) and
derive the final formula that relates input symbols to
final variable values.

4. Output a JSON array where each element has the
structure:

"7 json

"path_id": 1,
"path_conditions":
"post_conditions":

}

"> e, My <= 10", ...
["result == x * y + 5", ...]

SMT-LIB Formula.

SMT-LIB Prompt

You will be given:

1. A JSON array (from Prompt 1) where each element contains:
- "loop_header": the loop header text

a list of formal invariant expressions

2. The corresponding function source code (in {{LANGUAGE}} or

Python) for that JSON array

Your task is to convert these loop invariants into valid SMT-
LIB assertions, leveraging the source code context for any
needed declarations. Specifically:

1. Parse each JSON element together with its loop’s code
snippet.

2. Declare any required arithmetic or uninterpreted functions
based on the expressions in the invariants.

3. For each invariant expression, write an ~(assert ..)~
statement using standard SMT-LIB syntax.

4. For any composite operations (e.g., summations, products,
exponentiation), introduce or declare appropriate SMT-LIB
definitions or functions to capture their semantics.

Output the complete SMT-LIB script snippet (declarations +
assertions) covering all invariants for the loops. Do not
include any other commentary.

You are given a JSON array of execution paths extracted from
a loop-free {{LANGUAGE}} code. Each element contains:
-“path_conditions”: a list of strings representing input
constraints
-“post_conditions”:
relations

a list of strings representing output

Your task is to translate each path into a corresponding
SMT-LIB v2 checking script, following these steps:
1.Declare all input and output variables as uninterpreted
constants of the appropriate sort (e.g., Int, Bool).

2.Generate an (assert <condition>) for each path condition.
3.Generate an (assert <condition>) for each post condition.

4.Wrap all assertions in (push)/(pop) and add (check-sat)
and (get-model) commands.

Output the complete SMT-LIB script by concatenating the
scripts for all paths in sequence.Do not include any other
commentary.
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