
Under review as a conference paper at ICLR 2022

DISENTANGLING SOURCES OF RISK FOR DISTRIBU-
TIONAL MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In cooperative multi-agent reinforcement learning, state transitions, rewards, and
actions can all induce randomness in the observed long-term returns. This random-
ness is reflected from two risk sources: (a) agent-wise risk (i.e., how cooperative
each teammate acts for a given agent) and (b) environment-wise risk (i.e., transition
stochasticity). Although these two sources are both important factors for learning
robust agent policies, prior works do not separate them or deal with only a single
risk source which could lead to learning a suboptimal equilibrium only. In this pa-
per, we propose Disentangled RIsk-sensitive Multi-Agent reinforcement learning
(DRIMA), a novel framework capable of disentangling risk sources. Our main idea
is to separate risk levels in both centralized training and decentralized execution
with a hierarchical quantile structure and quantile regression. Our experiments
demonstrate that DRIMA significantly outperforms prior state-of-the-art meth-
ods across various scenarios in the StarCraft Multi-agent Challenge environment.
Notably, DRIMA shows robust performance where prior methods learn only a
suboptimal policy, regardless of reward shaping and exploration scheduling.

1 INTRODUCTION

In multi-agent reinforcement learning (MARL), centralized training with decentralized execution
(CTDE) is one of the popular learning paradigms since it tackles the non-stationarity issues caused
by the changing behaviors of the agents efficiently (Oliehoek et al., 2016). Under this paradigm,
value-based CTDE has gained impressive attention. It consists of (i) training a joint action-value
estimator with an access to global information in a centralized manner and (ii) decomposing the
estimator into agent-wise utility functions which can be executed in a decentralized manner. Recently,
several value-based CTDE methods have made training efficient and stable by designing the action-
value estimator as flexible as possible while maintaining the execution constraint on decentralizability
(Sunehag et al., 2018; Rashid et al., 2018; Son et al., 2019; Rashid et al., 2020a; Wang et al., 2020a).

However, despite the progress on value-based CTDE, agents still often fail to cooperate due to
environment randomness, limited observation of agents, and time-varying policies of other agents,
especially in highly stochastic environments. For such environments in single-agent settings, risk-
sensitive reinforcement learning (RL) (Chow & Ghavamzadeh, 2014) has shown remarkable results
by using policies that consider risk rather than simple expectations for return distribution caused by
state transitions, rewards, and actions. Here, risk refers to the uncertainty over possible outcomes, and
risk-sensitive policies act with a risk measure, such as variance or conditional value at risk (CVaR)
(Chow & Ghavamzadeh, 2014). The main goal of this paper is to apply this risk-sensitive technique
to value-based CTDE to learn more robust policies against various factors of uncertainty.

To this end, our motivating observation is that the randomness that must be dealt with in multi-agent
settings come from two risk sources: (a) agent-wise risk and (b) environment-wise risk. Here, the
agent-wise risk is about how other agents behave cooperatively for a given agent, and the environment-
wise risk is about how the environment reacts randomly (i.e., stochasticity of the environmental
dynamics) as illustrated in Figure 1. Unfortunately, existing value-based CTDE methods do not
disentangle risk sources explicitly. For instance, recent approaches combining value-based CTDE
with distributional RL (Qiu et al., 2021; Sun et al., 2021) learn the distribution of each agent-wise
utility function but cannot separate different risk sources. This inability to disentangle risks can
result to suboptimal policies under risk-sensitive RL; those methods cannot represent agent-wise

1

Under review as a conference paper at ICLR 2022

Agent-wise optimism (i.e., is near 1)

Agent 2

Enemy 2
Agent 1

Teammates may act beneficially for me
(i.e., attack on the same enemy)

Enemy 1

Agent-wise pessimism (i.e., is near 0)

Agent 2

Enemy 2
Agent 1

Teammates may act harmfully for me
(i.e., run away separately)

Enemy 1

Run away

Environment-wise optimism (i.e., is near 1)

Agent 1

Agent 2

Enemy 2

Environments may give high rewards
(i.e., enemies with prey-tactics)

Enemy 1

Dive solely

Run away

Environment-wise pessimism (i.e., is near 0)

Enemy 2

Environments may give low rewards
(i.e., enemies with predator-tactics)

Enemy 1

Agent 1

Agent 2

(a) Agent-wise risk

Agent-wise optimism (i.e., is near 1)

Agent 2

Enemy 2
Agent 1

Teammates may act beneficially for me
(i.e., attack on the same enemy)

Enemy 1

Agent-wise pessimism (i.e., is near 0)

Agent 2

Enemy 2
Agent 1

Teammates may act harmfully for me
(i.e., run away separately)

Enemy 1

Run away

Environment-wise optimism (i.e., is near 1)

Agent 1

Agent 2

Enemy 2

Environments may give high rewards
(i.e., enemies with prey-tactics)

Enemy 1

Dive solely

Run away

Environment-wise pessimism (i.e., is near 0)

Enemy 2

Environments may give low rewards
(i.e., enemies with predator-tactics)

Enemy 1

Agent 1

Agent 2

(b) Environment-wise risk

Figure 1: Two types of risk in MARL: (a) agent-wise risk and (b) environment-wise risk. Note that
friendly agents learn a policy over time, while enemies in the environment act through a stationary
distribution. Current value-based CTDE methods do not consider risks explicitly or tackle them in an
entangled way which may lead to a suboptimal solution.

risk-seeking (cooperative) yet environment-wise risk-averse policies, which are likely to be of the
favorable choices in most practical scenarios (i.e., surviving together as a team for a long time under
the expectation that every teammate will cooperate for the sake of the team).

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

DRIMA
VDN
QMIX
QTRAN
QPLEX
OW-QMIX
CW-QMIX
DDN
DMIX

Figure 2: The median test win rate for DRIMA
and eight value-based CTDE baselines, averaged
across all 12 scenarios in our experiments. Re-
sults for each scenario are reported in Figure 4.

Contribution. In this paper, we present
Disentangled RIsk-sensitive Multi-Agent rein-
forcement learning (DRIMA), a novel framework
on disentangling risk sources for distributional
MARL. The main idea is to separate risk levels
in both centralized training and decentralized ex-
ecution with a hierarchical quantile structure and
quantile regression. To be specific, unlike prior
works which do not take into consideration differ-
ent risk sources (Qiu et al., 2021; Sun et al., 2021),
DRIMA considers agent-wise risk into each utility
function and environment-wise risk into a joint
true action-value estimator. Therefore, each utility
function is encouraged to learn the action-value
distribution with respect to other agents’ cooper-
ative policy, and the joint-action value estimator
is trained to learn action-value distribution with
respect to the environment stochasticity. Thanks to the disentanglement of risk sources, DRIMA
is able to obtain desirable policies more efficiently, while as aforementioned, it is difficult to set
agent-wise risk-seeking yet environment-wise risk-averse policies in prior state-of-the-art methods.

We demonstrate the effectiveness of DRIMA on various scenarios in the StarCraft1 Multi-Agent
Challenge (SMAC) environment which is widely used as the environment for many MARL research
(Samvelyan et al., 2019). As summarized in Figure 2, DRIMA significantly outperforms state-of-the-
art methods, including distributional MARL methods (i.e., DDN and DMIX (Sun et al., 2021)) and
non-distributional ones such as OW-QMIX, CW-QMIX, and QPLEX (Rashid et al., 2020a; Wang
et al., 2020a). Notably, by disentangling risk sources, DRIMA shows impressive results regardless of
reward shaping and exploration schedule, whereas existing works learn only a suboptimal policy (see
Figure 4). We hope that our idea will motivate new future research directions such as safe MARL.

1StarCraft is a trademark of Blizzard EntertainmentTM.

2

Under review as a conference paper at ICLR 2022

2 PRELIMINARIES AND RELATED WORK

2.1 CENTRALIZED TRAINING WITH DECENTRALIZED EXECUTION

In this paper, we consider a decentralized partially observable Markov decision process (Oliehoek
et al., 2016) represented by a tuple G = 〈S,U , P, r, O,N, γ〉. To be specific, we let s ∈ S denote
the true state of the environment. At each time step, an agent i ∈ N := {1, ..., N} selects an action
ui ∈ U as an element of the joint action vector u := [u1, · · · , uN]. It then goes through a stochastic
transition dynamic described by the probability P (s′|s,u). All agents share the same reward r(s,u)
discounted by a factor of γ. Each agent i is associated with a partial observation o ∈ O, according to
some observation functionO(s, i) : S×N 7→ O, and an action-observation history τi. Concatenation
of the agent-wise action-observation histories is denoted as the overall action-observation history τ .

We consider value-based centralized training with decentralized execution (CTDE) where agents are
trained in a centralized manner and executed in parallel without access to the global state s. Under
value-based CTDE, we aim to train each agent-wise utility function qi(τi, ui) whose greedy actions
are consistent with the greedy actions from the joint action-value estimator Qjt(s, τ ,u). Formally,
the following decentralization condition should be satisfied:

argmax
u

Qjt(s, τ ,u) =
[
argmax

u1

q1(τ1, u1), . . . , argmax
uN

qN (τN , uN)
]
. (1)

To meet this condition, VDN (Sunehag et al., 2018) and QMIX (Rashid et al., 2018) impose structural
constraint on the joint action-value function. To be specific, VDN expresses the joint action-value
function as a linear summation of agent-wise utility functions. QMIX extends VDN by enforcing a
monotonicity constraint on the joint action-value function and each agent-wise utility function. On
the other hand, QTRAN (Son et al., 2019) uses soft regularization instead of structural constraints to
satisfy the decentralization condition.

Weighted QMIX. Another prior work, namely Weighted QMIX (Rashid et al., 2020a), implicitly
considers optimism in centralized training by weighting the loss of optimal actions, but it does not
separate agent-wise and environment-wise risks. Rashid et al. (2020a) proposes Centrally-Weighted
QMIX (CW-QMIX) and Optimistically-Weighted QMIX (OW-QMIX) which both have a strong
theoretical capability of learning the largest class of true action-value functions up to date. They use
a weighted projection that allows more emphasis to be placed on better joint actions. OW-QMIX
applies weights to the losses according to the sign of the TD-error for each sample: 2

LOW−QMIX(s, τ ,u) = w(s,u)(Qtran(s, τ ,u)− y)2,

y = r + γQ
target
jt (s′, τ ′,u′opt), w(s,u) =

{
1, if Qtran(s, τ ,u) ≤ y,
α, otherwise,

,
(2)

where α is a hyperparameter and Qtarget
jt is the fixed target network whose parameters are updated

periodically from the original unconstrained true action-value estimatorQjt. They sample (s, u, r, s′),
a tuple of experience transitions from a replay buffer and u′opt is the “optimal” action maximizing the
utility functions qi(τ ′i , u

′
i) for i ∈ N . The true action-value estimator Qjt can accurately describe the

true action-value using the unconstrained neural network. However, since this unconstrained network
does not satisfy the decentralization condition (equation 1), we cannot extract the optimal action
efficiently. On the other hand, the transformed action-value estimator Qtran has limited expressive
power because of its monotonic structure but can efficiently extract optimal actions. In order for
Qtran to accurately track the optimal action of Qjt, the weighting mechanism according to the sign
of the TD-error assigns a higher weight for optimistic returns. Through the optimistic training, they
prove that Weighted QMIX recovers the correct maximal action for any true-action value. We provide
a more detailed description of other CTDE algorithms in Appendix C.

2.2 DISTRIBUTIONAL REINFORCEMENT LEARNING

Instead of training a scalar state-action estimator Qπ(s, u), distributional RL represents an action-
value as a random variable, denoted Zπ(s, u). The distributional Bellman operator for policy

2Note that Rashid et al. (2020a) notates Qtot instead of Qtran in their paper.

3

Under review as a conference paper at ICLR 2022

evaluation in single-agent RL can then be expressed as follows:

Zπ(s, u)
D
= R(s, u) + γZπ(S′, U ′), (3)

where S′ ∼ P (s′|s, u), U ′ ∼ π(u|s), and A D
= B denotes the two random variables which follow

the same probability distribution.

IQN. Implicit Quantile Networks (IQN) (Dabney et al., 2018a) is one of the widely-used single-agent
distributional RL methods. IQN approximates the true action-value function using a quantile-based
representation of the distributions. To be specific, each trained quantile represent a random variable
Z(s, u, ω) which is a reparameterization of risk-level sample ω drawn from a uniform distribution
U(0, 1). To train the IQN, one can use the following Huber quantile regression loss (Huber, 1964):

LIQN =
{|ω − 1δ>0| × 1

2δ
2, if |δ| ≤ 1,

|ω − 1δ>0| × (|δ| − 1
2), otherwise,

δ = Z(s, u, ω)− (r + γZtarget(s′, u′opt, ω
′)), u′opt = argmax

u′
Ew[Z

target(s, u′, w)],

where Ztarget is the target network whose parameters are updated periodically from the original
action-value estimator Z. (s, u, r, s′) is a tuple of experience transitions from a replay buffer. In
distributional RL, weights are used to express level of rewards and next state transitions are generated
from the randomness of the environment.

Distributional MARL. Recently, distributional RL has also been applied to the CTDE regime
(Qiu et al., 2021; Sun et al., 2021), but they lack the disentanglement of risk sources. RMIX (Qiu
et al., 2021) and DFAC (Sun et al., 2021) showed promising results by extending the agent-wise
utility function from having deterministic variables to random variables. RMIX demonstrates the
effectiveness of risk-sensitive MARL via distributional RL, but it is limited since it cannot represent
policies which came from different risk sources (i.e., agent-wise risk-seeking yet environment-
wise risk-averse policies). DFAC is another distributional MARL framework that uses mean-shape
decomposition which separates the mean and variance parts of the utility functions to handle value
function factorization. They propose DDN and DMIX as the DFAC variants of VDN and QMIX,
respectively. DFAC extends IQN, a single-agent distributional RL algorithm, to learn the randomness
of the environment. However, they do not consider the agent-wise risk that arises when learning
networks with limited expressive power such as QMIX. Also, they only demonstrate risk-neutral
policies, so it is questionable whether DFAC could handle risk-sensitive policies.

3 DRIMA: DISENTANGLED RISK-SENSITIVE MARL

In this section, we propose a new method, called DRIMA, which aims at disentangling the two risk
sources. In section 3.1, we discuss the connection between existing works which motivates DRIMA.
In section 3.2, we propose the training objective of DRIMA for training our action-value estimators.
Next, in section 3.3, we introduce a new architecture for the action-value estimators. The overall
architectural sketch is given in Figure 3.

3.1 MOTIVATION

Before presenting our framework, we re-visit existing risk-sensitive algorithms: distributional RL
(Dabney et al., 2018a; Sun et al., 2021) and Optimistically-Weighted QMIX (OW-QMIX) (Rashid
et al., 2020a) to discuss their connections and limitations, which are what motivate our method. In
common, both methods utilize a weighting mechanism according to the sign of the TD-error. We
understand that the entanglement comes from the TD-error that is used for computing weights, which
play an important role in adjusting risk-sensitivity in both algorithms. To be specific, when the
TD-error is positive, distributional RL and OW-QMIX interpret it as an optimistic sample in the
perspective of environment-wise risk and agent-wise risk, respectively.

However, since reward and next state in the TD-target include both agent-wise and environment-wise
randomness in an entangled way, agent-wise risk cannot be extracted separately enough from the
sign of the TD-error. We observe that if environment-wise and agent-wise randomness co-exist, both
distributional RL and OW-QMIX cannot learn the two randomness in a disentangled manner, which

4

Under review as a conference paper at ICLR 2022

Agent 1

Agent i

Agent N

s

<latexit sha1_base64="5zsPQ4vlxTkZ/KClTva5FAbtbfk=">AAAB+HicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoN6CXjwmYB6QLGF20psMmZldZmaFuOQLvOrdm3j1b7z6JU6SPWhiQUNR1U01FSacaeN5X05hbX1jc6u4XdrZ3ds/KB8etXScKopNGvNYdUKikTOJTcMMx06ikIiQYzsc38389iMqzWL5YCYJBoIMJYsYJcZKDd0vV7yqN4e7SvycVCBHvV/+7g1imgqUhnKiddf3EhNkRBlGOU5LvVRjQuiYDLFrqSQCdZDNH526Z1YZuFGs7EjjztXfFxkRWk9EaDcFMSO97M3Ef71QLCWb6DrImExSg5IugqOUuyZ2Zy24A6aQGj6xhFDF7O8uHRFFqLFdlWwp/nIFq6R1UfUvqzeNy0rtNq+nCCdwCufgwxXU4B7q0AQKCM/wAq/Ok/PmvDsfi9WCk98cwx84nz8abJOp</latexit>

True
action-value estimator

Transformed
action-value estimator

Ltd�IQN

<latexit sha1_base64="sBaM+ryWd9vL0Yqp4evhpanw+v0=">AAACFnicbVDLSsNAFJ34rPUVdSlCsAhuLIkU1F3RjYJIC/YBbQiTyaQdOnkwcyOUkJU/4S+41b07cevWrV/iJO1CWw8MnHvOvdw7x405k2CaX9rC4tLyympprby+sbm1re/stmWUCEJbJOKR6LpYUs5C2gIGnHZjQXHgctpxR1e533mgQrIovIdxTO0AD0LmM4JBSY5+0A8wDAnm6W3mpEUBkIJ3ctO8yzJHr5hVs4AxT6wpqaApGo7+3fcikgQ0BMKxlD3LjMFOsQBGOM3K/UTSGJMRHtCeoiEOqLTT4huZcaQUz/AjoV4IRqH+nkhxIOU4cFVnfqec9XLxX88NZjaDf26nLIwToCGZLPYTbkBk5BkZHhOUAB8rgolg6naDDLHABFSSZRWKNRvBPGmfVq1a9aJZq9Qvp/GU0D46RMfIQmeojq5RA7UQQY/oGb2gV+1Je9PetY9J64I2ndlDf6B9/gDy2qAj</latexit>

Lopt, Lnopt, Lub

<latexit sha1_base64="8+A4GQP0P8/SqYwW/dC0+56d5mQ=">AAACS3icfVA9SwNBEN2LRmP8OrW0WQyChYQ7Cahd0MbCIor5gOQIe5tNsmRv79idE8Jx/8s/4Q+wsbDR3k4s3EtSaBJ8sPDmvRlm9vmR4Boc58XKrazm19YLG8XNre2dXXtvv6HDWFFWp6EIVcsnmgkuWR04CNaKFCOBL1jTH11nfvORKc1D+QDjiHkBGUje55SAkbr2fScgMKREJLdpN5kUAEkYQZqe4qWe/M+M/TTt2iWn7EyAF4k7IyU0Q61rv3V6IY0DJoEKonXbdSLwEqKAU8HSYifWLCJ0RAasbagkAdNeMvl7io+N0sP9UJknAU/U3xMJCbQeB77pzG7U814mLvX8YG4z9C+8hMsoBibpdHE/FhhCnAWLe1wxCmJsCKGKm9sxHRJFKJj4iyYUdz6CRdI4K7uV8uVdpVS9msVTQIfoCJ0gF52jKrpBNVRHFD2hV/SOPqxn69P6sr6nrTlrNnOA/iCX/wEZ2bc6</latexit>

Zjt(s, ⌧ , u, wenv)

<latexit sha1_base64="xahiaOBQp+rTU4eCJZOsyL/JdvY=">AAACQnicbVBNSyQxFEy7fo5fs+vRS3AQFGToFkG9iV705oKjoj0M6cwbjSbpJnmtO4T8pv0T+xc8eFHwuDfx6sHumQF19EFIUVWPelSSSWExDO+DkR+jY+MTk1OV6ZnZufnqz1/HNs0NhwZPZWpOE2ZBCg0NFCjhNDPAVCLhJLneK/WTGzBWpPoIuxk0FbvQoiM4w4JqVQ/OWi5WDC8R3RV6v2LXaJwoFyPLfR+W/+27K0b4g71gZ6DtHegb7/1qpVWthfWwN/QriAagRgZz2Ko+xe2U5wo0csmsPY/CDJuOGRRcgq/EuYWM8Wt2AecF1EyBbbpesqfLBdOmndQUTyPtsR83HFPWdlVSOMu77bBWkt9qiRpKxs5W0wmd5Qia94M7uaSY0rJP2hYGOMpuARg3orid8ktmGMei9bKUaLiCr+B4vR5t1Ld/b9R2dgf1TJJFskRWSEQ2yQ7ZJ4ekQTj5S+7IA3kM/gX/g+fgpW8dCQY7C+TTBK9vFfSzJw==</latexit>

Ztran(s, ⌧ , u, wagt)

<latexit sha1_base64="+IgrQsSbZVl4o8eUbsejwYTRBbE=">AAACRXicbVBNSxxBFOzRJOqaj40ec2myCAphmZGF6E3iJYccDLgqcZblTe/btbG7Z+h+oy5N/yn/hH/BHOPdW8hVZ3YXkqw+aLqoqkc9KiuUdBTHP6OFxRcvXy0trzRWX795+675fu3I5aUV2BW5yu1JBg6VNNglSQpPCougM4XH2fl+rR9foHUyN4c0LrCnYWTkUAqgiuo3v/3o+1QDnRF5smBC2HSfeJppnxKUYQrr//KvLyW8okm0z1SJwcOIQghbjX6zFbfjyfCnIJmBFpvNQb95lw5yUWo0JBQ4d5rEBfU8WJJCYWikpcMCxDmM8LSCBjS6np9EB75RMQM+zG31DPEJ+++GB+3cWGeVsz7czWs1+ayW6blkGu70vDRFSWjENHhYKk45ryvlA2lRkBpXAISV1e1cnIEFQVXxdSnJfAVPwdF2O+m0d793WntfZvUssw/sI9tkCfvM9thXdsC6TLBrdst+sbvoJrqPfkd/ptaFaLazzv6b6OERzV+0fA==</latexit>

(⌧1, u1, wagt)

<latexit sha1_base64="IyDO8IYu+C90lbWGDMqECkQMnrA=">AAACLnicbVDLSgMxFM34rPVVdekmWAQFKTNSUXdFNy4VrBY6ZciktzWYeZDcUUuYL/En/AW3uhdciODKzzCts9DqgZDDOfdyLidMpdDouq/OxOTU9Mxsaa48v7C4tFxZWb3QSaY4NHkiE9UKmQYpYmiiQAmtVAGLQgmX4fXx0L+8AaVFEp/jIIVOxPqx6AnO0EpBZW/LR5YFxst3aPHdBsaPGF4hGh/hDkchJpQZ5Ib1Mc/z7aBSdWvuCPQv8QpSJQVOg8qH3014FkGMXDKt256bYscwhYJLyMt+piFl/Jr1oW1pzCLQHTNKzummVbq0lyj7YqQj9eeGYZHWgyi0k8O79bg3FP/1wmgsGXsHHSPiNEOI+XdwL5MUEzrsjnaFAo5yYAnjStjbKb9iinG0DZdtKd54BX/JxW7Nq9cOz+rVxlFRT4mskw2yRTyyTxrkhJySJuHknjySJ/LsPDgvzpvz/j064RQ7a+QXnM8vX7iqSw==</latexit>

(⌧i, ui, wagt)

<latexit sha1_base64="Bneyxt+27KWcR83IN+PtMnlaj3k=">AAACLnicbVDLSgMxFM34rPVVdekmWAQFKTNSUXdFNy4VrBY6ZciktzWYeZDcUUuYL/En/AW3uhdciODKzzCts9DqgZDDOfdyLidMpdDouq/OxOTU9Mxsaa48v7C4tFxZWb3QSaY4NHkiE9UKmQYpYmiiQAmtVAGLQgmX4fXx0L+8AaVFEp/jIIVOxPqx6AnO0EpBZW/LR5YFRuQ7tPhuA+NHDK8QjY9wh6MQE8oMcsP6mOf5dlCpujV3BPqXeAWpkgKnQeXD7yY8iyBGLpnWbc9NsWOYQsEl5GU/05Ayfs360LY0ZhHojhkl53TTKl3aS5R9MdKR+nPDsEjrQRTayeHdetwbiv96YTSWjL2DjhFxmiHE/Du4l0mKCR12R7tCAUc5sIRxJeztlF8xxTjahsu2FG+8gr/kYrfm1WuHZ/Vq46iop0TWyQbZIh7ZJw1yQk5Jk3ByTx7JE3l2HpwX5815/x6dcIqdNfILzucXIq+quw==</latexit>

(⌧N , uN , wagt)

<latexit sha1_base64="ujpb+F3NUx7oZcxPIzuJiDGH90E=">AAACLnicbVDLSgMxFM34tr6qLt0Ei6AgZUYUdSe6cSUK1hY6Zcikt20w8yC5o5YwX+JP+AtudS+4EMGVn2FaZ6HVAyGHc+7lXE6YSqHRdV+dsfGJyanpmdnS3PzC4lJ5eeVKJ5niUOOJTFQjZBqkiKGGAiU0UgUsCiXUw+uTgV+/AaVFEl9iP4VWxLqx6AjO0EpBeW/TR5YF5izfpsV3Gxg/YthDND7CHQ5DTCgzyA3rYp7nW0G54lbdIehf4hWkQgqcB+UPv53wLIIYuWRaNz03xZZhCgWXkJf8TEPK+DXrQtPSmEWgW2aYnNMNq7RpJ1H2xUiH6s8NwyKt+1FoJwd361FvIP7rhdFIMnYOWkbEaYYQ8+/gTiYpJnTQHW0LBRxl3xLGlbC3U95jinG0DZdsKd5oBX/J1U7V260eXuxWjo6LembIGlknm8Qj++SInJJzUiOc3JNH8kSenQfnxXlz3r9Hx5xiZ5X8gvP5BcSnqoU=</latexit>

wenv

<latexit sha1_base64="4F9k8LHG3xsiWzu44C9oRb9ijsE=">AAACGnicbVC7SgNBFJ31GeMrammzGgSrsCsBtQvaWEYwD0hCmJ3cJENmZ5eZu9GwbO1P+Au22tuJrY2tX+Jks4UmHhg4nHPvnMvxQsE1Os6XtbS8srq2ntvIb25t7+wW9vbrOogUgxoLRKCaHtUguIQachTQDBVQ3xPQ8EbXU78xBqV5IO9wEkLHpwPJ+5xRNFK3cHTfjds+xSFi3EZ4wPTLWEEviUGOkyTpFopOyUlhLxI3I0WSodotfLd7AYt8kMgE1brlOiF2YqqQMwFJvh1pCCkb0QG0DJXUB92J09zEPjFKz+4HyjyJdqr+3oipr/XE98zk9Go9703Ffz3Pn0vG/kUn5jKMECSbBfcjYWNgT3uye1wBQzExhDLFze02G1JFGZo286YUd76CRVI/K7nl0uVtuVi5yurJkUNyTE6JS85JhdyQKqkRRh7JM3khr9aT9Wa9Wx+z0SUr2zkgf2B9/gAjJ6MP</latexit>

z1

<latexit sha1_base64="96IkN++NDud6Vgn4VtAM0uL+Vn8=">AAAB/HicbVA9SwNBFHwXv2L8ilraLAbBKtxJINoFbSwjeEkgOcLeZi9Zsrt37O4J8Yh/wVZ7O7H1v9j6S9wkV2jiwINh5j3mMWHCmTau++UU1tY3NreK26Wd3b39g/LhUUvHqSLUJzGPVSfEmnImqW+Y4bSTKIpFyGk7HN/M/PYDVZrF8t5MEhoIPJQsYgQbK/mP/cyb9ssVt+rOgVaJl5MK5Gj2y9+9QUxSQaUhHGvd9dzEBBlWhhFOp6VeqmmCyRgPaddSiQXVQTZ/dorOrDJAUazsSIPm6u+LDAutJyK0mwKbkV72ZuK/XiiWkk10GWRMJqmhkiyCo5QjE6NZE2jAFCWGTyzBRDH7OyIjrDAxtq+SLcVbrmCVtC6qXq16dVerNK7zeopwAqdwDh7UoQG30AQfCDB4hhd4dZ6cN+fd+VisFpz85hj+wPn8AShNlWA=</latexit>

zi

<latexit sha1_base64="d+R0sqg/awlohUq0BUzWcYa+28k=">AAAB/HicbVA9SwNBFHwXv2L8ilraLAbBKtxJINoFbSwjeEkgOcLeZi9Zsrt37O4J8Yh/wVZ7O7H1v9j6S9wkV2jiwINh5j3mMWHCmTau++UU1tY3NreK26Wd3b39g/LhUUvHqSLUJzGPVSfEmnImqW+Y4bSTKIpFyGk7HN/M/PYDVZrF8t5MEhoIPJQsYgQbK/mP/YxN++WKW3XnQKvEy0kFcjT75e/eICapoNIQjrXuem5iggwrwwin01Iv1TTBZIyHtGupxILqIJs/O0VnVhmgKFZ2pEFz9fdFhoXWExHaTYHNSC97M/FfLxRLySa6DDImk9RQSRbBUcqRidGsCTRgihLDJ5Zgopj9HZERVpgY21fJluItV7BKWhdVr1a9uqtVGtd5PUU4gVM4Bw/q0IBbaIIPBBg8wwu8Ok/Om/PufCxWC05+cwx/4Hz+AIDllZg=</latexit>

zN

<latexit sha1_base64="W90BJdE7maAtqsk8Hj/MSLXEDxo=">AAAB/HicbVA9SwNBFHwXv2L8ilraLAbBKtxJQO2CNlYSwUsCyRH2NnvJkt29Y3dPiEf8C7ba24mt/8XWX+ImuUITBx4MM+8xjwkTzrRx3S+nsLK6tr5R3Cxtbe/s7pX3D5o6ThWhPol5rNoh1pQzSX3DDKftRFEsQk5b4eh66rceqNIslvdmnNBA4IFkESPYWMl/7GW3k1654lbdGdAy8XJSgRyNXvm7249JKqg0hGOtO56bmCDDyjDC6aTUTTVNMBnhAe1YKrGgOshmz07QiVX6KIqVHWnQTP19kWGh9ViEdlNgM9SL3lT81wvFQrKJLoKMySQ1VJJ5cJRyZGI0bQL1maLE8LElmChmf0dkiBUmxvZVsqV4ixUsk+ZZ1atVL+9qlfpVXk8RjuAYTsGDc6jDDTTABwIMnuEFXp0n5815dz7mqwUnvzmEP3A+fwBWLpV9</latexit>

Qjt(s, ⌧ , u)

<latexit sha1_base64="8XEpmSHslWI2+VcLUYAj4mJQ9iw=">AAACHXicbZDLSgMxFIYz9VbrrerSTbAUKkiZkYK6K7px2YJthXYYMmnaxiYzQ3JGLMM8gQ/hM7jVtTtxKy59E9PLwrb+EPj4zzmck9+PBNdg299WZmV1bX0ju5nb2t7Z3cvvHzR1GCvKGjQUobrziWaCB6wBHAS7ixQj0hes5Q+vx/XWA1Oah8EtjCLmStIPeI9TAsby8sW6l3SAPQJAcg9pWtKnuONL45E4nWKcnnj5gl22J8LL4MyggGaqefmfTjeksWQBUEG0bjt2BG5CFHAqWJrrxJpFhA5Jn7UNBkQy7SaT76S4aJwu7oXKvADwxP07kRCp9Uj6plMSGOjF2tj8r9aOoXfhJjyIYmABnS7qxQJDiMfZ4C5XjIIYGSBUcXMrpgOiCAWT4NwWX6YmE2cxgWVonpWdSvmyXilUr2bpZNEROkYl5KBzVEU3qIYaiKIn9IJe0Zv1bL1bH9bntDVjzWYO0Zysr18EpKMD</latexit>

Ewagt

<latexit sha1_base64="d5hhoeH2tdym6oqRvyzpAKa41iw=">AAACGHicbVDLSgMxFM34rPU16tLNYBFc1RkpqLuiCC4r2Ae0Zcikt21o5kFyRy1hPsONv+LGhSJuu/NvTB8LbT0Qcjjn3tzcEySCK3Tdb2tpeWV1bT23kd/c2t7Ztff2aypOJYMqi0UsGwFVIHgEVeQooJFIoGEgoB4Mrsd+/QGk4nF0j8ME2iHtRbzLGUUj+fZpK6TYDwJ9k/n60dcthCdEnN6T53UgUsg07WFm4NsFt+hO4CwSb0YKZIaKb49anZilIUTIBFWq6bkJtjWVyJmALN9KFSSUDWgPmoZGNATV1pPJmXNslI7TjaU5EToT9XeHpqFSwzAwleM11Lw3Fv/zmil2L9qaR0mKELHpoG4qHIydcUpOh0tgKIaGUCa5+avD+lRShibLvAnBm195kdTOil6peHlXKpSvZnHkyCE5IifEI+ekTG5JhVQJI8/klbyTD+vFerM+ra9p6ZI16zkgf2CNfgDUoKLO</latexit>

Figure 3: Architecture of DRIMA. Each agent network and true action-value estimator are built based
on IQN and input a quantile of agent-wise risk wagt and environment-wise risk wenv, respectively.
Along with the hierarchical quantile structure and quantile regression, the architecture is capable of
disentangling risk sources explicitly. Further details for each component are provided in Appendix B.

may lead to a suboptimal policy (See section 4 for supporting experimental results); for instance,
they cannot learn agent-wise risk-seeking yet environment-wise risk-averse policy. The fundamental
similarity between distributional RL and optimistic training was also analyzed in fully decentralized
MARL setting with independent learners (Rowland et al., 2021; Lyu & Amato, 2018). They show
that Hysteretic Q-learning (Omidshafiei et al., 2017), which can be described as a fully distributed
version of OW-QMIX, is related to distributional reinforcement learning.

Inspired by this, rather than handling risks in a entangled manner via a single weighting from a
TD-error, we disentangle them via two separate action-value estimators with different roles; (i)
true action-value estimator Zjt(wenv) learns the joint action-value without structural constraints
and captures environment-wise randomness with a risk level wenv, (ii) transformed action-value
estimator Ztran(wagt) learns an action-value guided by the true-action value estimator with satisfying
decentralization into the utility functions and captures agent-wise randomness with a risk level wagt.

3.2 TRAINING OBJECTIVES

The training objective of DRIMA is twofold. First, DRIMA trains the true action-value estimator to
approximate the distributional true action-value estimator Zjt based on the distributional Bellman
operator (Equation 3). Next, the transformed action-value estimator attempts to imitate the behavior
of the true action-value estimator through weights. Unlike the action-value estimator of DMIX,
the true action-value estimator Zjt of DRIMA does not have any structural restrictions such as
monotonicity. Therefore, Zjt can accurately represent only the randomness of the environment. On
the other hand, the transformed action-value estimator Ztran limits its expressive power to satisfy
the decentralization condition (equation 1). Like OW-QMIX, in order for Ztran to accurately track
the optimal action of Zjt, the weighting mechanism according to the sign of the TD-error assigns a
higher weights for optimistic returns. However, we do not use the target y as done in QMIX. Instead,
we use Ewenv

[Zjt(wenv)] to exclude the randomness of the environment in the target.

Loss for the true action-value estimator. The loss Ltd−IQN trains the true action-value estimator
Zjt with consideration of the environment-wise risk. To be specific, the loss is designed based on the
IQN loss derived from Bellman operator (Equation 3) and the Huber quantile loss (Huber, 1964):

Ltd−IQN =
{|wenv − 1δ>0| × 1

2δ
2, if |δ| ≤ 1,

|wenv − 1δ>0| × (|δ| − 1
2), otherwise,

δ = Zjt(s, τ ,u, wenv)− (r + γZtarget
jt (s′, τ ′,u′opt, w

′
env)),

where Ztarget
jt is the target network whose parameters are updated periodically from the original

estimator Zjt. Furthermore, u′opt is the set of actions maximizing the utility functions zi(τ ′i , u
′
i) for

i ∈ N . For the Ltd−IQN, risk-level samples wenv, w
′
env are drawn from a uniform distribution U(0, 1).

Loss for the transformed action-value estimator. We propose Lopt,Lnopt,Lub to encourage the
transformed action-value estimator to track the value of the true action-value estimator while con-
sidering agent-wise risk wagt. The formulation of each loss is given as follows, where we omit the

5

Under review as a conference paper at ICLR 2022

common function arguments (s, τ) for presentational simplicity:

Lopt =
(
Ztran(uopt, wagt)−Qjt(uopt)

)2
,

Lnopt =
{
(Ztran(u, wagt)−Qjt(u))

2, if Ztran(u, wagt) ≤ Qjt(u),

2(1− wagt)× (Ztran(u, wagt)−Qjt(u))
2, otherwise,

Lub =
{
(Ztran(u, wagt)−Qub(u))

2, if Ztran(u, wagt) ≥ Qub(u),

0, otherwise,

Qjt(u) = Ewenv
[Zjt(u, wenv)], Qub(u) = max(Qjt(u), Qjt(uopt)),

where uopt is an “optimal” action maximizing the utility function z(wagt)i for i ∈ N . In the
subsequent paragraphs, detailed descriptions for each loss is provided.

Firstly, for optimal actions, Lopt encourages the transformed action-value estimator Ztran to follow
the value of the true action-value estimator Qjt. We can adjust the environment-wise risk sensitivity
according to how we calculate the expected value Qjt from the distributional true action-value
estimator Zjt. If the expectation is calculated by sampling wenv from a uniform distribution U(0, 1),
the agents learn a risk-neutral policy for the environment-wise randomness. By changing this sampling
distribution, we can learn the optimal policy for the desired environment-wise risk-sensitivity. For
example, if we learn Qtran for Qjt = Ewenv

[Zjt(wenv)] calculated by sampling wenv from a uniform
distribution U(0, 0.25), agents take environment-wise risk-averse behaviors.

Secondly, for non-optimal actions, Lnopt aims to make Ztran, which has a lower representational
power, follow the true action-value estimator Qjt efficiently, utilizing agent-wise risk level as a
weight. If the value of Qjt is greater than the value of the transformed action-value estimator Ztran,
then this is an optimistic sample where the corresponding action is likely to be the optimal action, so
the transformed action-value estimator follows the true action-value estimator exactly. Conversely,
for a relatively small true action-value, we softly ignore it and follow the true action-value estimator
through a small weight whose value depends on the agent-wise risk level wagt.

Finally, we add a loss function Lub which makes an upper bound condition for Ztran for numerical
stability because only the lower bound of Ztran exists in the Lnopt when wagt = 1. By combining
our loss functions Lopt,Lnopt,Lub , we obtain the following objective which is minimized in an
end-to-end manner to train the true and the transformed action-value estimators:

L = Ltd−IQN + λoptLopt + λnoptLnopt + λubLub
where λopt, λnopt, λub > 0 are hyperparameters controlling the importance of each loss function. The
training algorithm of DRIMA is provided in Appendix A.

3.3 NETWORK ARCHITECTURES

Here, we introduce our architectures for the action-value estimators. First, we construct the estima-
tors using the utility functions z1(wagt), . . . , zN (wagt) with agent-wise risk level wagt. Our main
contribution in designing the estimators is twofold: (i) using IQN (Dabney et al., 2018a) for the true
action-value estimator Zjt(wenv) with environment-wise risk level wenv and (ii) using a monotonic
mixing network for the transformed action-value estimators Ztran with agent-wise risk level wagt.

Agent-wise utility function zi. In a partially observable setting, agents can learn better policies
by using their action-observation history τi instead of their current observation. We represent each
agent-wise utility function as a DRQN (Hausknecht & Stone, 2015) that receives action-observation
history as input and outputs zi for each action and wagt. The utility functions do not estimate the
action-value, but aim to accurately extract the optimal action from the joint action-value.

True action-value estimator Zjt. The estimator Zjt aims to express distributions with additional
representation power; note that the transformed action-value estimator has limited power due to the
decentralization condition (equation 1) (Rashid et al., 2018). For the true action-value estimator, we
employ a feed-forward network that takes the state s and set of utility functions zi for i ∈ N . Since
we use z averaged over multiple wagt samples, the feed forward network is not conditioned on wagt.
To apply IQN for the true action-value estimator, we use an additional network φ that computes an
embedding φ(wenv) for the sample point wenv. We calculate the embedding of wenv with cosine basis
functions and utilize element-wise (Hadamard) product, as done in the IQN paper.

6

Under review as a conference paper at ICLR 2022

Table 1: Payoff matrix of the two-step game. N (µ, σ2) denotes the normal distribution with a mean
of µ and a variance of σ2. For the first step, agent-wise risk-seeking (cooperation) is crucial because
the optimal action is (A,A) but taking action A is very risky because when the teammate chooses to
be non-cooperative (i.e., by selecting action B or C), a catastrophic reward of -12 is provided. In the
second step, handling environment-wise risks is highlighted since there are various combinations of
mean and variance depending on joint actions, i.e., N (−1, 10) for the action (C,C) and N (−1, 0)
for the action (B,B).

u1

u2 A B C

A N (8, 0) N (−12, 0) N (−12, 0)
B N (−12, 0) N (0, 0) N (0, 0)
C N (−12, 0) N (0, 0) N (0, 0)

(a) Payoff in the first step.

u1

u2 A B C

A N (1, 5) N (0, 5) N (0, 5)
B N (0, 5) N (−1, 0) N (−1, 5)
C N (0, 5) N (−1, 5) N (−1, 10)

(b) Payoff in the second step.

Table 2: Test rewards and trained policy in the stochastic two-step matrix game for DRIMA, DMIX,
and OW-QMIX with varying risk-sensitivity across twelve random seeds.

ALGORITHM RISK SENSITIVITY TEST REWARD 1ST STEP 2ND STEP

AGENT ENV. MIN MEAN MAX u1 u2 u1 u2

DRIMA NEUTRAL AVERSE -1.00 -1.00 -1.00 B OR C B OR C B B
NEUTRAL NEUTRAL -1.28 0.89 4.13 B OR C B OR C A A
NEUTRAL SEEKING -6.65 2.34 10.99 B OR C B OR C C C
SEEKING AVERSE 7.00 7.00 7.00 A A B B
SEEKING NEUTRAL 6.03 8.98 11.07 A A A A
SEEKING SEEKING 2.78 5.50 13.01 A A C C

DMIX AVERSE -1.00 -1.00 -1.00 B OR C B OR C B B
NEUTRAL -2.66 0.89 2.94 B OR C B OR C A A
SEEKING 1.89 6.96 12.81 A A C C

OW-QMIX NEUTRAL -3.04 0.63 2.98 B OR C B OR C A A
SEEKING 1.95 6.94 12.87 A A C C

Transformed action-value estimator Ztran. The architecture of the transformed action-value esti-
mator is largely the same as the mixing network of Rashid et al. (2018). The transformed action-value
estimator is expressed as follows:

Ztran(s, τ ,u, wagt) = fmix
(
z1(τ1, u1, wagt), . . . , zN (τN , uN , wagt); θtran(s, wagt)

)
,

where θtran(s, wagt) is a non-negative parameter obtained from state-dependent hypernetwork (Ha
et al., 2017). A more detailed discussion is available in Appendix D.

4 STOCHASTIC TWO-STEP MATRIX GAME

Setup. In this section, to showcase that DRIMA is indeed able to disentangle risks, we conduct
experiments in a stochastic two-step matrix game which is a diagnostic illustrative environment
widely used in the MARL community (Rashid et al., 2018; Son et al., 2019; Sun et al., 2021). In this
game, two agents play a two-step matrix game where they select one action in {A,B,C} and receive
the shared global reward by a payoff matrix which should be maximized. As shown in Table 1, our
matrix game is modified from the matrix game employed by Son et al. (2019) in order to compare
the capability of different methods in handling risks. In particular, the first and the second steps are
designed to assess whether an algorithm is able to handle agent-wise and environment-wise risks,
respectively. Depending on the preference of a practitioner (i.e., environment-wise risk-seeking or
risk-neutral), the proper policy must be learned. We compare DRIMA, DMIX (Sun et al., 2021) and
OW-QMIX (Rashid et al., 2020a) with varying risk-sensitivity, conducted over 50k steps. We employ
a full exploration scheme (i.e., ε = 1 in ε-greedy) so that all available states will be visited.

Analysis. As shown in Table 2, we observe that DRIMA is able to represent diverse type of risk-
sensitive policies. To be specific, agent-wise risk-seeking DRIMA selects action A which requires
strong cooperation of a teammate in the first step, while agent-wise risk-neutral DRIMA selects

7

Under review as a conference paper at ICLR 2022

B or C because it takes into consideration the noncooperation of a teammate. One can find the
effectiveness of environment-wise risk-sensitivity via DRIMA from the variance of the test reward.
Specifically, since there exist large variations in payoffs at the second step, environment-wise risk-
seeking DRIMA decides to take risky actions like (C,C) so that it results to high variance in the test
reward. On the other hand, environment-wise risk-averse DRIMA shows low variance in the test
reward because it takes conservative actions like (B,B).

Whereas, DMIX and OW-QMIX have limited capability in adjusting risk-sensitivity. We observe
that changing risk-sensitivity in DMIX and OW-QMIX affect agent-wise and environment-wise risks
simultaneously. Namely, risk-seeking adjustment makes both agent-wise and environment-wise risk
sensitivity become seeking. Therefore, DMIX and OW-QMIX may produce a suboptimal policy in
environments which require different sensitivity for each risk source; note that agent-wise risk-seeking
and environment-wise risk-neutral policies have the highest mean reward.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Environments. We mainly evaluate our method on the Starcraft Multi-Agent Challenge (SMAC)
environment (Samvelyan et al., 2019). In this environment, each agent is a unit participating in
combat against enemy units controlled by handcrafted policies. In the environment, agents receive
individual local observation containing distance, relative location, health, shield, and unit type of
other allied and enemy units within their sight range. The SMAC environment additionally assumes
that a global state is available during the training of the agents. To be specific, the global state contains
information on all agents participating in the scenario. We select four representative scenarios which
are diversified with respect to (i) desirable tactics and (ii) level of difficulty: 5m_vs_6m, 3s_vs_5z,
8m_vs_9m, and MMM2. For (i), in 5m_vs_6m and 8m_vs_9m, focusing fire is a plausible strategy;
meanwhile, kiting is fruitful for 3s_vs_5z. For (ii), we select MMM2 since it has heterogeneous
agents which makes it more difficult to handle them compared to when handling homogeneous ones.
Appendix D contains additional experimental details.

Increased exploration and rewarding mechanisms. To further verify the effectiveness of disen-
tangling risks, we additionally consider more difficult types of scenarios with differing exploration
schedules and distinct mechanisms of reward functions. We refer to these three different types of
scenarios as v1, v2 (increased exploration), and v3 (increased exploration and negative rewards),
respectively. Details are as follows: v1: This is the same environment which is used in Rashid et al.
(2018). v2: This is a modified version of v1 where the exploration annealing schedule is changed
from "50k" to "500k" time steps following setups in Rashid et al. (2020a). v3: This has increased
exploration as v2 and a different reward shaping; the reward is determined not only by the enemy
units’ health (positive) but also by damages dealt by our agents (negative). Interestingly, in increased
exploration (v2 and v3), it is likely to obtain more non-cooperative behaviors from teammates. This
represents the importance of considering agent-wise risk explicitly. In v3 where negative reward
exists, if risks are not disentangled well, units are induced to have a “selfish” behavior (e.g., running
away) in order to avoid being damaged.

Evaluation. We run 32 test episodes without an exploration factor for every 4 ∗ 104-th time step.
The percentage of episodes where the agents defeat all enemy units, i.e., test win rate, is reported as
the performance metric of the algorithms. We report the median performance with shaded 25-75%
confidence intervals with four random seeds. For visual clarity, we smooth all the curves by moving
average filter with a window size of 4.

5.2 RESULTS

Comparisons to baselines. We evaluate DRIMA compared to the eight baselines, including non-
distributional (i.e., VDN, QMIX, QTRAN, QPLEX, OW-QMIX, and CW-QMIX) and distributional
CTDE methods (i.e., DDN and DMIX). In Figure 2, we present the aggregated result which is the
median test win rate averaged across all 12 scenarios (i.e., 4 Maps with 3 different versions) in
our experiments. Along with Figure 4, which shows performance on each scenario, one can find
that DRIMA achieves the state-of-the-art performance both sample-efficiently and asymptotically,
while the second-best method varies for each scenario. For relatively easy tasks such as 5m_vs_6m,

8

Under review as a conference paper at ICLR 2022

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

DRIMA VDN QMIX QTRAN QPLEX OW-QMIX CW-QMIX DDN DMIX

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8
B

at
tle

 w
on

 m
ea

n

(a) 5m_vs_6m-v1

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(b) 3s_vs_5z-v1

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(c) 8m_vs_9m-v1

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(d) MMM2-v1

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

B
at

tle
 w

on
 m

ea
n

(e) 5m_vs_6m-v2

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(f) 3s_vs_5z-v2

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(g) 8m_vs_9m-v2

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(h) MMM2-v2

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

B
at

tle
 w

on
 m

ea
n

(i) 5m_vs_6m-v3

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(j) 3s_vs_5z-v3

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(k) 8m_vs_9m-v3

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(l) MMM2-v3

Figure 4: Median test win rate with 25%-75% percentile over four random seeds, comparing DRIMA
with eight baselines.

3s_vs_5z, and 8m_vs_9m, we set (agent-wise risk-sensitivity, environment-wise risk-sensitivity) to
(seeking, neutral). For a hard task like MMM2, we set to (seeking, seeking). The rationale of this
setting is that for easy tasks, considering environment-wise risks does not crucially affect the search
for the optimal strategy, but for hard tasks which require extensive exploration, it is much beneficial
to consider environmental risks; environment-wise risk-averse behavior is likely to avoid dangerous
actions, which makes the agents less explorative.

Notably, as shown in Figure 4e-4l, DRIMA obtains significant gains in v2 and v3 , where separating
agent-wise risk and environment-wise risk is critical; it is likely to reach a suboptimal equilibrium
(i.e., selecting actions of running away) if risk sources are not disentangled in such environments.
These results highlight the empirical effectiveness of our disentangling scheme.

Moreover, DRIMA shows consistent superiority regardless of difficulty and desirable tactics. Intrigu-
ingly, in relatively easier tasks (i.e., 5m_vs_6m), simple methods such as VDN show better results
than more complex methods (i.e., DDN and DMIX3). We understand that a simple structure is more
efficient for learning plausible strategies in such easy tasks. However, the reason why DRIMA is able
to learn relatively easy tasks despite its sophisticated structure comes from that disentanglement of
risk sources which makes useful learning signals for conquering easy tasks efficiently. We provide
additional ablative studies and experiments on more various maps in Appendix F.

6 CONCLUSION

In this paper, we present DRIMA, a new distributional MARL framework that disentangles agent-
wise risks and environment-wise risks in order to obtain optimal policies efficiently. Our main
idea is to use disentangled risk sources along with the proposed hierarchical quantile structure and
quantile regression. Through extensive experiments, we show that DRIMA achieves state-of-the-art
performance thanks to the disentanglement of risk sources. We believe that DRIMA would guide a
new interesting direction in the MARL community.

3In the original paper of DDN and DMIX (Sun et al., 2021), the results of 5m_vs_6m, 3s_vs_5z, and
8m_vs_9m were not reported.

9

Under review as a conference paper at ICLR 2022

ETHICS STATEMENT

Cooperative MARL has potential real-world applications such as robot swarms (Huttenrauch et al.,
2017), autonomous driving (Shalev-Shwartz et al., 2016), and sensor networks (Zhang & Lesser,
2011). However, there could be possible negative impacts if a malicious user designs a reward shaping
that harms humans and society. For this reason, it is important to deeply consider the consequences
of the agents’ behaviors before releasing developed algorithms in the real world.

We have proposed a method that applies distributional reinforcement learning to CTDE algorithms.
Our methods require additional research in terms of security. When a malicious external agent is
added, there is a risk that our system is easily broken. Therefore, learning robust multi-agent systems
against adversarial agents is an interesting future direction of research.

REPRODUCIBILITY STATEMENT

One can find our reproducible code in the supplementary materials. All the used packages are along
with the code. We remark that codebases of DRIMA and baselines including VDN, QMIX, QTRAN,
OW-QMIX, CW-QMIX, DDN, and DMIX are based on the GitHub code of PyMARL4. As an
evaluation benchmark, we employ StarCraft Multi-Agent Challenge (SMAC)5 of which StarCraft
version is SC2.4.6.2.69232. In our experiments, we use a single GPU (NVIDIA TITAN Xp) and 8
CPU cores (Intel Xeon E5-2630 v4).

REFERENCES

Bowen Baker. Emergent reciprocity and team formation from randomized uncertain social preferences.
arXiv preprint arXiv:2011.05373, 2020.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In Proceedings of ICML, pp. 449–458. PMLR, 2017.

Yinlam Chow and Mohammad Ghavamzadeh. Algorithms for cvar optimization in mdps. In
Proceedings of the 27th International Conference on Neural Information Processing Systems-
Volume 2, pp. 3509–3517, 2014.

Felipe Leno Da Silva, Anna Helena Reali Costa, and Peter Stone. Distributional reinforcement
learning applied to robot soccer simulation. In Adapative and Learning Agents Workshop, AAMAS,
2019.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In Proceedings of ICML, pp. 1096–1105. PMLR, 2018a.

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018b.

Yali Du, Lei Han, Meng Fang, Ji Liu, Tianhong Dai, and Dacheng Tao. Liir: Learning individual
intrinsic reward in multi-agent reinforcement learning. In Proceedings of NeurIPS, 2019.

Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of AAAI, 2018.

David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks. In Proceedings of ICLR, 2017.

Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In
Proceedings of AAAI Fall Symposium Series, 2015.

Peter J Huber. Robust estimation of a location parameter. The Annals of Mathematical Statistics, pp.
73–101, 1964.
4https://github.com/oxwhirl/pymarl
5https://github.com/oxwhirl/smac

10

Under review as a conference paper at ICLR 2022

Maximilian Huttenrauch, Adrian Sosic, and Gerhard Neumann. Learning complex swarm behaviors
by exploiting local communication protocols with deep reinforcement learning. arxiv preprint
arXiv:1709.07224, 2017.

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In Proceedings
of ICML, 2019.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arxiv
preprint arXiv:1509.02971, 2015.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Abbeel Pieter, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. In Proceedings of NeurIPS, pp. 6379–6390,
2017.

Xueguang Lyu and Christopher Amato. Likelihood quantile networks for coordinating multi-agent
reinforcement learning. arXiv preprint arXiv:1812.06319, 2018.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. In Proceedings of NeurIPS, 2019.

Laëtitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Hysteretic q-learning: an algorithm
for decentralized reinforcement learning in cooperative multi-agent teams. In 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 64–69. IEEE, 2007.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P. How, and John Vian. Deep
decentralized multi-task multi-agent reinforcement learning under partial observability. arxiv
preprint arXiv:1703.06182, 2017.

Liviu Panait, Keith Sullivan, and Sean Luke. Lenient learners in cooperative multiagent systems. In
Proceedings of the 5th AAMAS, pp. 801–803, 2006.

Liviu Panait, Karl Tuyls, and Sean Luke. Theoretical advantages of lenient learners: An evolutionary
game theoretic perspective. The Journal of Machine Learning Research, 9:423–457, 2008.

Wei Qiu, Xinrun Wang, Runsheng Yu, Xu He, Rundong Wang, Bo An, Svetlana Obraztsova, and
Zinovi Rabinovich. Rmix: Learning risk-sensitive policies for cooperative reinforcement learning
agents. arXiv preprint arXiv:2102.08159, 2021.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shi-
mon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement
learning. In Proceedings of ICML, pp. 4295–4304. PMLR, 2018.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation. arXiv preprint arXiv:2006.10800, 2020a.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. arXiv preprint arXiv:2003.08839, 2020b.

Mark Rowland, Shayegan Omidshafiei, Daniel Hennes, Will Dabney, Andrew Jaegle, Paul Muller,
Julien Pérolat, and Karl Tuyls. Temporal difference and return optimism in cooperative multi-agent
reinforcement learning. In AAMAS ALA Workshop, 2021.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The star-
craft multi-agent challenge. In Proceedings of AAMAS. International Foundation for Autonomous
Agents and Multiagent Systems, 2019.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

11

Under review as a conference paper at ICLR 2022

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement learning. In Proceedings
of ICML, 2019.

Wei-Fang Sun, Cheng-Kuang Lee, and Chun-Yi Lee. Dfac framework: Factorizing the value function
via quantile mixture for multi-agent distributional q-learning. In Proceedings of ICML, 2021.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning based on team reward. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pp. 2085–2087, 2018.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020a.

Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. Multi-agent reinforcement learning
with emergent roles. arXiv preprint arXiv:2003.08039, 2020b.

Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. {DOP}: Off-policy
multi-agent decomposed policy gradients. In International Conference on Learning Representa-
tions, 2021.

Ermo Wei and Sean Luke. Lenient learning in independent-learner stochastic cooperative games. The
Journal of Machine Learning Research, 17(1):2914–2955, 2016.

Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao Tang.
Qatten: A general framework for cooperative multiagent reinforcement learning. arXiv preprint
arXiv:2002.03939, 2020.

Chongjie Zhang and Victor Lesser. Coordinated multi-agent reinforcement learning in networked
distributed pomdps. In Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

12

Under review as a conference paper at ICLR 2022

A DRIMA TRAINING ALGORITHM

The training algorithm for DRIMA is provided in Algorithm 1

Algorithm 1 DRIMA algorithm

1: Initialize replay memory B ← ∅ and target parameters θ− ← θ
2: for episode = 1 to M do
3: Observe initial state s0 and observation o0 = [O(s0, i)]Ni=1 for each agent i
4: for t = 1 to T do
5: With probability ε, each agent i select an random action uti
6: Otherwise, set uti = argmaxut

i
zi(τ

t
i , u

t
i, wagt) for each agent i based on our agent-wise

risk-sensitivity wagt.
7: Take action ut, and retrieve next state, observation and reward (st+1,ot+1, rt)
8: Store transition (st, τ t+1,ut, rt, st+1, τ t+1) in B
9: Sample a transition (s, τ ,u, r, s′, τ ′) from B

10: Sample environment-wise risk levels wenv, w
′
env uniformly from U(0, 1)

11: Compute loss Ltd−IQN for true action-value estimator from Section 3.2
12: Sample environment-wise risk levels wenv based on our environment-wise risk-sensitivity
13: Sample agent-wise risk levels wagt uniformly
14: Compute loss Lopt,Lnopt, and Lub for transformed action-value estimator from Section 3.2
15: Update θ by minimizing the losses
16: Update target network parameters θ− ← θ with period I
17: end for
18: end for

13

Under review as a conference paper at ICLR 2022

B DETAILED ARCHITECTURAL ILLUSTRATION

In this section, we provide detailed illustration for our architectural components: (i) agent-wise utility
function, (ii) true action-value estimator, and (iii) transformed action-value estimator.Appendix figure

GRUMLP

MLP

MLP MLP

Hypernetwork
Figure 5: Agent-wise utility function. φ : [0, 1] → Rd denotes a quantile embedding function
(Dabney et al., 2018a)

Appendix figure

MLP

cos

MLP

Hypernetwork

Figure 6: True action-value estimator. φ : [0, 1] → Rd denotes a quantile embedding function
(Dabney et al., 2018a).

Appendix figure

GRUMLP

MLP

MLP MLP

Hypernetwork

Figure 7: Transformed action-value estimator. | · | is employed to enforce monotonicity constraint
(Rashid et al., 2018).

14

Under review as a conference paper at ICLR 2022

C RELATED WORK

C.1 CENTRALIZED TRAINING WITH DECENTRALIZED EXECUTION

Centralized training with decentralized execution (CTDE) has emerged as a popular paradigm under
the multi-agent reinforcement learning framework. It assumes the complete state information to be
fully accessible during training, while individual policies allow decentralization during execution. To
train agents under the CTDE paradigm, both policy-based (Foerster et al., 2018; Lowe et al., 2017; Du
et al., 2019; Iqbal & Sha, 2019; Wang et al., 2020b; 2021) and value-based methods (Sunehag et al.,
2018; Rashid et al., 2018; Son et al., 2019; Yang et al., 2020; Sun et al., 2021) have been proposed.
At a high level, the policy-based methods rely on the actor-critic framework with independent actors
to achieve decentralized execution. On the other hand, the value-based methods attempt to learn a
joint action-value estimator, which can be cleverly decomposed into individual agent-wise utility
functions.

Among the policy-based methods, COMA (Foerster et al., 2018) trains individual policies with a joint
critic and solves the credit assignment problem by estimating a counterfactual baseline. MADDPG
(Lowe et al., 2017) extends the DDPG (Lillicrap et al., 2015) algorithm to learn individual policies
in a centralized manner on both cooperative and competitive games. MAAC (Iqbal & Sha, 2019)
includes an attention mechanism in critics to improve scalability. LIIR (Du et al., 2019) introduces a
meta-gradient algorithm to learn individual intrinsic rewards to solve the credit assignment problem.
ROMA (Wang et al., 2020b) proposes a role-oriented framework to learn roles via deep RL with
regularizers and role-conditioned policies. Finally, DOP (Wang et al., 2021) proposes factorized critic
for multi-agent policy gradients.

Among the value-based methods, value-decomposition networks (VDN, Sunehag et al. 2018) learns
a centralized yet factored joint action-value estimator by representing the joint action-value estimator
as a sum of individual agent-wise utility functions. QMIX (Rashid et al., 2018) extends VDN
by employing a mixing network to express a non-linear monotonic relationship among individual
agent-wise utility functions in the joint action-value estimator. Qatten (Yang et al., 2020) introduces
a multi-head attention mechanism for approximating the decomposition of the joint action-value
estimator, which is based on theoretical findings. However, our method satisfies both theoretical
guarantees and practical performance.

QTRAN (Son et al., 2019) has been proposed to eliminate the monotonic assumption on the joint
action-value estimator in QMIX (Rashid et al., 2018). Instead of directly decomposing the joint
action-value estimator into utility functions, QTRAN proposes a training objective that enforces the
decentralization of the joint action-value estimator into the summation of individual utility functions.
However, recent studies have found that despite its promise, QTRAN performs empirically worse
than QMIX in complex MARL environments (Samvelyan et al., 2019; Rashid et al., 2020b).

One can find connections between DRIMA and QTRAN (Son et al., 2019), but DRIMA has a
larger capacity to represent risk-sensitive policies. As for QTRAN, let’s say wagt = 1 in DRIMA,
then our loss functions Lopt and Lnopt become similar to QTRAN. However, DRIMA is capable
of representing a wider range of risk-sensitive policies. For example, if the agent-wise risk level
wagt is 0.5, both Lnopt and Lopt follow the true action-value without weighting, which is agent-wise
risk-neutral. This cannot be represented by QTRAN.

Recently, several other methods have been proposed to solve the limitations of QMIX. QPLEX (Wang
et al., 2020a) takes a duplex dueling network architecture to factorize the joint value function. Unlike
QTRAN, QPLEX learns using only one joint action-value network and a single loss function. Since
they learn only a single estimator, it is impossible to learn agent-wise randomness and environment-
wise randomness separately by applying distributional reinforcement learning as in our method.
Also, Rashid et al. (2020a) proposed CW-QMIX and OW-QMIX, which use a weighted projection
that allows more emphasis to be placed on better joint actions. Their methods apply weights to
loss according to the sign of the TD-error for each sample, and it is theoretically guaranteed that
the optimal policy can be learned for decentralizable tasks. However, whereas DRIMA learns the
randomness of the environment using the weights from the TD-error, CW-QMIX and OW-QMIX
only aim to consider the randomness of chosen actions. For this reason, they do not consider the
distribution of the TD-error caused by the transition probability or the randomness of the reward in
training, and it is not guaranteed that they can learn the optimal policy in stochastic environments.

15

Under review as a conference paper at ICLR 2022

On the other hand, the true action-value estimator of DRIMA learns only the randomness of the
environment, and the transformed action-value estimator learns through the estimated true action-
value, not the TD-target. Therefore, DRIMA completely separates the randomness of the environment
and the randomness of the action in training.

16

Under review as a conference paper at ICLR 2022

C.2 DISTRIBUTIONAL REINFORCEMENT LEARNING

Instead of training a scalar state-action estimator, distributional reinforcement learning focuses on
representing a distribution over returns. Empirically, distributional reinforcement learning improves
sample efficiency and performance.

A number of distributional reinforcement learning methods are proposed in a single-agent domain.
Bellemare et al. (2017) proposed C51, which parameterizes the return distribution as a categorical
distribution over a fixed set of equidistant points. In Dabney et al. (2018b), QR-DQN is proposed to
estimate the distributions with a uniform mixture of N diracs and quantile regression. By estimating
the quantile function with quantile regression, which has been shown to converge to the true quantile
function, QR-DQN minimizes the Wasserstein distance to the distributional target. This estimation
has been shown to converge to the true quantile function.

Implicit quantile Networks (IQN) (Dabney et al., 2018b) provides a way to learn an implicit repre-
sentation of distributions by reparameterizing samples from base samples, typically ω ∼ U(0, 1). It
learns a quantile function that maps from embeddings of sample probabilities to the corresponding
quantiles, called implicit quantile networks. The quantiles are trained by Huber quantile regression
loss (Huber, 1964).

Recently, distributional RL has also been applied to CTDE regime (Qiu et al., 2021; Sun et al., 2021),
but they lack disentanglement of risk sources. RMIX (Qiu et al., 2021) and DFAC (Sun et al., 2021)
showed promising results by extending agent-wise utility functions from deterministic variables to
random variables. RMIX demonstrates the effectiveness of risk-sensitive MARL via distributional
RL, but it is limited since they cannot represent policies, which have different risk levels relying on
sources (i.e., agent-wise risk-seeking yet environment-wise risk-averse policies). DFAC is another
distributional MARL framework with proposed mean-shape decomposition while employing IQN
network for agent-wise utility function, but they only showcase risk-neutral policies. Da Silva et al.
(2019) and Lyu & Amato (2018) have applied distributional learning in fully decentralized cases,
not CTDE methods. Finally, Rowland et al. (2021) and Baker (2020) propose a method to learn
cooperation using optimism in a fully distributed setting instead of CTDE.

17

Under review as a conference paper at ICLR 2022

C.3 A FURTHER COMPARISON BETWEEN DRIMA AND OW-QMIX IN RISK-SENSITIVITY

In this section, we provide further backgrounds to understand why DRIMA is capable of disentangling
agent-wise and environment-wise risks while OW-QMIX (Rashid et al., 2020a) cannot.

Before that, note that the risk-sensitivity is not mentioned explicitly in the original OW-QMIX paper,
but we find that OW-QMIX can be viewed as an optimistic (agent-wise risk-seeking) algorithm due to
its tight connection to hysterical Q-learning (Matignon et al., 2007; Omidshafiei et al., 2017), which
study agent-wise optimism in the fully distributed MARL. In detail, one can find the connection from
the loss function of hysterical Q-learning as follows:

Lhys−Q,i(τ, u) = wi(τ, u)(qi(τi, ui)− yi)2, i ∈ N
yi = r + γq

target
i (τi

′, argmax
u′
i

qi(τ
′
i , u
′
i)),

w(s,u) =

{
αhys−Q, if qi(τi, ui) ≤ yi,
βhys−Q, otherwise,

,

(4)

where the parameters αhys−Q > βhys−Q > 0 are typically viewed as learning rate parameters, but here
we equivalently view them as part of the loss. qtargeti is the fixed target network whose parameters are
updated periodically from qi. Unlike single-agent RL in a stationary environment, learned policies
change through adjustment of the weights (agent-wise risk level) in MARL (Panait et al., 2006; 2008).

As with fully distributed settings, the idea of optimism is also applicable to value factorization
methods such as QMIX (Rashid et al., 2018). QMIX is unable to represent joint action-value
functions that are characterized as non-monotonic (Mahajan et al., 2019; Son et al., 2019), i.e., an
agent’s action-value ordering over its own actions depends on other agents’ actions. To solve this
problem, Rashid et al. (2020a) proposes Optimistically-Weighted QMIX (OW-QMIX) which assigns
a higher weighting to those joint actions that are underestimated, and hence could be the true optimal
actions in an optimistic (agent-wise risk-seeking) outlook, as follows:

LOW−QMIX(s, τ ,u) = w(s,u)(Qtran(s, τ ,u)− y)2,
y = r + γQ

target
jt (s′, τ ′,u′opt),

w(s,u) =

{
1, if Qtran(s, τ ,u) ≤ y,
α, otherwise,

,

(5)

where α < 1 is a hyperparameter and Qtarget
jt is the fixed target network whose parameters are

updated periodically from the original unconstrained true action-value estimator Qjt. They sample
(s, u, r, s′), a tuple of experience transitions from a replay buffer and u′opt is the “optimal” action
maximizing the utility functions qi(τ ′i , u

′
i) for i ∈ N . One can find the loss function of hysterical Q-

learning (Equation 4) and OW-QMIX (Equation 5) are similar, so that OW-QMIX can be understood
as agent-wise optimistic algorithm like hysterical Q-learning.

To investigate similarities and differences between DRIMA and OW-QMIX to handle risk-sensitivity,
we employ an one-step single-state matrix game. In this game, there is only one state, and all
episodes finish after a single time-step. We find a connection between the DRIMA and OW-QMIX
via following proposition:

Proposition 1. Consider an deterministic-reward environment with a single state that terminated
immediately. Then the loss Lnopt of DRIMA with parameters wagt is equivalent to the Weighted
QMIX with α = 2 ∗ (1− wagt).

Proof. In the simple one-step matrix game, the loss for Weighted QMIX reduces to

LOW−QMIX(s, τ ,u) = w(s,u)(Qtran(s, τ ,u)− r)2,

w(s,u) =

{
1, if Qtran(s, τ ,u) ≤ r,
α, otherwise,

,
(6)

since there is no next state to bootstrap from. In DRIMA, Zjt estimates a deterministic value
independent of wenv for the deterministic-reward environment. Then the loss Lnopt of DRIMA

18

Under review as a conference paper at ICLR 2022

reduces to

Lnopt(s, τ ,u) = w(s,u)(Ztran(s, τ ,u, wagt)−QDRIMA
jt (s, τ ,u))2,

QDRIMA
jt (s, τ ,u) = Ewenv

[Zjt(s, τ ,u, wenv)] ≈ Ewenv
[r] = r,

w(s,u) =

{
1, if Ztran(s, τ ,u, wagt) ≤ QDRIMA

jt (s, τ ,u),

2 ∗ (1− wagt), otherwise.
,

(7)

Now observe that if α = 2 ∗ (1 − wagt) and Ztran is sufficiently trained, then two equations are
equal.

This proposition says that DRIMA and OW-QMIX become equivalent in an deterministic-reward
environment. However, if the environment is highly stochastic, then optimistic algorithms can induce
misplaced optimism towards uncontrollable environment dynamics, leading to sub-optimal behavior.
The optimistic MARL approaches ignore low returns, which are assumed to be caused by teammates’
exploratory actions. This causes severe overestimation of action-values in stochastic domains (Wei &
Luke, 2016; Rowland et al., 2021). Since reward and next state in the TD-target y in Weighted QMIX
include randomness of the environment, agent-wise risk cannot be extracted separately enough from
the sign of the TD-error. Therefore, in DRIMA, we do not use the target y as done in Weighted QMIX.
Instead, we use Ewenv

[Zjt(wenv)] to exclude the randomness of the environment in the target. The true
action-value estimator Zjt of DRIMA does not have any structural restrictions such as monotonicity
in value factorization methods. Therefore, Zjt can accurately represent only the randomness of the
environment.

19

Under review as a conference paper at ICLR 2022

D EXPERIMENTAL DETAILS

The hyperparameters of training and testing configurations for VDN, QMIX, and QTRAN are the
same as in the recent GitHub code of SMAC 6 (Samvelyan et al., 2019) and PyMARL 7 with
StarCraft version SC2.4.6.2.69232 The architecture of all agents’ policy networks is a deep recurrent
Q-network (Hausknecht & Stone, 2015) consisting of two 64-dimensional fully connected layers
and one 64-dimensional GRU. The mixing networks consist of a single hidden layer with 32 hidden
widths and ELU activation functions. Hypernetworks consists of two layers with 64 hidden widths
and ReLU activation functions. Also, the hyperparameters of WQMIX 8 (Rashid et al., 2020a) and
QPLEX 9 (Wang et al., 2020a) are the same as in their GitHub codes. However, unlike they used a
specific configuration for some environments, such as adding non-linearity for MMM2, we used the
same setting for all environments. Finally, the hyperparameters of DFAC 10 (Sun et al., 2021) are
the same as in their GitHub code. As in their paper, we use 256 hidden layer sizes for DMIX (Sun
et al., 2021) in the MMM2 environment and 512 hidden layer sizes for DDN (Sun et al., 2021) in the
MMM2 environment. For other scenarios, we fix all the hidden layer sizes as 64 for a fair comparison.
There may be slight differences compared to their paper due to differences in StarCraft version.

Like the DFAC paper (Sun et al., 2021), following the optimizer of the IQN (Dabney et al., 2018a),
we used the Adam optimizer. For other methods except for DRIMA and DFAC, according to their
papers, all neural networks are trained using the RMSProp optimizer with a 0.0005 learning rate. We
use ε-greedy action selection with decreasing ε from 1 to 0.05 for exploration, following Samvelyan
et al. (2019). For the discount factor, we set γ = 0.99. The replay buffer stores 5000 episodes at
most, and the mini-batch is 32. Using a Nvidia Titan Xp graphic card, the training time varies from 8
hours to 24 hours for different scenarios.

To apply IQN for the true action-value estimator, we use an additional network, which computes an
embedding φ(wenv) for the sample point wenv. We calculate the embedding of wenv with cosine basis
functions and utilize element-wise (Hadamard) product, instead of a simple vector concatenation, for
merging function as in IQN paper. The element-wise product forces a sufficiently early interaction
between the two representations. The only difference is that because we use mixing networks rather
than DQN, the hidden layer of the mixing network, not the convolution features, is multiplied by the
embedded sample point to force interaction between the features and the embedded sample point.

For the loss function Lub, we fixed the value only for the threshold Q̂jt(s, τ ,uopt) of the clipping
function that receives optimal actions as input. To combine our loss functions, we obtain the following
objective, which is minimized in an end-to-end manner to train the true action-value estimator and
the transformed action-value estimator:

L = Ltd + λoptLopt + λnoptLnopt + λubLub
where λopt, λnopt > 0 are hyperparameters controlling the importance of each loss function. We set
λopt = 3 and λnopt, λub = 1.

As for the loss, the calculation of Ltd was performed for multiple samples at the same time as in
IQN. We simply set the number of samples Nenv for wenv and N ′env = 8 for w′env. Also, for the
losses for the transformed action-value estimator, the expected value of true action-value estimator
Qjt(u) = Ewenv

[Zjt(u, wenv)] was obtained with Kenv = 8 samples. For the IQN (Dabney et al.,
2018a) architecture, we use cosine basis functions with an embedding size of 64, ReLU nonlinearity,
and multiplicative interaction according to their paper. For environment-wise risk-sensitivity, we
used sampled wenv from U(0, 0.25) as risk-averse, and U(0.75, 1.0) as risk-seeking,

For agent-wise risk, we don’t need to learn Ztran values for all possible wagt because, unlike Ztarget
jt ,

the value distribution of Ztran is not used for the target in loss functions. Therefore, for simplicity of
implementation, we sample a fixed set of wagt with intervals of 0.1 from 0.1 to 1. In the execution
phase, we select optimal action based on our agent-wise risk-sensitivity wagt. For the agent-wise
risk-sensitivity, we used wagt = 0.5 as risk-neutral, wagt = 1.0 as risk-seeking, and wagt = 0.1 as
risk-averse.

6https://github.com/oxwhirl/smac
7https://github.com/oxwhirl/pymarl
8https://github.com/oxwhirl/wqmix
9https://github.com/wjh720/QPLEX

10https://github.com/j3soon/dfac

20

https://github.com/oxwhirl/smac
https://github.com/oxwhirl/pymarl
https://github.com/oxwhirl/wqmix
https://github.com/wjh720/QPLEX
https://github.com/j3soon/dfac

Under review as a conference paper at ICLR 2022

E ADDITIONAL EXPERIMENTS ON THE STOCHASTIC TWO-STEP GAME

E.1 COMPARING DRIMA WITH OTHER BASELINES

To raise understandings about DRIMA and existing works, we additionally provide results from
more diverse algorithms including QMIX (Rashid et al., 2018), QTRAN (Son et al., 2019), and
QPLEX (Wang et al., 2020a) on the stochastic two-step game. As shown in Table 3, one can find
that (1) QMIX fails to learn the optimal behavior in the first step and (2) QTRAN and QPLEX only
learn only type of risk-sensitivity (i.e., agent-wise risk seeking and environment-wise risk neutral)
while DRIMA has ability to learn diverse type of risk-sensitivity. For (1), the test reward by QMIX
ranges between −0.65 and 1.97; it means that QMIX fails to learn the optimal behavior (A,A)
that has the highest payoff of 12 in the first step. We understand that this is because QMIX has
limited representational power due to the monotonic network so that they cannot represent agent-wise
risk-seeking policies. For (2), while QTRAN and QPLEX achieve to learn the optimal policy due to
their increased representational power, they are only capable of learning single type of risk-sensitivity;
QTRAN and QPLEX have no explicit leverage to adjust risk-sensitivity. In the real world, there might
exist situations that different type of risk-sensitivity is required such as agent-wise risk-seeking yet
environment-wise risk-averse, so we expect that the scheme of disentangling risk sources by DRIMA
guide new interesting research direction.

Table 3: Test rewards and trained policy in the stochastic two-step matrix game for DRIMA, QMIX,
QTRAN, and QPLEX across twelve random seeds. Note that QMIX, QTRAN, and QPLEX have no
ability to adjust risk sensitivity.

ALGORITHM RISK SENSITIVITY TEST REWARD FIRST STEP SECOND STEP

AGENT ENV MIN MEAN MAX u1 u2 u1 u2

DRIMA NEUTRAL AVERSE -1.00 -1.00 -1.00 B OR C B OR C B B
NEUTRAL NEUTRAL -1.28 0.89 4.13 B OR C B OR C A A
NEUTRAL SEEKING -6.65 2.34 10.99 B OR C B OR C C C
SEEKING AVERSE 7.00 7.00 7.00 A A B B
SEEKING NEUTRAL 6.03 8.98 11.07 A A A A
SEEKING SEEKING 2.78 5.50 13.01 A A C C

QMIX -0.65 0.61 1.97 B OR C B OR C A A
QTRAN 5.92 9.12 11.31 A A A A
QPLEX 6.17 8.96 10.54 A A A A

21

Under review as a conference paper at ICLR 2022

E.2 SIMPLE ONE-STEP MATRIX GAME WITH NOISY AGENTS

In previous environments, agent-wise risk-seeking always performs well because assuming “coopera-
tive” teammates in training helps to learn tactics to beat enemies. However, in real world, randomly
behaving agents or adversarial teammates are likely to exist. To demonstrate the importance of an
agent-wise risk-neutral policy, we increased the randomness of the agents’ behavior in this experiment.
In this setting, the agents act randomly with a 50% probability even during the test phase. As shown
in Table 4, we eliminate the second step for environment-wise risk in the previous two-step simple
matrix game, and increased the penalty for choosing the wrong action in the first step. We compare
DRIMA, DMIX (Sun et al., 2021) and OW-QMIX (Rashid et al., 2020a) with varying risk-sensitivity,
conducted over 50k steps. We employ a full exploration scheme (i.e., ε = 1 in ε-greedy) so that all
available states will be visited.

In this experiment, the training settings are the same as in the previous simple two-step matrix
game experiment in section 4, so the agents learn the same policy as before. As shown in Table 5,
we observe that risk-neutral agents outperform risk-seeking agents. This is because agent-wise
risk-seeking agents always assume that other agents will be cooperative with them. These agents are
easily degraded in the presence of other non-cooperating agents. In the real world applications, when
a malicious external agent is added, there is a risk that multi-agent system is easily broken. Therefore,
learning robust multi-agent systems against adversarial agents is an interesting future direction of
research. We hope that our idea will help this new future research directions such as adversarial
training in multi-agent reinforcement learning.

Table 4: Payoff matrix of the one-step game.

u1

u2 A B C

A 8 -100 -100
B -100 0 0
C -100 0 0

Table 5: Test rewards and trained policy in the one-step matrix game for DRIMA, DMIX, and
OW-QMIX with varying risk-sensitivity across twelve random seeds.

ALGORITHM RISK SENSITIVITY TEST REWARD WITH NOISY AGENTS

AGENT ENV. MEAN

DRIMA NEUTRAL NEUTRAL -26.92
SEEKING NEUTRAL -45.01

DMIX NEUTRAL -27.84
SEEKING -45.64

OW-QMIX NEUTRAL -27.52
SEEKING -44.48

22

Under review as a conference paper at ICLR 2022

F ADDITIONAL EXPERIMENTS ON SMAC

F.1 ABLATION STUDIES

DRIMA with varying risk-levels. To investigate the effect of different risk levels in DRIMA, we
conduct experiments that adjust agent-wise risk and environment-wise risk. As shown in Figure 8,
we find that leveraging risk levels with disentanglement indeed affects the performance in a hard
task (i.e., MMM2). Interestingly, one can note that agent-wise risk-seeking and environment-wise
risk-seeking shows the strongest performance. We believe that it is critical for teammates to act
cooperatively (i.e., agent-wise risk-seeking) and enhance exploration through an environment-wise
risk-seeking objective in order to find the optimal tactic in such a hard task.

Comparisons to risk-senstive variants of DDN and DMIX. To further understand the effectiveness
of disentangling risk sources, we compare DRIMA and risk-sensitive variants of DDN and DMIX in
Figure 9. Although DFAC proposes only risk-neutral policies in their original paper, we additionally
implement their risk-sensitive variants by adjusting the quantile-sampling range, i.e., sampling
quantiles in [0, 0.25] for risk-averse policy and [0.75, 1] for risk-seeking policy. As shown in Figure
9, DRIMA also achieves superior performance over risk-sensitive variants of DFAC. The gain mainly
comes from the ability of DRIMA to explicitly separate the two risk sources.

Robustness of DRIMA In Figure 10, in order to show the robustness of DRIMA, we report the
performance over the second-best baseline across relatively easy tasks: 5m_vs_6m-v1, 3s_vs_5z-
v1, and 8m_vs_9m-v1. We note that changing environmental-wise risks still result to DRIMA
performing the best. It shows not only the empirical strength of DRIMA but also one interesting
finding; environmental-risk does not matter in finding a desirable tactic in such easy tasks. However,
note that in 8m_vs_9m-v1, only environment-wise risk-averse agents reached a 100% win rate,
although other agents also achieve high win rates. This means that a safe policy can be beneficial for
easy tasks.

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n DRIMA (seeking, seeking)

DRIMA (neutral, seeking)

(a) agent-wise risk

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n DRIMA (seeking, seeking)

DRIMA (seeking, neutral)
DRIMA (seeking, averse)

(b) environment-wise risk

Figure 8: Ablation studies on varying risk-levels (agent-wise risk
wagt, environment-wise risk wenv) of DRIMA in MMM2-v1, one
of SUPER HARD tasks.

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n DRIMA

DDN (risk-seeking)
DDN (risk-neutral)
DDN (risk-averse)
DMIX (risk-seeking)
DMIX (risk-neutral)
DMIX (risk-averse)

Figure 9: Comparison of DRIMA
to risk-sensitive variants of DDN
and DMIX in MMM2-v1.

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

B
at

tle
 w

on
 m

ea
n

DRIMA (seeking, seeking)
DRIMA (seeking, neutral)
DRIMA (seeking, averse)
Second best baseline (VDN)

(a) 5m_vs_6m-v1

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

DRIMA (seeking, seeking)
DRIMA (seeking, neutral)
DRIMA (seeking, averse)
Second best baseline (VDN)

(b) 3s_vs_5z-v1

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

DRIMA (seeking, seeking)
DRIMA (seeking, neutral)
DRIMA (seeking, averse)
Second best baseline (DMIX)

(c) 8m_vs_9m-v1

Figure 10: Robustness of DRIMA in relatively easy tasks. Differing risk-levels (agent-wise risk wagt,
environment-wise risk wenv) in DRIMA do not degrade below the second-best baseline.

23

Under review as a conference paper at ICLR 2022

F.2 EXPERIMENTAL RESULTS ACROSS MORE VARIOUS MAPS

We provide experimental results across additional maps on SMAC. We report median test win rate
with 25%− 75% percentile over five random seeds, comparing DRIMA with five baselines. One can
observe DRIMA demonstrates competitive performance in overall.

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

DRIMA-SS DRIMA-SN VDN QMIX QTRAN QPLEX DDN DMIX

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(a) 2s_vs_1sc-v1

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(b) 2s3z-v1

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(c) 3s5z-v1

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(d) 1c3s5z-v1

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(e) 10m_vs_11m-v1

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(f) 2c_vs_64zg-v1

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(g) bane_vs_bane

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(h) 3s5z_vs_3s6z

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(i) 6h_vs_8z

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(j) 27m_vs_30m

0×10
5

5×10
5

10×10
5

15×10
5

20×10
5

Training step

0.0

0.2

0.4

0.6

0.8

1.0

B
at

tle
 w

on
 m

ea
n

(k) corridor

Figure 11: Median test win rate with 25%-75% percentile over four random seeds, comparing DRIMA
with five baselines.

24

	Introduction
	Preliminaries and related work
	Centralized training with decentralized execution
	Distributional reinforcement learning

	DRIMA: Disentangled risk-sensitive MARL
	Motivation
	Training objectives
	Network architectures

	Stochastic two-step matrix game
	Experiments
	Experimental setup
	Results

	Conclusion
	DRIMA Training Algorithm
	Detailed Architectural Illustration
	Related Work
	Centralized training with decentralized execution
	Distributional reinforcement learning
	A further comparison between DRIMA and OW-QMIX in risk-sensitivity

	Experimental details
	Additional experiments on the stochastic two-step game
	Comparing DRIMA with other baselines
	Simple one-step matrix game with noisy agents

	Additional experiments on SMAC
	Ablation studies
	Experimental results across more various maps

