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Abstract

Out-of-distribution (OOD) learning often relies heavily on statistical approaches or pre-
defined assumptions about OOD data distributions, hindering their efficacy in addressing
multifaceted challenges of OOD generalization and OOD detection in real-world deployment
environments. This paper presents a novel framework for OOD learning with human feed-
back, which can provide invaluable insights into the nature of OOD shifts and guide effective
model adaptation. Our framework capitalizes on the freely available unlabeled data in the
wild that captures the environmental test-time OOD distributions under both covariate and
semantic shifts. To harness such data, our key idea is to selectively provide human feedback
and label a small number of informative samples from the wild data distribution, which
are then used to train a multi-class classifier and an OOD detector. By exploiting human
feedback, we enhance the robustness and reliability of machine learning models, equipping
them with the capability to handle OOD scenarios with greater precision. We provide
theoretical insights on the generalization error bounds to justify our algorithm. Extensive
experiments show the superiority of our method, outperforming the current state-of-the-art
by a significant margin.

1 Introduction

Modern machine learning models deployed in the wild can inevitably encounter shifts in data distributions.
In practice, data shifts can often exhibit heterogeneous forms. For example, out-of-distribution (OOD) data
can arise either from semantic shifts where the test data comes from novel categories (Yang et al., 2021), or
covariate shifts where the data undergoes domain or environmental changes (Chapaneri & Jayaswal, 2022;
Zhou et al., 2022; Koh et al., 2021; Ye et al., 2022). The nature of mixed types of OOD data poses significant
challenges in both OOD generalization and OOD detection—necessitating correctly predicting the covariate-
shifted OOD samples into one of the known classes, while rejecting the semantic OOD data. For a model to
be considered robust and reliable, it must excel in OOD generalization and OOD detection simultaneously,
to ensure the continued success and safety of machine learning applications in real-world environments.

Previous works on OOD learning often rely heavily on statistical approaches or predefined assumptions
about OOD data distributions, which may not accurately reflect the complexity and diversity of real-world
scenarios. Consequently, they struggle to adapt to unforeseen OOD distributions encountered during de-
ployment effectively. Furthermore, without human input to provide contextual information and guide model
adaptation, these approaches may face challenges in accurately distinguishing between in-distribution (ID)
and OOD data, leading to suboptimal performance in OOD detection tasks. The absence of human feedback
thus restricts the adaptability of previous approaches, hindering their efficacy in addressing the multifaceted
challenges of OOD generalization and detection in real-world deployment environments.

To tackle the challenge, we introduce a novel framework for OOD learning with human feedback, which
can provide invaluable insights into the nature of OOD shifts and guide effective model adaptation. Human
feedback offers a unique perspective that complements automated statistical techniques, and remains under-
explored in the context of OOD learning. Our framework capitalizes on the abundance of unlabeled data
available in the wild, capturing environmental OOD distributions under diverse conditions, which can be
characterized as a composite mixture of ID, covariate OOD, and semantic OOD data (Bai et al., 2023). Such
unlabeled data is ubiquitous in many real-world applications, arising organically and freely in the model’s
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operational environment. To harness the unlabeled data for OOD learning, our key idea is to selectively
provide human feedback and label a small number of highly informative samples from the wild data distribu-
tion, which are then used to train a robust multi-class classifier and a reliable OOD detector. By exploiting
human feedback, we can enhance the robustness and reliability of machine learning models, equipping them
with the capability to handle OOD scenarios with greater precision.

Our framework employs a gradient-based sample selection mechanism, which prioritizes the most informative
samples for human feedback (Section 3.1). The sampling score is calculated based on the projection of its
gradient onto the top singular vector of the gradient matrix, defined over all the unlabeled wild data.
Specifically, the sampling score measures the norm of the projected vector, which can be used to select
informative samples (e.g., ones with relatively large gradient-based scores). The selected samples are then
annotated by human, and incorporated into our learning framework. In training, we jointly optimize for both
robust classification of samples from the ID and the annotated covariate OOD data, along with a reliable
binary OOD detector separating between the ID data and the annotated semantic OOD data (Section 3.2).
Additionally, we deliver theoretical insights (Theorem 1) into the learnability of the classifier through the
use of a gradient-based sampling score, thus formally justifying the framework of OOD learning with human
feedback.

Lastly, we provide extensive experiments showing that this human-centric approach can effectively im-
prove both OOD generalization and detection under a small annotation budget (Section 4). Compared
to SCONE (Bai et al., 2023), the current state-of-the-art method, we substantially improve the OOD classi-
fication accuracy by 5.82% on covariate-shifted CIFAR-10 data, while reducing the average OOD detection
error by 15.16% (FPR95). Moreover, we provide comprehensive ablations on the impacts of labeling bud-
gets, different sampling scores, and sampling strategies, which leads to an improved understanding of OOD
learning with human feedback. To summarize our key contributions:

• We propose a new OOD learning with human feedback framework for joint OOD generalization and
detection. Our method employs a gradient-based sampling procedure, which can select informative
semantic and covariate OOD data from the wild data for OOD learning.

• We present extensive empirical analysis and ablation studies to understand our learning framework.
The results provide insights into using human feedback on the unlabeled wild data for both OOD
generalization and detection and justify the efficacy of our algorithm.

• We provide a generalization error bound for the model learned under human feedback, theoretically
supporting our proposed algorithm.

2 Problem Setup

Labeled in-distribution data. Let X denote the input space and Y = {1, ..., C} denote the label space
for ID data. We use PX Y as the ID joint distribution defined over X × Y. Given an ID joint distribution
PX Y , the labeled ID data S in = {(xi, yi)}n

i=1 is drawn independently and identically (i.i.d.) from PX Y .

Unlabeled wild data. Upon deploying a classifier trained on ID, we have access to unlabeled data from
the wild, denoted as Swild = {x̃i}m

i=1, which can be used to assist in OOD learning. Following (Bai et al.,
2023), Swild is drawn i.i.d. from an unknown wild distribution Pwild defined below.
Definition 1. The marginal distribution of the wild data is defined as:

Pwild := (1 − πc − πs)Pin + πcPcovariate
out + πsPsemantic

out ,

where πc, πs, πc + πs ∈ [0, 1]. Pin, Pcovariate
out , and Psemantic

out represent the marginal distributions of ID,
covariate-shifted OOD, and semantic-shifted OOD data respectively.

Learning goal. Our learning framework aims to build a robust multi-class predictor fw and an OOD
detector Dθ by leveraging knowledge from labeled ID data S in and unlabeled wild data Swild. Moreover, we
allow a maximum number of k human annotations for samples in the unlabeled data. Let fw : X 7→ RC be
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a multi-class predictor with parameter w ∈ W, where W is the parameter space. The predicted label for an
input x is

ŷ(x; fw) := arg max
y∈Y

fy
w(x),

where fy
w is the y-th coordinate of fw, and x can be either ID or covariate OOD. To detect the semantic

OOD data, we need to construct a ranking function gθ : X → R with parameter θ ∈ Θ, where Θ is the
parameter space. With the ranking function gθ, one can define the OOD detector:

Dθ(x; λ) :=
{

ID if gθ(x) > λ,
OOD if gθ(x) ≤ λ,

(1)

where λ is a threshold, typically chosen so that a high fraction of ID data is correctly classified.

3 Proposed Framework

In this section, we introduce a novel framework for OOD learning with human feedback for tackling both
OOD generalization and OOD detection problems jointly. Our framework is motivated by the fundamental
challenge in harnessing unlabeled wild data for OOD learning—the lack of supervision for samples drawn
from the wild data distribution Pwild. To address this challenge, our key idea is to selectively label a
small number of samples from the wild data distribution to train a robust multi-class classifier and an OOD
detector. Specifically, the design of our framework constitutes two components revolving around the following
unexplored questions:

Q1: How to select informative samples from the unlabeled data for human feedback? (Section 3.1)

Q2: How to learn from these newly labeled samples to enhance OOD generalization and OOD detection
capabilities? (Section 3.2)

3.1 Sample Selection for Human Feedback

The key to our OOD learning with human feedback framework lies in a sample selection procedure that
identifies the most informative samples while reducing labeling costs. With a limited labeling budget, it is
advantageous to select samples from wild data that are either covariate OOD or semantic OOD and will
contribute the most to OOD generalization and detection purposes. These samples would be informative for
the purpose of OOD generalization and OOD detection. Given a heterogeneous set of wild unlabeled data
Swild, our rationale is to employ a sampling score that can effectively separate ID vs. non-ID part. This way,
we can accordingly query samples from the non-ID pool that are most likely covariate or semantic OOD. To
achieve this, we proceed to describe the sampling score.

Sampling score. We employ a gradient-based sampling score, where the gradients are estimated from a
classification predictor fwSin trained on the ID data S in:

wSin ∈ arg min
w∈W

RSin(fw), (2)

where RSin(fw) = 1
n

∑
(xi,yi)∈Sin ℓ(fw(xi), yi), ℓ : RC × Y → R+ is the loss function, wSin is the learned

parameter and n is the size of ID training set. The average gradient ∇̄ is:

∇̄ = 1
n

∑
(xi,yi)∈Sin

∇ℓ(fwSin (xi), yi), (3)

where ∇̄ acts as a reference gradient that allows measuring the deviation of any other points from it.

With the reference gradient defined, we can now represent each point in Swild as a gradient vector, relative
to the reference gradient ∇̄. Specifically, we calculate the gradient matrix (after subtracting the reference
gradient ∇̄) for the wild data as follows:

G =

 ∇ℓ(fwSin (x̃1), ŷx̃1) − ∇̄
...

∇ℓ(fwSin (x̃m), ŷx̃m
) − ∇̄

⊤

, (4)
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(a) Visualization of the gradient vectors
and their projection

(b) Angle between the gradient and the
singular vector

Figure 1: Illustration of the gradient vectors and their projections (the blue points denote Pin, the green points
represent Pcovariate

out , and the gray points indicate Psemantic
out ): (a) Visualization of the gradient projected onto the top

singular vector of matrix G for unlabeled data. The gradients of the set Pin (inliers in the wild) are proximate to the
origin (reference gradient ∇̄), in contrast to the gradients of the set Psemantic

out , which are more distant. (b) The angle
θ between the gradient of the set Psemantic

out and the singular vector v. As v is identified to maximize the distance of
the projected points (denoted by ✖) from the origin, considering the sum over all the gradients in Pwild, v indicates
the direction of OOD data in the wild with a small angle θ.

where m denotes the size of the wild dataset, and ŷx̃ is the predicted label for a wild sample x̃.

For each data point x̃i in Swild, we now define our gradient-based sampling score as follows:

τi =
〈
∇ℓ(fwSin

(
x̃i), ŷx̃i

) − ∇̄, v
〉2

, (5)

where ⟨·, ·⟩ is the dot product operator and v is the top singular vector of G. The top singular vector v
can be regarded as the principal component of the matrix G in Eq. 4, which maximizes the total distance
from the projected gradients (onto the direction of v) to the origin (sum over all points in Swild) (Hotelling,
1933). Specifically, v is a unit-norm vector and can be computed as follows:

v ∈ arg max
∥u∥2=1

∑
x̃i∈Swild

〈
u, ∇ℓ(fwSin

(
x̃i), ŷx̃i

) − ∇̄
〉2

. (6)

Essentially, the sampling score τi in Eq. 5 measures the ℓ2 norm of the projected vector. To help readers
better understand our design rationale, we provide an illustrative example of the gradient vectors and their
projections in Figure 1 (see caption for details).

Sampling strategy. Given the gradient-based scores calculated for each sample x̃i in Swild, we need to
select a subset of k ≪ m examples for manual labeling. Here k is the annotation budget. We consider three
sampling strategies, as illustrated in Figure 2.

• Top-k sampling: select k samples from Swild with the largest score τi. As shown in Figure 2 (a),
these samples deviate mostly from the ID data and are more obviously to be semantic OOD or
covariate OOD.

ID

Covariate OOD
Semantic OOD

Budget k

(a) Top-k sampling

ID

Covariate OOD
Semantic OOD

Budget k

Threshold

(95% ID correctly classified)

(b) Near-boundary sampling

ID

Covariate OOD
Semantic OOD

Select k2

Threshold

(95% ID correctly classified)

Select k1

Budget k=k1+k2

(c) Mixed sampling

Figure 2: Illustration of three selection criteria, (1) top-k sampling, (2) near-boundary sampling, and (3) mixed
sampling. The horizontal axis is the sampling score defined in Equation 5, and the vertical axis is the frequency.
Note that we color the three different sub-distributions (ID, covariate OOD, semantic OOD) separately for clarity,
but in practice, the membership is not revealed due to the unlabeled nature of wild data.
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• Near-boundary sampling: select k samples that are close to the ID boundary, which may en-
compass samples with high ambiguity. As shown in Figure 2 (b), we choose the threshold τb using
labeled ID data S in so that it captures a substantial fraction (e.g., 95%) of ID samples. Based on
the threshold τb, we then select k samples from Swild that are closest to this threshold.

• Mixed sampling: select samples using both top-k and near-boundary sampling, and combine the
two subsets.

Without loss of generality, we denote the selected set of samples as Sselected, with cardinality |Sselected| = k.
For each sample in Sselected, we ask the human annotator to choose a label from Y ∪{⊥}, where {⊥} indicates
the semantic OOD. For covariate OOD, the returned label belongs to the existing label space Y according
to the definition. In Section 4.3, we perform comprehensive ablations to understand the efficacy of each
sampling strategy.

3.2 Learning Objective Leveraging Human Feedback

We now discuss our learning objective, which incorporates the human annotated samples from wild data.
For notation convenience, we use Sc

selected and Ss
selected to denote labeled samples corresponding to covariate

OOD and semantic OOD respectively, where Sselected = Sc
selected ∪ Ss

selected. Our learning framework jointly
optimizes for both: (1) robust classification of samples from S in and covariate OOD Sc

selected, and (2) reliable
binary OOD detector separating data between S in and semantic OOD Ss

selected. Given a weighting factor α,
the risk can be formalized as follows:

w, θ = arg min[RSin,Sc
selected

(fw)︸ ︷︷ ︸
Multi-class classifier

+α · RSin,Ss
selected

(gθ)︸ ︷︷ ︸
OOD detector

], (7)

where the first term can be empirically optimized using the standard cross-entropy loss. The second term
can be viewed as explicitly optimizing the level-set based on the model output (threshold at 0), where the
labeled ID data x from S in has positive values and vice versa:

RSin,Ss
selected

(gθ) = R+
Sin(gθ) + R−

Ss
selected

(gθ)

= Ex∈Sin 1{gθ(x) ≤ 0}
+ Ex̃∈Ss

selected
1{gθ(x̃) > 0}.

(8)

To make the 0/1 loss tractable, we replace it with the binary sigmoid loss, a smooth approximation of
the 0/1 loss. We train gθ along with the multi-class classifier fw. The training enables generalization to
OOD samples drawn from Pcovariate

out , and at the same time, teaches the OOD detector to identify data from
Psemantic

out . The above process of sample selection, human annotation, and model training can be repeated
until the desired performance level is achieved or the entire budget allocated for annotations is exhausted.
An end-to-end algorithm is fully specified in Appendix A.

Theoretical insights. We now present theory to support our proposed algorithm. Our main Theorem 1
provides a generalization error bound w.r.t. the empirical multi-class classifier fw, learned on ID data and
the selected covariate OOD data by the objective RSin,Sc

selected
(fw). We specify several mild assumptions

and necessary notations for our theorem in Appendix H. Due to space limitations, we omit unimportant
constants and simplify the statements of our theorems. We defer the full formal statements to Appendix I.
All proofs can be found in Appendices J and K.
Theorem 1. (Informal). Let W be a hypothesis space with a VC-dimension of d. Denote the datasets Sin

and Sc
selected as the labeled ID and the selected covariate OOD data by active learning, and their sizes are

n and mc, respectively. If ŵ ∈ W minimizes the empirical risk RSin,Sc
selected

(fw) for classifying the ID and
covariate OOD data, and w∗ = arg minw∈W RPcovariate

out
(fw), then for any δ ∈ (0, 1), with probability of at least

1 − δ, we have
RPcovariate

out
(f

ŵ
) ≤ RPcovariate

out
(fw∗ ) + 2 sup

w∈W
dℓ

w(S in, Sc
selected)

+ 4

√
2d log(2mc) + log 2

δ

mc
+ 2γ + 2ζ,
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where ζ =
√

( 1
n

+ 1
mc

)( d log (2n+2mc)−log(δ)
2 ) + M and γ = min

w∈W
RPin (fw). M is the upper bound of the loss

function for the multi-class classifier,

dℓ
w(Sin, Sc

selected) = ∥∇RSin(fw, f̂) − ∇RSc
selected

(fw, f̂)∥2,

where f̂ is a classifier which returns the closest one-hot vector of fw, i.e., RSin (fw, f̂) = Ex∼Sin ℓ(fw, f̂) and
RSc

selected
(fw, f̂) = Ex∼Sc

selected
ℓ(fw, f̂).

Practical implications. Theorem 1 states that the generalization error of the multi-class classifier is
upper bounded. If the sizes of the labeled ID n and the selected covariate OOD data mc are relatively large,
the ID loss is small, and the optimal risk on covariate OOD RPcovariate

out
(fw∗) and ID γ is small, then the upper

bound will mainly depend on the gradient discrepancy between the ID and covariate OOD data selected
by active learning. Notably, the bound synergistically aligns with our gradient-based score (Equation 5).
Empirically, we verify these conditions of Theorem 1 and our assumptions in Appendix L, which holds in
practice.

4 Experiments

4.1 Settings
Datasets and benchmarks. Following the setup in Bai et al. (2023), we employ CIFAR-10 (Krizhevsky
et al., 2009) as Pin and CIFAR-10-C (Hendrycks & Dietterich, 2018) with Gaussian additive noise as the
Pcovariate

out . For Psemantic
out , we leverage SVHN (Netzer et al., 2011), Textures (Cimpoi et al., 2014), Places365

(Zhou et al., 2017), and LSUN (Yu et al., 2015). We divide CIFAR-10 training set into 50% labeled as ID
and 50% unlabeled. And we mix unlabeled CIFAR-10, CIFAR-10-C, and semantic OOD data to generate the
wild dataset. To simulate the wild distribution Pwild, we adopt the same mixture ratio as in SCONE (Bai
et al., 2023), where πc = 0.5 and πs = 0.1. Detailed descriptions of the datasets and data mixture can
be found in the Appendix B. To demonstrate the adaptability and robustness of our proposed method, we
extend the framework to more diverse settings and datasets. Additional results on other types of covariate
shifts can be found in Appendix E.

Experimental details. To ensure a fair comparison with prior works (Bai et al., 2023; Liu et al., 2020;
Katz-Samuels et al., 2022), we adopt Wide ResNet with 40 layers and a widen factor of 2 (Zagoruyko &
Komodakis, 2016). We use stochastic gradient descent with Nesterov momentum (Duchi et al., 2011), with
weight decay 0.0005 and momentum 0.09. The model is initialized with a pre-trained network on CIFAR-10,
and then trained for 100 epochs using our objective in Equation 7, with α = 10. We use a batch size of 128
and an initial learning rate of 0.1 with cosine learning rate decay. We default k to 1000 and provide analysis
of different labeling budgets k ∈ {100, 500, 1000, 2000} in Section 4.3. In our experiment, the output of gθ

is utilized as the score for OOD detection. In practice, we find that using one round of human feedback is
sufficient to achieve strong performance. Our implementation is based on PyTorch 1.8.1. All experiments
are performed using NVIDIA GeForce RTX 2080 Ti.

Evaluation metrics. We report the accuracy of the ID and covariate OOD data, to measure the classifi-
cation and OOD generalization performance. In addition, we report false positive rate (FPR) and AUROC
for the OOD detection performance. The threshold for the OOD detector is selected based on the ID data
when 95% of ID test data points are declared as ID.

4.2 Main Results

Competitive performance on both OOD detection and generalization tasks. As shown in Table 1,
our approach achieves strong performance for both OOD generalization and OOD detection tasks jointly.
For a comprehensive evaluation, we compare our method with three categories of methods: (1) methods
developed specifically for OOD detection, (2) methods developed specifically for OOD generalization, and
(3) methods that are trained with wild data like ours. We discuss them below.

First, we observe that our approach achieves superior performance compared to OOD detection baselines,
including MSP (Hendrycks & Gimpel, 2016), ODIN (Liang et al., 2018a), Energy (Liu et al., 2020), Maha-
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Table 1: Main results: comparison with competitive OOD generalization and detection methods on CIFAR-10.
Results for LSUN-R and Texture datasets are in Appendix D. *Since all the OOD detection methods use the same
model trained with the CE loss on Pin, they display the same ID and OOD accuracy on CIFAR-10-C. We report the
average and std of our method based on 3 independent runs. ±x denotes the rounded standard error.

Method
SVHN Psemantic

out , CIFAR-10-C Pcovariate
out LSUN-C Psemantic

out , CIFAR-10-C Pcovariate
out Texture Psemantic

out , CIFAR-10-C Pcovariate
out

OOD Acc.↑ ID Acc.↑ FPR↓ AUROC↑ OOD Acc.↑ ID Acc.↑ FPR↓ AUROC↑ OOD Acc.↑ ID Acc.↑ FPR↓ AUROC↑
OOD detection
MSP 75.05* 94.84* 48.49 91.89 75.05 94.84 30.80 95.65 75.05 94.84 59.28 88.50
ODIN 75.05 94.84 33.35 91.96 75.05 94.84 15.52 97.04 75.05 94.84 49.12 84.97
Energy 75.05 94.84 35.59 90.96 75.05 94.84 8.26 98.35 75.05 94.84 52.79 85.22
Mahalanobis 75.05 94.84 12.89 97.62 75.05 94.84 39.22 94.15 75.05 94.84 15.00 97.33
ViM 75.05 94.84 21.95 95.48 75.05 94.84 5.90 98.82 75.05 94.84 29.35 93.70
KNN 75.05 94.84 28.92 95.71 75.05 94.84 28.08 95.33 75.05 94.84 39.50 92.73
ASH 75.05 94.84 40.76 90.16 75.05 94.84 2.39 99.35 75.05 94.84 53.37 85.63
OOD generalization
ERM 75.05 94.84 35.59 90.96 75.05 94.84 8.26 98.35 75.05 94.84 52.79 85.22
Mixup 79.17 93.30 97.33 18.78 79.17 93.30 52.10 76.66 79.17 93.30 58.24 75.70
IRM 77.92 90.85 63.65 90.70 77.92 90.85 36.67 94.22 77.92 90.85 59.42 87.81
VREx 76.90 91.35 55.92 91.22 76.90 91.35 51.50 91.56 76.90 91.35 65.45 85.46
EQRM 75.71 92.93 51.86 90.92 75.71 92.93 21.53 96.49 75.71 92.93 57.18 89.11
SharpDRO 79.03 94.91 21.24 96.14 79.03 94.91 5.67 98.71 79.03 94.91 42.94 89.99
Learning w. Pwild
OE 37.61 94.68 0.84 99.80 41.37 93.99 3.07 99.26 44.71 92.84 29.36 93.93
Energy (w. outlier) 20.74 90.22 0.86 99.81 32.55 92.97 2.33 99.93 49.34 94.68 16.42 96.46
Woods 52.76 94.86 2.11 99.52 76.90 95.02 1.80 99.56 83.14 94.49 39.10 90.45
Scone 84.69 94.65 10.86 97.84 84.58 93.73 10.23 98.02 85.56 93.97 37.15 90.91
Ours 88.26±0.07 94.68±0.07 0.12±0.00 99.98±0.00 90.63±0.02 94.33±0.01 0.07±0.00 99.97±0.00 90.31±0.02 94.33±0.03 4.91±0.03 98.28±0.01
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(d) T-SNE of Ours

Figure 3: (a)-(b) Score distributions for ERM vs. our method. Different colors represent the different types of test
data: CIFAR-10 as Pin (blue), CIFAR-10-C as Pcovariate

out (green), and Textures as Psemantic
out (gray). (c)-(d): T-SNE

visualization of the image embeddings using ERM vs. our method.

lanobis (Lee et al., 2018), ViM (Wang et al., 2022b), KNN (Sun et al., 2022), and latest baseline ASH (Djurisic
et al., 2023a). Methods tailored for OOD detection tend to capture the domain-variant information and strug-
gle with the covariate distribution shift, resulting in suboptimal OOD accuracy. For example, our method
achieves near-perfect FPR95 (0.12%), when evaluating against SVHN as semantic OOD. Secondly, while
approaches for OOD generalization, containing IRM (Arjovsky et al., 2019), ERM, Mixup (Zhang et al.,
2018), VREx (Krueger et al., 2021), EQRM (Eastwood et al., 2022a), and latest baseline SharpDRO (Huang
et al., 2023b), demonstrate improved OOD accuracy, they cannot effectively distinguish between ID data
and semantic OOD data, leading to poor OOD detection performance. Lastly, closest to our setting, we
compare with strong baselines trained with wild data, namely Outlier Exposure (Hendrycks et al., 2018),
Energy-regularized learning (Liu et al., 2020), WOODS (Katz-Samuels et al., 2022), and SCONE (Bai et al.,
2023). These methods emerge as robust OOD detectors, yet display a notable decline in OOD generalization
(except for SCONE). In contrast, our method demonstrates consistently better results in terms of both OOD
generalization and detection performance. Notably, our method even surpasses the current state-of-the-art
method SCONE by 32.24% in terms of FPR95 on the Texture OOD dataset, and simultaneously improves
the OOD accuracy by 4.75% on CIFAR-10-C.
Additional results on PACS benchmark. In Table 2, we report results on the PACS dataset (Li et al.,
2017) from DomainBed. We compare our approach with various common OOD generalization baselines,
including IRM (Arjovsky et al., 2019), DANN (Ganin et al., 2016), CDANN (Li et al., 2018c), Group-
DRO (Sagawa et al., 2020), MTL (Blanchard et al., 2021), I-Mixup (Wang et al., 2020), MMD (Li et al.,
2018b), VREx (Krueger et al., 2021), MLDG (Li et al., 2018a), ARM (Zhang et al., 2021b), RSC (Huang
et al., 2020), Mixstyle (Zhou et al., 2021), ERM (Vapnik, 1999), CORAL (Sun & Saenko, 2016), SagNet (Nam
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Algorithm Art painting Cartoon Photo Sketch Avg (%)
IRM (Arjovsky et al., 2019) 84.8 76.4 96.7 76.1 83.5
DANN (Ganin et al., 2016) 86.4 77.4 97.3 73.5 83.7
CDANN (Li et al., 2018c) 84.6 75.5 96.8 73.5 82.6
GroupDRO (Sagawa et al., 2020) 83.5 79.1 96.7 78.3 84.4
MTL (Blanchard et al., 2021) 87.5 77.1 96.4 77.3 84.6
I-Mixup (Wang et al., 2020) 86.1 78.9 97.6 75.8 84.6
MMD (Li et al., 2018b) 86.1 79.4 96.6 76.5 84.7
VREx (Krueger et al., 2021) 86.0 79.1 96.9 77.7 84.9
MLDG (Li et al., 2018a) 85.5 80.1 97.4 76.6 84.9
ARM (Zhang et al., 2021b) 86.8 76.8 97.4 79.3 85.1
RSC (Huang et al., 2020) 85.4 79.7 97.6 78.2 85.2
Mixstyle (Zhou et al., 2021) 86.8 79.0 96.6 78.5 85.2
ERM (Vapnik, 1999) 84.7 80.8 97.2 79.3 85.5
CORAL (Sun & Saenko, 2016) 88.3 80.0 97.5 78.8 86.2
SagNet (Nam et al., 2021) 87.4 80.7 97.1 80.0 86.3
SelfReg (Kim et al., 2021) 87.9 79.4 96.8 78.3 85.6
GVRT Min et al. (2022) 87.9 78.4 98.2 75.7 85.1
VNE (Kim et al., 2023) 88.6 79.9 96.7 82.3 86.9
Ours 88.1 87.4 98.5 91.3 91.3

Table 2: Comparison with domain generalization methods on the PACS benchmark. All methods are trained on
ResNet-50. The model selection is based on a training domain validation set.

et al., 2021), SelfReg (Kim et al., 2021), GVRT (Min et al., 2022), and the latest baseline VNE (Kim et al.,
2023). Our method achieves an average accuracy of 91.3%, which outperforms these OOD generalization
baselines.

Visualization of OOD score distributions. Figure 3 (a) and (b) visualize the score distributions for
ERM (without human feedback) vs. our method. The OOD score distributions between Pin and Psemantic

out are
more clearly differentiated using our method. This separation leads to an improvement in OOD detection
performance. The enhanced separation can be attributed to the effectiveness of the OOD learning with
human feedback framework in recognizing semantic-shifted OOD data.

Visualization of feature embeddings. Figure 3 (c) and (d) present t-SNE visualizations (Van der Maaten
& Hinton, 2008) of feature embeddings on the test data. The blue points represent the test ID data (CIFAR-
10), green points denote test samples from CIFAR-10-C, and gray points are from the Texture dataset. This
visualization indicates that embeddings of Pin (CIFAR) and Pcovariate

out (CIFAR-C) are more closely aligned
using our method, which contributes to enhanced OOD generalization performance.

4.3 In-Depth Analysis

Table 3: Ablation on labeling budget k. We train on
CIFAR-10 as ID, using wild data with πc = 0.5 (CIFAR-
10-C) and πs = 0.1 (Texture).

Budget k OOD Acc.↑ ID Acc.↑ FPR↓ AUROC↑
100 86.62 95.03 22.16 91.34
500 89.96 94.70 7.50 97.45
1000 90.31 94.33 4.91 98.28
2000 91.09 94.42 3.60 98.90

Impact of labeling budget k. The budget k is
central to our OOD learning with human feedback
framework. In table 3, we conduct an ablation by
varying k ∈ {100, 500, 1000, 2000}. We observe that
the performance of OOD generalization and OOD
detection both increase with a larger number of an-
notation budgets. For example, The OOD accuracy
improves from 86.62% to 91.09% when the budget
changes from k = 100 to k = 2000. At the same
time, the FPR95 reduces from 22.16% to 3.60%. Interestingly, we do notice a marginal difference between
k = 1000 and k = 2000, which suggests that our method suffices to achieve strong performance without
excessive labeling budget.

Impact of different sampling strategies. In Table 4, we compare the performance of using three
different sampling strategies (1) top-k sampling, (2) near-boundary sampling, and (3) mixed sampling. For
all three strategies, we employ the same labeling budget k = 100 and the same gradient-based scoring
function (c.f. Section 3.1). We observe that the top-k sampling achieves the best OOD generalization
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performance. This is because the selected samples are furthest away from the ID data, presenting challenging
cases of covariate-shifted OOD data. By labeling and learning from these hard cases, the multi-class classifier
acquires a stronger generalization to OOD data. Moreover, near-boundary sampling displays the lowest
performance in both OOD generalization and OOD detection. To reason for this, we provide the number of
samples (among 100) belonging to ID, covariate OOD, and semantic OOD respectively. As seen in Table 4,
the majority of the samples appear to be either ID or covariate OOD (easy cases), whereas only 6 out of
100 samples are semantic OOD. As a result, this sampling strategy does not provide sufficient informative
samples needed for the OOD detector. Lastly, the mixed sampling strategy achieves performance somewhere
in between top-k sampling and near-boundary sampling, which aligns with our expectations.

Table 4: Impact of sampling strategy (k = 100). We train on CIFAR-10 as ID, using wild data with πc = 0.5
(CIFAR-10-C) and πs = 0.1 (Texture).

Sampling Strategies OOD Acc.↑ ID Acc.↑ FPR↓ AUROC↑ #ID #Covariate OOD #Semantic OOD
Top-k sampling 86.62 95.03 22.16 91.34 0 57 43

Near-boundary sampling 85.12 95.18 41.72 76.56 44 50 6
Mixed sampling 85.36 95.10 36.24 85.37 25 51 24

Table 5: Impact of sampling scores. We use budget
k = 1000 for all methods. We train on CIFAR-10 as ID,
using wild data with πc = 0.5 (CIFAR-10-C) and πs = 0.1
(Texture).

Sampling score OOD Acc.↑ ID Acc.↑ FPR↓ AUROC↑
Least confidence 90.22 94.73 8.44 96.45

Entropy 90.02 94.80 8.19 96.66
Margin 90.31 94.56 6.37 97.68
BADGE 88.68 94.56 8.77 96.39
Random 89.22 94.84 9.45 95.41

Energy score 88.75 94.78 10.89 95.19
Gradient-based 90.31 94.33 4.91 98.28

Impact of different sampling scores. Our
main results are based on the gradient-based sam-
pling score (c.f. Section 3.1). Here we pro-
vide additional comparison using different sampling
scores, including least-confidence sampling Wang
& Shang (2014), entropy-based sampling Wang &
Shang (2014), margin-based sampling Roth & Small
(2006), energy score Liu et al. (2020), BADGE Ash
et al. (2019), and random sampling. Detailed
description for each method is provided in Ap-
pendix C. We observe that the gradient-based score
demonstrates overall strong performance in terms of
OOD generalization and detection.

5 Related Works
Out-of-distribution generalization is a crucial problem in machine learning when training and test data
are sampled from different distributions. Compared to domain adaptation task (You et al., 2019; Kumar
et al., 2020; Wang et al., 2022c; Prabhu et al., 2021; Su et al., 2020; Kothandaraman et al., 2023), OOD
generalization is more challenging, as it focuses on adapting to unseen covariate-shifted data without access
to any sample from the target domain (Gulrajani & Lopez-Paz, 2020; Bai et al., 2021; Koh et al., 2021;
Ye et al., 2022; Cho et al., 2023). Existing theoretical work on domain adaptation (Mansour et al., 2009;
Blitzer et al., 2007; Ben-David et al., 2006; 2010; Gui et al., 2024) discusses the generalization error bound
with access to target domain data. Our analysis presents several key distinctions: (1) Our focus is on the
wild setting, necessitating an additional step of selection and human annotation to acquire selected covariate
OOD data for retraining; (2) Our OOD generalization error bound differs in that it is based on a gradient-
based discrepancy between ID and OOD data. This diverges from classical domain adaptation literature
and synergistically aligns with our gradient-based sampling score.

A prevalent approach in the OOD generalization area is to learn a domain-invariant data representation
across training domains. This involves various strategies like invariant risk minimization (Arjovsky et al.,
2019; Ahuja et al., 2020; Krueger et al., 2021; Eastwood et al., 2022b), robust optimization (Sagawa et al.,
2020; Dai et al., 2023; Huang et al., 2023a), domain adversarial learning (Li et al., 2018b; Wang et al.,
2022d; Dayal et al., 2023), meta-learning (Li et al., 2018a; Zhang et al., 2021a), and gradient alignment (Shi
et al., 2021; Rame et al., 2022; Guo et al., 2023). Some OOD algorithms do not require multiple training
domains (Tong et al., 2023). Other approaches include model ensembles (Chen et al., 2023c; Ramé et al.,
2023), graph learning (Gui et al., 2023; Yuan et al., 2023), and test-time adaptation (Chen et al., 2023a;
Park et al., 2023; Samadh et al., 2023; Chen et al., 2023b). SCONE (Bai et al., 2023) aims to enhance OOD
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robustness and detection by utilizing wild data from the open world. Building on SCONE’s problem setting,
we leverage human feedback to train a robust classifier and OOD detector, supported by theoretical analysis.

Out-of-distribution detection has garnered increasing interest in recent years (Yang et al., 2021). Re-
cent methods can be broadly classified into post hoc and regularized-based algorithms. Post hoc methods,
which include confidence-based methods (Hendrycks & Gimpel, 2016; Liang et al., 2018b), energy-based
scores (Liu et al., 2020; Wang et al., 2021; Sun et al., 2021; Djurisic et al., 2023b; Zhang et al., 2023b; Lafon
et al., 2023), gradient-based score (Huang et al., 2021; Behpour et al., 2023), Bayesian approaches (Gal &
Ghahramani, 2016; Maddox et al., 2019; Kristiadi et al., 2020), and distance-based methods (Lee et al., 2018;
Sun et al., 2022; Du et al., 2022; Ming et al., 2022b), perform OOD detection by devising OOD scores at
test time. On the other hand, another line of work addresses OOD detection through training-time regu-
larization (Hendrycks et al., 2018; Hein et al., 2019; Ming et al., 2022a; Wang et al., 2023), which typically
relies on a clean set of auxiliary semantic OOD data. WOODS (Katz-Samuels et al., 2022) and SAL (Du
et al., 2024) address this issue by utilizing wild mixture data, comprising both unlabeled ID and semantic
OOD data. While SAL also employs a gradient-based score, it does not consider OOD generalization or
leveraging human feedback, which is our main focus. Our work builds upon the setting in SCONE (Bai
et al., 2023) and introduces a novel OOD learning with human feedback framework aimed at enhancing both
OOD generalization and detection jointly.

Learning with human feedback emphasizes the selection of the most informative data points for label-
ing (Cohn et al., 1994; Balcan et al., 2006; Settles, 2009; Wang & Shang, 2014; Ren et al., 2021; Karzand
& Nowak, 2020). Well-known sampling strategies include disagreement-based sampling, diversity sampling,
and uncertainty sampling. Disagreement-based sampling (Seung et al., 1992; Hanneke et al., 2014; Zhu &
Nowak, 2022) focuses on selecting data points that elicit disagreement among multiple models. Diversity
sampling, as explored in (Du et al., 2015; Zhdanov, 2019; Citovsky et al., 2021), aims to select data points
that are both diverse and representative of the data’s overall distribution. Uncertainty sampling (Lewis,
1995; Scheffer et al., 2001; Shannon, 2001; Lu et al., 2016; Wang & Shang, 2014; Ducoffe & Precioso, 2018;
Beluch et al., 2018) seeks to identify data points where model confidence is lowest, thus reducing uncertainty.
More advanced methods (Ash et al., 2019; Wang et al., 2022a; Elenter et al., 2022; Mohamadi et al., 2022)
incorporate a mix of uncertainty and diversity sampling techniques. Another research direction involves
deep active learning under data imbalance (Kothawade et al., 2021; Emam et al., 2021; Zhang et al., 2022;
Coleman et al., 2022; Zhang et al., 2023a; Kothawade et al., 2022; Aggarwal et al., 2020). The work of (Das
et al., 2023; Deng et al., 2023; Zhan et al., 2023; Shayovitz et al., 2024; Benkert et al., 2022) considers
distribution shifts in the context of active learning. However, previous approaches do not consider OOD
robustness and the challenges posed by realistic scenarios involving wild data. In our work, we introduce a
novel framework tailored for both OOD generalization and detection challenges. This framework is further
supported by a theoretical justification of our learning approach.

6 Conclusion
This paper introduces a new framework leveraging human feedback for both OOD generalization and OOD
detection. Our framework tackles the fundamental challenge of leveraging the wild data—the lack of super-
vision for samples from the wild distribution. Specifically, we employ a gradient-based sampling score to
selectively label informative OOD samples from the wild data distribution and then train a robust multi-class
classifier and an OOD detector. Importantly, our algorithm only requires a small annotation budget and
performs competitively compared to various baselines, which offers practical advantages. We further provide
theoretical analysis of the learnability of the classifier. We hope our work will inspire future research on both
empirical and theoretical understanding of OOD generalization and detection in a synergistic way.
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Out-of-Distribution Learning with Human Feedback (Appendix)

A Algorithm

Algorithm 1 Out-of-Distribution Learning with Human Feedback
Input: In-distribution labeled data S in = {(xi, yi)}n

i=1. Unlabeled wild data Swild = {x̃i}m
i=1.

Output: Learned classifier fŵ and OOD detector g
θ̂
.

Sample section
1. Perform ERM on labeled ID data S in and obtain learned weight parameter wSin according to Eq. equa-
tion 2.
2. Calculate the reference gradient ∇̄ on S in according to Eq. equation 3.
3. Generate predicted labels ŷx̃i for x̃i ∈ Swild.
4. Calculate gradient ∇ℓ(hwSin (x̃i), ŷx̃i).
5. Calculate the gradient matrix G by Eq. equation 4 and Compute the gradient-based score τi by
Eq. equation 5.
6. Given the gradient-based scores τi for each sample x̃i, select a subset k according to the three sampling
strategies described in Sec. 3.1.
7.Annotate the selected k samples with labels from: Y ∪ {⊥} to obtain Sc

selected and Ss
selected, where {⊥}

indicates the semantic OOD.
OOD learning with annotated samples
8. Train the robust classifier using samples from S in and covariate OOD Sc

selected. Concurrently, train a
binary OOD detector using semantic OOD Ss

selected and S in by Eq. equation 7.

B Detailed Description of Datasets

CIFAR-10 (Krizhevsky et al., 2009) contains 60, 000 color images with 10 classes. The training set has
50, 000 images and the test set has 10, 000 images.

CIFAR-10-C is algorithmically generated, following the previous leterature (Hendrycks & Dietterich, 2018).
The corruptions include Gaussian noise, defocus blur, glass blur, impulse noise, shot noise, snow, and zoom
blur.

SVHN (Netzer et al., 2011) is a real-world image dataset obtained from house numbers in Google Street
View images, with 10 classes. This dataset contains 73, 257 samples for training and 26, 032 samples for
testing.

Places365 (Zhou et al., 2017) contains scene photographs and diverse types of environments encountered
in the world. The scene semantic categories consist of three macro-classes: Indoor, Nature, and Urban.

LSUN-C (Yu et al., 2015) and LSUN-R (Yu et al., 2015) are large-scale image datasets that are annotated
using deep learning with humans in the loop. LSUN-C is a cropped version of LSUN and LSUN-R is a
resized version of the LSUN dataset.

Textures (Cimpoi et al., 2014) refers to the Describable Textures Dataset, which contains images of patterns
and textures. The subset we used has no overlap categories with the CIFAR dataset (Krizhevsky et al., 2009).

PACS (Li et al., 2017) is commonly used in evaluating OOD generalization approaches. This dataset consists
of 9, 991 examples of resolution 224 × 224 and four domains with different image styles including photo, art
painting, cartoon, and sketch with seven categories.

Details of data split for OOD datasets. For datasets with standard train-test split (e.g., SVHN),
we use the original test split for evaluation. For other OOD datasets (e.g., LSUN-C), we use 70% of the
data for creating the wild mixture training data as well as the mixture validation dataset. We use the
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remaining examples for test-time evaluation. For splitting training/validation, we use 30% for validation
and the remaining for training.

C Description of Sampling Methods

Least confidence (Wang & Shang, 2014) is an uncertainty-based algorithm that selects data for which the
most probable label possesses the lowest posterior probability. This method focuses on instances where the
model’s predictions are least certain.

Margin sampling (Roth & Small, 2006) elects data points based on the multiclass margin, specifically tar-
geting examples where the posterior probabilities of the two most likely labels are closely matched, indicating
the minimal difference between them.

Entropy (Wang & Shang, 2014) is an uncertainty-based algorithm that chooses data points by evaluating
the entropy within the predictive class probability distribution of each example, aiming to maximize the
overall predictive entropy.

Energy sampling (Liu et al., 2020) identifies data points using an energy score, a measure theoretically
aligned with the probability density of the inputs.

BADGE (Ash et al., 2019) samples groups of points that are both diverse and exhibit high magnitude in a
hallucinated gradient space. This technique combines predictive uncertainty and sample diversity, enhancing
the effectiveness of data selection in active learning.

Random sampling serves as a straightforward baseline method, involving the random selection of k ex-
amples to query.

D Results on Additional OOD Datasets

In this section, we provide the main results on more OOD datasets including Places365 (Zhou et al., 2017) and
LSUN-R (Yu et al., 2015). As shown in Table 6. our proposed approach achieves overall strong performance
in OOD generalization and OOD detection on these additional OOD datasets. Firstly, we compare our
method with post hoc OOD detection methods such as MSP (Hendrycks & Gimpel, 2016), ODIN (Liang
et al., 2018a), Energy (Liu et al., 2020), Mahalanobis (Lee et al., 2018), ViM (Wang et al., 2022b), KNN (Sun
et al., 2022), and latest baseline ASH (Djurisic et al., 2023a). These methods are all based on a model trained
with cross-entropy loss, which suffers from limiting OOD generalization performance. However, our method
achieves an improved OOD generalization performance (e.g., 91.08% when the wild data is a mixture of
CIFAR-10, CIFAR-10-C, and LSUN-R).

Secondly, we also compare our method with common OOD generalization baseline methods including
IRM (Arjovsky et al., 2019), ERM, Mixup (Zhang et al., 2018), VREx (Krueger et al., 2021), EQRM (East-
wood et al., 2022a), and latest baseline SharpDRO (Huang et al., 2023b). Our approach consistently achieves
better results compared to these OOD generalization baselines. Lastly, we compare our method with strong
OOD baselines using Pwild such as Outlier Exposure (Hendrycks et al., 2018), Energy-regularized learn-
ing (Liu et al., 2020), WOODS (Katz-Samuels et al., 2022), and SCONE (Bai et al., 2023). Contrastly,
our approach demonstrates strong performance on both OOD generalization and detection accuracy, which
shows the effectiveness of our method for making use of the wild data.

E Results on Different Corruption Types

In this section, we provide additional ablation studies of the different covariate shifts. In Table 7, we evaluate
our method under different common corruptions including Gaussian noise, shot noise, glass blur, and etc.
To generate images with corruption, we follow the default setting and hyperparameters as in Hendrycks &
Dietterich (2018). Our approach is robust under different covariate shifts and achieves strong OOD detection
performance.
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Table 6: Additional results. Comparison with competitive OOD detection and OOD generalization methods
on CIFAR-10. For experiments using Pwild, we use πs = 0.5, πc = 0.1. For each semantic OOD dataset,
we create corresponding wild mixture distribution Pwild := (1 − πs − πc)Pin + πsPsemantic

out + πcPcovariate
out for

training. We report the average and std of our method based on 3 independent runs. ±x denotes the
rounded standard error.

Model
Places365 Psemantic

out , CIFAR-10-C Pcovariate
out LSUN-R Psemantic

out , CIFAR-10-C Pcovariate
out

OOD Acc.↑ ID Acc.↑ FPR↓ AUROC↑ OOD Acc.↑ ID Acc.↑ FPR↓ AUROC↑
OOD detection
MSP 75.05 94.84 57.40 84.49 75.05 94.84 52.15 91.37
ODIN 75.05 94.84 57.40 84.49 75.05 94.84 26.62 94.57
Energy 75.05 94.84 40.14 89.89 75.05 94.84 27.58 94.24
Mahalanobis 75.05 94.84 68.57 84.61 75.05 94.84 42.62 93.23
ViM 75.05 94.84 21.95 95.48 75.05 94.84 36.80 93.37
KNN 75.05 94.84 42.67 91.07 75.05 94.84 29.75 94.60
ASH 75.05 94.84 44.07 88.84 75.05 94.84 22.07 95.61
OOD generalization
ERM 75.05 94.84 40.14 89.89 75.05 94.84 27.58 94.24
Mixup 79.17 93.30 58.24 75.70 79.17 93.30 32.73 88.86
IRM 77.92 90.85 53.79 88.15 77.92 90.85 34.50 94.54
VREx 76.90 91.35 56.13 87.45 76.90 91.35 44.20 92.55
EQRM 75.71 92.93 51.00 88.61 75.71 92.93 31.23 94.94
SharpDRO 79.03 94.91 34.64 91.96 79.03 94.91 13.27 97.44
Learning w. Pwild
OE 35.98 94.75 27.02 94.57 46.89 94.07 0.7 99.78
Energy (w/ outlier) 19.86 90.55 23.89 93.60 32.91 93.01 0.27 99.94
Woods 54.58 94.88 30.48 93.28 78.75 95.01 0.60 99.87
Scone 85.21 94.59 37.56 90.90 80.31 94.97 0.87 99.79
Ours 89.16±0.01 94.51±0.11 15.70±0.02 94.68±0.03 91.08±0.01 94.41±0.00 0.07±0.00 99.98±0.00

Table 7: Ablation study on different corruption types for covariate OOD data. The budget is 500 for active
learning. We train on CIFAR-10 as ID, using wild data with πc = 0.5 (CIFAR-10-C) and πs = 0.1 (Texture).

Corruption types for covariate OOD data OOD Acc.↑ ID Acc.↑ FPR↓ AUROC↑
Gaussian noise 90.31 94.33 4.91 98.28
Defocus blur 94.54 94.68 1.38 99.56

Frosted glass blur 82.22 94.45 8.35 96.87
Impulse noise 91.82 94.38 3.61 98.88

Shot noise 91.98 94.62 3.79 98.82
Snow 92.51 94.45 2.89 99.04

Zoom blur 92.31 94.65 3.31 98.71
Brightness 94.59 94.53 1.56 99.48

Elastic transform 91.12 94.35 2.70 99.09
Contrast 94.15 94.64 1.56 99.50

Fog 94.34 94.67 1.26 99.53
Forst 92.42 94.49 3.19 98.79

Gaussian blur 94.40 94.69 1.14 99.58
Jpeg compression 89.75 94.52 3.37 98.95

Motion blur 92.44 94.38 2.89 99.14
Pixelate 93.08 94.42 2.28 99.24
Saturate 93.14 94.43 2.10 99.34
Spatter 93.66 94.60 1.98 99.35

Speckle noise 92.19 94.37 3.79 98.55

F Ablations on Mixing Rate λ

In the mixed sampling strategy, samples are selected using a combination of the top-k and near-boundary
sampling methods. We introduce a mixing rate λ to determine the composition of the selected samples,
where 0 ≤ λ ≤ 1. Specifically, k samples are chosen from Swild. This set consists of k1 samples from the
top-k method and k2 samples from the near-boundary sampling, where k = k1 + k2 and λ = k1

k1+k2
. In

Table 8, we perform ablation on how λ affects the performance. We observe that a higher λ generally results
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Table 8: Ablation results on different mixing rate λ. The total labeling budget is k = 500. We train on
CIFAR-10 as ID, using wild data with πc = 0.5 (CIFAR-10-C) and πs = 0.1 (Texture).

Mixing rate OOD Acc.↑ ID Acc.↑ FPR↓ AUROC↑
λ=0.1 87.93 94.90 16.08 92.17
λ=0.3 88.76 94.86 13.05 94.35
λ=0.5 88.08 95.02 12.98 94.41
λ=0.7 89.73 94.76 9.36 96.68
λ=0.9 89.80 94.70 8.05 97.91

in stronger performance in both OOD generalization and OOD detection. The observation aligns with our
expectations and is supported by the detailed quantitative analysis presented in Section 4.3.

G Hyperparameter Analysis

In Table 9, we present the performance of OOD generalization and detection by varying hyperparameter α,
which balances the weight between two loss terms. We observe that the generalization performance remains
competitive and insensitive across a wide range of α values. Additionally, our method demonstrates enhanced
OOD detection performance when a relatively larger value of α is employed in this scenario.

Table 9: Ablation study on the effect of loss weight α. The sampling strategy is top-k sampling, with a
budget of 1000. We train on CIFAR-10 as ID, using wild data with πc = 0.5 (CIFAR-10-C) and πs = 0.1
(Texture).

Balancing weights OOD Acc.↑ ID Acc.↑ FPR↓ AUROC↑
α=1.0 90.76 94.49 5.29 98.33
α=3.0 90.61 94.43 5.35 98.19
α=5.0 90.52 94.41 5.29 98.16
α=7.0 90.51 94.35 5.41 98.15
α=9.0 90.41 94.33 5.11 98.24
α=10.0 90.31 94.33 4.91 98.28
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H Notations, Definitions, and Assumptions

Here we summarize important notations in Table 10, restate necessary definitions and assumptions in Sections
H.2 and H.3.

H.1 Notations

Please see Table 10 for detailed notations.

Table 10: Main notations and their descriptions.

Notation Description

Spaces
X , Y the input space and the label space.
W, Θ the hypothesis spaces

Distributions
Pwild, Pin data distribution for wild data, labeled ID data.
Pcovariate

out data distribution for covariate-shifted OOD data.
P semantic

out data distribution for semantic-shifted OOD data.
PX Y the joint data distribution for ID data.

Data and Models
w, x, v weight/input/the top-1 right singular vector of G

∇̂, τ the average gradients on labeled ID data, uncertainty score
S in, Swild labeled ID data and unlabeled wild data
Sselected selected data

Ss
selected, Sc

selected semantic and covariate OOD in the selected data Sselected
fw and gθ predictor on labeled in-distribution and binary predictor for OOD detection

y label for ID classification
ŷx Predicted one-hot label for input x

n, m, k size of S in, size of Swild, labeling budget
Distances

dW△W(·, ·) W△W distance.
r1 and r2 the radius of the hypothesis spaces W and Θ, respectively

∥ · ∥2 ℓ2 norm
Loss, Risk and Predictor

ℓ(·, ·) ID loss function
RSin,Ss

selected
(gθ) the overall empirical risk that classifies ID and detects semantic OOD

RSin,Sc
selected

(fw) the overall empirical risk that classifies covariate OOD and ID
RSin(fw) the empirical risk w.r.t. predictor fw over data S in

RSc
selected

(fw) the empirical risk w.r.t. predictor fw over covariate OOD Sc
selected

ID-Acc in-distribution accuracy.
OOD-Acc out-of-distribution accuracy.

FPR OOD detection performance.
Additional Notations in Theory

ωin, ωc the weight coefficients for ID empirical risk, and covariate OOD empirical risk.
M = β1r2

1 + b1r1 + B1 the upper bound of loss ℓ(hw(x), y), see Proposition 3
d VC dimension of the hypothesis space W

H.2 Definitions

Definition 2 (β-smooth). We say a loss function ℓ(fw(x), y) (defined over X × Y) is β-smooth, if for any
x ∈ X and y ∈ Y, ∥∥∇ℓ(fw(x), y) − ∇ℓ(fw′(x), y)

∥∥
2 ≤ β∥w − w′∥2
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Definition 3 (W△W-distance (Ben-David et al., 2010)). For two distribution P1 and P2 over a domain X
and a hypothesis class W, the W△W-distance between P1 and P2 w.r.t. W is defined as

dW△W(P1,P2) = sup
w,w′∈W

∣∣Ex∼P1 [fw(x) ̸= fw′(x)] − Ex∼P2 [fw(x) ̸= fw′(x)]
∣∣ (9)

Definition 4 (Gradient-based Distribution Discrepancy). Given distributions P and Q defined over X , the
Gradient-based Distribution Discrepancy w.r.t. predictor fw and loss ℓ is

dℓ
w(P,Q) =

∥∥∇RP(fw, f̂) − ∇RQ(fw, f̂)
∥∥

2, (10)

where f̂ is a classifier which returns the closest one-hot vector of fw, RP(fw, f̂) = Ex∼Pℓ(fw, f̂) and
RQ(fw, f̂) = Ex∼Qℓ(fw, f̂).

H.3 Assumptions

Assumption 1.
• The parameter space W ⊂ B(w0, r1) ⊂ Rd (ℓ2 ball of radius r1 around w0);

• ℓ(fw(x), y) ≥ 0 and ℓ(fw(x), y) is β1-smooth where ℓ(·, ·) is the ID loss function;

• sup(x,y)∈X ×Y ∥∇ℓ(fw0(x), y)∥2 = b1, sup(x,y)∈X ×Y ℓ(fw0(x), y) = B1.

Remark 1. For neural networks with smooth activation functions and softmax output function, we can check
that the norm of the second derivative of the loss functions (cross-entropy loss and sigmoid loss) is bounded
given the bounded parameter space, which implies that the β-smoothness of the loss functions can hold true.
Therefore, our assumptions are reasonable in practice.
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I Main Theorem

In this section, we provide a detailed and formal version of our main theorems with a complete description
of the constant terms and other additional details that are omitted in the main paper.
Theorem 2. Let W be a hypothesis space with a VC-dimension of d. Denote the datasets Sin and Sc

selected
as the labeled in-distribution and the selected covariate OOD data by human feedback, and their sizes are n
and mc, respectively. If ŵ ∈ W minimizes the empirical risk RSc

selected
(fw) of the multi-class classifier for

classifying the covariate OOD, and w∗ = arg minw∈W RPcovariate
out

(fw), then for any δ ∈ (0, 1), with probability
of at least 1 − δ, we have

RPcovariate
out

(fŵ) ≤ RPcovariate
out

(fw∗) + 2ωin sup
w∈W

dℓ
w(Sin, Sc

selected) + 2ωin(2

√
2d log(2mc) + log 2

δ

mc
+ γ) + 2ζ,

where ζ =
√

( ω2
in

n + ω2
c

mc
)( d log (2n+2mc)−log(δ)

2 ) + ωinM and γ = min
w∈W

{RPcovariate
out

(fw) + RPin(fw)}. M is the
upper bound of the loss function for the multi-class classifier

sup
w∈W

sup
(x,y)∈X ×Y

ℓ(fw(x), y) ≤ M. (11)

ωin, ωc are two weight coefficients such that

RPin,Pcovariate
out

(fw)︸ ︷︷ ︸
Multi-class classifier

= ωinRPin(fw) + ωcRPcovariate
out

(fw), (12)

and dℓ
w(Sin, Sc

selected) is calculated as follows:

dℓ
w(Sin, Sc

selected) = ∥∇RSin(fw, f̂) − ∇RSc
selected

(fw, f̂)∥2,

where f̂ is a classifier which returns the closest one-hot vector of fw, i.e., RSin (fw, f̂) = Ex∼Sin ℓ(fw, f̂) and
RSc

selected
(fw, f̂) = Ex∼Sc

selected
ℓ(fw, f̂). Note that our theoretical analysis primarily focuses on the OOD general-

ization error of a specific set of covariate data, which is associated with the set Scselected. For simplicity,
we will continue to use the notation Pcovariate

out .
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J Proof of the Main Theorem

In this section, we present the proof of our main Theorem 2. Before we dive into the proof details, we first
clarify the analysis framework and the analysis target in our proof techniques.

Specifically, we consider the empirical error of the robust classification of samples from S in and covariate
OOD Sc

selected as the following weighted combination:

RSin,Sc
selected

(fw)︸ ︷︷ ︸
Multi-class classifier

= ωinRSin(fw) + ωcRSc
selected

(fw). (13)

Let RPin(fw) represents the error of fw on the in distribution (ID) data Pin, and RPcovariate
out

(fw) denotes the
error of fw on the covariate OOD data Pcovariate

out . ωin and ωc denote the weight coefficients. Similarly, we
can define the true risk over the data distributions in the same way:

RPin,Pcovariate
out

(fw)︸ ︷︷ ︸
Multi-class classifier

= ωinRPin(fw) + ωcRPcovariate
out

(fw). (14)

Step 1. First, we prove that for any δ ∈ (0, 1) and w ∈ W, with probability of at least 1 − δ, we have

P [|RPin,Pcovariate
out

(fw) − RSin,Sc
selected

(fw)| ≥ R] ≤

√
(ω2

in
n

+ ω2
c

mc
)(d log (2n + 2mc) − log(δ)

2 ), (15)

where n, mc are the sizes of datasets S in, Sc
selected.

We first apply Theorem 3.2 of (Kifer et al., 2004) as restated in Lemma 8 to get the following equation,

P [|RPin,Pcovariate
out

(fw) − RSin,Sc
selected

(fw)| ≥ R] ≤ (2n + 2mc)d exp( −2R2

ω2
in
n + ω2

c
mc

),

where d is the VC dimension of the hypothesis space W. Given δ ∈ (0, 1), we set the upper bound of the
inequality to δ, and solve for R:

δ = (2n + 2mc)d exp( −2R2

ω2
in
n + ω2

c
mc

).

We rewrite the inequality as

δ

(2n + 2mc)d
= e−2R2/(

ω2
in
n + ω2

c
mc ),

taking the logarithm of both sides, we get

log δ

(2n + 2mc)d
= −2R2/(ω2

in
n

+ ω2
c

mc
).

Rearranging the equation, we then get

R2 = (ω2
in
n

+ ω2
c

mc
)(d log (2n + 2mc) − log(δ)

2 ).

Therefore, with the probability of at least 1 − δ, we have

|RPin,Pcovariate
out

(fw) − RSin,Sc
selected

(fw)| ≤

√
(ω2

in
n

+ ω2
c

mc
)(d log (2n + 2mc) − log(δ)

2 ). (16)
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Step 2. Based on Equation 16, we now prove Theorem 2. For the true error of hypothesis ŵ on the covariate
OOD data RPcovariate

out
(fŵ), applying Lemma 7, Equation 16, and suppose w∗ = arg minw∈W RPcovariate

out
(fw),

we get

RPcovariate
out

(fŵ) ≤ RPin,Pcovariate
out

(fŵ) + ωin(1
2dW△W(S in, Sc

selected) + 2

√
2d log(2mc) + log 2

δ

mc
+ γ)

≤ RSin,Sc
selected

(fŵ) +

√
(ω2

in
n

+ ω2
c

mc
)(d log (2n + 2mc) − log(δ)

2 )

+ ωin(1
2dW△W(S in, Sc

selected) + 2

√
2d log(2mc) + log 2

δ

mc
+ γ)

≤ RSin,Sc
selected

(fw∗) +

√
(ω2

in
n

+ ω2
c

mc
)(d log (2n + 2mc) − log(δ)

2 )

+ ωin(1
2dW△W(S in, Sc

selected) + 2

√
2d log(2mc) + log 2

δ

mc
+ γ)

≤ RPin,Pcovariate
out

(fw∗) + 2

√
(ω2

in
n

+ ω2
c

mc
)(d log (2n + 2mc) − log(δ)

2 )

+ ωin(1
2dW△W(S in, Sc

selected) + 2

√
2d log(2mc) + log 2

δ

mc
+ γ)

≤ RPcovariate
out

(fw∗) + 2

√
(ω2

in
n

+ ω2
c

mc
)(d log (2n + 2mc) − log(δ)

2 )

+ 2ωin(1
2dW△W(S in, Sc

selected) + 2

√
2d log(2mc) + log 2

δ

mc
+ γ)

= RPcovariate
out

(fw∗) + 2ωin(1
2dW△W(S in, Sc

selected) + 2

√
2d log(2mc) + log 2

δ

mc
+ γ) + 2ζ1,

with probability of at least 1−δ, where ζ1 =
√

( ω2
in
n + ω2

c
mc

)( d log (2n+2mc)−log(δ)
2 ) and γ = min

h∈W
{RPcovariate

out
(fw)+

RPin(fw)}

Step 3. In this step, we aim to obtain the upper bound of the term dW△W(S in, Sc
selected). To begin with,

recall we have the following definition:

dW△W(S in, Sc
selected) = sup

w,w′∈W

∣∣Ex∼Sin [fw(x) ̸= fw′(x)] − Ex∼Sc
selected

[fw(x) ̸= fw′(x)]
∣∣. (17)

Therefore, it is easy to check that

dW△W(S in, Sc
selected) = sup

w∈W

∣∣RSin(fw) − ∇RSin(fw, f̂) + ∇RSin(fw, f̂) − RSc
selected

(fw)

− ∇RSc
selected

(fw, f̂) + ∇RSc
selected

(fw, f̂)
∣∣

≤ sup
w∈W

∣∣RSin(fw) − RSc
selected

(fw)
∣∣ + 2 sup

w∈W

∣∣∇RSin(fw, f̂) − ∇RSc
selected

(fw, f̂)
∣∣

≤ sup
w∈W

∣∣RSin(fw)
∣∣ + sup

w∈W

∣∣RSc
selected

(fw)
∣∣ + 2 sup

w∈W
dℓ

w(S in, Sc
selected)

≤ 2 sup
w∈W

dℓ
w(S in, Sc

selected) + 2M,

(18)
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where f̂ is a classifier which returns the closest one-hot vector of fw, RSin(fw, f̂) = Ex∼Sinℓ(fw, f̂) and
RSc

selected
(fw, f̂) = Ex∼Sc

selected
ℓ(fw, f̂).

The last inequality holds because of Proposition 3 and the definition of the Gradient-based Distribution
Discrepancy in Definition 4. Therefore, we can prove that:

RPcovariate
out

(fŵ) ≤ RPcovariate
out

(fw∗)+2ωin sup
w∈W

dℓ
w(S in, Sc

selected)+2ωin(4

√
2d log(2mc) + log 2

δ

mc
+γ)+2ζ1+2ωinM.

(19)
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K Necessary Lemmas, and Propositions

K.1 Boundedness

Proposition 3. If Assumption 1 holds,

sup
w∈W

sup
(x,y)∈X ×Y

∥∇ℓ(fw(x), y)∥2 ≤ β1r1 + b1 =
√

M ′/2,

sup
w∈W

sup
(x,y)∈X ×Y

ℓ(fw(x), y) ≤ β1r2
1 + b1r1 + B1 = M,

Proof. One can prove this by Mean Value Theorem of Integrals easily.

Proposition 4. If Assumption 1 holds, for any w ∈ W,∥∥∇ℓ(fw(x), y)
∥∥2

2 ≤ 2β1ℓ(fw(x), y).

Proof. The details of the self-bounding property can be found in Appendix B of (Lei & Ying, 2021).

Proposition 5. If Assumption 1 holds, for any labeled data S and distribution P,∥∥∇RS(fw)
∥∥2

2 ≤ 2β1RS(fw), ∀w ∈ W,∥∥∇RP(fw)
∥∥2

2 ≤ 2β1RP(fw), ∀w ∈ W.

Proof. Jensen’s inequality implies that RS(fw) and RP(fw) are β1-smooth. Then Proposition 4 implies the
results.

K.2 Necessary Lemmas for Theorem 2

Lemma 6 (Theorem 3.4 in Kifer et al. (2004)). Let A be a collection of subsets of some domain measure
space, and assume that the VC-dimension is some finite d. Let P1 and P2 be probability distributions over
that domain and S1, S2 finite samples of sizes m1, m2 drawn according to P1, P2 with certain selection
criteria respectively. Then

Pm1+m2[|ϕA(S1, S2) − ϕA(P1, P2)| > R] ≤ (2m1)de−m1R2/16 + (2m2)de−m2R2/16,

where Pm1+m2 is the m1 + m2’th power of P , the probability that P induces over the choice of samples.

This theorem bounds the probability for the relativized discrepancy, and will help bounds the quantified
distribution shifts between domains in our Theorem 2.

Lemma 7. Let W be a hypothesis space with a VC-dimension of d. Denote the datasets S in and Sc
selected as

the labeled in-distribution and the selected covariate OOD data, and their sizes are n and mc, respectively.
Then for any δ ∈ (0, 1), for every w ∈ W minimizing RSin,Sc

selected
(fw) on datasets S in, Sc

selected, we have

∥RPin,Pcovariate
out

(fw) − RPcovariate
out

(fw)∥ ≤ ωin(1
2dW△W(S in, Sc

selected) + 4

√
2d log(2mc) + log 2

δ

mc
+ γ), (20)

where γ = minw∈W{RPin(fw) + RPcovariate
out

(fw)}. dW△W(S in, Sc
selected) is defined according to Definition 3.
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Proof. First, we prove that given datasets S in, Sc
selected from two distributions Pin and Pcovariate

out , we have

dW△W(Pin,Pcovariate
out ) ≤ dW△W(S in, Sc

selected) + 4

√
2d log(2mc) + log 2

δ

mc
. (21)

We start with Theorem 3.4 in Kifer et al. (2004), which is restated in Lemma 6:

Pn+mc [|ϕA(S in, Sc
selected) − ϕA(Pin,Pcovariate

out )| > R] ≤ (2n)de−nR2/16 + (2mc)de−mcR2/16. (22)

In this equation, d is the VC-dimension of a collection of subsets of some domain measure space A, while in
our case, d is the VC-dimension of hypothesis space W. Following Ben-David et al. (2010), the VC-dimension
of W△W is at most twice the VC-dimension of W, and the VC-dimension of our domain measure space is
thus 2d.

Given δ ∈ (0, 1), we can set the upper bound of the inequality to δ, and solve for R:

δ = (2n)2d · e−nR2/16 + (2mc)2d · e−mcR2/16. (23)

Let n = mc, we can rewrite the inequality as:

δ

(2mc)2d
= e−nϵ2/16 + e−mcϵ2/16, (24)

taking the logarithm of both sides, we get

log δ

(2mc)2d
= −n

ϵ2

16 + log
(

1 + e−(n−mc) ϵ2
16

)
, (25)

rearranging the equation and defining a = R2

16 , we then get

log δ

(2mc)2d
= −mca + log 2, (26)

which implies
mca + log(δ/2) = 2d log(2mc). (27)

Therefore, we have

R = 4
√

a = 4

√
2d log(2mc) + log 2

δ

mc
. (28)

With probability of at least 1 − δ, we have

|ϕA(S in, Sc
selected) − ϕA(Pin,Pcovariate

out )| ≤ 4

√
2d log(2mc) + log 2

δ

mc
; (29)

therefore,

dW△W(Pin,Pcovariate
out ) ≤ dW△W(S in, Sc

selected) + 4

√
2d log(2mc) + log 2

δ

mc
. (30)

Now in order to prove Lemma 7, we can use triangle inequality for classification error in the derivation.
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For the true risk of hypothesis fw on the covariate OOD data RPcovariate
out

(fw), given the definition of
RPin,Pcovariate

out
(fw),

∥RPin,Pcovariate
out

(fw) − RPcovariate
out

(fw)∥ = |ωinRPin(fw) + ωcRPcovariate
out

(fw) − RPcovariate
out

(fw)|
≤ ωin|RPin(fw) − RPcovariate

out
(fw)|

≤ ωin(|RPin(fw) − RPin(fw, fw∗)| + |RPin(fw, fw∗) − RPcovariate
out

(fw, fw∗)|
+ |RPcovariate

out
(fw, fw∗) − RPcovariate

out
(fw)|)

≤ ωin(RPin(fw∗) + |RPin(fw, fw∗) − RPcovariate
out

(fw, fw∗)| + RPcovariate
out

(fw∗))
≤ ωin(γ + |RPin(fw, fw∗) − RPcovariate

out
(fw, fw∗)|),

where γ = minh∈W{RPin(fw) + RPcovariate
out

(fw)} and fw∗ is classifier that are parameterized with the optimal
hypothesis fw∗ on Pin. And we also have

RPin(fw, fw∗) = Ex∼P[|fw(x) − fw∗(x)|]. (31)

By the definition of W△W-distance and our proved Equation 30,

∥RPin(fw, fw∗) − RPcovariate
out

(fw, fw∗)∥ ≤ sup
w,w′∈W

|RPin(fw, fw′) − RPcovariate
out

(fw, fw′)|

= sup
w,w′∈W

Px∼Pin [fw(x) ̸= fw∗(x)] + Px∼Pcovariate
out

[fw(x) ̸= fw∗(x)]

= 1
2dW△W(Pin,Pcovariate

out )

≤ 1
2dW△W(S in, Sc

selected) + 2

√
2d log(2mc) + log 2

δ

mc
.

Therefore, we can get

|RPin,Pcovariate
out

(fw) − RPcovariate
out

(fw)| ≤ ωin(γ + |RPin(fw, fw∗) − RPcovariate
out

(fw, fw∗)|)

≤ ωin(γ + 1
2dW△W(Pin,Pcovariate

out ))

≤ ωin(1
2dW△W(S in, Sc

selected) + 2

√
2d log(2mc) + log 2

δ

mc
+ γ),

with probability of at least 1 − δ, where γ = minw∈W{RPin + RPcovariate
out

(fw)}. This completes the proof.

Lemma 8. Under the same conditions as Lemma 7, if the empirical risk is denoted as RSin,Sc
selected

(fw) (as
defined in Equation 13), then for any δ ∈ (0, 1) and w ∈ W, with the probability of at least 1 − δ, we have

P [|RPin,Pcovariate
out

(fw) − RSin,Sc
selected

(fw)| ≥ R] ≤ 2 exp( −2R2

ω2
in
n + ω2

c
mc

) (32)
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Proof. We apply Hoeffding’s Inequality in our proof. Specifically, denote the true labeling function as fw̄,
we have that

P(|[
n∑

i=0

ωin

n
|fw(xi) − fw̄(xi)| +

mc∑
j=0

ωc

mc
|fw(xj) − fw̄(xj)|]−[ωinEx∼Pin |fw(x) − fw̄(x)| + ωcEx∼Pc |fw(x) − fw̄(x)|]| ≥ R)

≤ 2 exp(− 2R2∑n

i=1(bi − ai)2 ),

(33)

where ωin
n |fw(xi) − fw̄(xi)| ∈ [0, ωin

n ] and ωc
mc

|fw(xj) − fw̄(xj)| ∈ [0, ωc
mc

].

Considering the weighted empirical error, we get

RSin,Sc
selected

(fw) = ωinRSin(fw) + ωcRSc
selected

(fw)

=
n∑

i=0

ωin

n
|fw(xi) − fw̄(xi)| +

mc∑
j=0

ωc

mc
|fw(xj) − fw̄(xj)|,

which corresponds to the first part of Hoeffding’s Inequality.

Due to the linearity of expectations, we can calculate the sum of expectations as

ωinEx∼Pin |fw(x) − fw̄(x)| + ωcEx∼Pc |fw(x) − fw̄(x)| = ωinRPin(fw) + ωcRPcovariate
out

(fw) = RPin,Pcovariate
out

(fw),

which corresponds to the second part of Hoeffding’s Inequality. Therefore, we can apply Hoeffding’s Inequal-
ity as

P [|RPin,Pcovariate
out

(fw) − RSin,Sc
selected

(fw)| ≥ R] ≤ 2 exp( −2R2

ω2
in
n + ω2

c
mc

).

L Verification of Main Theorem

Optimal Loss for Covariate OOD. For training the model, we utilized 50,000 covariate OOD data
samples. The optimal loss for covariate OOD data, denoted as RPcovariate

out
(fw), was evaluated using the

CIFAR-10 versus CIFAR-10-C datasets (with Gaussian noise). The results indicated an optimal loss of
0.2383 on the test set, with a corresponding OOD test accuracy of 92.79%. This small optimal loss for
covariate OOD data contributes to a tighter upper bound.

Optimal Loss for In-Distribution (ID) Data. The training involved 50,000 ID data samples to deter-
mine the optimal loss for ID data, represented as RPin(fw). In the CIFAR-10 context, the optimal loss on
the test set for ID data was recorded as 0.1792, while the corresponding ID accuracy on test data reached
95.13%. The minimal nature of the optimal loss for ID data is consistent with expectations and results in a
tighter upper bound.

Gradient Discrepancy. The gradient discrepancy for the ID CIFAR-10, Covariate OOD CIFAR-10-
C (Gaussian noise), and Semantic OOD Textures dataset was found to be 0.00035. This small gradient
discrepancy suggests a tighter upper bound.

32



Under review as submission to TMLR

Dataset Gradient Discrepancy↓ OOD Acc.↑
CIFAR-10-C (Gaussian noise) 0.00035 90.37
CIFAR-10-C (Shot noise) 0.00030 82.04
CIFAR-10-C (Glass blur) 0.00040 92.41

Table 11: Empirical verification of gradient discrepancy in Theorem 1.

Gradient Discrepancy Versus Covariate OOD Accuracy Across Different Datasets. Table 11
offers a comparative analysis, empirically validating the gradient discrepancy among various datasets. The
results show a correlation between gradient discrepancy and OOD accuracy.

M Impact Statements and Limitations

Broader Impact. Our research aims to raise both research and societal awareness regarding the critical
challenges posed by OOD detection and generalization in real-world contexts. On a practical level, our
study has the potential to yield direct benefits and societal impacts by ensuring the safety and robustness
of deploying classification models in dynamic environments. This is particularly valuable in scenarios where
practitioners have access to unlabeled datasets and need to discern the most relevant portions for safety-
critical applications, such as autonomous driving and healthcare data analysis. From a theoretical standpoint,
our analysis contributes to a deeper understanding of leveraging unlabeled wild data by using gradient-based
scoring for selecting the most informative samples for human feedback. In Appendix L, we properly verify
the necessary conditions of our bound using real-world datasets. Hence, we believe our theoretical framework
has a broad utility and significance.

Limitations. Our proposed algorithm aims to improve both out-of-distribution detection and generalization
results by leveraging unlabeled data. It still requires a small amount of human annotations and an additional
gradient-based scoring procedure for deployment in the wild. Therefore, extending our framework to further
reduce the annotation and training costs is a promising next step.

N Software and Hardware

We run all experiments with Python 3.8.5 and PyTorch 1.13.1, using NVIDIA GeForce RTX 2080 Ti GPUs.
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