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Abstract
With the development of multi-modality data modeling techniques,
recent recommender systems use not only textual data and user-
item interactions but also multi-modality data such as images to
improve their performances. Existingmethods typically adopt cross-
modal pairwise alignment strategies to alleviate the gap between
modalities. Nevertheless, this alignment paradigm has limitations
on explainability, consistency, and expansibility, which may only
achieve suboptimal performances. In this paper, we propose a novel
Explainable generative multi-modalityAlignment method for trans-
ferable Recommender systems, i.e., EARec. Specifically, we design
a two-stage pipeline to achieve unified multi-modality alignment of
items and the sequential recommendation task, respectively. In the
first phase, we present a generation task that parallel aligns each
modality from multiple source domains to an anchor with explain-
able meaning. Three modality features share the same anchor to
achieve a consistent alignment direction. Additionally, we incorpo-
rate behavior-related information as an independent modality into
the alignment framework, establishing a bridge that promotes the
alignment between multi-modalities and behavior. In the second
stage, we composite the aligned modality encoders into a unified
one and then transfer it to the target domain to enhance sequential
recommendation. The pipeline that adopts parallel multi-modal
alignment and composition shows flexibility and scalability for
incorporating new modalities. Experimental results on multiple
public datasets demonstrate the superiority of EARec over multi-
modality recommendation baselines and further analysis indicates
the explainability of generative alignment.

Keywords
Transferable recommendation, Multi-modality alignment, Explain-
able alignment
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1 Introduction
Conventional sequential recommendation methods model item
representations based on item IDs, which are non-shared across
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Item_1069

Box of 15 Christmas
cards and 16 deluxe gold

foil lined envelopes...

Item_9684,
Item_16990

Vision

Family Tradition Boxed
Christmas Cards ...

Pull

?

Generate

Vision Text

Behaviour New modality

Text

Behavior

New Modality

Vision

Behaviour New modality

Explainable
Anchor

(b) Pairwise Alignment 

(c) Generative Alignment (a) Item Modalities

Text

Figure 1: Illustrations of (a) various modalities of an item; (b)
pairwise alignment paradigm; (c) our proposed explainable
generative alignment paradigm.

domains and limit these models’ transferability. In recent years, due
to its cross-domain generalizability, multi-modality information has
been used in item representation learning to achieve transferable
recommendation [3, 8, 11, 19].1

Early transferable recommendation methods typically introduce
a single modality to learn cross-domain universal item transition
patterns [3, 8]. Subsequent studies [11, 19] investigate harnessing
more modality types, achieving sufficient performance improve-
ment. However, as shown in Figure 1(a), different modalities usually
have distinct information richness, offering varied perspectives (e.g.,
color or style in vision, and brand or quantity in text) on an item.
How to bridge the gap between modalities to promote universal
multi-modality item representation learning become a new issue.

Some recent works attempt to utilize the widespread pairwise
alignment paradigm to achieve the alignment of modalities [11,
12, 19, 27]. As illustrated in Figure 1(b), the pairwise alignment
paradigm mitigates the gap between modalities by modeling the
representation consistency between two modalities. Despite no-
table success, this alignment paradigm has limitations in the follow-
ing three aspects: Explainability of the alignment process. Firstly,
cross-modal pairwise alignment is typically performed based on
the latent high-dimensional representations of two modalities. The

1Our work is related to ‘User modeling, personalization and recommendation” track

1
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aligned results are still abstract and difficult to understand. Consis-
tency of the aligning direction. Secondly, the pairwise alignment
of multiple modalities may lead to the direction inconsistency prob-
lem. For example, in Figure 1(b), the visual modality needs to be
aligned simultaneously with the textual and behavioral modalities.
Inconsistent alignment directions can lead to an unstable alignment
process, thereby resulting in unreliable modality representations.
Expansibility of new modalities. Thirdly, as shown by the dotted
line in Figure 1(b), the new modality needs to be realigned with
all existing modalities, which greatly increases the complexity of
training and the difficulty of adapting to new modalities.

To alleviate the above limitation of pair-wise alignment, in this
paper, we propose a Explainable multi-modalityAlignment method
for transferable Recommender systems, EARec. Specifically, we
achieve EARec by solving the following three challenges:

Challenge 1: How to design the alignment framework to en-
sure explainability, consistency, and expansibility? We propose
an explainable generative alignment method, which aligns the
multimodal information of items into a unified explainable space,
as shown in Figure 1(c). Considering that large language models
(LLMs) can comprehend different modality inputs and generate
responses, we implement the generative alignment method based
on LLMs. Specifically, we fine-tune the LLM to take inputs from
different item modalities and generate the same output. This shared
alignment objective across modalities is referred to as “anchor”,
which can be any unique item content, such as title or image. The
consistency of this generative target facilitates the effective align-
ment of different modalities in subsequent model composition. Ad-
ditionally, this method shows high explainability by allowing for
the evaluation of alignment quality through the generated results.

Challenge 2: How to incorporate task-specific recommenda-
tion information into the alignment process? The ultimate goal of
aligning modalities is to better represent items for recommenda-
tion tasks. To incorporate recommendation-specific signals into
the alignment process, we treat recommendation behavior as a
modality and integrate it into the alignment framework. Addition-
ally, we add item relation information as an auxiliary signal in the
generative alignment task.

Challenge 3: How to effectively utilize multiple modalities for
distinct recommendation scenarios? In various recommendation
scenarios, user preferences for different modalities can vary. For
instance, in e-commerce platforms, users may focus more on the
color and style of items (visual modality). In information stream
recommendations, users may prefer items related to those they
have just viewed (behavioral modality). Therefore, we adopt an ad-
justable modality composition method that adaptively adjusts the
weights of different modalities for different recommendation sce-
narios, balancing the contributions of various modalities to down-
stream recommendation tasks and ensuring optimal performance.

To evaluate the effectiveness of our proposed EARec, we first
collect item modality data from multiple domains and construct
instruction samples to fine-tune the LLM through the generative
alignment task. We then composite multiple LLMs that have un-
dergone modality alignment. Subsequently, we transfer the model
capable of simultaneously understanding multiple modalities to
new recommendation domains. The model is used to obtain multi-
modal representations of items and these modality representations

are fed into the recommendation model. Experimental results in-
dicate that, aided by the aligned item modality representations,
the performance of downstream recommendation tasks achieved
significant improvements.

The main contributions of our work are summarized as follows:
• We investigate a novel multi-modality alignment paradigm

to alleviate the limitations of the existing pairwise align-
ment approach in recommendation scenarios.

• Wepropose an explainablemulti-modality alignmentmethod
that aligns multiple modalities into a unified explainable
space through shared generative alignment objectives. We
incorporate recommendation-related information during
the alignment process to achieve the aligned multi-modal
representations conducive to recommendation tasks.

• Experimental results demonstrate that leveraging the multi-
modal representation generated by explainablemulti-modality
alignment can effectively enhance recommendation perfor-
mance.

2 Related Work
Transferable Recommendation Transferable recommendation is
a popular research area within recommendation systems, aiming to
explore the effective transfer of knowledge learned from the source
domain to the target domain to alleviate issues of data scarcity or
cold start in the target domain. Early works often assumed an over-
lap of users or items between the source and target domains, using
this overlap as a bridge to connect the two domains [9, 18, 22, 28].
Recently, some research [3, 7, 8, 11, 19] has begun to explore unified
item representations to enhance the transferability of recommen-
dation systems by using modality information. In particular, items
are represented solely through modalities without relying on non-
generalizable ID information across domains. Based on this, models
can be constructed to leverage large amounts of modality data from
multiple domains to learn universal item representation patterns.
Then, the trained model is transferred to new domains to improve
recommendation performance. However, these methods have not
deeply investigated the gaps that exist between modalities, limiting
the full utilization of modality information. Although MISSRec [19]
and PMMRec [11] consider the issue of aligning modalities, they
only adopt traditional pairwise alignment paradigms, which suffer
from vague alignment direction, poor explainability, and difficulties
in introducing new modalities.

Multi-modal Recommendation.Multi-modal information is
prevalent in the interactions between recommendation systems
and users, playing a crucial role in user decision-making. In recent
years, various works have explored the incorporation of multi-
modal information into user preference modeling. Early methods
introduce modality information as auxiliary features or construct-
ing modality-specific graphs for feature aggregation [6, 20, 23].
Some recent approaches attempt to address the issue of modality
gaps and utilize self-supervised learning to achieve cross-modal
alignment [14, 27]. However, these methods typically introduce
modality features based on ID embeddings, thereby limiting them
to single recommendation domains and lacking transferability.

Multi-modal Learning and Alignment Multi-modal learning
has rapidly developed in fields such as computer vision (CV) and

2
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Figure 2: The overall framework of our proposed EARec, which consists of two stages for source and target domain, respectively.
In stage 1, we fine-tune multiple MLLM to align three modalities, i.e., Text, Vision, and Behavior, to a shared meaningful anchor
in a parallel way. In stage 2, the fine-tuned MLLMs are composited first and then serve as a modality encoder to generate the
multi-modality item representations to facilitate sequential recommendation.

natural language processing (NLP), particularly with the rise of
multi-modal large language models (LLMs), which have brought
transformative changes to multi-modal learning paradigms. Com-
mon multi-modal large models enable LLMs to process both text
modalities and a new modality simultaneously. This is typically
achieved by first aligningmodalities with text and then usingmodal-
ity data for instruction tuning [1, 13]. Another research direction
explores enabling a single multi-modal large language model to
handle multiple modalities beyond text. This can be realized by
utilizing modality encoders that have inherent alignment across
various modalities [4] or by fine-tuning the LLM with instruction
data containing multiple modality inputs [26]. Recently, model com-
position approaches have made significant progress in alignment
effectiveness and scalability [2, 16]. However, the aforementioned
methods primarily focus on general domains, and detailed research
on multi-modal learning in the context of recommendation sys-
tems—especially regarding how to handle the unique behavioral
information in recommendations—remains insufficient.

3 Method
3.1 Framework Overview
The overall framework of our proposed EARec is illustrated in
Figure 2. Considering 𝑛 different modalities {𝑚1,𝑚2, . . . ,𝑚𝑛}, our
goal is to align them into a unified explainable representation space,
thereby obtaining a model capable of simultaneously understand-
ing multiple modalities. Specifically, we design a two-stage pipeline
to achieve unified multi-modality alignment of items and the se-
quential recommendation task, respectively.

In the first stage, we develop a generative alignment method to
align the inputs of different modalities into a unified explainable
space. Specifically, we input various modalities into the customized
multi-modal large language model (MLLM) and fine-tune it using

the same generative objective. The strategy of parallel alignment en-
sures that the MLLM can fully understand and model each modality.
Notably, we regard the item behavior information as an indepen-
dent modality to integrate the recommendation-specific signal into
MLLM. In the second stage, we draw inspiration from model com-
position methods [2] and composite multiple fine-tuned MLLMs to
obtain a unified MLLM that can simultaneously understand differ-
entmodalities. In particular, wemerge the parameters of theMLLMs
and integrate modal-specific components (i.e., modal encoders and
projectors) into a unified framework. The composited MLLM is
then utilized for the recommendation task. Due to its ability to
simultaneously understand different item modalities, the compos-
ited MLLM can accept multiple modal inputs of items and generate
a unified item representation. These representations can further
be employed to derive user sequence representations, facilitating
the prediction of the next item. Following previous works [19],
Our stage 1 is conducted on multiple mixed source domain data,
followed by the application of the trained MLLM in Stage 2 for
recommendations in the target domain.

Next, we will introduce the explainable modality alignment
method in Section 3.2 and the recommendation method based on
aligned MLLM in Section 3.3.

3.2 Explainable Modality Alignment
3.2.1 Unified Generative Alignment. To achieve alignment between
different modalities and mitigate the discrepancies that exist among
them, we propose an explainable generative alignment method. Un-
like the commonly used pairwise alignment methods based on
contrastive learning, our approach employs explainable alignment
objectives. We independently conduct the alignment processes for
different modalities, training 𝑛 models {𝑀1, 𝑀2, . . . , 𝑀𝑛} that can
understand various modalities. The advantage of this alignment
approach is that it avoids alignment conflicts and exhibits good

3
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A chat between a curious human and an artificial intelligence assistant. The
assistant gives helpful, detailed, and polite answers to the human's questions. 

USER: <image> is a product in the Amazon ecommerce platform, the category of
this product is Office Products. <image>, <image> are often bought together with
this product. Please describe the product. ASSISTANT:

Family Tradition Boxed Christmas Cards - Set of 15. Greeting Cards. Vermont
Christmas Company.

Instruction

Prompt

Response

Figure 3: The instruction template of explainable generative
alignment task. The response part is the shared generation
objective for each modality.

scalability for new modalities. To ensure that the subsequent com-
position effectively integrates the understanding capabilities of
different models for different modalities, we employ the same align-
ment objective, referred to as an anchor point, during the alignment
training process of the𝑛models, thereby ensuring that these models
comprehend the modalities within the same Explainable space.

Specifically, recognizing the potential of LLMs to understand
different modalities and generate feedback, we fine-tune the LLM
to learn to comprehend various modalities of items. For a given
modality𝑚, we construct instruction samples as input for the LLM,
as illustrated in Figure 3, where the response portion represents
the shared alignment objective throughout the alignment training
process for all modalities. For the constructed prompt 𝑋 𝑖𝑛

𝑚 , we de-
note the modality-specific slot as𝑋𝑚 and the modality-independent
prompt portion as 𝑋𝑝 . For the different modality inputs, we em-
ploy corresponding modal encoders for vectorization, for instance,
visual modalities can be encoded using models like CLIP [17]. For
modality representations that is not same with the dimensions of
the LLM, wemap them through the correspondingmodal projectors.
Formally, we express this as:

𝑋𝑒𝑚𝑏
𝑚 = [𝑀𝑜𝑃𝑟𝑜 𝑗 (𝑀𝑜𝐸𝑛𝑐 (𝑋𝑚))]

𝑋 𝑖𝑛
𝑚 = [𝑋𝑒𝑚𝑏

𝑚 , 𝑀𝑜𝐸𝑛𝑐 (𝑋𝑝 )]
where 𝑀𝑜𝐸𝑛𝑐 is the modal encoder and 𝑀𝑜𝑃𝑟𝑜 𝑗 is the mapping
function for modality representations. Note that for text modalities,
𝑀𝑜𝐸𝑛𝑐 essentially represents the word embedding of the LLM and
does not require a projector. Next, we input 𝑋 𝑖𝑛

𝑚 into the LLM and
train it using an autoregressive generative task, defined as:

max
𝜃

∑︁
(𝑥,𝑦) ∈Z

|𝑦 |∑︁
𝑡=1

log (𝑃𝜃 (𝑦𝑡 | 𝑥,𝑦<𝑡 ))

where 𝑥 comprises the instruction and prompt portions in 𝑋 𝑖𝑛
𝑚 , 𝑦

represents the response portion, 𝑦𝑡 is the 𝑡-th token of 𝑦, 𝑦<𝑡 in-
cludes all tokens preceding the 𝑡-th token, 𝑍 denotes all instruction
data, and 𝜃 represents the parameters of the LLM. Following previ-
ous work, we only train a subset of weights within the LLM, which
we refer to as the adapter.

Through this generative task, we align the heterogeneous modal-
ity inputs into a unified feature space comprehensible to the LLM,
providing a highly explainable alignment process. We can evaluate
the alignment effectiveness by comparing the feedback generated
by the LLM with the actual feedback, a capability that traditional
pairwise alignment methods struggle to achieve.

3.2.2 Recommendation-aware Alignment. To enhance the utility
of aligned modal representations for downstream recommenda-
tion tasks, we incorporate recommendation information into the
alignment process from two perspectives. On one hand, we treat
item behavior as a distinct item modality, reflecting the behavioral
relationships among items. Understanding this modality can sig-
nificantly aid in recommendation tasks. Specifically, we utilize the
item embedding from an existing recommendation system as the
modal encoder for the item behavior modality, a practice that holds
practical significance and can be well integrated with widely used
recommendation systems. On the other hand, we introduce rela-
tionships among items into the instructions of the alignment task.
As illustrated in Figure 3, in addition to the images of the items
themselves, two other images of items that share a co-purchase
relationship are also included as part of the prompt to help the
model better comprehend the items. This relationship among items
is typically introduced in prior work through knowledge graphs,
employing graph embedding techniques to optimize item represen-
tations. Our approach provides a more flexible means of incorpo-
rating this knowledge to enhance the LLM’s understanding and
representation of modalities.

3.3 Recommendation with Aligned Modality
3.3.1 Model Composition. Through the generative alignment train-
ing in Section 3.2, we obtain 𝑛 LLMs {𝑀1, 𝑀2, . . . , 𝑀𝑛} that under-
stand different modal information. Since these modalities share the
same alignment anchor points during the alignment process, these
MLLMs share a common Explainable space for different modalities,
allowing us to composite these models to integrate their under-
standing capabilities across various modalities.

Specifically, in the model composition, two components need to
be addressed. One part consists of modality-related components,
such as the modal encoders and projectors, which serve to vectorize
modal information andmap it into the LLM’s Explainable space. The
other part comprises modality-independent components, namely
the parameters of the LLM. In the model composition, we retain
the encoders and projectors for different modalities, enabling us
to handle inputs containing multiple types of modal information.
For the 𝑛 LLMs, we merge the parameters of their respective modal
adapters.

Considering that the importance of different modalities varies
across different downstream recommendation scenarios, it is essen-
tial to adaptively adjust the attention given to different modalities in
the item modal representation for various contexts. To achieve this,
we adopt an adaptive weight model composition method. Specif-
ically, when merging the parameters of 𝑛 MLLMs, we adjust the
parameter weights corresponding to different modalities, formally
expressed as:

𝜃𝑚𝑒𝑟𝑔𝑒 =

𝑛∑︁
𝑖=1

𝜆𝑖𝜃𝑖

4
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where 𝜆𝑖 represents the adaptive weights. In practice, the selec-
tion of 𝜆𝑖 can be determined by evaluating the performance of the
merged model on downstream datasets in alignment tasks.

3.3.2 DownstreamRecommendation. By combiningmultipleMLLMs,
we obtain an MLLM capable of simultaneously understanding dif-
ferent item modalities, which we refer to as EARec. With the intro-
duction of behavioral modalities and item relationship knowledge,
EARec can effectively encode various modalities of items and serve
the downstream recommendation process. We evaluate the transfer
recommendation performance of EARec in a sequence recommenda-
tion task based solely on itemmodality representations. Specifically,
for a user’s time-ordered interaction sequence 𝑠 = {𝑖1, 𝑖2, . . . , 𝑖𝑛},
the multimodal representation of item 𝑖 𝑗 is obtained through the
following formula:

i𝑗 = EARec( [𝑖𝑡𝑗 ; 𝑖
𝑣
𝑗 ; 𝑖

𝑏
𝑗 ])

where EARec(·) denotes the hidden state at the last position of the
model’s final layer as the multimodal representation of the item.
Here, 𝑖𝑡

𝑗
, 𝑖𝑣
𝑗
, 𝑖𝑏
𝑗
represent the behavioral, textual, and visual modali-

ties of the item, respectively. Notably, our method is not limited to
these three modalities, as the proposed alignment framework can
effectively extend to new modalities; it only requires completing
the generative alignment task and then incorporating the model.
Additionally, for any item 𝑖 𝑗 , there may be cases where a certain
modality is absent; however, since EARec does not require simulta-
neous input of modality data during alignment, it can effectively
address the issue of modality absence.

Subsequently, we follow prior work by employing a transformer
layer to aggregate the item representations from user interactions
to obtain sequence representations. Specifically, the input to the
model is the sum of the multimodal representation of the item
i𝑗 ∈ R𝑑 and the absolute positional embedding p𝑗 ∈ R𝑑 :

f0𝑗 = i𝑗 + p𝑗 .

The entire sequence F0 = [f01 ; . . . ; f
0
𝑛] ∈ R𝑛×𝑑 is then input into 𝐿

layers of transformer layers, where the output of the 𝑙 + 1 layer is:

F𝑙+1 = FFN(MHAttn(F𝑙 )).

We take the hidden state at the last position of the 𝐿 layer, f𝐿𝑛 ∈ R𝑑 ,
as the representation of the user sequence u ∈ R𝑑 .

Finally, the prediction score for the next item is obtained by calcu-
lating the inner product between the user sequence representation
and the candidate item representation:

score(𝑖𝑡+1 |𝑠 ) = Softmax(u · i𝑡+1).

During training, we utilize cross-entropy loss to optimize the next
item prediction task, and during evaluation, we rank the candidate
items based on the inner product scores. It is noteworthy that all
parameters of the EARec model remain frozen during the training
process, allowing us to offline obtain multimodal representations
for all items, thereby ensuring that the downstream recommenda-
tions achieve comparable efficiency to traditional recommendation
methods.

Table 1: Statistics of the datasets after preprocessing. “Avg.
𝑛” denotes the average length of item sequences.

Datasets #Users #Items #Image #Inters. Avg. n

Stage 1 1,361,408 446,975 94,151 14,029,229 13.51
- Food 115,349 39,670 29,990 1,027,413 8.91
- CDs 94,010 64,439 21,166 1,118,563 12.64
- Kindle 138,436 98,111 0 2,204,596 15.93
- Movies 281,700 59.203 8,675 3,226,731 11.45
- Home 731,913 185,552 34,320 6,451,926 8.82

Stage 2
- Office 87,436 25,986 16,628 684,837 7.84
- Arts 45,486 21,019 9,437 395,150 8.69
- Instruments 24,962 9,964 6,289 208,926 8.37
- Movielens 610 3,650 1,846 89,664 147.99

4 Experiments
In this section, we first introduce the experimental setup, followed
by presenting the experimental results and analyses.

4.1 Experiment Setting
4.1.1 Datasets. In Stage 1, we utilize the itemmodality information
from five domains to perform the explainable generative alignment
tasks on multiple MLLMs. Subsequently, in Stage 2, we apply the
EARec composited by these MLLMs to derive multi-modal repre-
sentations of items in downstream datasets, followed by performing
the sequential recommendation. Specifically:

• Stage 1 dataset: We select five datasets from Amazon e-
commerce dataset [5, 15] for the explainable generative
alignment task in stage 1 of EARec, namely “Grocery and
Gourmet Food”, “Home and Kitchen”, “CDs and Vinyl”,
“Kindle Store”, and “Movies and TV”.

• Stage 2 dataset: For downstream recommendations, we
select three additional datasets from Amazon to evaluate
EARec’s transfer recommendation performance across do-
mains, namely “Office Products”, “Arts, Crafts and Sewing”
and “Musical Instruments”. To evaluate the transfer per-
formance on a new platform, we select a cross-platform
dataset, i.e., Movielens2.

For all datasets, following prior work [8, 19], we remove users
and items with fewer than five interactions and organize the items
according to the temporal order of user interactions. We consider
three item modalities: Text, Vision, and Behavioral. Notably, our
method can conveniently extend to accommodate any new modali-
ties. The statistics of the datasets are summarized in Table 1.

4.1.2 Baselines. EARec is compared with the following baselines:
• SASRec [10] employs a self-attention mechanism to ag-

gregate item ID embeddings in user sequences without
incorporating additional modality information.

• SASRecT is an extension of SASRec, utilizing item textual
modality information to obtain item representations instead
of ID embeddings.

2https://grouplens.org/datasets/movielens/latest/
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Table 2: Downstream recommendation performance of different models. The best, second-best and third-best performances are
denoted in bold, underlined, and wavy-line fonts, respectively. The subscript “T”, “V”, and “B” denote the Text, Vision, and
Behavior modality used in the item encoding. The superscripts ∗ and ∗∗ indicate 𝑝 ≤ 0.05 and 𝑝 ≤ 0.01 for the paired t-test of the
best EARec variant vs. the best baseline.

Setting Baselines Ours

Dataset Metric SASRec SASRecT UniSRecT MoRecT MISSRecTV EARecTV EARecTVB Improv.

Office

HR@10 0.1064 0.1043 0.1046
::::
0.1096 0.1038 0.1210 0.1234∗∗ 12.59%

HR@50 0.1641 0.1709 0.1751
::::
0.1794 0.1701 0.1973 0.1981∗∗ 10.42%

NDCG@10
::::
0.0710 0.0640 0.0627 0.0673 0.0666 0.0707 0.0713 0.42%

NDCG@50
::::
0.0835 0.0785 0.0780 0.0825 0.0808 0.0873 0.0876∗∗ 4.91%

Arts

HR@10 0.1074 0.1078 0.1099 0.1101
::::
0.1119 0.1224 0.1244∗∗ 11.17%

HR@50 0.1986 0.2050 0.2118
::::
0.2127 0.2100 0.2329 0.2330∗∗ 9.54%

NDCG@10 0.0571 0.0613 0.0602
::::
0.0637 0.0625 0.0664 0.0671∗∗ 5.34%

NDCG50 0.0769 0.0825 0.0823
::::
0.0860 0.0836 0.0905 0.0908∗∗ 5.58%

Instruments

HR@10 0.1126 0.1175 0.1087
::::
0.1229 0.1201 0.1241 0.1252∗∗ 1.87%

HR@50 0.2087 0.2224 0.2079
::::
0.2278 0.2218 0.2336 0.2362∗∗ 3.69%

NDCG@10 0.0618 0.0690 0.0622
::::
0.0717 0.0771 0.0667 0.0727 -

NDCG@50 0.0826 0.0917 0.0837
::::
0.0944 0.0988 0.0909 0.0967 -

Movielens

HR@10
::::
0.0967 0.0803 0.0721 0.0557 0.0885 0.0984 0.1033∗∗ 6.83%

HR@50 0.2852 0.2705 0.2705 0.2246 0.2361 0.2984∗∗ 0.2852 4.63%
NDCG@10

::::
0.0419 0.0352 0.0308 0.0249 0.0393 0.0440 0.0466∗∗ 11.22%

NDCG@50
::::
0.0826 0.0761 0.0740 0.0617 0.0703 0.0868∗∗ 0.0858 5.08%

• UniSRec [8] learns cross-domain universal sequence pat-
terns through item textual modality representations and
employs MoE to adaptively adjust item representations in
different domains.

• MoRec [24] incorporates item text modality and performs
end-to-end optimization on the modality encoder and rec-
ommendation model.

• MISSRec [19] is based on item textual and visual modality
representations, employing a multi-modal interest-aware
module and cross-attention mechanisms to learn multi-
interest user sequence representations.

4.1.3 Evaluation Metrics. We utilize two widely used evaluation
metrics, HR@K and NDCG@K, to assess the performance of the
downstream recommendation tasks.𝐾 is set to 10 and 50. Following
prior work [8, 10], we adopt a leave-one-out method to split the
dataset. Specifically, for a user’s interaction sequence, we use the
last item for testing, the second-to-last item for validation, and the
remaining items for training. We obtain the ranking list through
the dot product scores between the user sequence representation
and all items, and we report the average results over all users.

4.1.4 Implement Details. In Stage 1, we implement the explain-
able multi-modality generative alignment based on the transformer
library [21] and the DeepSpeed library 3. The backbone model
is Vicuna-v1.5 4. We select three modalities input for alignment:
item description, item image, and item embedding of recommen-
dation model, with the alignment anchor set as the item title. The

3https://github.com/microsoft/DeepSpeed
4https://huggingface.co/lmsys/vicuna-7b-v1.5

text encoder is the LLM’s word embedding, the vision encoder is
clip-vit-large-patch14-336 5, and the behavior encoder utilizes the
pre-trained item embedding from SASRec. We load the parameters
of LLaVA’s LLM part and vision projector before training for the
vision modality. For behavior modality, we perform a continuous
alignment on in-domain behavior data to alleviate the gap between
domains. During training, we employ LoRA to efficiently fine-tune
MLLM, the hyperparameter 𝑟 is set to 128, and 𝛼 is set to 256. The
learning rate for the LoRA parameters is set at 2 × 10−4, while the
learning rate for the projector is 2× 10−5. We conduct experiments
on four NVIDIA RTX 3090 GPUs, with a global batch size of 16.

In Stage 2, we implement downstream recommendation tasks
using the RecBole library [25]. During themodel composition phase,
the range of modality-adaptive adjustment weights is set to [0,1],
ensuring that the sum of the weights equals 1. In the downstream
recommendation phase, the number of layers and heads of the
transformer encoder is set to 2. For all downstream recommendation
experiments, we employ the Adam optimizer and carefully search
for hyperparameters, with a batch size of 2048 and NDCG@10 as
the evaluation metric, employing a patience of 10 for early stopping.
We adjust the learning rate within the set {0.0003, 0.001, 0.003, 0.01}
and the embedding dimension within {64, 128, 300}. The code is
available at:https://anonymous.4open.science/r/EARec

4.2 Performance Comparison
We compare two variants of the proposed method, EARecTV and
EARecTVB, with several baseline methods. The difference between
the EARecTV and EARecTVB is the input modality in item encoding.
5https://huggingface.co/openai/clip-vit-large-patch14-336
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Table 3: Analysis on modality expansibility in Office dataset.
“w/o” denotes removing the alignment of specific modality.
The best and second-best performances are denoted in bold
and underlined fonts, respectively.

Model HR@10 HR@50 NDCG@10 NDCG@50

EARec 0.1234 0.1981 0.0713 0.0876
- w/o Behavior 0.1212 0.1972 0.0704 0.0870
- w/o Vision 0.1204 0.1951 0.0691 0.0853
- w/o Text 0.1200 0.1940 0.0692 0.0854
- w/o All 0.1189 0.1940 0.0699 0.0862

The overall experimental results are shown in Table 2. From the
results, several observations can be made.

First, recommendation methods incorporating modal informa-
tion generally outperform traditional methods, i.e., SASRec. This
demonstrates that introducing modal information effectively en-
hances item representation and improves recommendation tasks.
Second, although introducing more modal information and using
a pairwise alignment approach to reduce gaps between modali-
ties, MISSRec still underperforms MoRec, which only uses a single
modality. It indicates that the pair-wise alignment does not inte-
grate the modalities effectively and impairs the recommendation
performance. Third, the benefits of transferable recommendation
baseline models are not pronounced in cross-platform datasets, i.e.,
Movielens, suggesting the limitation of only performing transfer-
able learning from the same platform.

The two variants of ourmethod, EARecTV and EARecTVB, achieve
the best overall performance. Specifically, EARecTV outperforms
MISSRec in most cases. This indicates that, compared to traditional
pairwise alignment methods, our proposed explainable generative
alignment method is more effective in incorporatingmodalities. Fur-
thermore, EARecTVB achieves better performance than EARecTV by
utilizing the behavior modality for item representation, demonstrat-
ing the effectiveness of our method in expanding to new modalities
and showcasing the potential to enhance recommendation perfor-
mance through further incorporating modalities. The performance
improvements on the Movielens dataset indicate that our method
has learned more generalizable modality representations, leading
to better transfer recommendation performance.

4.3 Analysis of Modality Expansibility
In this section, we analyze the modality expansibility of EARec. We
evaluate the impact of incorporating a newmodality and the overall
effect of aligning multiple modalities on the final performance.
Specifically, we compare EARec with four of its variants: (1) w/o
Behavior, (2) w/o Vision, (3) w/o Text, and (4) w/o All, i.e., the
original model before the integration of all three modalities. To
ensure a capacity for modality handling, we directly adopt LLaVA
for w/o All variants.

The comparison results are shown in Table 3, from which several
observations can be drawn. First, the incorporation of each new
modality improves the model’s performance, with the Vision and
Text modalities contributing relatively more to the improvements.

is a product in the Amazon ecommerce platform, the
category of this product is Office Products. Please
describe the product. 

LLaVA: The product in the image is a set of five different colored pens, which are
part of the Amazon ecommerce platform's Office Products category. The pens are
of the brand Pupius. (RougeL: 0.26)
EARec: 5 Pcs/lot Fountain Pen Pens with Ink Cartridges and Pens Cases.
Fountain Pens. Zhuhai. (RougeL: 0.41)

Wing Sung 3008 Transparent Fountain Pen. Different from the traditional sucking
way, this fountain pen uses rotational movement of the piston ink adding method,
which is more convenient and efficient. Starting innovative, convenient and
efficient life style. is a product in the Amazon ecommerce platform, the category
of this product is Office Products. Please describe the product. 

LLaVA: Wing Sung 3008 Transparent Fountain Pen. Office Products. Wing Sung.
(RougeL: 0.51)
EARec: Wing Sung 3008 Transparent Fountain Pen. Fountain Pens. Wing
Sung. (RougeL: 0.65)

<Item_21935> is a product in the Amazon ecommerce platform, the category of
this product is Office Products. Please describe the product. 

LLaVA: nobody is perfect, and we all make mistakes... (0, failed response)
EARec: 1 X 100ml Bottle of Black Ink for Fountain Pen. Fountain Pens.
Zhenzhen. (RougeL: 0.24)

Wing Sung 3008 Transparent Piston Fountain Pen Set of 4 Pieces , 4 Color Pen
Cap. Fountain Pens. erofa. Item Title

Image Prompt

Generative Results

Behavior Prompt

Generative Results

Text Prompt

Generative Results

Figure 4: The generative results of the EARec and LLaVA on
various modality inputs. The key aspect of specific modality
captured by EARec is highlighted with red font.

Second, the original model, without the proposed explainable gener-
ative alignment across the three modalities, performs significantly
worse, demonstrating the effectiveness of the proposed method.

4.4 Analysis of Explainable Alignment
In this section, we analyze the explainability of the proposed multi-
modality alignment method. EARec aligns information from differ-
ent modalities into a unified explainable space through generative
alignment, allowing the alignment results to be compared with
the anchor points to demonstrate the effectiveness of the align-
ment. Since we use item titles as anchor points, we evaluate the
quality of the alignment by computing the RougeL score between
the generated alignment results and the anchors. Additionally, we
further analyze the correlation between the alignment results and
downstream recommendation performance.

We illustrate the generative result of the alignment from modali-
ties to anchor in Figure 4. By comparing the generative results of
EARec and LLaVA, we find that EARec generates the response closer
to the anchor text, as reflected by its higher RougeL score. More
importantly, EARec captures item-specific characteristics unique
to different modalities. In the visual modality, EARec provides text
related to “Ink Cartridges” and “Pen Cases”, demonstrating a deeper
understanding of this modality. In the text modality, EARec extracts
finer-grained item categories from the description, i.e., “Fountain
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Figure 5: RougeL of generative alignment vs. Downstream recommendation task in Office dataset. “+T”,“+V”, and “+B” denote
performing an alignment on Text, Vision, and Behavior modalities, respectively.

Pens”, instead of the broader “Office Products” given by LLaVA.
Most notably, for outputs of the behavior modality, EARec gener-
ates text of a complementary item, i.e., “Bottle of Black Ink”. This
indicates that EARec can capture the item relation knowledge in
item embedding, which is highly beneficial for recommendation.

Furthermore, we present the correlation between explainabil-
ity and recommendation performance. As shown in Figure 5, we
present the alignment performance for the three modalities and
the corresponding downstream recommendation results. Several
insights can be drawn from the figure. First, applying generative
alignment to the vanilla model, i.e., LLaVA, significantly improves
the RougeL scores of the generated results (e.g., from 0.3282 to
0.4337 for the Text modality), demonstrating the effectiveness of
the alignment task. Notably, before aligning the Behavior modality,
LLaVA was entirely unable to understand this modality, resulting
in a near-zero RougeL score. Second, when the models for the
three modalities are composited (i.e., LLaVA+TVB), the composite
model shows further improvements in RougeL scores for the text
and vision modalities, reflecting the model composition effectively
integrates the model’s ability to understand the three modalities.
Nevertheless, this trend does not appear in behavior modality. We
speculate the reason is the overfitting of the LLaVA+B variant since
the training data of behavior modality is relatively insufficient com-
pared to the other two modalities. Third, the alignment results’
RougeL scores are generally proportional to the recommendation
performance. This demonstrates that evaluating the alignment re-
sults can help us select the most suitable model for downstream
recommendation tasks, highlighting the explainability of our model.

4.5 Analysis of Modality Adaptable Adjustment
In this section, we analyze the impact of the proposed modality-
adaptive adjustment method on model composition. We conducted
experiments using the Office dataset, adjusting the weights of the
parameters associated with the three modalities in the MLLM to
modify the model’s understanding of different modalities, and we
compared the corresponding downstream recommendation perfor-
mance. The experimental results are shown in Table 4.

From these results, we observe that as the weight of the behavior
modality parameters increases, the model’s performance steadily

Table 4: Modality Adaptable Adjustment weights for model
composition in Office dataset. The best and second-best per-
formances are denoted in bold and underlined, respectively.

Text Vision Behavior HR@10 HR@50 NDCG@10 NDCG@50

33% 33% 33% 0.1187 0.1900 0.0674 0.0830
20% 40% 40% 0.1185 0.1908 0.0703 0.0861
15% 42.5% 42.5% 0.1192 0.1919 0.0703 0.0861
10% 45% 45% 0.1193 0.1921 0.0722 0.0880
5% 47.5% 47.5% 0.1194 0.1919 0.0721 0.0879
5% 5% 90% 0.1234 0.1981 0.0713 0.0876

improves. This enhancement can be attributed to two primary rea-
sons. First, since the understanding of the behavior modality is
more complex than that of the text and vision modalities, increas-
ing the weights of the parameters related to the behavior modality
emphasizes the model’s capability to comprehend it. Second, the
behavior modality is specific to the recommendation task and con-
tains more information beneficial for recommendations, making
the prominence of this modality effective in improving the model’
s recommendation performance.

5 Conclusion
In this paper, we propose EARec, a novel explainable generative
multi-modality alignment method for transferable recommender
systems. Addressing the limitations of conventional pairwise align-
ment strategies, EARec leverages a two-stage pipeline to unify
the alignment of diverse modalities and enhance sequential rec-
ommendation. It aligns multiple modalities to a shared anchor
with explainable meaning, ensuring consistent alignment across
modalities and incorporating behavior-related information as an
independent modality. In the second stage, we composite aligned
modality encoders to enable effective transfer to the target domain
for improved recommendation performance. Experimental results
on multiple datasets demonstrate the effectiveness of EARec, and
further analysis shows its high explainability and expansibility.
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