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ABSTRACT

Federated Learning (FL) enables decentralized clients to collaboratively train a
global model without sharing raw data. However, most existing FL frameworks
assume that clients train on static local datasets collected in advance or that the data
follows a fixed underlying distribution, which limits their applicability in dynamic
environments where data evolves over time. A parallel line of research, online FL,
removes all assumptions and adopts an adversarial perspective, but this approach is
often overly pessimistic and neglects the structured, partially predictable nature of
real-world data dynamics. To bridge this gap, we propose SFedPO, a streaming
federated learning framework that incorporates a prediction oracle to capture the
temporal evolution of client-side data distributions. We theoretically analyze the
convergence bounds of SFedPO and develop two practical sampling strategies: a
Distribution-guided Data Sampling (DDS) strategy that dynamically selects training
data under limited storage by balancing historical reuse and distribution adaptation,
and a Shift-aware Aggregation Weights (SAW) mechanism that modulates global
aggregation based on client-specific sampling behaviors. We further establish
robustness guarantees under prediction errors. Extensive experiments demonstrate
that SFedPO effectively adapts to streaming scenarios with distribution shifts and
significantly outperforms existing methods.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al.| 2017) has emerged as a prominent distributed learning
paradigm that enables multiple clients to collaboratively train a shared global model while keeping
data local. By leveraging local computation and periodically exchanging model parameters via a
central server, FL eliminates the need for centralized data collection. This makes it particularly
well-suited for real-world scenarios where data is inherently distributed, such as mobile sensing
(Jiang et al.| 2020) and edge intelligence (Mills et al., 2019).

Most existing FL frameworks assume that clients train on static local datasets collected in advance or
that their data follows a fixed underlying distribution (McMabhan et al.,[2017; [Li et al.,[2020b; Wang
et al., [2020b; (Wang & Ji,12022; |Ye et al., 2023)). In contrast, online FL (Mitra et al., 2021} M Ghar1
& Shen| [2022) discards such assumptions and instead adopts a potentially adversarial modeling
perspective. It aims to minimize cumulative regret (Kwon et al.| [2023; [Patel et al.,|2023)) and provides
robust theoretical guarantees under worst-case scenarios. While static local datasets or a fixed data
distribution could be a strong assumption, the adversarial perspective represents the opposite extreme
and is overly pessimistic.

Consider a streaming FL setting where clients (e.g., mobile devices or UAVs) continuously acquire
new data over time. On one hand, this results in time-varying and non-stationary data distributions.
On the other hand, the evolution of clients’ data often follows structured and partially predictable
patterns (Huynh et al.| 2025)). For instance, in the case of UAVs, their mobility trajectories typically
follow pre-defined routes or scheduled missions. As a result, the data they collect exhibits spatial and
temporal regularities. While assuming static datasets or fixed distributions could be inappropriate,
the adversarial perspective may be overly pessimistic. This raises a natural question: Can we design
a new FL framework that leverages partial predictions about data distribution shifts to guide both
client-side sampling and server-side aggregation?



Under review as a conference paper at ICLR 2026

Addressing this question introduces significant challenges in both theoretical analysis and system
design. Theoretically, the time-varying nature of clients’ data renders the local objective functions
time-dependent, complicating convergence analysis and requiring new tools to characterize the
evolving optimization landscape. From a system design perspective, the key challenge lies in
accommodating heterogeneous client behaviors, particularly their sampling strategies in response to
distribution shifts.

Motivated by the discussions above, we propose SFedPO, a streaming federated learning framework
with a prediction oracle to address temporal distribution shifts. Rather than assuming static datasets
or adversarial dynamics, SFedPO operates in environments where clients continuously collect new
data and incorporates a prediction oracle that provides prior knowledge about the temporal evolution
of clients’ data distributions. Building upon this, we introduce a distribution-guided data sampling
strategy that selectively reuses and updates local data in response to distribution shifts. This allows
clients to maintain a representative memory buffer under limited storage constraints. Furthermore,
we develop an aggregation algorithm that adapts to heterogeneous client behaviors, including their
sampling strategies. Our main contributions are summarized as follows:

* We propose SFedPO, a novel streaming FL framework incorporating a prediction oracle to
model the temporal evolution of clients’ data distributions. This framework provides a princi-
pled approach that bridges the gap between static-data assumptions and adversarial modeling
commonly found in existing FL paradigms.

* We provide a theoretical convergence analysis of SFedPO and develop two core components:
Distribution-guided Data Sampling (DDS) for local training, and Shift-aware Aggregation
Weights (SAW) for client-adaptive global aggregation. In addition, we conduct a robustness
analysis that quantifies the impact of oracle prediction errors on convergence guarantees.

* We perform extensive experiments, demonstrating that SFedPO effectively adapts to streaming
scenarios with distribution shifts and significantly outperforms existing methods.

2 RELATED WORKS
We categorize existing FL literature into three main lines based on their assumptions about the data.

Federated Learning with Static or Stationary Data. Most traditional FL. methods assume that
clients train on static datasets or that their data follows a fixed distribution (McMahan et al., 2017} [Li
et al.|[2020b; [Wang et al., 2020b; Wang & Ji,/2022; |Ye et al.L|2023). Some recent studies extend FL to
streaming scenarios. For instance, Marfoq et al.| (2023) formalize FL over data streams and propose a
meta-algorithm similar to vanilla FedAvg (McMabhan et al.,2017)) through a weighted empirical risk
minimization design. ODE (Gong et al.,|2023)) introduces a date evaluation metric based on inference
accuracy for on-device data selection under storage constraints. However, these works still assume
that the data follows a stationary distribution.

Federated Learning under Distribution Shifts. Some studies have extended FL to streaming
settings where data continuously arrive over time (Huynh et al.| [2025; Marfoq et al., 2023} \(Gong
et al., [2023} [Liu et al., 2023)). Wang et al.|(2023a)) assume the existence of a long-term distribution in
the local data stream of clients and propose the cache update strategy to align the data distribution in
the local cache to the underlying long-term distribution. Fed-HIST (Zhang et al., 2024)) avoids the
problem of raw data storage by retrieving model-based historical representations through similarity
comparison. In parallel, the concept drift problem has been explored in FL. Most concept drift
adaptation methods typically modify the model architecture (Chen et al., 2021)), optimization strategy
(Panchal et al., 2023}, |Canonaco et al., |2021), or client clustering (Li et al., 2024} Jothimurugesan
et al., 2023} |Chen et al) 2024) in response to detected shifts. Furthermore, Federated Continual
Learning (FCL) (Yang et al., 2024} Guo et al., 2021; |Dong et al.,2022)) has been developed to mitigate
catastrophic forgetting under sequential task arrivals, typically by leveraging parameter decomposition
(Yoon et al.|2021), generative replay (Wuerkaixi et al.| 20245 |Q1 et al.} 2023)), or knowledge distillation
(Huang et al.| [2022; [Usmanova et al., 2021). However, existing approaches across these lines do
not explicitly model or predict the temporal evolution of data distributions. In contrast, our work
leverages a predictive oracle and develops a theoretically grounded, distribution-guided data sampling
strategy for streaming FL. See details in Appendix [B]
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Online Federated Learning. Online FL removes assumptions on the underlying data distribu-
tion and instead aims to minimize regret under potentially arbitrary or adversarial data streams.
FedOMD (Mitra et al.| 2021) studies online federated optimization against adversarially revealed
loss functions using online mirror descent, achieving sublinear regret. |(Ganguly & Aggarwall (2023)
further combine FedAvg and FedOMD within a multiscale framework to adapt to non-stationary
environments, establishing dynamic regret bounds under general convex losses. To address system-
level challenges such as device heterogeneity and availability variations, ASO-Fed (Chen et al.|
2020) introduces an asynchronous online FL framework based on continuous local updates and
asynchronous aggregation.

3 PROBLEM FORMULATION

3.1 MODELING DYNAMIC DATA DISTRIBUTIONS

We consider a federated learning system consisting of N clients, denoted by the set NV =
{1,2,..., N}, and these clients are coordinated by a central server. The learning process unfolds
in R communication rounds, indexed by r € {1,..., R}. Each round is further divided into T
fine-grained time steps, indexed by ¢ € {1,...,T}. We define a time step as the granularity at which
one client’s data distribution may evolve.

Instead of assuming a static dataset or a stationary distribution, clients in our system continuously
receive new data generated from a dynamic distribution. We model the distributions of new data as
governed by a latent state space M = {1,2,..., M }. Specifically, each state m € M corresponds
to a stationary data distribution D,,. At each time step ¢ in round 7, client n € N is associated
with a latent state mg,t € M. The ground-truth state distribution of client n is denoted as ,, =
(Tn1,-- - Tn,a ). where 7, ,, denotes the probability that client n is in state m. While the true state
transition dynamics are unknown, we assume the existence of a prediction oracle that provides
a prediction over clients’ latent states. That is, the oracle for client n outputs a prediction vector
Tt = (Tn1,- .-, Tn, ), Where T, ,, denotes the estimate of 7, .

In streaming settings with limited local storage, clients must manage their training data continuously
by retaining only a subset (possibly empty) of newly encountered samples. Considering this issue, we
consider a distribution-guided data sampling mechanism, which explicitly adjusts the composition of
each client’s local dataset based on the observed data distribution. Specifically, we define a sampling
strategy & = {au m fneN ,mem, Where o, ., € [0, 1] represents the ratio of new samples from state
m that client n incorporates into its local dataset. Let D,(:% denote the effective training distribution
maintained by client n at time ¢ in round 7, which is updated as a convex combination of the previous
local distribution and the current state’s distribution, i.e.,

Dgﬂ)s =(l-a, ») 'DfLT,g—l to, o Do (1)
This update captures the trade-off between preserving historical samples and adapting to recent
()

n.t» We define the local loss function of

distribution shifts. Given the local training distribution D
client n at time step ¢ in round 7 as

EV)(x) 2 E oo [F(x: ), @
where f(x; &) denotes the sample-wise loss function.
3.2 FEDERATED TRAINING PROCESS
Our learning objective is to train a global model x* € R that generalizes well across the full space

of data distributions encountered by all clients over time. Specifically, we define the global objective
as a weighted sum over all M possible distributions:

M
x* = arg m}in F(x) = Z Wy, F (%), 3)
m=1

where F,,, (x) = E¢p,, [f(x; )] denotes the expected loss under distribution D,,,, and w,,, reflects
the population-level importance or frequency of state m across all clients and time steps.
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The training proceeds over R communication rounds. In each round r, a subset of clients .S, is
sampled independently with availability probabilities ¢,, (Wang & Ji, 2022; Xiang et al.,|2024), and
each selected client initializes its local model with the current global model X("). As defined earlier,
each round is divided into 7" time steps, we align local model updates with these time steps: at each
time step ¢ in round 7, client n € S, samples a mini-batch of data from its updated local distribution

Dﬁ[i and performs one step of Stochastic Gradient Descent (SGD) as follows:

7"1 — (r) (r) (4)

Xn Xn,t—l -n- gmt?

)

where 7 is the learning rate, and ggf)) 2 Vf (xg}_l; &n.¢) s the stochastic gradient of Fr(ft) (xgﬂ_l)
(r)

evaluated on samples &, + ~ D,, ;.

model xgj)T to the server. The server then aggregates the received models using a weighted average:

(r+1) _ (M)
X D s P X ®)

where p,, is the aggregation weight for the client n.

After completing the local updates, each client uploads its final

To support effective learning under temporal distribution shifts, our framework incorporates two core
components: (1) a distribution-guided data sampling strategy that dynamically adjusts local datasets,
and (2) an aggregation algorithm that accounts for the heterogeneous client behaviors, including
sampling strategies and available probabilities.

4 THEORETICAL ANALYSIS

In this section, we analyze the convergence bound of the proposed federated learning framework
under temporal distribution shifts, which highlights the effect of sampling strategy o and aggregation

weights {p,, }near- We begin by stating several assumptions on the local loss functions F,E”t) and the
state-specific loss function F,,.

Assumption 1. (L-smoothness). All loss functions involved in the optimization are L-smooth. That
is, there exists a constant L > 0 such that

IVET) (x) = VET) (9)|| < Llx — y|| and [|VFpu(x) — VE,(y)]| < Llx — y|,

forallx,y e R, ne N, te{l,....,T}, re{l,...,R}, and m € M.

Assumption 2. (Unbiased gradient and bounded variance). For each client n, the stochastic gradient
is an unbiased estimator of the full gradient and has bounded variance. Formally,
E po) [VI(6)] = VET (%), B, [IVF(x:€) = VET 0)x] < 0”,

e~ e~D)

where £ is sampled from the n-th client’s local data distribution fo% uniformly at random.

To characterize the heterogeneity of local objectives, many prior works adopt standard dissimilarity
assumptions (Wang & Ji,[2022} [Wang et al., [2020b), which bound the deviation between the local
and global gradients:

M
= S IVE(x) ~ VEGIP < BIVEGI + ¢
m=1

While this formulation captures the average heterogeneity across all latent states, it lacks granularity
for state-specific characterization. Therefore, we decompose it into two assumptions: one that bounds
the overall gradient heterogeneity across all latent states and another that controls the state-specific
gradient heterogeneity. These can be viewed as variants of the above dissimilarity assumptions.

Assumption 3. There exists a constant G > 0 such that Z%Zl IVEL(x)|? < G, forall x € R4

Assumption 4. For each latent state m € M, there exists a constant d,, > 0 such that |V F,(x) —
VE(x)||? < dp, for all x € RY.

We now present the main convergence result under the assumptions stated above. The theorem
provides an upper bound on the optimization error, taking into account the effects of data dynamics,
sampling strategies, and aggregation weights.
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Figure 1: An overview of the proposed SFedPO framework. On the client side, each client determines
its DDS strategy based on a prediction oracle 7t,, and state-wise heterogeneity bounds {d,, }}_,.
This produces sampling ratios ¢, ,, for constructing the local dataset and updating the local model.
On the server side, global aggregation is performed with the well-designed SAW, which adaptively
adjusts the aggregation weights p,, according to each client’s heterogeneity score §,,.

Theorem 1. Let Assumptions 1 — 4 hold. Suppose the data sampling strategy o and the aggrega-
tion weights {p, }nen are fixed. If the learning rate satisfies LTy < min{5}-, \/%} Then, the
optimization error will be bounded as follows:

18 1 a 5Lno? &
minEHVF()_c(T))HQ B [7}7(2(1)) + L7702 piQn + Pngnt (6)
" St Pudn (TNR n; 3 ,;1
N M N
5 Bn 2GvnBh, Tn,mQn.m 9 1 TGYnqn
o nyn\ — 1_ n 2G n - - - m ) = ]7
3;” ¢ (an( TG,y T2 mz::l( n wmn) +R;(1f(lfan)”)
where
M M 1 T
_ _ t
Qp = Z Tn,mQn, m, /Bn - Z Tn,mOn mdm, Tn = T Z(l - an) ) (7)
m=1 m=1 t=1
M M
B’l”b =2 Z ﬂn,mai,m - Z W?L,mai,m + ai' (8)
m=1 m=1
Proof. See details in Appendix [E] O

5 THE SFEDPO FRAMEWORK

Based on the convergence analysis, we develop two coordinated modules that jointly minimize the
upper bound of the optimization error in streaming federated environments.

Distribution-guided Data Sampling (DDS). To ensure effective local training under temporally
evolving data, DDS leverages client-specific latent state distributions to guide sample selection. As
demonstrated in our theoretical analysis, the convergence bound is strongly influenced by the data
sampling strategy, particularly through quantities such as «.,, 5, and 3],. We treat «,, as a fixed
hyperparameter that governs the average update ratio of the client buffer, referred to as the sampling
budget. Accordingly, we formulate a constrained optimization problem to determine the optimal
client-specific sampling ratios {Oén,m}%zp leading to the solution (see Appendix |F.1|for details):

Alan + % + 4G’7nwm - (1 - ’Yn)dm

l—ay,
L+ 5= Tm

; ©))

QX

where A1, iy, and v, are multipliers. To simplify the solution and derive a closed-form, interpretable
expression, we relax the KKT conditions by eliminating the dual variables, setting j,,, = 0 and
Vp, = 0, under the assumption that the optimal values of «, », lie strictly within the open interval
(0,1). This assumption is practically reasonable. In realistic streaming environments, it is neither
desirable nor feasible for a client to completely discard previously stored data (c,,,, = 1) or to
entirely ignore new samples from a given state (o, = 0). Either extreme leads to inefficient storage
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usage and poor adaptability to evolving data distributions. Under this relaxed setting, we define the
following score function for each state m € M:

Wm — aldm + bl

score,(m) =
n( ) 1+‘1;an7rn,m

, (10)

where a; = % and b; = 43; are tunable constants. Intuitively, the score increases with the
n

weight in the glol;al objective function w,,, and decreases with the state-specific heterogeneity bound
d,y, or the probability 7, ,,, of client n being in state m. To ensure feasibility and numerical stability,
we apply a ReLU operation to filter out negative scores, and normalize the resulting values with
respect to the state distribution ,,:

S oy, - ReLU(score,, (m))
- S Tnme - ReLU(score, (m'))

To deal with the extreme case that vy, ,,, > 1, we extend @ and compute o, ,, using Algorithm@

Y

Shift-aware Aggregation Weights (SAW). To enable global aggregation that adapts to heteroge-
neous client behaviors, we optimize the aggregation weights p,, via a relaxed surrogate objective (see
Appendix [F.2) for details).

N 5 N N
Il;in L"]UQ Zpi% + g anQnsn - )\2 anqn
n n—1 n—1 n=1

N
s.t. an =1, pn 20,

n=1
where A5 is a balancing hyperparameter, and
M
Bn

2Gyn 3, 2
$p=Lno® + (1= 7)) + — " +2Gy, ) (—ananm—wm). (12)
7 an( Vn) = —a) gt 2 (G, Tmon.

We refer to s,, as the heterogeneity score of client n, as it captures the combined effect of its latent
state distribution 7r,, and data sampling strategy {cv, ., }2_;. The closed-form solution is given by:

1
Pn X 7_a2'8n+b27 (13)
n
where as and by are tunable constants. Intuitively, clients with smaller s,, are assigned higher
aggregation weights. The term 1/g,, ensures fairness with respect to availability. We propose
to determine more distinguishing aggregation weights for each client n by leveraging available
probability g,, and heterogeneity score s,, as follows:

ReLU(ﬁ —ag - Sp + ba)
>N ReLU(ZL — a5 - s + by)

Pn = (14)

Practical Implementation with Prediction Oracle. The DDS and SAW modules are theoretically
derived under the true latent state distribution 7r,, for each client n, which is not directly observable
in practice. To make the framework practically implementable, we utilize a prediction oracle that
provides an estimated distribution 7r,,. Accordingly, the sampling strategy is adapted as follows:

— Wi, — a1dm + b1 ReLU(score,, (m))
score, (m) = o OQnm = — .
L+ =a-Tnm > 1 Tn,m - ReLU(score, (m'))

Similarly, the aggregation weights are computed using 7, in place of 7, in all related terms.
ReLU(q% —as - §n + bg)
Yon—i ReLU( — az - 80 + b))

ﬁn:

The overall procedure of SFedPO is illustrated in Fig. [I] highlighting the key components on both the
client and server sides. The complete procedure is summarized in Algorithm [I]
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While the above implementation enables SFedPO to operate using a prediction oracle, it is critical to
understand how prediction errors may affect the theoretical performance. To this end, we perform
a robustness analysis that quantifies the impact of prediction errors on the convergence guarantee.
Specifically, we define the prediction error for each client n as 6,, := ||#, — 7|1, and analyze
how this error propagates into the convergence bound through the data sampling strategy o and
aggregation weights {p,, }»cnr, both of which are functions of 7, in theory but implemented based
on 7r,, in practice. Recall the convergence bound in Theorem [I} we focus on the following term:

N N

1 5

B(an,m,pn) == =N [L7}U2 przz,Qn + 3 anQnSn} . (15)
Zn:l Pndn n=1 n=1

Theorem 2 (Robustness to prediction errors). Assume that all sampling scores and aggregation
weights remain strictly positive under both the true and estimated state distributions. Let the data
sampling and aggregation strategies be constructed using the estimated distributions 7, provided by
a prediction oracle. Then, the convergence degradation compared to the ideal strategy using the true
distributions T, is bounded as

N
‘B(@n,maﬁn) _B(an,m7pn)| < O(Zdn>a (16)
n=1
where 6, := |7, — 7, ||1 denotes the estimation error of the prediction oracle for client n. Here O
hides absolute constants.
Proof. See details in Appendix O

6 EXPERIMENTS
6.1 EXPERIMENTAL SETUP

Datasets and models. We conduct comprehensive experiments on four public benchmark datasets:
Fashion-MNIST (Xiao et al.,[2017), CIFAR-10 (Krizhevsky et al.,[2009), CINIC-10 (Darlow et al.|
2018), and HAM 10000 (Tschandl et al., 2018). We adopt LeNet-5 (LeCun et al., |1998)) for Fashion-
MNIST, AlexNet (Krizhevsky et al.l 2012) for CIFAR-10 and CINIC-10, and a customized CNN for
HAM10000. Details of datasets and models are provided in Appendix [H.1]

Federated settings. We simulate a federated environment consisting of N = 30 clients. In each
communication round, clients are selected independently based on their availability probability
{gn}Y_,. For each client n, we draw g,, ~ N(0.2,0.01%), clipped to [0.01, 1] to avoid degenerate
participation. To capture temporally evolving local distributions, we introduce M = 60 latent states,
each representing a possible data distribution encountered over time. To simulate intra-state hetero-
geneity, we organize these states into 6 clusters (10 states per cluster), each associated with a Dirichlet
partitioning strategy with distinct concentration parameters o € {0.05,0.1,0.2,0.5, 1.0, 100.0}.
Based on this latent state space, we consider two heterogeneity scenarios. (1) Full-access (mild
heterogeneity): Each client has non-zero access probability 7, ,,, > 0 for all states m € {1,...,M}.
(2) Partial-access (extreme heterogeneity): Each client is restricted to a randomly sampled subset of
10 states, with m,, ,,, = 0 for others. Moreover, 50% of clients are initialized with latent states drawn
from high-heterogeneity clusters (o € {0.05,0.1}), thereby amplifying both spatial and temporal
heterogeneity. These two scenarios allow us to rigorously test the robustness of SFedPO under both
mild and extreme data heterogeneity. Details are provided in Appendix [H.1]

Baselines. We compare SFedPO against representative methods from four categories: (1) Online
FL: FedOGD (Kwon et al., 2023) and FedOMD (Mitra et al., 2021); (2) FL for concept drift:
AdapFedAvg (Canonaco et al.| 2021)), FedDrift (Jothimurugesan et al., 2023)), and Flash (Panchal
et al.,|2023); (3) FCL: FedEWC (FedOGD with EWC (Kirkpatrick et al.,2017) applied to clients)
and FLwWF-2T (Usmanova et al.l [2021); (4) Data selection methods in FL: Importance Sampling
(IS) (Li et al.} 2021)), ODE (Gong et al., [2023)), and DRSR (Wang et al., 2023al).

6.2 MAIN RESULTS

Performance: test accuracy. Table[I]presents the test accuracy of SFedPO and all baselines on
four datasets under two scenarios. The results demonstrate that SFedPO consistently outperforms
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Table 1: Test accuracy (%, mean=std on 5 trials) comparison of our SFedPO framework to other
baselines in full and partial scenarios on several datasets.

Method Fashion-MNIST CIFAR-10 CINIC-10 HAM10000
full partial full partial full partial full partial

FedOGD 85.04+£0.46 82.67+£0.68 51.14£2.23 41.06£2.09 43.86£0.90 34.40£1.91 54.11£0.51 45.28+0.62
FedOMD 85.03+0.41 82.67+0.70 51.06+£2.22 40.98+2.08 43.84+091 34.37+191 54.14+£0.55 45.2140.67
AdapFedAvg 84.95+£0.42 82.61+0.74 48.86+2.33 39.374225 42.94+0.99 33.224+1.96 52.24+0.53 41.65+1.77
FedDrift 85.06+0.40 82.62+0.72 51.07+£2.40 41.23+2.14 43.884+0.84 34.57+1.73 54.25+043 45.35+0.67
Flash 85.654+0.83  83.89+1.05 63.87+£3.44 56.08£0.93 50.804+0.92 44.34+2.72 64.70+£0.74 54.70+1.99
FedEWC 85.12+0.46  82.77+0.69  51.18+£2.23 41.124£2.06 43.884+0.92 34.46+1.92 54.38+0.53 45.43+0.75
FLWF-2T 86.46+£0.10 84.92+0.64 49.69+£0.83 40.01£1.09 43.65£0.56 36.51£0.69 56.88+£0.40 49.28+1.27
IS 83.36+0.73  80.27+1.33  52.03+£1.87 42.66+£2.02 37.924+0.82 30.86+1.39 55.32+£1.99 42.99+3.18
ODE 83.33+0.42 80.21+0.79 53.52+1.71 40.69£1.57 38.02+0.90 31.31+1.28 55.32+0.89 43.31+2.64
DRSR 85.754+0.21  83.04%+0.57 57.64+1.11 48.42+0.73 43.494+0.59 37.90+1.00 59.72+0.55 52.42+1.47
SFedPO 87.60+0.06 86.77+0.42 67.45+0.16 63.53+0.80 51.00+0.32 47.71£0.59 68.63+0.43 64.231+0.31

Table 2: Modularity. Accuracy (%) of classic federated learning methods with SFedPO and their
improvement over the originals without SFedPO.

Fashion-MNIST CIFAR-10 CINIC-10 HAM10000
Method

full partial full partial full partial full partial

FedAvg  87.55(+0.29) 86.63(+0.13) 67.72(+1.86) 63.83(+4.01) 50.90(+1.40) 47.90(+1.18) 68.88(+1.61) 64.53(+1.52)
FedProx  87.23(+0.34) 86.29(+0.22) 65.21(+1.88) 61.69(+4.58) 50.08(+1.66) 46.73(+0.96) 67.14(+1.80)  62.68(+1.57)
FedCurv  87.62(+0.42) 86.76(+0.25) 67.60(+1.75) 63.48(+3.65) 50.97(+1.49) 48.04(+1.20) 68.94(+1.19)  65.03(+2.37)
FedNTD  87.50(+0.09) 87.09(+0.40) 65.63(+2.09) 62.43(+3.05) 52.61(+1.08) 50.45(+0.80) 68.56(+1.20) 65.82(+0.79)
FedEXP  85.07(+1.35) 85.50(+4.17) 65.71(+1.93) 66.57(+7.76) 43.65(+1.14) 48.48(+7.82) 65.72(+2.14) 64.71(+6.72)

all baselines across different settings. For instance, on the CIFAR-10 dataset, SFedPO surpasses all
other methods by at least 3.58% in the full-access scenario and 7.39% in the partial-access scenario.
We further observe that the performance gain of SFedPO in the partial-access scenario is more
pronounced than in the full-access scenario, indicating that our method is particularly effective under
extreme heterogeneity. This validates the effectiveness of our distribution-guided data sampling and
aggregation strategies, which adaptively respond to state-specific and client-specific variation.

Modularity: improvements over FL methods. Our proposed SFedPO exhibits strong modularity
and can be easily integrated into a wide range of classical FLL methods as a plug-and-play mod-
ule to cope with streaming data scenarios. To evaluate its effectiveness in this setting, we apply
SFedPQO’s data sampling and aggregation strategies to several representative FL. methods, includ-
ing FedAvg (McMahan et al., 2017), FedProx (Li et al.,2020a), FedCurv (Shoham et al.| [2019),
FedNTD (Lee et al}2022), and FedEXP (Jhunjhunwala et al.,|2023)). For comparison, we consider
the original versions of these methods under same streaming settings, where each client performs
uniform data sampling across latent states (i.e., o, m = o, for all m), and the server performs
uniform model averaging over the participating clients (i.e., p,, = ISilrl foreachn € S,). As shown
in Table[2] integrating SFedPO consistently improves the test accuracy of all methods across different
datasets and both full- and partial-access scenarios. The gains are particularly notable under partial
access, where client heterogeneity is more severe, confirming that SFedPO enhances the robustness
and adaptability of FL. methods under dynamic data distributions.

6.3 ABLATION STUDY

Effects of different configurations. We first evaluate the robustness of SFedPO to different config-
uration parameters in the FL environment. Specifically, we vary three core parameters, including
time step (T’ € {2, 5, 8,10}), training round (R € {50, 100, 150, 200}), and data capacity of clients
(D € {250,500, 750,1000}), then respectively show the performance of our method and four
baselines in Fig. 2a] Fig.[2b] and Fig. The experimental results demonstrate that our method
outperforms all baseline approaches across different parameters. All the experiments in this part are
conducted in the partial scenario on the CIFAR-10 dataset.

Effectiveness and robustness of modules. We evaluate the stability and effectiveness of the
two core components in SFedPO: Distribution-guided Data Sampling (DDS) and Shift-aware
Aggregation Weights (SAW). For the DDS module, we first vary the sampling budget (a,, €
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Figure 3: Hyperparameter sensitivity analysis for {ay, b1 } and {az, b2 }.

{0.2,0.3,0.4,0.5,0.6}) and compare the performance of the standard SFedPO with an ablated ver-
sion where clients sample data uniformly across latent states (i.e., oy, = «, for all m). Fig@
demonstrates that the DDS module consistently improves training performance across all sampling
budgets. We then tune the hyperparameters of {ay,b; } in across diverse datasets and scenarios.
Fig.[3a]and Fig. [3b]illustrate that DDS consistently improves performance across a wide range of
hyperparameter settings (a; € [0.05,0.25],b; € [0.15,0.35]). For the SAW module, we investigate
the impact of parameters as, b2 in (I3). As shown in Fig.[3c|and Fig.[3d| SAW brings noticeable
accuracy gains over uniform aggregation (p,, = 1/]S,|), with stable performance across a wide range
of parameter values (a2 € [0.5,2.0],b2 € [0.0,1.0]). These results collectively confirm that both
DDS and SAW are not only effective but also resilient to hyperparameter changes.

Effects of Prediction Error. To evaluate the robustness of SFedPO against errors in the prediction
oracle, we conduct an empirical study aligned with our theoretical analysis in Theorem [2} To
simulate prediction errors, we introduce additive perturbations to the ground-truth 7r,, to obtain noisy
estimates 7r,,, and apply SFedPO based on 7r,, to perform local data sampling and global aggregation.
Specifically, we perturb each state probability by a random noise uniformly drawn from [—e, €],
followed by renormalization to ensure Zm Tn,m = 1. We vary € from 0.00 to 0.10 to simulate
increasing levels of oracle error, and report the resulting model accuracy in Table[3] We observe that
SFedPO exhibits stable performance under varying degrees of perturbation on the CIFAR-10 dataset.

Table 3: Accuracy (%, mean=std on 5 trials) under different degrees of perturbation.

Epsilon | 0.00 0.02 0.04 0.06 0.08 0.10
full ‘ 67.4540.16 66.90+0.56 606.96+40.45 66971031 67.141047 66.95+0.32

partial ‘ 63.5240.82 62.6340.16 62.364020 62494014 62.48+0.15 61.9040.15

7 CONCLUSIONS

We propose SFedPO, a streaming federated learning framework for dynamic environments with
evolving local data distributions. Departing from conventional FL assumptions of static datasets or a
stationary distribution, SFedPO incorporates a prediction oracle to capture the temporal evolution
of client-side data distributions. Guided by theoretical convergence analysis, we develop two key
components: a Distribution-guided Data Sampling (DDS) strategy that balances data reuse and
distribution adaptation under storage constraints, and a Shift-aware Aggregation Weights (SAW)
mechanism that adjusts global aggregation in response to client-specific sampling behavior. We
further establish robustness guarantees under prediction errors. Extensive experiments demonstrate
that SFedPO effectively adapts to streaming scenarios with distribution shifts and significantly
outperforms existing methods.
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A THE USE OF LLMS

This paper was proofread and linguistically polished with the assistance of a large language model
(ChatGPT). All research ideas, methods, analyses, experiments, and conclusions are entirely the work
of the authors.

B RELATED WORKS

This section provides a more detailed introduction to the second type of data stream paradigm, i.e.,
FL under distribution shifts, mainly from the perspectives of streaming FL, concept drift in FL, and
federated continual learning.

Streaming Federated Learning. To better capture real-world scenarios where data arrives con-
tinuously, recent studies have extended FL to the streaming setting. From a theoretical perspective,
Marfoq et al.|(2023) formalize FL over data streams and propose a general FL algorithm through a
weighted empirical risk minimization, but still assume stationary distributions. Huynh et al.| (2025)
investigate convergence under data streams modeled by non-stationary Markov processes. From a
data sampling perspective, ODE (Gong et al.,|2023) introduces a selection method based on a data
evaluation metric under storage constraints, but also relies on the stationary assumption. [Wang et al.
(2023a) assume the existence of a true long-term distribution in the local data stream of clients and
proposes the cache update strategy to align the data distribution in the local cache to the underlying
long-term distribution. Fed-HIST (Zhang et al.l|2024) avoids the problem of raw data storage by
retrieving model-based historical representations through similarity comparison. DYNAMITE (Liu
et al.,|2023) optimizes batch size and aggregation frequency under dynamic conditions, but it uses
reservoir sampling and does not adjust data selection based on distribution changes. On the system
side, |[Jin et al.| (2021)) formulate a latency-minimizing FL scheduling problem with online and bandit
algorithms under budget and network constraints. |Hu et al.|(2024) develop a Lyapunov-based resource
management scheme for streaming FL with adaptive control over computation and communication
under long-term energy constraints. FedStream (Wang et al.,[2023b) tackles dual heterogeneity in
data and arrival patterns with asynchronous aggregation and local adaptation, but lacks theoretical jus-
tification. Different from the above studies, our work considers temporally evolving data distributions
and develops a distribution-aware data sampling strategy grounded in theoretical analysis.

Concept Drift in Federated Learning. While concept drift (Gama et al., 2014; Lu et al., 2018;
Tahmasbi et al., 2021) has been widely studied in traditional machine learning, existing solutions
often cannot be directly applied to FL due to the inherent heterogeneity across clients. Several works
focus on detecting and responding to drift at the client level. FedConD (Chen et al., [2021)) detects
local drift based on historical model performance and adapts by adjusting the local regularization
parameters. Flash (Panchal et al.,[2023) detects drift via the magnitude of client updates and adapts
the learning rate accordingly, while AdapFedAvg (Canonaco et al.,2021)) passively adjusts learning
rates to improve model plasticity under drift. [Manias et al.| (2021) detect drifted clients using
dimensionality reduction and clustering on model updates, primarily aiming at client isolation rather
than adaptation. Other approaches address drift through clustering-based strategies. Fielding (Li et al.
2024) detects concept drift via label distribution changes and selectively re-clusters clients to preserve
cluster quality under heterogeneity. FedDrift (Jothimurugesan et al.| |2023) formalizes staggered
drift adaptation as a time-varying clustering problem and proposes hierarchical clustering algorithms
guided by local drift detection. FedRC (Guo et al.| [2024)) proposes a bi-level optimization framework
based on a clustering principle to address simultaneous feature, label distribution shifts, and concept
shift in FL. FedCCFA (Chen et al.| 2024)) aligns client feature spaces under distributed concept drift
by combining classifier clustering and entropy-based adaptive feature alignment. Most concept drift
adaptation methods typically modify the model architecture (Chen et al., 2021]), optimization strategy
(Panchal et al., 2023]; |Canonaco et al., [2021)), or client clustering (L1 et al., 2024} Jothimurugesan
et al.| 2023} Chen et al., |2024) in response to detected shifts. In contrast, we propose a theoretically
grounded client-specific data sampling strategy and model aggregation algorithm in streaming FL.

Federated Continual Learning. Federated continual learning (FCL) (Yang et al.,, |2024; [Wang
et al. 2024) addresses evolving data but primarily focuses on mitigating catastrophic forgetting
across sequential tasks. |Guo et al.|(2021)) propose a FCL framework based on approximating prior
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local objectives, while FedWelT (Yoon et al.,|2021)) decomposes model weights into global and task-
specific components to enable selective inter-client knowledge transfer. AF-FCL (Wuerkaixi et al.}
2024) introduces a selective generative replay method for FCL that emphasizes accurate forgetting
to discard biased knowledge across heterogeneous clients. FedCIL (Qi et al.l [2023) introduces
model consolidation and consistency enforcement to stabilize training on non-IID streaming tasks
without storing historical data. Huang et al.[(2022) and |Usmanova et al.| (2021) both incorporate
knowledge distillation strategies to enhance generalization and mitigate forgetting in federated
settings. GLFC (Dong et al., [2022)) further proposes class-aware gradient compensation and proxy-
based global model selection to handle class-incremental learning with dynamic client participation.
While these FCL approaches focus on mitigating catastrophic forgetting across sequential tasks or
enhancing model generalization under domain shifts, they do not explicitly model or predict the
temporal evolution of data distributions. In contrast, our work leverages a predictive oracle to guide
data sampling and optimization in streaming FL.
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C DISCUSSIONS

C.1 DISCUSSION ON THE PREDICTION ORACLE

In the main body of our work, we assume the existence of a prediction oracle that provides each
client n with an estimated state distribution 7r,,. In this section, we further discuss the applicability
and plausibility of this assumption, clarifying under what conditions such an oracle is reasonable and
how it can be instantiated in practice.

The prediction oracle assumption becomes reasonable when two conditions are satisfied: (i) the
client data naturally evolves over time, leading to state transitions in the underlying distribution, and
(ii) these transitions exhibit structural patterns that can be learned from historical observations. As
examples, we present three representative application scenarios:

* Mobility-driven environments. In UAV networks or mobile sensing platforms, client data
distributions shift due to physical movement across regions. In such settings, the underlying
state can be naturally defined by spatial regions (e.g., grid cells or points of interest). Moreover,
mobility patterns such as constrained flight paths, periodic patrol routes, or Markovian movement
models provide structured trajectories from which the state distribution can be effectively inferred.
As aresult, the prediction oracle can leverage historical mobility traces to estimate future state
distributions with reasonable accuracy.

* Periodicity-driven environments. In many domains, data distributions evolve according to
recurring temporal patterns. Typical examples include transportation systems, where traffic
intensity varies between rush hours and off-peak periods, and environmental monitoring, where
sensor readings change with daily or seasonal cycles. In such cases, states can be naturally
defined based on temporal segments. Since these periodic structures repeat over time, state
distributions can be reliably estimated using historical data through statistical models.

* Interaction-driven environments. In recommendation systems, user—item interactions evolve
in real time, producing non-stationary feedback streams. Here, the state can be defined as a
representation of the user’s latent preference profile, which evolves as the user interacts with
new items. For instance, preference shifts may correspond to transitions between clusters of
interaction features (e.g., genres of movies, categories of products, or communities of social
content). Although individual actions are often noisy, the aggregated behavior of users tends to
reveal structural dynamics such as preference drifts, trending items, or temporal co-occurrence
patterns. By clustering interaction features and modeling transitions across preference states,
these dynamics can be captured using online learning or probabilistic estimators.

In all these scenarios, the oracle does not need to be perfectly accurate: even approximate estimates
of the state distribution, obtained through lightweight predictors or Bayesian updates from past data,
are sufficient for guiding the DDS and SAW mechanisms in our framework. This demonstrates that
the prediction oracle is not a restrictive abstraction but rather a broadly applicable tool in streaming
federated learning settings. Moreover, our experimental results (Section[6|and Appendix [H) further
confirm that the framework remains robust under various levels of prediction inaccuracies. To make
this abstraction more concrete, we next illustrate how such an oracle can be instantiated in practice
through a Bayesian estimation framework.

Bayesian Estimation Framework. Suppose that at time ¢, client n has observed a sequence of states
Snt = {s1,52,...,5¢}, where each s; € {1,2,..., M}. We model the state generation process as
a categorical distribution parameterized by m,,. To estimate 7,,, we adopt a Bayesian approach by
placing a Dirichlet prior:

7, ~ Dir(ay),

where g = (o, a?, ..., ad?) is a prior belief.
Given the observed state counts ¢; = (cf, c?,...,cM), where ¢* = 3", _, I[s; = m], the posterior

distribution becomes:

T | Snt ~ Dir(ag + ¢4),
and the posterior mean is:
. g’ + i
Tn,m = E[ﬂ—n,m | Sn,t] = M—JJ
Zj:1(ao +ct)
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The posterior variance of each component 7]* under the Dirichlet distribution is given by:

(ag" + ") (St — ag" — ")

StQ(St +1) )

Var[n" | Sy =

where S; = Z;Vil(aj +c) = Z;\il ay + t.

This expression reveals that the estimation error decreases as the number of observed samples
increases (i.e., as c;* grows), leading to more confident and accurate estimates over time. The
variance scales approximately as O(1/t).

The above procedure provides a concrete and theoretically grounded method for constructing a
prediction oracle. It enables dynamic tracking of local state distributions with low overhead, and
its estimation error diminishes with increasing historical information. This property is especially
suitable for streaming federated learning settings, where clients accumulate observations over time
and require increasingly accurate guidance for data sampling and model aggregation.

C.2 DISCUSSION ON THE HETEROGENEITY BOUNDS

While our theoretical framework defines d,,, as an upper bound on the gradient variance under state
m, estimating gradient variance directly is often impractical in streaming scenarios with limited and
dynamic local data.

Inspired by prior works such as Fed-CBS (Zhang et al.,|2023)) and FedDisco (Ye et al., [2023)), we
approximate d,, using distance metrics of the class distribution, based on the intuition that skewed
class distributions often induce unstable local updates, which in turn imply higher gradient variance.
This approximation enables a practical and data-accessible estimation of d,, .

We further provide a theoretical insight to support this approximation. Specifically, the local objective
gradient V F,,,(x) on client m can be decomposed over its label distribution (Zhang et al., [2023)):

C
VEn(z) =Y pS VS (),
c=1

where p¢, is the proportion of class ¢ on client m, and VF, (z) is the gradient of the loss conditioned
on class c¢. Then, we note that:
e} 1 C 1 C
IV Fp(x) = VE(@)|* = | D_(pf, — SIVEL@)II” < > w5 - o) Y IVE @),
c=1 c=1

c=1

Here, Zle (p%, — &)? can be viewed as a kind of distance between the class distribution and the
uniform distribution. Therefore, we have a strong intuition that there is a linear relationship between
d,, and the distance.

To support this approximation, we present an empirical analysis in Appendix [H| comparing four
metrics—L1, L2, KL, and JS divergence—and find a consistent correlation between distributional
divergence and update instability. These results validate the suitability of our approximation in
realistic settings.
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D NOTATIONS AND TECHNICAL LEMMAS

D.1 NOTATIONS
Table @] summarizes the notations appearing in this paper.

Table 4: Summary of key notations.

Symbol  Description

R,r number, index of training rounds
N,n number, index of clients
M, m  number, index of latent states

T,t number, index of local update steps
Sy set of participating clients in round r
D, the data distribution of latent state m
fo% the data distribution of client n at time ¢ in round r
T (n,1s- -+ 7o, is a round-truth state distribution of client n
Tn,m probability that client n is in state m
T (fm,1,- - - 7n,0r) 18 @ prediction oracle of client n
Tn,m estimate of 7, ,,

o, the fraction of new samples from state m that client n samples
Dn the aggregation weight
qn the available probability
n learning rate (or stepsize)
L L-smoothness constant (Asm.

o? upper bound on variance of stochastic gradients at each client (Asm.
G constant in Asm. to bound the overall gradient heterogeneity across all latent states
dm constants in Asm to bound the state-specific gradient heterogeneity
F/ Ff,rt) global objective/local objective of client n at time ¢ in the r-th round
F,, expected loss function on the distribution D,,, of latent state m
Wiy, the weight of F;,, in the global objective
%" global model parameters in the 7-th round
x") local model parameters of client n after ¢ local steps in the r-th round

t
gnrl gg% £Vf (XXLl; &,.,¢) denotes the stochastic gradients of F, ) regarding XS:?&A

n,t

D.2 LEMMAS

Jensen’s inequality. Let 7 : R? — R be a convex function. For any vectors 1, . .., z, € R? and
any non-negative weights Ay, ..., A, satisfying " | A; = 1, it holds that

i=1 i=1
As a special case with h(x) = ||z||?, we obtain
I 121
=3 a|| <> (18)
i=1 i=1

Lemma 1. Let {z;}L | be a sequence of random vectors adapted to the underlying filtration {F;}
such that for all t, E[z,|Fi_1] = 0 and E|||z;||?|Fi—1] < 2. Then, the following identity holds:

T
E[| Yo =]*] < 7o (19)
t=1
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This lemma provides a standard bound on the variance of a martingale difference sequence and will
be used to control the accumulation of stochastic gradient noise over time.

Lemma 2. Suppose we have a sequence {a} satisfying the recursive inequality a; < (1—a)az—1+0,
where « € (0,1) and 8 > 0 are constants. Then, for any t > 1, the sequence is bounded as:

a; < ap(l — )t + g(l - (1-a)"). (20)

Proof. We prove this by iteratively unfolding the recursion. Divide both sides of the inequality by
(1—a)t

ag at—1 B
—af “-ay ' I-ay @b
at—2 B B
Szt aar Ta=ay @2)
(23)
~ B
SaoJr;(l_a)i. (24)
Multiplying both sides by (1 — «)* yields:
t
B
t
a < (1-a) (ao+;(1_ay) (25)
t
=ap(l —a)' + ﬁZ(l — )t (26)
=1
:ao(1—a)t+§(1—(1—a)t). (27)
O
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E PROOF OF THEOREM 1

The global objective function is F'(x) = Z% 1 W Frry (x). We begin by analyzing the global model
update across one communication round, which can be expressed as:

Ax =g —x0 = —p 37 angn . (28)

neSy t=1

(r

. 3 denotes the stochastic gradient computed by client n at time step ¢ in round r. According to

Assumption 2, these gradients are unbiased estimators of the local loss, i.e. E[gfm ;) = VF, (T)( (r) 1)

where g

In the following, we focus on a single training round, and hence we drop the superscript (r) for

(r ) (r)

clarity. For example, we write x,, ; for x,, ; and use F}, ; to replace Fmt

initial local model xﬁL}J. Unless 0therw1se stated, the expectation is conditioned on the global model

. Moreover, let x denote the
%(") and the participating client set S,.. Since F (+) is L-smooth, we get:
L
E[F(x + Ax) — F(x)] <E[(VF(x), Ax)] + §E||Ax||2. (29)

We now proceed to bound the two terms in the RHS of separately.

Bounding E[(VF(x), Ax)] in (29).

A=E[(VF(x),Ax)] = =1 Y pn Y E[VF(X), VFp,i(Xn,i-1))] (30)

nesS, t=1

== LS IV = 23 b SB[V Gni)|)

nesS, t=1 nesS, t=1
T
+ g ST 0 Y E|VFx) — VFui(xn-1)||” 31)
nesy t=1
T
<=2 pa ) IVFI? fprnZEWmeMlH
neS, t=1 neS, t=1
T
gz RZ(2E||VFn,t(xn,t,l)—VFM )7 + 2E||V Fi(x) | ) (32)
€Sy t=1

T
< gzs "ZHVF ? _7anZE|Van X, t— 1”

t=1 nesS, t=1

T
g z; pn Y (2L°E|xn 1 — x|* + 2E||VF, 4(x) )] 33)

T T
- Z PllVEGI? = 2 37 pu 3 B[V s(xn)||”
€Sy

neS, t=1

T
L*n > pa ZEllxn,t—l =x[? 410> pa > E|[VF(x) - VEX)|, (34)
nesS,

t=1 nes,  t=1

where applies the identity (a,b) = %|lal|® + 3[b]|> — 3lla — b]|%, (32) uses the inequality
lla —b]|* < 2||a — c||? + 2||b — ¢||* by inserting the intermedlate term VFM( x), and then (33) uses
L-smoothness.
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Bounding £E||Ax||? in .

L L £l 2
B = E||Ax|” = Z°E| 3 pu>_ g (35)
nesS,  t=1
T 2 T 2
§L772EH Z Pn Z (gn,t - VFn,t(xn,tfl)) H + L772]EH Z Pn Z VFn,t(xn,tfl) ‘ (36)
nes, t=1 nesS, t=1

T

<Lp* ST ph T + L’ |Se) S pi TS B[V E e (xne-1)||, 37
nes, nes, t=1

where (36) uses the inequality ||a +b||* < 2||a||? 4 2||b||*. The first term in (37) is based on Lemma
and uses the fact that clients are independent of each other. The second term in (37) uses the Jensen'’s
inequality. Combining bounds for A and B, and substituting back into (29), we obtain:

IE[F(X + Ax) — F(x)]

T
< =50 2 Pl VEGIP + LT 37w+ 30 (LTI — Gpn) DO EIV FaGenes)|
neS, neS, nES, t=1
T T
+ LY pn Y Elxne —x[P 40 > pa Y E|VEu(x) - V()| (38)
neS, t=1 nes, t=1
T
<SPV + L7032 gk 4 2 S pu 3 Elxnas — xI?
nesS, nesS, nes, t=1
T
+10 Y pa Yy E[VF.:(x) - VEX)|?, (39)
nes, t=1

where holds under the condition that for all n € S, we have LT|S,|n?p? < 2pp, which is
naturally satisfied when LT < 1.

Bounding 3"/, E[x,,, , — x|/ in .

T T t—1 5
C =Y Elxnir —xI” =Y E| =0 gn (40)
=1 =1 i=1
' T t—1 571 5 t—1 t—1 5
<4n® ZE[H Zgn,i - ZVFn,i(Xn,ifl)H + H Z VFn,i(Xn,i-1) — ZVFnz(X)H
t=1 =1 =1 i=1 =1
t—1 t—1 2 t—1 2
" HZVFM(X) —ZVF(X)H + HZVF(X)H } @1
i=1 =1 =1
T T t—1
<Ay (= 1)o” +40* Y (t—1)L* Y Efxni1 — x|
t=1 . - t=1 =1 .
+an? > (= 1) Y E|[VE,i(x) = VEX)|” + 40> (i — 1)*(|VF(x)||” 42)

t=1 =1 t=1
T
4
<T°n*0” +2L°T%0 - C + 270" S E||VF, 4(x) — VF(x)||” + gT3772\|VF(X)|\2, (43)
t=1

where uses the Jensen’s inequality. The first term in (#2)) is based on Lemmal [I] The second
term in uses the Jensen’s inequality and L-smoothness. The third term in (#2) uses the Jensen’s

inequality. uses the fact that Zthl(t -1 < T; and EtT:l(t -1)2< %3
After rearranging the preceding inequality and using 2L27?n? < 1, we get

T
1 1
C < t—5apem 27°0°0” + 210 Y B||VFni(x) = VF()|* + §T3n2|\VF(x)||2] (44)
t=1
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We denote that ¢ = LT'n. Then, plugging the bound of C into (39), we get

4¢? 1
E[F(x+Ax) — F(x)] < (ﬁ - §>Tn Z | VE(x)|]? + LTn?c> Z w2
neSy neSy
2L2T%n3 02 2L 20 2
+ S n; po+ (n+ — )ng pntZIEHVFnt VE&)|®. @)

Bounding | VF,, ;(x) — VF(x)||? in (43).

Recall that the local data distribution evolves according to D,, ; = (1 — apm,, ;) - Dnjt—1 + Q-
Dy, ,» Where m,, ; € M denotes the latent state of client n at time step ¢, and o, 1r,,, , € [0, 1] is

the sampling ratio defined in Section 3] Due to the linearity of expectation, the corresponding loss
function also follows a similar recursive relationship:

Fn,t - (1 - an,mnvt)Fn,tfl + an,mn’t an’tj (46)
where [, , denotes the loss associated with Dy, ,. We apply the Jensen’s inequality and obtain:
IV E () = VEGIP < (1= m e IV Fatm1 () = VEGO |4 i [V Fo o ()~ VE)|. (47)

We now take expectation on both sides of @ with respect to the latent state m,, ¢, under the
ground-truth state distribution. By using the Assumption[4] we get:

]E||VFn o x)||? (48)

M
g(l - Z Trn,man,m)]EHVFn,t_l(x) ~VE®)|* + 3 TomnmE|VEL(x) - V)| 49)

m=1 m=1

<(1- an @ )E|[V o1 (x )|+ an e (50)

>

We now apply Lemmato the recursive bound derived in ( i Leta; = EHVFn +(x) — VF (x)| 2

A M A M
a=a, =) TpmOnm,and =3, £ > | Ty om0y mdm. Then, we get

S E|VEu(x)-VF(x)|’ < S—Z (T—Z(l—an)t) +Z(1—an)t E||V Foo(x)=VFx)|*. (1)

t=1
Plugging this result into the bound in (43), we obtain:
E[F(x 4+ Ax) — F(x)]

2 22
(g~ 3)T0 3 pAVFGR + Lro* Y- i T 5,

nes, nes, nesS,
2L2T3 3
(o o) 3l =0+ BTt ~ 90 ] <52>

where v, = L 37 (1 — a,)* € (0, 1).
. 2 .
Bounding E||VF,,o(x) — VF(x)|” in (52).
")

We observe that the local loss function F( .+ can be expressed as a weighted mixture of loss

functions associated with latent states m € M. Specifically, we suppose F(T) = (Wp ¢, ﬁ>,

1) (2) (M)

where W, ¢ = (W, 14, Wy 1 ps - - - Wy, ) denotes the mixture weights over the latent states and
’ L) 20

F= (Fy, Fg, ..., Fr) represents the vector of corres 0 ding state-specific loss functions. Based on
the recursive update rule of the local loss function in (46)), the weight vector @, ,.; evolves as

Wt = (1= Qnm,, ) Wnrt—1 + Onm,  €my, s (53)
where €,,, denotes the one-hot unit vector corresponding to latent state m, with its m-th component

equal to 1 and all others set to 0. By applying the Cauchy-Schwarz inequality, we get:

IVE &) = VEERD)|P < [[@0.r0 — @) - ZHVF )2 < GllBnro — B)2. (54)
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where @ = (w1, w2, -+ ,was) denotes the weight vector in the global objective, and Assumption [3]
is applied.

To further bound the discrepancy between the client-specific mixture weights and the global target
weights, we decompose the ||, ., — w||? into two parts using the Jensen’s inequality:

- 112 - 2 1 & ~ L1
Hwn,r,t - ’LUH S QHwn,r,t - + 2H? Z 7I-n,n’ba'n,mem, - wH . (55)
" m=1

The first term in equation (53] quantifies the deviation between the actual weight vector and a fixed
weight vector, which is fully determined by the distribution-aware data sampling strategy. The second
term describes the inherent mismatch between the weights determined by the strategy and the global
target weights. We deal with the first term in the following.

Bounding ||, ,; — - Zn]\le ﬂn,mammé’mHz in ll

n

1 M 2
EHwn,r,t - ?n Z_ ﬂ-n,man,memH (56)
2 M
2 an]E[<wnrta7nzl7rnman mem>:| +7’m217rn maim (57)

~ - 2 2 - R
B8 = G VBt + [P = ZB[((1 = @ Vs + O G
n

M 1 M
Z 7"—'n.,m,an,'mé’m>i| + 2 Z ﬂi,mainn (58)
Qan
m=1 m=1
M M
= Z ﬂ-n,m(l - an,m)Q]EHwn,r,t71H2 +2 Z ﬂ-n,man,m(l - an,m)]EI:</LBTL,’I‘,t717 é"rn>:| + Z 7'l—n,”mO(fL;m
m=1 m=1
M M
2(1 -« 2
- g Z ﬂ-nman'mE[(wn'rt l»em> - Z 71-'n.ﬂ'LOén'n'L + 5 Z ﬂ'nma’nm (59)
Qn m=1
il 1-—a
= Z 7Tn,m(1 — an,m)QEH'IEn,r,t—l”Q =+ 2 Z Tn,mQn,m (1 — Qn,m — n)E[<u_5n7r7t_1, ém>]
m=1 m=1 Qn
M M
1 2
+ 3 Tomal o+ (—2 - —) 72 e, (60)
_ an Qn —
m=1 =1
2 M 1 —a

:(1 - an)QE”w”yTvtfl H2 Z Tn,m0On, mE <wn,r,t71, é’m” ’ﬂ Z Tn, man m

+ Z Tom O Z T O + 2 Z T, O (@ = g ) B [(W 01, )]

4 (3 Fomom — 03Bl i (61)
m=1
(1_0471 EHwnrt 1_7Z7rnmanmemH +Z7rnmanm Zﬂnmanm
m=1 m=1
M
. 2 . o
3 Tt = B [[ B[P = 2B 1, &) (©)
m=1

M ) M

_ 25 l@ 1 R 2 2

_(1 - an) Wn,r,t—1 — ; Tn,mQn,m€Em - Tn,mQ®n,m
™ m=1 m=1

+ Z 71'-n,'ma'n,vn(0571,777, - O‘n)E[Hu_;n,'r,tfl - ém||2] + 0531, (63)
m=1
<(1—an) EHwn rt—1 — a— Z Tn,mQln, memH +2 Z Tn, manm Zlﬂn man m —‘,—an. (64)
m
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Here, splits the first term in by applying the identity an\f:l Tnm(L—anm)? = (1—a,)?+

1—a,

oM Tn,m O m — s, and splits the second term in l@i by applying the identity 1— vy, ;, — %2 =
; ,
(an, — Qnm) — (1;& 1i uses the fact that ||, ;-1 — €,]]* < 2.

Then, we set a; = E|[@,, ., — - ZM 2, and apply Lemmato this sequence. Let
a=a,21-(1-a,)?and =0, = 22 anaQ M a2 62 a2

m=1"nm"nm

We consider the number of times client n has participated in training up to round r, denoted as 7, (7).
Let 7" < r denote the last round that client n participated before round r. Then, since the local weight
vector is only updated when the client participates, we have:

1 < 2
E‘ wn r0 — —— Z Tn,m0n memH 0 !\ T Oli Z Wn,man,mé’mH
m=1 " m=1
M
B 2T 7 (r—1) - 1 o2
Sl — (1 — CMn)Q + (1 — an) . ]EHwn,0,0 - ?n Tnz::lﬂ'n,man,memH (65)
B/

ST e P e, (66)

where the second inequality uses the fact that both W, .o and i Zf\le T, mQn,m € are probability
vectors supported on the simplex, and hence their squared distance is upper bounded by 2.

Take expectation into the two sides of (52) about the selected client set in the round 7, and combining
the bounds in (53)) and (66), we get

E[F(x + Ax) — F(x)]

4c? 1 al ) 2L2T2
<f———-2\T nqn||VF LTn? ndn nqn
_(3(1_262) 2) n;p Wl VF(x)|* + LTyo Zp q Zp q
<(L_ l)T Z IVFGOI + LT? S g2 2L2T2 Z
—= 3(1—202) 2 nnilpnq'ﬂ 7] n:lann ~ 1ann
1 ﬂ;’b 2T 71y (r—1)
anqn (L= 7) + 70 26 (g7 T 20— aw)
1 2
- n,m nm_'mf v . 68
JrHaan::r,a,e w )] (68)

Taking the expectation over the randomness in previous training rounds, conditioned on ("), we
obtain:

E[FEY) - PE)] =E[B[F(=" + Ax) - F(x)[x"]]

4c® L\ S e - 2L T2
<(30 =32 f)Tannanuvmx( NP+ LTo0? 3 P + anqn
3(1-2%) 2/° & 2
[ (1 =n) +%-2G(¢ +2E[(1 — an)*" Y]
1—(1—an)?
M
+ Hf Z Tn,mQn,m€m — 'wH )} (69)
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We suppose r > 2 and denote 7,(0) = 0, we get:

E[(1 - an)”" 0] = E[E[(1 - an)*" |5 (r - 2)]] (70)
=E[(1 = pu)(1 = @) 4 po (1 — @) 2T 2] (71
=(1 = pn +pa(1 = an)*")E[(1 — )2 (72)
=(1 = pn+pa(l = an)™) TE[(1 = an)* ™) (73)
=(1 = pn+pa(l —an)®") . (74)

Finally, we conclude that

R
m1nIE||VF %) Z IVEx"™)]|
1 1 1) 2¢Lno? 1
< = [ F(EW) + Lno® pnqn+ Pndn + Pngn
(3 = 5027)) Zones Prdn LTNR nz:l - 22 Z 1-2¢2 ;
R
5n B;L 1 27\r—1
(1 —yn 2GYy ——————— + 4Gy - —= 1—pn n(l — an
(a"( Yn) + 2G~. 1—(1—an)2+ y R;( pn+pn(l—an)™)
Mo
+ 2Gyn, Z (?ﬂ”’man‘m — wm)2>] (75)
m=1 n
< ! [ F(x (1))+Ln022pq +2€ no” qu P ipq
= 2 ndn n{n — n{n
(3 = 5527) o1 Pagn LTNR = 2 S 1-22 75
Bn Br. 1 1
(1 —vn 2GYn - —————— + 4Gy - = -
(an( Yn) +2G - (-2 " R (I = (1= an)?)
Mo
+ 2Gyn, Z (a—ﬂnyman,m — wm)2>] (76)
=1 n
N N
18 [ o) 2 5Lno? 5
< F + Lno DPngn + DPnQn + = Pndn
Z  Pugn LTNR ) Z 3 ;1 3;
Bn B 1 1
1—v) +2Gy, — 2 + 4Gy, - — -
(o= + 267 (-’ R pa(— (0 —an))
Mo
267 Y (Mm@ — wm)*) | )
m=1 n
where
M T
Qn = Z Tn,mOn,m, ,Bn = Z Tn,m0On, m msy Yn = Z(l - an)t, (78)
m=1 t=1
,8 _2Z7rnmanm Zﬂnm Qo 317 (719

holds when ¢ < min{ﬁ7 \/%}

By choosing a sufficiently small learning rate n = ﬁ, we derive the following convergence bound:
min B[ VF (") < 0(%) +O(5) +e. (80)

where R is the number of global rounds, and € is a non-vanishing residual term induced by the
distribution shift from streaming data, i.e., the objective inconsistency (Wang & Ji,[2022)).

The O(1/v/R) term is consistent with the convergence rate of several federated learning baselines
under smooth non-convex assumptions, such as FedAdam (Reddi et al., [2020), FLASH (Panchal
et al., |2023)), and FedDisco (Ye et al., 2023)).
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F UPPER BOUND MINIMIZATION

Generally, a tighter bound corresponds to a better result. Thus, we optimize the upper bound in (77)
from two aspects: the client-specific data sampling strategy {c, m }nen’,mem and the server-side
aggregation algorithm {p,, } e . Directly solving the minimization of the upper bound results in
a complicated expression. To simplify the expression, we treat «,, as a fixed hyperparameter that
governs the average update ratio of the client buffer, referred to as the sampling budget.

F.1 DISTRIBUTION-GUIDED DATA SAMPLING STRATEGY

Our client-specific data sampling strategy is obtained through solving the following optimization
problem:

M

. n ’:L 1 2
é’I?l:f’lL %(1 - ’}/n) + 2G’7n . 1_ (1/8_ O(n)2 + ZG’Yn 7nZ:1 (ainﬂ'n,man,m - 'UJTn) 5
M
SLY . TnmOnm = 0, G € [0,1]. (81)

m=1

To solve this optimization problem, one condition of the optimal solution is that the derivative of the
following function equals zero:

Bn B (1 2
Q(anym) :;n(l — ’Yn) =+ QG’Yn . m + 2G'Yn mzzzl (aﬂn,man,m - wm) (82)

M M M
— )\1( Z Tr,mQn,m — ozn) + Z Jom Onm — l/m( Z Qn,m — 1), (83)
m=1 m=1 m=1

where A1, iy, and v, are multipliers. Then, we have

I—n 2Gn 2
n mdm T /1 \o 4 n,m 2 n,m
anp o +1—(1—om)2(7r1 o m )@, m
4 nTn,m 1
L (77Tn,man,m - wm) - )\17Tn,m + ,um — Um = 0 (84)
(679} Qn

To derive the sampling ratio c, ,,, we only consider the active states with ,, ,,, > 0. Therefore, we
obtain

)\an + w + 4G’Y7zwm - (1 - ’Y'n)dm

l1—ap
1+ an Tn,m

Qn,m X (85)
To simplify the solution and derive a closed-form, interpretable expression, we relax the KKT
conditions by eliminating the dual variables, setting z,,, = 0 and v,,, = 0, under the assumption that
the optimal values of o, , lie strictly within the open interval (0, 1). This assumption is practically
reasonable. In realistic streaming environments, it is neither desirable nor feasible for a client to
completely discard previously stored data (v, ,,, = 1) or to entirely ignore new samples from a given
state (av,,, = 0). Either extreme leads to inefficient storage usage and poor adaptability to evolving
data distributions. Under this relaxed setting, we define the following score function:

Wm — aldm + bl

l—ap
1+ 5 2 Tnm

score, (m) = R (86)

where a1 = igg" and b; = 4311 are tunable constants. Intuitively, the score increases with the
weight in the global objective function w,,, and decreases with the state-specific heterogeneity bound

d,, or the probability 7, ,,, of client n being in state m.

To ensure feasibility and numerical stability, we apply a ReLU operation to filter out negative scores,
and normalize the resulting values with respect to the state distribution 7r,,:

an, - ReLu(score,, (m))

SN T - ReLu(score, (m’))

87

An,m =
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F.2 AGGREGATION WEIGHT DETERMINATION

We now describe how to determine the client aggregation weights {p,,}2"_; by minimizing the
dominant terms in the convergence upper bound (77)), discarding constant factors irrelevant to p,,.
Specifically, we formulate the following constrained optimization:

1 N 5w B
min ——— [L?]O’Z piQn + 5 Pngn (L7702 + l(l —Yn)
o 300 Pudn nz::l 3 ; Qe

M

B, 1 _ 2
+ 2Gp - T oo 0= an)? + 2Gyn, mZZI (an Tr,mOn,m wm) )]
N
s.t. an =1, p, > 0. (88)
n=1

To simplify the expression, we denote

M
Bn B, 1 2
n:L 2 71_77, 2Gn7n 2Gn — Inmtnm — m 89
s no +ozn( Yn) + 2Gvy 17(170(”)2—&- 'ymz::l(anw,a, W) (89)
N N 5 N
TO—;anm Ty = Lno nglpnqnv T2—§;pnqn5n~ (90)

We apply a standard surrogate objective (Ye et al.,[2023), transforming from minimizing (77 +7%) /7Ty
to minimizing 71 + T2 — ATy, where Ao > 0 is a balancing hyper-parameter. Therefore, the
optimization is

N 5 N
min Lna2 Zpiqn + 3 anqnsn — A2 anqn
n=1

Pn

n=1 n=1

N
st pa=1, pa >0, o1

n=1

Let v and p,, be the Lagrangian multipliers associated with the equality and inequality constraints,
respectively. The Lagrangian is:

N N N N N
5
L(pn) = L7702 ZPZ% + g anQnSn — A2 anQn + Z HnPn — V( an — ].) 92)
n=1 n=1 n=1 n=1 n=1
Taking the derivative of L(-) with respect to p,, and setting it to zero yields:
2 5
2Ln0"prgn + 3dnsn = A2qn + pin —v =0 93)
Solving this, we obtain:
1 5 V — ln
D 2L7702( 3sn t+ qn (94)

If we relax the KKT multipliers and absorb them into constants a, and by, we arrive at the interpretable
approximation:

1
Pn X w az - Sn + b2, 95)

n

where ay and by are tunable constants. Intuitively, s,, is a metric to measure the heterogeneity of
client-specific data distribution. It takes into account a client-specific data sampling strategy. Clients
with smaller s,, are assigned higher aggregation weights. The term 1/¢,, ensures fairness with respect
to availability.
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F.3 THE SFEDPO ALGORITHM

This section provides the complete pseudocode of our proposed SFedPO framework, as described
in Section[5] Algorithm [T]outlines the end-to-end federated optimization process in the streaming
setting with a prediction oracle and dynamic data sampling.

We observe that although Eq. preserves the proportionality between sampling ratios and utility
scores, it does not inherently ensure that &, ., € [0,1]. To resolve this, Algorithm [2| employs a
budget-aware projection strategy: it iteratively clips any &, », exceeding 1 and adjusts the remaining
budget allocation across the other states. This iterative procedure guarantees that all sampling ratios
remain feasible and that the total allocation strictly satisfies the sampling budget constraint v, .

Algorithm 1: SFedPO: Streaming Federated Learning with Prediction Oracle

Require: Initial global model x(!), learning rate 77, number of rounds R, local steps 7', prediction
oracle O, sampling budget o,

1: for each round r = 1to R do

2 Server selects a client set .S,

3 for each selected client n € S, in parallel do

4 7t < O(n,r) // predicted state distribution
5: Compute &y, , using Algorithm

6 Initialize x| + x()

7 for each local step t = 1 to 7" do

8: Receive new data distribution {D,, }M_, from streaming source.

9: Update local dataset with a ratio of e
10: Sample minibatch &, ; ~ Df:’,)f, and train the model: Xiﬁ = ngl /R g,(f,)f
11: end for ’ 7 ’ 7
12: Send update Ax) = XS)E — %) to server
13:  end for

14:  Server computes aggregation weights p,, using:

ReLU (% gy 8, + bg)

q

s, ReLU (qi —ay- 5+ bg)

n =

15:  Update global model:
5((7”+1) — 5((7’) +1 Z D, - AXS”)
nes,
16: end for
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Algorithm 2: Computation of &y, .,

Require: Number of clients IV and states M, sampling budget «,,, estimated state distribution 7, ,,,
score,, (m)
1: Initialize remaining set R < {m | 7, », > 0}, residual budget &, < o,
2: Set found_one < True
3: while found_one and R # () do
4: found_one < False
50 S Y cr fnm - ReLU(Score, (m))
6 if S = 0 then
7 for each m € R do
8

[£37)

On,m 2imer Fnm

9: end for

10: break

11:  else

12: for eachm € R do .

13: OA[n,m + min (&,L»ReLU(;coren(m)) 7 1)
14: if &, ;, = 1 then

15: Q= Gy — Tpm

16: remove m from R, set found_one < True
17: break

18: end if

19: end for
20:  end if

21: end while
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G PROOF OF THEOREM 2

Based on the convergence analysis in Appendix [E] we develop a theoretical strategy under the ground-
truth state distribution 7,, = (7 1,..., 7y a) for each client n € N. In practical deployments,
however, this is not directly observable and must be approximated using a prediction oracle, which
provides an estimated state distribution 7, = (7,1, ..., 7y, ar). This naturally raises the question:

How does the prediction error affect the convergence behavior of the overall algorithm?

To address this question, we conduct a robustness analysis that quantifies the impact of prediction
error on the convergence guarantee derived in Appendix [E} Specifically, we define the prediction
error for client n as d,, := |7, — 7,1, and study how this error propagates into the convergence
bound through the data samplmg strategy o and aggregatlon weights {py, } near, both of which are
functions of 7, in theory but implemented based on 7, in practice.

Recall the convergence bound in Theorem I} we focus on the following term:

B(an,m, pn) = [LUUQ Pnln + 35 annSn] (96)
Zn o Z Z
where
B 2Gyn B, Mo 2
— 2, Pn_ $ i _

m=1

In the realistic setting, these ratios are implemented as &, ,,, using the estimated distribution 7y,.
Following the relaxed design in Section[5] the sampling ratios are determined by:

— Wm — aldm + bl ~ ReLU(ﬁ7L (m))
scoren (m) = —, and Gon,m = —7 ) _
> i1 Tnme - ReLU(Scoren (m’))

Our goal is to analyze the difference between the convergence bound under the theoretical strategy
(tn,m, prn) and the practical strategy (G, m, Pr) computed using prediction oracle, and to establish a
robustness bound in terms of the prediction error d,,.

G.1 IMPACT ON SAMPLING STRATEGY.

We now analyze how the prediction error 8,, = ||#,, — 7,1 affects the resulting data sampling
strategy. Let av,, = {am }M_; and &, = {Gp.m } 2 be the sampling ratios computed using the
true and estimated state distributions, respectively. Our goal is to bound the /; deviation between the
two vectors, i.e., ||Gp, — o |5 .

Let S,, := ZJAi
that the score function is L,-Lipschitz in 7, p,, i.€.,

1Tn,; - ReLU(score, (j)) and S, = Z;w:l 7tn,j - ReLU(score,, (j)). We suppose

|score,, (m) — score,, (m)| < Ls|ftn,m — Tn,ml- (98)

We can derive the following bound:

|dn,m - an,m'
ReLU(scoren(m))  ReLU(scoren(m)) ‘ " ‘ReLU(scoren(m)) _ ReLU(score, (m))
- Sn Sn S, Sn
Ls|ﬁnm_W7Lm‘ 1 1
< kb *— + ReLU(score,(m)) - | — — —|. 99
a (sore (m) - | - = 5 ©9)

31



Under review as a conference paper at ICLR 2026

We further estimate the deviation between the S'n and S,,:

M M

S0 = Sul = > #n,; - ReLU(Sc0ren (j)) — Y mn; - ReLU(scoren ()

Jj=1 j=1
M

< Z 7n,; - ReLU(scoren (j)) — mn,; - ReLU(scoren (5))|
j=1
M

< Z (|7%n] — 7| - ReLU(scoren () + 7n,j - |ReLU(sc/o?en(j)) — ReLU(scoren(j))\)
j=1

< 0y - [JReLU(scoren)||oc + Ls « On. (100)

} 1] \SP — S| < On + (Ls + HP}GLU(SCOWn)||o<>)7 (101)
and hence,
(G — ] < ZelTim =Tl g coren (m)) - Ot (Be £ IReLU(scoren)lloe) )

Sn Sn : Sn

Summing over all m € M, and using the fact that ReL.U scores are bounded and S,,, Sn > ¢ for
some small constant, we obtain:

where C depends on the Lipschitz constant L, the upper bound of the ReLU scores, and the lower
bounds of the S,, and S,,.

G.2 IMPACT ON AGGREGATION WEIGHTS.

Recall the client-specific heterogeneity score:

M

2Gm 3, 1 2
ﬁ + 2G"Yn Z (?ﬂﬂn,nLQn,m - wm) .

Bn

Sp = Ln02 + —
(&%)

(1 =)+

m=1

The first term is a constant and unaffected by prediction error. We now analyze the impact of
prediction error d,, := ||7t,, — 7,||1 on the remaining three terms.

Bounding g—"(l — Yn). Let

M M
/Bn = E TI'n’mO[nymdm, ,Bn = E ’frn,mdn,mdm~
m=1 m=1

Then, using triangle inequality, we have

M
1B = Bal < [Fnminm — T mtnm| - ldin]
m=1
M
S (|7Arn,m - 7T”ﬂ,,'m,‘ : |dn,m| + Tn,m * |dn,m - an,m|) dm
m=1
SDmax(Hdn_annl +6n), (104)

where Dy« := max,, d,,. This gives:

(1 - ’Yn)Dmax

n n Qn

(Cy4+1) -6, =:Cabn. (105)
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Bounding % Recall

M

M
/ 2 2 2 2
Bn =2 E Tn,mOn,m — E Tn,m®n,m + Ay
m=1

m=1

Let 37’1 be the corresponding quantity computed under frn m and G,

m=1

Note that «,, is assumed to be fixed, so it cancels in the subtraction. Then we have:

|Bn ﬁn| <2 Z |7Tn man m — Tn man m| + Z |7rn m@n m ﬂ—i,mai,m"

We now bound each term separately. First, observe that

A A2 2 A ~2 2 A 2
‘ﬂ—n,man,m - anman,m| < |7rn,m(an,m - O‘n,m)} + ‘(Trn,m - ﬂ—n,m)amm‘

~ ~ 2 ~
S Tn,m * 2amax‘an,m - CMn,'m| + amaxlﬂ-n,m -

where we assume that o, p,, &pm < Qmax < 1.

Similarly, for the second term:

~2 ~2 2

2
Tn,m®n,m —

(één,m - e ;

7Tn,m - Trn,m

~ 2 ~
< 7rn,m . 2amax|an,m — Oln,m| + 27Tmaxozmax|7rn7m —

where we assume that 7, ,,,, T m < Tmax < 1.
Summing over all m, and applying the triangle inequality:

|B:‘L - 6;1‘ S 47Tmaxamax||dn - an”l + 2a12nax||77rn - 7rn”1

),

+ 27Tr2naxamax||&n — Qp Hl + Qﬂmaxarznax”ﬁ-n — Tn Hl

7Tn,m|,

S (47Tmaxamax + 27Tr2naxamax)cl 671 + (2a3nax + 27Tmaxa3nax)6n-

Hence, we conclude:

2GyufBn  2GyBy
I—(1—an)? 1-(1—-an)?
2Gyn

[ A —
T1—-(1—oam)?

2
Bounding 2G~,, Zn]\le (a%ﬁn,man,m — wm> . Let

[(4TmaxOmax + 2 oaxCmax)C1 4 (202ax 4 2Tmax@onax)] - On

:Cs -

Tn,m|,

On.

(106)

(107)

(108)

(109)

(110)

(111)

(112)

. 1.
Zm = —Tn,mO0n,m, Zm = —Tn,m0On,m.
(e 7% Qn
Then, we have
R 1 . . 1. N N
|Zm - Zm' = 7(77n,man,m - ﬂ'n,man,m) < 7( Tn,m — 7Tn,m‘ s Qnym + Tnom | Qnym — Oén,ml)
(679 Qn
1 R N
S ?(amaxlﬁn,m - 7Tn,m| + 7Tmax|an,m - Oén,m‘)-
n
Summing over all m, and applying the triangle inequality:
M M M
> G = wm)* = 3 (o — wm)?| < Z 122, = 221+ 2 fwmllZm — 2
m=1 m=1 m=1
M M
m=1 m=1
M 4
S 7(amax|7?rn,m - 7Tn,m| + 7rmax|dn,m - an,ml)
ooy [e%
(amax + Clﬂ'max) 5
<O,y

Qo

(113)
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where we use the fact that 2,,,, z,, € [0, 1] and w,,, < 1, for all m.

Therefore, we have:
M M

2Gvn Z (Zm — wm)2 —2G7n Z (2m — wm)2 < 2Gyn Home Z A O =:C4-6y
m=1 m=1 m
(114)
Combining bounds (105), (ITT), and (T14), we obtain the total deviation of s,
[8n — sn| < (C2+C34+ Ca) -0 =:Cs -6, (115)

We now analyze how the prediction error §,, affects the final aggregation weights. Given the
aggregation weights:

ReLU(qin —az - Sp + bg) R ReLU(q% —ag - &, + bz)

Pn = y Pn = = .
Zéil ReLU(q% — a2 - S; + b2) Ziil ReLU(q% —az - S; + bz)

Let us denote:
’L/}n = ReLU(i — a28p + b2)7 12}71 = ReLU(q% — 28, + b2)’

N R N .
Z:=> i, Z:=> i
i=1

i=1

Then, the deviation between p,, and p,, can be bounded by:

N L
|Pn — pn| = 3 7
I 11
< | Zm T - =
o L ( g Z)‘
a2|§n73n| |Z7Z‘
< 2P Tl 4y, 22 116
Z ¥ 77 (116)
where we used the fact that ReLU is 1-Lipschitz.
Note that [Z — Z| < SN [ihi — thi| < aa 3o [si — 8] < asCs - SO0, 6
Thus,
axCsdn | tn - 420, NS
n| < = s 117
|[Pr. — Pl 2 7% (117)
where C; is a bound such that |s,, — §,,| < C,d,, as shown in (1 13).
Therefore, under mild conditions on ¢,, > € and Z, 7z > Ne for some € > 0, we conclude:
N
o — Pl <Cs 60+ Cs - > _ s, (118)

i=1

for constants C5, Cg depending on as, C, and bounds on 1, and Z.

G.3 IMPACT ON CONVERGENCE BOUND.

We now analyze how the prediction error d,, = ||#,, — 7,||1 propagates to the convergence upper
bound through sampling strategy {c, ., } and aggregation weights {p,, }.

Recall

w\Cﬂ

1
B(an,m,pn) = m |:L7]0’2 anqn
n=1Fn4n n=1

nn:|7

C»D\UV

N
O
1 N N
Bllnmsbn) = oy |[Ln0” D brtn + 5 > butn
2 =1 Pnn n; Z::
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where
B 267 B, - (1 2
~n:L 2 7”1_ n niZn 2 n (7 nmnm — m) 11
Sn = Lno® + 22 ( w)+1_(1_a)+Gv;anw,a, wm) ', (119)
Bn - Z ﬂ—'rz,ﬂ'LCAY"n,,'nLdrn (120)
=2 Z T,m & m Z T m G + O (121
Then, the deviation can be bounded as:
1B (@1, ) — Blctnm, pn)| < L Bu b e gy (122)
o ’ B Zn 1pnqn Zn 1 Pndn 27]:7:1 Pndn '

where By,.x denotes a uniform upper bound on the numerator, and

N N
A = Lo - |3 (65 = 01)dn anqnsn > Pudasnl. (123)
n=1 n=1
We now bound each part of Ayypy:
Bounding En (P2 — p2)gn. LetdE :=p, — p,. Then
N N N
S @h —pi)an| =D [(pn +08)° = pi] an Z 2pn % + (0)%] ¢
n=1 n=1 n=1
N
<2 anqnlfSﬁl + Z qn(ég)Z
n=1 n=1
N N N
<2C5 Y pugndn +2Cs (Z pnqn> : (Z 5n> +0(67). (124)
n=1 n=1 n=1

Bounding 25:1 PrGndn — ZnN:1 DnGnSn. We fist bound |$,, — $,,|. Similar to calculating the
bound of |§,, — s, |, we have

M
|ﬁn - 5n‘ S Z 7Tn,m‘één,m - an,m' : Idm‘ S Dmax : H&n - an”h (125)

m=1

M
1B = Bl <2 Tomléim — anm|+2mm\anm o

m=1

S (47rmaxarnax + 27Tmaxamax)||an — O Hl (126)
Therefore, there exists a const C’s such that
|§n - 5n| S és : 6n- (127)

We decompose the difference:

N N N
n=1 n=1 n=1
N
< D168 ansn + anqnc 8n (128)
; N N B

=1 n=1

35



Under review as a conference paper at ICLR 2026

Bounding the Denominator Term. We now analyze the denominator difference:

1 Yy -V al a
- - = —|, where Y : =) ppgn, Y:=) Pngn
SoaiiPndn  Xa_yPadn| | Y- ;1 n;
Assuming Y Y > € > 0, we have
N
1 1 1 N 1
—— = Y =Y == = Pn)n 130
> Y’7€2| =3 ;(p Pn)a (130)

Using the previously derived bound |p,, — p,,| < C5 - 0, + Cp - Zfil d;, we obtain

N
Z pn' QnSZC% 6 +CG Zé

n=1
N

Z @ndn + Co <Z(Si> > an. (131)
i=1 n=1

Hence,

1 1 HCIHI CG llall:
—— =< E
= Y’ Ons (132)

Finally, substituting (I24), (I29), and (132) into (122)), we obtain:

1B(@n, ) — Bletnm, )] < (Bl Cally . Zé

[LUU (205 anqn n + 2C6 anqn Z s, )
n=1

+ g(i C56ngnsn + Co Z i Z GnSn + anqnés(sn)] +0(8?)
i=1 n=1 el
= O(zNjén)' (133)
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H MORE EXPERIMENTAL DETAILS

H.1 EXPERIMENTAL SETUP

Datasets and models. We conduct comprehensive experiments on four public benchmark datasets,
including Fashion-MNIST (Xiao et al.| 2017), CIFAR-10 (Krizhevsky et all,[2009), CINIC-10
2018), and HAM10000 (Tschandl et al.| 2018). Fashion-MNIST comprises 28 x 28 grayscale
images of 70,000 fashion products with 10 classes, and there are 60,000 training images and 10,000
testing images. The CIFAR-10 dataset consists of 50,000 training images and 10,000 testing images,
each with a size of 3 x 32 x 32. CINIC-10 is an extension of CIFAR-10 via the addition of
downsampled ImageNet 2009) images. The HAM10000 dataset is an image dataset used
for skin lesion classification in the medical field. For Fashion-MNIST, We use a LeNet-5
with two 5x5 convolutional layers, each followed by ReLU activation and max pooling, and
three fully connected layers. For CIFAR-10 and CINIC-10, we use an 8-layer AlexNet
with a size of 136 MB. For HAM10000, we use a customized CNN consisting of three 3
x 3 convolutional layers (with ReLU activation and max pooling) and two fully connected layers with
dropout regularization.

Fashion-MNIST

Labels ID
orNWHE UG N® O

States ID
CIFAR-10

Labels ID
ocrNWBE UG N® O

30
States ID

CINIC-10
N

Labels ID
R NWBUON®O

30
States ID
HAM10000

Labels ID
o B N W & 0 o

States ID

Figure 4: Visualization of the class distribution under stratified state space on the four datasets, where
the bubble size represents the number of class samples per state.

Intra-state heterogeneity. We organize the 60 latent states into 6 clusters (10 states per cluster),
each associated with a Dirichlet partitioning strategy (Wang et al.},[2020a)) with distinct concentration
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parameters o € {0.05,0.1,0.2,0.5,1.0,100.0}. We visualize the class distribution under stratified
state space on the four datasets in Fig. ]

Two heterogeneity scenarios. We consider two heterogeneity scenarios. (1) Full-access (mild
heterogeneity): Each client has non-zero access probability 7, ,,, > 0 for all states m € {1,...,M}.
(2) Partial-access (extreme heterogeneity): Each client is restricted to a randomly sampled subset of
10 states, with m,, ,,, = 0 for others. Moreover, 50% of clients are initialized with latent states drawn
from high-heterogeneity clusters (o« € {0.05,0.1}). We visualize the state probability 7, ,, of all
clients under two scenarios in Fig.[3]

30 M, 0 Mn,m
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(a) Full-access scenario (b) Partial-access scenario

Figure 5: Visualization of the state probability of all clients under two scenarios, where the bubble
size reflects the probability of a client reaching that state.

Implementation details. The overall framework of SFedPO is implemented with Pytorch
2019), and all experiments are conducted on an Intel(R) Xeon(R) Platinum 8352V CPU and
an NVIDIA A40 (48GB) GPU, and 256GB RAM. We run federated learning for 100 rounds. The
number of time steps and batch size are 5 and 64, respectively. We use an SGD optimizer with a
0.01 learning rate, and the weight decay is set to le-4. For each client n, we set its sampling budget
oy, to 0.5 and allocate a data capacity D of 500 samples. While our theoretical framework defines
d., as the upper bound on the gradient variance under state m, estimating such variance is often
impractical in streaming scenarios with limited and evolving local data. Inspired by 2023),
we adopt a practical surrogate by assuming that d,,, is proportional to the discrepancy between the
class distribution and a uniform distribution. Accordingly, we use the KL divergence as a proxy
measure for d,, in all experiments.

Client-specific sampling ratios. We visualize the client-specific sampling ratios {c, ., }2/_; under
two scenarios in Fig. [f] We observe that the client-specific sampling ratios exhibit a clustering pattern
aligned with the clustered structure of the state space. Moreover, as the distribution of the state space
becomes more imbalanced, the client-specific sampling ratios tend to decrease accordingly.
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Figure 6: Visualization of the client-specific sampling ratios of all clients under two scenarios, where
the bubble size reflects the value of sampling ratios.

Baselines. We compare SFedPO with the following methods:

* FedOGD: FedOGD is a vanilla online federated Learning method that processes sequential data
and performs online optimization per round.

* FedOMD: FedOMD is an online federated Learning method, which performs online mirror
descent and achieves sublinear regret.
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* Adaptive-FedAvg: Adaptive-FedAvg adjusts local learning rates to improve model plasticity
under concept drift in federated Learning.

e FedDrift: FedDrift uses a hierarchical clustering method to address the problem of concept drift
adaptation in federated Learning.

* Flash: Flash synergizes client-side early-stopping to detect concept drifts with server-side
drift-aware adaptive optimization to effectively adjust the global learning rate.

* FedEWC: EWC is a classic regularization-based method for continual learning that uses the
Fisher information matrix to estimate the importance of parameters. In our streaming scenario,
each client leverages EWC to retain information from the previous state.

e FLwF-2T: FLwF-2T is a distillation-based method that deals with catastrophic forgetting in
federated continual learning. FLWF-2T enables the current model to distill knowledge from both
the model trained in the previous state and the global model from the last round.

* IS: Important Sampling (IS) uses a higher gradient norm to reflect the informativeness of the
data. In our streaming scenario, it selects the optimal data from the new state based on the metric
and discards the old data accordingly.

* ODE: ODE introduces an online data selection method based on a data valuation metric: the
projection of local gradients onto the global gradient. In our streaming scenario, it selects the
optimal data from the new state based on the metric and discards the old data accordingly.

* DRSR: DRSR updates the local data of each client according to the distribution discrepancy
between the long-term data distribution and the client’s local data. In our streaming scenario, it
selects informative samples from both the existing and incoming data based on the update rule.

Since some methods (i.e., FedOGD, FedOMD, Adaptive-FedAvg, FedDrift, Flash, FedEWC, FLwWF-
2T) do not incorporate any data sampling mechanism, we assume that each client fully replaces
its local dataset with new data drawn from the current state distribution, thereby aligning with the
streaming FL setting.

FL methods in modularity experiment. We apply SFedPO’s data sampling and aggregation strate-
gies to several representative FL. methods: FedAvg (McMahan et al., 2017), which is the pioneering
FL method; FedProx (Li et al.,2020a), a classic regularization-based FL. method; FedCurv (Shoham
et al.|[2019), a FL method based on curvature adjustment regularization; FedNTD (Lee et al., 2022),
which preserves the global knowledge by not-true distillation in FL; FedEXP (Jhunjhunwala et al.,
2023)), which tune the global learning rate via extrapolation to speed up the global convergence. In
our streaming data scenario, these methods sample data based on state transitions in each round and
train local models accordingly.

Algorithm-specific hyperparameters. The above baselines and FL. methods adopt the same experi-
mental setup as SFedPO, while the algorithm-specific hyperparameters are configured as follows:
* Flash: we tune the global learning rate 7, € {0.001,0.01,0.1, 1.0}, and set it to 0.01.

* FedEWC: we tune the penalty coefficient A € {0.001,0.01,0.1,1.0}, and setitto 0.1. Ais a
scalar that balances the contribution of the regularization loss relative to the cross-entropy loss
in the total objective.

* FLWF-2T: we tune the o € {0.001,0.01,0.1,0.3,0.7}, 8 € {0.001,0.01,0.1,0.3,0.7}, and
setthemto a = 0.3, 5 = 0.3.

* FedProx: we tune the ;1 € {0.001,0.01,0.1, 1.0}, and set it to 0.1.
* FedCurv: we tune the A € {0.001,0.01,0.1, 1.0}, and set it to 0.01.
* FedNTD: we tune the 5 € {0.01,0.1,1.0, 2.0}, and set it to 1.0.

H.2 OTHER EXPERIMENTS

Performance comparison. Fig.[7]presents the convergence performance of SFedPO and all base-
lines on four datasets under two scenarios (here we use F-MNIST for Fashion-MNIST).
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Figure 7: Performance comparison of SFedPO to other baselines in full and partial scenarios on

several datasets.

Effects of different configurations under other datasets.

We vary three core parameters, including

time step (" € {2, 5, 8,10}), training round (R € {50, 100, 150, 200}), and data capacity of clients
(D € {250,500, 750,1000}). Then, we respectively show the performance of our method and
four baselines on Fashion-MNIST, CINIC-10, and HAM 10000 in Fig.[8] Fig. [0l and Fig. The
experimental results demonstrate that our method outperforms all baseline approaches across different

parameters under various datasets.
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Effects of number of clients N. In Table[5] we vary the number of clients N € {10, 50,100} and
compare the performance of SFedPO with several baselines in full and partial scenarios on CIFAR-10.
The results show that SFedPO consistently outperforms the baselines across different V.

Table 5: Test accuracy (%, mean=std on 5 trials) comparison of our SFedPO framework to several
baselines with different /V in full and partial scenarios on CIFAR-10.

CIFAR-10(full) \ CIFAR-10(partial)

Method ‘

| N =10 N=5  N=100 | N=10 N=50 N =100
FedOGD | 43.04£1.92 53.78£1.38 5532129 | 34.10+2.70 42.38+1.60 45.42+1.29
Flash 49.61+1.47 59212051  60.9420.60 | 32.69+3.52 4832+1.91  52.78+2.45
FLWF-2T | 46.94:£1.42  50.00+£0.96 50.06:£0.62 | 38.69+1.58 40.240.54  40.26:0.41
DRSR | 51.45+1.99 5874043 59.98+0.45 | 43.43£122 50.70£1.06  53.44+0.78
SFedPO | 63.51+£0.90 67.94+0.23 68.62+0.26 | 55.66+124 65.57+0.34  66.7420.43

Effects of model architectures. We evaluate SFedPO against several baselines in full and partial
scenarios on CIFAR-10 under different model architectures, including CNN, ResNet-10 (He et al.,
2016)), ResNet-18 (He et al., 2016), and ResNet-34 (He et al., 2016). The results in Table |§| show
that SFedPO consistently achieves the best performance, demonstrating the robustness of our method
across model architectures.

Table 6: Test accuracy (%, mean=std on 5 trials) comparison of our SFedPO framework to several
baselines with different model architectures in full and partial scenarios on CIFAR-10.

| CIFAR-10(full) | CIFAR-10(partial)

Method

\ CNN ResNet10 ResNet18 ResNet34 \ CNN ResNet10 ResNet18 ResNet34
FedOGD | 65.13+0.62 45.46+1.05 47.16£1.53 50.05+£1.32 | 56.95£1.21 37.18£1.45 40.11+2.22  41.67£1.07
Flash 67.29+£0.56 49.99+1.80 60.14+£3.41 55.26£2.00 | 60.59+3.15 42.25+1.49 51.74+£2.035 47.07£1.55
FLWF-2T | 66.51£0.69 48.60£0.20 49.04+£1.04 51.42+1.53 | 59.02+1.50 40.60+2.33  42.81+1.19  44.74+1.28
DRSR 67.56+£0.67 51.12+1.13  54.32+0.55 57.80£1.03 | 61.11+£0.63 43.91+£091 47.01x1.11  48.62+1.24
SFedPO \ 74.10+£0.42 63.69+£1.06 66.64+0.87 68.69+£0.33 \ 70.56+£0.71 59.38+0.83  61.50+1.46 64.39+0.96

Effects of different discrepancy metrics. While our theoretical framework defines d,,, as the
upper bound on the gradient variance under state m, estimating such variance is often impractical
in streaming scenarios with limited and evolving local data. Inspired by (Ye et al., [2023), we
adopt a practical surrogate by assuming that d,,, is proportional to the discrepancy between the
class distribution and a uniform distribution. To investigate the impact of different discrepancy
metrics, we evaluate four commonly used measures on the CIFAR-10 dataset: L1 & L2 distance, KL,
divergence, and Jensen—Shannon (JS) divergence (Fuglede & Topsoel [2004). As shown in Tablem all
metrics yield comparable performance and consistently outperform baseline methods, highlighting
the robustness of our framework to the choice of discrepancy measure.
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Table 7: Accuracy (%) under different discrepancy metrics.

Metric | L1 L2 JS KL | Flash DRSR
full ‘ 67.56 67.58 67.56 68.18 ‘ 67.00 58.36
partial ‘ 63.23 6328 63.75 64.41 ‘ 56.55 49.60

Effects of Prediction Error. To simulate prediction errors, we perturb each state probability 7r,, by
a random noise uniformly drawn from [—e, €], followed by renormalization to ensure ) 7, p, = 1.
We vary € from 0.00 to 0.10 to simulate increasing levels of oracle error. As shown in Figs. [T1]
SFedPO tends to maintain stable performance as the degree of perturbation varies on the CIFAR-10
dataset.
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Figure 11: Performance under different degrees of perturbation.
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