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ABSTRACT

Driven by the increasing demand for deploying deep neural network (DNN)-
powered automatic speech recognition (ASR) systems on mobile platforms, speech
models pretrained through self-supervised learning (SSL) have emerged to reduce
reliance on the availability of transcribed speech data. However, this has enlarged
the gap between the prohibitive model complexity and the limited resources of
mobile devices. Therefore, there is a strong desire to streamline the complexity
of speech SSL models for real-time acceleration on mobile platforms, which
is particularly challenging as the pretrained speech representation may undergo
significant degradation. To this end, we develop a framework dubbed S-DAMON
to unlock structured sparsity in speech SSL models via data-model co-compression.
On the data side, leveraging both the duration of each phoneme and the pauses
between phonemes of human utterances, we develop a salient audio token detector,
dubbed SALAD, to remove redundant input audio tokens; On the model side, we
identify that the failure of SOTA ASR pruning methods under structured sparsity is
caused by a sparsity discrepancy between finetuning/deployment and their limited
adaptability of sparsity distributions. We address this through a new ASR pruning
pipeline named SAFARI, which adopts a three-step pipeline - sparsify, finetune, and
adjust sparsity. Extensive experiments validate that S-DAMON can significantly
accelerate speech SSL models on mobile devices with limited transcribed speech
data while maintaining decent ASR accuracy. All source code will be released.

1 INTRODUCTION

Recent breakthroughs in deep neural networks (DNNs) have tremendously advanced the field of
Automatic Speech Recognition (ASR), enabling record-breaking end-to-end ASR systems (Hannun
et al., 2014; Zhang et al., 2020; Gulati et al., 2020). Considering that speech is one of the basic input
modalities of intelligent mobile devices, there has been an increasing interest in the development and
deployment of on-device ASR systems.

Despite the big promise, there still remain two critical efficiency bottlenecks for ubiquitous on-device
ASR systems, including (1) data efficiency: big data is often impractical for ASR since collecting
transcription on a large scale is costly or may not be even possible, and (2) model efficiency: the
often limited on-device resources stand at odds with the complexity of large ASR models. To
promote the aforementioned data efficiency, recent advances in self-supervised learning (SSL) for
speech representation (Baevski et al., 2020; 2022) have demonstrated empirical success and become
the de-facto paradigm for low-resource ASR. However, this could further aggravate the model
efficiency bottleneck as large transformers (Vaswani et al., 2017) are often adopted in state-of-the-art
(SOTA) speech SSL models to ensure effective representation learning, making it increasingly more
challenging for on-device deployment. Therefore, it is imperative to compress speech SSL models
while maintaining their generalizable speech representation for delivering efficient ASR systems.

Despite the demand for efficient ASR systems, it is non-trivial to narrow the gap between large
speech SSL models and constrained resources in mobile devices. First, under the SOTA pretrain-
and-finetune paradigm, the most useful features are learned during the SSL stage and it is difficult
to induce sparsity during finetuning while still preserving the fidelity of the speech representation
given the low-resource transcribe speech. Second, unstructured sparsity induced at the granularity of
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Figure 1: (a) An example from LibriSpeech (Panayotov et al., 2015) for illustrating two types of
non-salient audio tokens; (b) The trade-offs between WER and FLOPs savings achieved by our S-
DAMON and SOTA ASR compression schemes on wav2vec2-base finetuned on LibriSpeech-100h.

weight elements cannot be effectively utilized by commercial mobile devices. Conversely, inducing
structured sparsity (Wen et al., 2016), which eliminates all computations associated with a set of
neurons, resulting in real-device acceleration, will significantly disrupt the SSL speech representation
learned during pretraining. For example, enforcing structured sparsity using the SOTA ASR pruning
framework called PARP (Lai et al., 2021) leads to a >8% increase in word-error-rate (WER) with
only a 20% sparsity on wav2vec2-base finetuned on LibriSpeech-1h.

Our contributions. To tackle this, we develop a framework dubbed S6-DAMON, which for the
first time unlocks structured sparsity in speech SSL models under low-resource settings through
data-model co-compression for enabling real-time on-device speech recognition on mobile platforms.

On the data side, S®-DAMON exploits the intrinsic redundancy in human speech to effectively
eliminate redundant input tokens and their associated computations. This introduces a new granularity
of structured sparsity at the data level, complementing the existing model sparsity. By considering
the duration of each phoneme and the pauses in human utterances, we observe that the sampled audio
frames and their corresponding extracted audio tokens, which serve as inputs to the transformers,
may either (1) repeat previous tokens or (2) be empty, contributing little to the final recognition (refer
to an example in Fig. 1 (a)). We refer to these tokens as non-salient audio tokens (NATs), and term
the first-appearing tokens that are indispensable for ensuring monotonic recognition as salient audio
tokens (SATs). Since properly removing NATSs can lead to significant gains in model efficiency while
maintaining accuracy better than removing SATSs, we develop a salient audio token detector called
SALAD to detect and effectively remove NATs. Given the absence of token-wise labels in ASR
datasets for classifying SATs/NATSs, our SALAD is trained in a semi-supervised manner based on
token-wise pseudo labels provided by a finetuned speech SSL model on untranscribed speech.

On the model side, we observe that the failures of SOTA ASR pruning methods under structured
sparsity stem from (1) the discrepancy in sparsity distributions between finetuning and deployment.
For instance, PARP (Lai et al., 2021) iteratively restores the pruned weights to non-zero values
during finetuning to flexibly adapt sparsity distributions, which leads to a discrepancy against the
hard-pruned weights during deployment; (2) the limited adaptability of sparsity distributions due to
the intrinsically low learning rates during finetuning, resulting in an under-exploration of the space of
sparsity masks. Hence, we hypothesize that the key to enabling structured sparsity on speech SSL
models is to ensure the flexibility of adjusting the sparsity masks while avoiding the discrepancy of
sparsity distributions between finetuning and final deployment. We embody this insight in a new ASR
pruning pipeline named SAFARI (i.e., sparsify, finetune, and adjust sparsity) to strictly zero-out
the pruned neurons during finetuning, thereby minimizing the aforementioned discrepancy. This
is followed by a sparsity adjustment step to adaptively evolve the sparsity masks and ensure the
adaptability of sparsity distributions. We summarize our contributions as follows:

* We develop a data-model co-compression framework, dubbed S6-DAMON, which for the
first time unlocks structured sparsity in both input audio tokens and model structures of
speech SSL models to empower real-time on-device ASR under a low-resource setting;

* We propose a semi-supervised method for training a lightweight module dubbed SALAD to
distinguish SATs/NATS for the purpose of structurally removing redundant audio tokens;
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* We identify the underlying causes for the failures of SOTA ASR pruning methods and
subsequently develop an ASR pruning pipeline dubbed SAFARI to enable high structured
sparsity in speech SSL models while maximally maintaining the ASR accuracy;

» Extensive experiments and on-device measurements show that as compared to the SOTA
ASR pruning method PARP (Lai et al., 2021), our S®-DAMON can (1) achieve a 1.96x
speed-up on a Pixel 3 phone with an absolute 2.49% WER reduction, and (2) win a 10.96%
lower WER for saving >64% floating-point operations (FLOPs) as shown in Fig. 1 (b).

We emphasize that considering the prevalence of foundation models, the growing ambition for
their on-device deployment necessitates new customized compression paradigms to preserve their
pretrained representation. Our work represents one of the early efforts towards this objective, and the
insights we provide may serve as a guiding beacon for future innovations in other modalities.

2 RELATED WORK

Automatic speech recognition. Early ASR systems (Sha & Saul, 2006; Tang, 2009; Adams & Beling,
2019) mainly build on top of the combinations of hidden Markov models with Gaussian mixture
models or DNNS, and often integrate multiple modules, e.g., an acoustic model, a language model,
and a lexicon model, which are separately trained. Driven by recent advances in DNN structures,
diverse end-to-end ASR systems have been proposed, including CTC-based models (Graves et al.,
2006; Hannun et al., 2014; Amodei et al., 2016), recurrent neural network (RNN)-transducers (Graves,
2012; Graves et al., 2013; Dong et al., 2018b), and sequence-to-sequence models (Chorowski et al.,
2015; Chan et al., 2016). Specifically, from the model structure perspective, transformer-based
models (Gulati et al., 2020; Dong et al., 2018a; Wang et al., 2020) have been widely adopted thanks
to their superior expressiveness and capabilities for modeling long-range dependencies.

Self-supervised learning for speech representation. To learn rich speech representation via SSL,
early works design generative models for inferring the latent variables of speech units (Hsu et al.,
2017; van den Oord et al., 2017; Khurana et al., 2020). Recently, prediction-based SSL methods
have gained more attention, where the models are trained to reconstruct the contents of unseen
frames (Chung et al., 2019; Chi et al., 2020; Baevski et al., 2022) or contrast the features of masked
frames with those of randomly sampled ones (Baevski et al., 2020; Conneau et al., 2020; Hsu et al.,
2021). In parallel, some works combine both predictive and contrastive objectives (Baevski et al.,
2019b;a) or integrate contrastive learning and masked language modeling (Chung et al., 2021; Bapna
et al., 2022). We refer the readers to the survey (Liu et al., 2022) for more details. However, SOTA
speech SSL models (Baevski et al., 2020; Hsu et al., 2021; Baevski et al., 2022; Conneau et al., 2020)
often adopt large transformers for ensuring effective representation learning, making it difficult to
achieve real-time speech recognition on mobile devices.

ASR pruning. To compress large-scale ASR models while maintaining their generalizable repre-
sentation, ASR pruning has gained growing attention. Early works prune either the decoding search
space (Pylkkonen, 2005; Xu et al., 2018; Zhang et al., 2021) or the HMM state space (Van Hamme
& Van Aelten, 1996). Recent works have shifted their focus to pruning end-to-end ASR mod-
els (Venkatesh et al., 2021; Shi et al., 2021; Li et al., 2021b). Recently, (Lai et al., 2021; Prasad
et al., 2022; Zhao et al., 2021) prune speech SSL models towards more efficient low-resource ASR,
however, they all adopt unstructured pruning which barely favors hardware efficiency in commercial
devices. (Lee et al., 2022; Chang et al., 2022) distill the knowledge of pretrained speech SSL models
to lightweight student models but require human expertise to manually design the student model,
causing inferior ASR accuracy without utilizing the intrinsic properties of speech signals. In contrast,
our S.-DAMON learns to automatically and structurally prune the redundancy of speech SSL models,
achieving a triple-win in data, model, and labor efficiency.

3 THE PROPOSED S*-DAMON FRAMEWORK

3.1 FRAMEWORK OVERVIEW

Rationale. Structured sparsity can yield more substantial acceleration for commercial mobile devices
compared to unstructured sparsity. However, the learned representation of speech SSL. models may
experience significant degradation, especially when finetuned in a low-resource setting. In addressing
this, our S®-DAMON approaches this challenge with a twofold rationale: (1) instead of compressing
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Figure 2: An overview of our proposed S®-DAMON, integrating two enabling components called
(a) SALAD and (c¢) SAFARI for unlocking structured sparsity in input data and model structures,
respectively, of (b) speech SSL models (zoom-in for better view).

only one dimension, S®-DAMON exploits redundancy in both the input audio tokens and model
structures; and (2) to preserve the fidelity of speech representation, S6-DAMON first identifies and
then addresses the key bottlenecks for reducing the input data and model redundancy, respectively.

Framework overview. As shown in Fig. 2, S®-DAMON performs data-model co-compression via (1)
a SALAD module which detects and skips redundant tokens, i.e., NATs as introduced in Sec. 1, and
(2) a SAFARI pipeline which pursues structured model sparsity. For compressing a given speech SSL
model, S®-DAMON features a three-stage pipeline: @ finetune the speech SSL model that serves as a
teacher model on the low-resource transcribed speech; @ train SALAD in a semi-supervised manner
based on the annotations of the teacher model (see Sec. 3.2); and @ perform a joint optimization of
input data sparsity and model sparsity based on the SAFARI pipeline with a portion of detected NAT's
removed (see Sec. 3.3 and Sec. 3.4).

3.2 SALAD: CHASING STRUCTURED SPARSITY IN INPUT DATA

In this subsection, we present the rationale, design, and training of our SALAD module, which aims
to detect and skip redundant input audio tokens, referred to as NATS as introduced in Sec. 1.

SALAD’s rationale. The objective of our SALAD is to explicitly harness redundancy in re-
peated/blank regions of human utterances. At a high level, SALAD achieves this by distilling
knowledge about token-wise redundancy from a finetuned speech SSL model to our target model
using a lightweight detector as a bridge in a semi-supervised learning pipeline. This differs from
previous methods (Bhati et al., 2021; Afshan & Alwan, 2022) that achieve variable-frame-rate ASR
through re-sampling based on entropy or frame-wise dissimilarity. Our approach, for the first time,
focuses on SOTA speech SSL models built on large transformers and utilizes their outputs as guidance
to detect repeated/blank regions of human utterances from the models’ perspective, rather than solely
relying on input speech statistics.

SALAD’s input and structure. SOTA speech SSL models (Baevski et al., 2020; Hsu et al., 2021;
Baevski et al., 2022) sample and convert raw audio frames into audio tokens via a convolutional
feature extractor, which are then processed by a transformer backbone to generate corresponding con-
textualized representation. As the convolutional feature extractor is often fixed after SSL pretraining
to ensure effective audio feature extraction (Baevski et al., 2020), SALAD is applied to the extracted
audio tokens after the convolutional feature extractor and classifies each audio token as an SAT/NAT.
This ensures that all transformer layers can benefit from reducing the same number of audio tokens.
Specifically, SALAD consists of four lightweight convolutional layers, accounting for <0.4% FLOPs
of the original transformer, and outputs a binary classification between SAT and NATs.

SALAD’s semi-supervised learning pipeline. Considering the lack of token-wise ground truth,
we train SALAD(-;6g) in a semi-supervised manner, i.e., using a finetuned ASR model to provide
pseudo labels for each token on untranscribed speech (see Fig. 2 (a)). Specifically, given a speech
SSL model, we first finetune it on the available transcribed speech (e.g., LibriSpeech-1h) to create a
teacher model My (-; 61), which is then used to annotate a larger amount of untranscribed speech
(e.g., LibriSpeech-10h) to acquire the pseudo labels for each audio token. Correspondingly, the binary
pseudo labels of SATs/NATSs can be derived for each audio token based on whether it repeats the
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previous token or is a blank token. Note that although we adopt CTC (Graves et al., 2006) as the
label topology as an illustration in Fig. 1 (a) and Fig. 2 (a), which is a common practice of speech
SSL models (Baevski et al., 2020; Conneau et al., 2020; Hsu et al., 2021; Baevski et al., 2022), our
SALAD does not rely on specific label topology as it leverages the intrinsic redundancy in human
utterances, i.e., the duration of each phoneme and the pauses between the phonemes.

Enforce a high recall on SATs. One issue is that the consequence of classifying an SAT to a NAT
is severe, under which SATs are more likely to be mistakenly skipped in inference, harming the
monotonic input/output alignment. It is thus highly desired to maximize the coverage of SATs (i.e., a
high recall on SATSs) during training SALAD. To achieve this, we exert a larger penalty when an SAT
is misclassified as a NAT, which can be formulated as:

t
argmaxZaiL(SALAD(:ci;95),Bin(MT(x,;;9T))) (1
0

S i=1

where L is a binary cross-entropy loss, z; is the i-th audio token extracted by the convolutional
feature extractor, Bin denotes a transformation from pseudo character/phoneme labels to binary
labels of SATs/NATS, and «; is a penalty coefficient for enforcing high recalls on SATs.

Speech SSL model finetuning with SALAD. Although NATS are less likely to impact the monotonic
input/output alignment as compared to SATs, removing NATs could result in domain gaps in terms
of speech speed and rhythm between pretraining and finetuning. As such, a finetuning process is
required to fill in the domain gap. Specifically, we finetune the target speech SSL model integrated
with SALAD, where a certain ratio of detected NAT' is removed before being fed into the transformer.

Implementation. To balance ASR accuracy and efficiency, we set a skip ratio sr for NATs in all the
input audio when finetuning with SALAD, i.e., for the NATs detected by SALAD in an input audio
clip, we remove the top sr NATs sorted in terms of confidence score predicted by SALAD, and the
remaining NATs and all detected SATs are then fed into the transformer. Since different audio clips
contain different percentages of NATSs, which can cause different audio token lengths for samples in a
batch, we pad each sample to the largest token length of each batch during finetuning.

3.3 SAFARI: CHASING STRUCTURED SPARSITY IN MODEL STRUCTURES

Rethink the SOTA ASR pruning method. The core concept behind the SOTA ASR pruning method
PARP (Lai et al., 2021) lies in enabling gradient propagation to pruned weights during finetuning,
thereby allowing for the update of sparsity distributions. This proves to be crucial for sparsifying
speech SSL models, as the weight magnitudes inherited from SSL pretraining may not accurately
indicate the importance of neurons for downstream tasks. The significance of such adaptable sparsity
distributions is confirmed in PARP through unstructured pruning, in comparison to one-shot/iterative
magnitude pruning (OMP/IMP) (Lai et al., 2021).

Identified issues of the SOTA ASR pruning Typle 1: Apply OMP/PARP with varied pruning
method. Directly extending PARP to a struc- jptervals on top of wav2vec2-base when being fine-

tured pruning setting will cause a failure. We  tuned on LibriSpeech-10m/1h under 20% sparsity.
extend PARP’s setting to structured sparsity,

Dataset | Method | Learn NoDis | Pruning Interval
i.e., remove all connections from the pruned \ | WY ey Ty 2 s 10 50
. . _ Libri-10 | PARP | ¥ X | 53.24 5434 5747 6585 87.65
input neurons, for pruning wav2vec2 l?ase on % P s
LibriSpeech-10m/1h under a 20% sparsity ratio -~ pre | v X | 2690 2730 3118 3277 4289
‘ X v ‘ 29.01

and vary the pruning intervals in terms of itera- | owp
tions between prune/re-prune. Tab. 1 shows that (1) the original pruning interval adopted by PARP
(i.e., 50 iterations) leads to an absolute 23.93% WER increase over standard wav2vec2-base (18.96%
WER) on LibriSpeech-1h; (2) setting a small pruning interval could lead to reduced WER over OMP;
and (3) larger pruning intervals consistently cause more notable performance degradation, where the
softly pruned weights diverge more from zero as they can be updated in PARP’s adjustment step.

Analysis. This set of experiments indicates that while enhancing the adaptability of sparsity masks in
PARP is beneficial, it can lead to a sparsity discrepancy between finetuning (i.e., not exactly zero) and
final deployment (i.e., hard pruning), thereby harming the delicate speech representation inherited
from SSL pretraining, particularly under structured sparsity. Furthermore, the flexibility of adjusting
the sparsity masks in PARP remains limited; for instance, only <3% of elements in the sparsity masks
are updated throughout the finetuning process, aligning with PARP’s observed >99% Intersection
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Over Union (IOU) between the initial and final subnetworks. This is attributed to the intrinsically low
learning rates during finetuning, resulting in the sparsity distributions being largely under-explored
when updated via gradients in PARP.

The SAFARI pipeline. The above analysis indicates that the key to pursuing structured sparsity in
speech SSL models is to ensure the adaptability of sparsity distributions while minimizing the sparsity
discrepancy between finetuning and deployment. Thus, we instantiate this insight into a new pruning
pipeline SAFARI: @ sparsify: prune a speech SSL model to the target sparsity sp based on the weight
magnitudes; @ finetune: finetune the model weights with the sparsity mask applied, i.e., the pruned
weights are zero-outed without receiving gradients to avoid the sparsity discrepancy; and © adjust
sparsity: the sparsity mask is adaptively adjusted for boosting the adaptability of sparsity distributions.
Steps @ and @ are iterated towards convergence. SAFARI can be viewed as an intermediate choice
between OMP and PARP, marrying the former’s stability and the latter’s adaptability.

Implementation of SAFARI. There can be different ways to implement the above spirit, i.e., SAFARI.
Inspired by (Evci et al., 2020), we adopt gradient magnitudes as a criterion to adjust the sparsity
masks in a prune-and-grow manner (see Fig. 2 (c)). Specifically, in each sparsity adjustment step,
for a set of neurons | N!| and a set of pruned neurons P! (|P!|/|N'| = sp) in the I-th layer, SAFARI
@ selects ar neurons from N'\ P! as the pruning candidate set C' (|C!|/|N!| = ar) based on a
pruning criterion, where ar is a predefined adjustment ratio, and @ chooses ar neurons from the joint
set of pruning candidates and pruned neurons P! U C! (= P! 4 C%) to form a growing set G*, which
are allowed to be updated by the gradients of the next finetuning step, based on a growing criterion.
Therefore, the new sparsity mask applied in the next finetuning step is built by P! + C' — G, which
has a constant sparsity ratio sp. More specifically, we adopt the /1 -norm of the weight vectors from a

neuron, i.e., Wil ||¢, for the i-th neuron, as the pruning criterion (i.e., prune the smallest ones), and

oL
w!

the corresponding gradients ||

||e, as the growing criterion (i.e., grow the largest ones).

3.4 S5-DAMON: JOINT DATA-MODEL CO-COMPRESSION

To perform joint optimization of input data sparsity and model sparsity, we integrate the target speech
SSL model with SALAD and finetune it via the SAFARI pipeline with a portion of detected NAT's
removed. To push forward the achievable accuracy-efficiency trade-off, S>-DAMON can optionally
enable a semi-supervised distillation mechanism to boost the achievable ASR accuracy. Specifically,
we distill the knowledge of the teacher model mentioned in Sec. 3.2 to the compressed model in a
layer-wise manner during finetuning on top of a mixed dataset composed of both transcribed speech
Dt and untranscribed speech D7, where the pseudo labels on untranscribed speech are annotated by
the teacher model. Note that the teacher model is only finetuned on the limited transcribed speech.
The objective of the semi-supervised distillation process can be formulated as:

L
L= MSE(hy(x), hy,(x))+ Y CTC(h§(z),y) 2
zeD I=1 z€Dp
where D = D1 U Dy, MSE and CTC are the loss functions, hly(z) = M'(SALAD(x;0s);0)
is the hidden representation for the remained tokens in the [-th layer of the compressed model M,
hleT (z) =S o ML (x;07) is the corresponding hidden representation of the teacher model and S is a
selection operator for only calculating the MSE loss on the remained tokens determined by SALAD.

4 EXPERIMENTAL RESULTS
4.1 EXPERIMENT SETUP

Models and datasets. We evaluate our S®-DAMON on four SOTA speech SSL models, including
wav2vec2-base/large (Baevski et al., 2020), data2vec (Baevski et al., 2022), and hubert (Hsu et al.,
2021) pretrained on LibriSpeech (Panayotov et al., 2015) in an SSL manner. We evaluate the compres-
sion effectiveness under different resource settings, including LibriSpeech-10m/1h/10h/100h/960h
following the split in (Baevski et al., 2020). In addition to ASR, we also consider six speech pro-
cessing tasks from SUPERB (Yang et al., 2021). For results on LibriSpeech, we report the WER on
test-clean by default. The detailed finetuning settings are provided in Appendix G.

SS-DAMON settings: For SALAD training, we adopt the same training schedule as finetuning the
speech SSL model weights and the «; in Eq. 1 is 10 for penalizing mistakes on SATs otherwise 1.
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Figure 3: Benchmark our S®-DAMON and SAFARI with SOTA ASR pruning methods PARP and
OMP on wav2vec2-base with transcribed LibriSpeech-1h and different untranscribed resources. “w/
sd” denotes applying the semi-supervised distillation for finetuning the original model, which could
notably reduce the WER when the untranscribed LibriSpeech-100h is available.
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Figure 4: Benchmark our S®-DAMON with PARP and OMP under different low-resource settings.

For SAFARI, we adjust the sparsity every 50 iterations and fix the sparsity mask after 10k iterations
for all experiments. By default, the adjustment ratio ar is set the same as the target sparsity sp if not
specifically stated, which is justified by the ablation study in Appendix F.2. We adopt a NAT skip
ratio sr of 0.4/0.6/0.8 (i.e., sr of NATSs are removed) and note that the final ratio of skipped tokens to
the total tokens would depend on the number of NAT's detected in the given speech. If not specifically
stated, we report the FLOPs savings of the transformer component, which often dominates the total
FLOPs (e.g., >63% for wav2vec2-base), in speech SSL models.

4.2 BENCHMARK WITH SOTA ASR PRUNING METHODS

Considering that feed-forward networks (FFNs) are more sensitive to structured sparsity than self-
attention (SA) as demonstrated in Appendix F.1, for both our method and baselines, given a target
sparsity sp, we by default set their sparsity to satisfy (spsa +sprrn)/2 = sp and spsa — SprEN =
0.2, which achieves better ASR accuracy with comparable FLOPs as compared to uniformly setting a
sparsity of sp. For PARP, we adopt its best-performed setting for structured pruning, i.e., update the
sparsity every iteration according to the analysis in Sec. 3.3 and Tab. 1.

Benchmark on English ASR under different low-resource settings. We benchmark our S°-
DAMON with OMP and PARP (Lai et al., 2021) and apply the semi-supervised distillation described
in Eq. 2 to both our method and the baselines for fair comparisons. In particular, for a comprehensive
benchmark, we vary the available resources in the transcribed data D7 and those in the untranscribed
data Dy . We adopt a NAT skip ratio (i.e., sr in Sec. 3.2) of 0.4~0.8 for our SALAD technique and a
sparsity ratio (i.e., sp) of 0.2~0.5 for our SAFARI technique and other ASR pruning baselines.

Observation and analysis. As shown in Fig. 3, we can observe that (1) our S®-DAMON consistently
outperforms PARP and OMP by a notable margin, e.g., an absolute >7% WER reduction as compared
to PARP for achieving >64% FLOPs savings on wav2vec2-base with LibriSpeech-1h/100h as
Dr/Dyr; (2) our S>-DAMON shows decent scalability under more stringent low-resource settings
where PARP/OMP fail to achieve acceptable recognition effectiveness, e.g., an absolute up-to-34%
lower WER over PARP when only LibriSpeech-1h is available.

In addition, enabling both SALAD and SAFARI Table 2: Breakdown of the WER reduction.

can consistently win a bet.ter WER-FLOPs trade— Method PARP (Laietal, 2021) Sgerfl o SATE
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gent low-resource settings. As shown in Tab. 7, Dr=Libri-1h 64.52 34.63 3012
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Figure 5: Benchmark our SAFARI with PARP, OMP, IMP, and MPI (reported by (Lai et al., 2021))
for unstructured pruning on wav2vec2-base when being finetuned on LibriSpeech-10m/1h/10h.

from Fig. 3, enabling both SALAD and SAFARI achieves an absolute 4.51%~5.51% lower WER
over SAFARI for reducing >64% FLOPs on LibriSpeech-1h. This indicates that input data sparsity is
a critical dimension for structurally trimming down the complexity of speech SSL models in addition
to model sparsity. A more comprehensive breakdown is provided in Appendix B.

More low-resource settings. We further evaluate our S®-DAMON under more low-resource settings,

i.e., LibriSpeech-10m/10h w/ and w/o semi-supervised distillation. As shown in Fig. 4, our S°-
DAMON consistently outperforms PARP and OMP across all settings. This indicates its decent
scalability with resources, which is highly desirable for real-world ASR deployment.

Benchmark under high-resource settings. Table 3: Benchmark our method with PARP when
We further evaluate our method given more pejng finetuned on LibriSpeech-960h.

downstream resources, including LibriSpeech- Method Sparsity GFLOPs  WER (%)
100h/960h as shown in Fig. 1 (b) and Tab. 3, Original - 47.1 3.39
respectively. We can observe that (1) our S6-  PARP(Laictal,202)  s=04  2189(5352%) 1026
DAMON still outperforms the baselines, e.g., an SAFARI (ours) sp=0.4 2189 (53.52%) 5.0l

S6-DAMON (ours) s1=0.6, sp=0.3  20.22 (-57.07%) 4.34

absolute 10.96%/5.92% lower WER over PARP
for reducing >50% FLOPs on wav2vec2-base with 100h/960h transcribed data, respectively, and
(2) enabling both SAFARI and SALAD again achieves both lower WER and smaller FLOPs than
enabling SAFARI only under a high-resource setting according to Tab. 3.

Benchmark under unstructured sparsity. We validate the scalability of our SAFARI to unstructured
sparsity via benchmarking with the reported results of PARP, OMP, IMP, and MPI (i.e., magnitude
pruning at pretrained initializations) in (Lai et al., 2021) without any distillation. As shown in
Fig. 5, we can observe that our SAFARI can outperform all baseline methods across all resource
settings, especially under large sparsity ratios, e.g., an absolute 8.61% lower WER under 80% sparsity
over PARP on LibriSpeech-1h. This indicates that (1) the sparsity discrepancy issue still exists in
unstructured pruning under a larger sparsity ratio, and (2) our SAFARI pipeline consistently shows
its superiority as an ASR pruning paradigm over PARP under both structured/unstructured sparsity.

Benchmark with distillation-based models. Table 4: Benchmark S®-DAMON with distillation-
We benchmark with the reported ASR results in based ASR compression methods (Chang et al.,
DistilHuBERT (Chang et al., 2022) and FitHu- 2022; Lee et al., 2022).

BERT (LCC et al" 2022) fOI' compressing hubert DmnHuBERr(c(::::g etal., 2022) hubert (1-?3: g‘c :1 2021) Par;::;M) Wllf:;%)
and wav2vec2-base on LibriSpeech-100h. As

shown in Tab. 4, S®-DAMON achieves an abso- —— i e
lute 7.04% lower WER with 8.7% fewer param- ) hober suetal. 202) 2053 794
eters as compared to the strongest baseline FitHuBERT, indicating that given a speech SSL model,
trimming down its complexity in a top-down manner may achieve better compression effectiveness
than manually designing an efficient model from scratch.

wav2vec?2 (Baevski et al., 2020) 2249 14.77

FitHuBERT (Lee et al., 2022) hubert (Hisu ct al., 2021) 2249 12.66

Benchmark on more speech SSL models. We o \ T S von e
further extend our S®-DAMON to more models, N e e o e %
ie., data2vec (Baevski et al., 2022) and wav2vec2- g \ T Parvanwaie
large (Baevski et al., 2020) on LibriSpeech-1h (i.e., no ) ‘\ R e T
Dy). As shown in Fig. 6, we can observe that (1) our 2 1. \ e,

method shows consistent WER reductions over PARP * ,,\.‘.\‘ \.\ T
on different speech SSL models, and (2) according to A o H AN o S

the comparison between wav2vec2-base/large, structurally RN

compressing a larger speech SSL model may not result in

better WER-FLOPs trade-offs than compressing a smaller Figure 6: Benchmark with PARP on top

of wav2vec2-base/large and data2vec.
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Table 5: Benchmark our S®-DAMON with PARP on six tasks from SUPERB (Yang et al., 2021).

Method FLOPs Params ER KS QbE IC SF ASV

etho Saving (%) Saving (%) | (Acc?) (Acc?T) MaxTWV1T) (Acc?) (F11) (EER))
Original \ 0.00 0.00 \ 0.626 0.962 0.053 0.966  0.874 0.061
PARP (Lai et al., 2021) | 53.52 57.14 | 0.622 0.957 0.075 0.967  0.851 0.065
SS-DAMON 57.07 44.39 0.654 0.964 0.118 0.982  0.867 0.063
(Ours) 69.98 57.14 0.641 0.957 0.122 0.983  0.855 0.063

Table 6: Measure the latency of compressed models on a Google Pixel 3 mobile phone. “FE” denotes
the feature extractor and “Trans.” denotes the transformer backbone. All models are finetuned on
LibriSpeech-100h and sr/sp are the adopted skip ratio/sparsity, respectively.

Params WER | Lat. (ms) Lat. (ms) | Speed-up Speed-up

Method st/ sp (M) (%) Conv FE Trans. on Trans.  Overall RTF |
Original | /- 9474 550 | 22701 66785 | 1.00x 1.00x | 0895
. /03 5677 782 | 22701 48094 | 139x 126x | 0.708
PARP (Laietal, 2021) | )03 4580 1169 | 22701 37566 | 1.77x 148% | 0603
06002 6901 607 | 22701 38345 | 1.74x 147% | 0610
06003 5677 653 | 22701 33187 | 2.01x 1.60x | 0.559

6
S ‘(%’zlr\;[)oN 0803 5677 698 | 22701  3061.1 | 2.18x 1.68x | 0.533
08004 4580 798 | 22701 23779 | 28Ix 1.93x | 0.465
0807 2053 920 | 2270.1 819.1 8.15x 290% | 0.309

one as aggressively compressing a pretrained model could harm the pretrained speech representation.
This set of experiments indicates that, under a low-resource setting, using a smaller speech SSL
model with mild structured sparsity is preferable compared to larger models with high sparsity.

4.3 EXTENSION TO OTHER SPEECH PROCESSING TASKS

Benchmark on SUPERB. Although efficient ASR is our main focus, we also evaluate our method on
more speech processing tasks from SUPERB. In particular, we transfer the compressed models with
LibriSpeech-1h/100h as D7/Dy; of our S-DAMON and PARP to perform six speech processing
tasks on SUPERB (Yang et al., 2021). As shown in Tab. 5, we observe that (1) our method wins four
out of six tasks over the original wav2vec2-base with >55.07%/44.39% FLOPs/parameter reductions,
and (2) our method consistently outperforms PARP across all the tasks. This indicates that our

S5-DAMON can potentially serve as a general compression technique for speech processing.
4.4 REAL-DEVICE MEASUREMENT OF S®-DAMON

To validate the real-device efficiency of S-DAMON’s delivered models, we measure their latency on
a Google Pixel 3 mobile phone for processing a 10s audio segment with a 16k sampling rate. We also
report a real-time factor (RTF) defined as the inference time divided by utterance duration (Gondi,
2022). As shown in Tab. 6, our SS-DAMON can achieve (1) a 1.96x speed-up over PARP with
an absolute 2.49% lower WER, and (2) a 1.60x speed-up over the original wav2vec2-base with a
comparable WER (+1.03%) or a 2.90x speed-up while maintaining the absolute WER within 10%.
This indicates that our method can outperform SOTA ASR pruning methods in real-device efficiency
and significantly bridge the gap between speech SSL models and real-time on-device ASR.

Note that additional ablation studies can be found in Appendix B-F. These include applying S°-
DAMON to noisier datasets and supervised speech models, offering a comprehensive breakdown of
each technique’s contribution to the reduction in WER, comparing SALAD with other token skipping
methods, and validating our design choices.

5 CONCLUSION

Both the lack of large-scale transcribed speech data and the prohibitive model complexity hinder
ubiquitous ASR systems on mobile platforms. This work develops S®-DAMON to tackle both
challenges via effectively sparsifying speech SSL models to enable real-time on-device ASR. Specifi-
cally, S>-DAMON integrates SALAD and SAFARI to unlock structured sparsity in both input data
and model structures, respectively, where the former exploits and intrinsic redundancy of human
utterances and the latter reduces the sparsity discrepancy between finetuning/deployment and en-
hances the adaptability of sparsity distributions. Extensive experiments validate that S>-DAMON has
empowered the deployment of speech SSL models on mobile platforms and our delivered insights
could shed light on future innovations in efficiency-oriented speech SSL paradigms.
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A OVERVIEW AND OUTLINE

In the appendix, we provide more experiments and analysis as a complement to the main content,
which are outlined below:

 We provide a more comprehensive performance breakdown of our S®-DAMON framework
as a complement to Tab. 2 of our main text in Sec. B;

» We evaluate the effectiveness of our S>-DAMON on noisy datasets and supervised-trained
speech models in Sec. C and Sec. D, respectively;

* We perform more evaluation on our SALAD technique to further validate its promise as
a token skipping strategy, including the benchmark with other token skipping methods,
validating the necessity of enforcing high SAT recall, and cross-lingual transfer to more
languages, in Sec. E;

* We conduct more ablation studies on our SAFARI technique to validate the adopted design
choices, including the module-wise sensitivity to structured sparsity and the impact of the
adjustment ratio, in Sec. F;

* We introduce the detailed finetuning and real-device measurement settings in Sec. G;

¢ We discuss the limitations of our framework as well as our future work in Sec. H.

B BREAKDOWN OF S*~-DAMON’S ACHIEVED PERFORMANCE

To demonstrate the contribution of each of our techniques to the final achieved WER reduction,
we provide a comprehensive breakdown of S®-DAMON as a complement to the exemplary break-
down in Tab. 2 of our main text. In particular, we finetune wav2vec2-base (Baevski et al., 2020)
on LibriSpeech-1h w/ and w/o enabling the proposed semi-supervised distillation on unlabeled
LibriSpeech-10h.

Observation and analysis. As shown in Tab. 7, we can observe that (1) enabling SAFARI only can
outperform the SOTA ASR pruning baseline PARP (Lai et al., 2021), e.g., an absolute 29.89%/14.56%
WER reduction for reducing 64.29% FLOPs w/o and w/ distillation, respectively; (2) enabling both
SAFARI and SALAD consistently wins a better WER-FLOPs trade-off than enabling SAFARI only,
e.g., an absolute 3.06%~4.51% and 2.99%~5.51% lower WER over SAFARI for reducing >50%
FLOPs w/o and w/ distillation, respectively; (3) the proposed semi-supervised distillation is generally
effective on both our method and the baseline PARP, especially under more stringent low-resource
settings. This set of experiments further indicates the importance of input data sparsity as a critical
dimension of speech SSL models’ redundancy, which is highly desirable to be exploited for pushing
forward the achievable WER-FLOPs frontier.
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Table 7: Visualize the breakdown of the achieved WER reduction over the baseline PARP (Lai et al.,
2021) when finetuned on LibriSpeech-1h. “w/o dist.” and “w/ dist.” denote without/with distillation,
respectively.

PARP SAFARI (Ours) SAFARI + SALAD (Ours)
FLOPs Savings (%) w/odist. w/dist. | FLOPs Savings (%) w/odist. w/dist. | FLOPs Savings (%) w/o dist. w/ dist.
27.90% 23.71 20.32 27.90% 22.14 19.11 40.78% 22.56 19.17
41.38% 34.57 29.07 41.38% 26.17 20.11 46.94% 23.33 20.16
53.52% 50.68 35.83 53.52% 29.48 23.78 57.07% 26.42 20.79
64.29% 64.52 44.81 64.29% 34.63 30.25 66.18% 30.12 24.74

Table 8: Benchmark our S®-DAMON and SAFARI with the baseline PARP (Lai et al., 2021) on the
LibriSpeech test-other set with noisy speech when finetuned with different resources.

Resource PARP SAFARI (Ours) S6-DAMON (Ours)
FLOPs Savings (%) WER (%) | FLOPs Savings (%) WER (%) | FLOPs Savings (%) WER (%)
27.90% 30.09 27.90% 27.13 40.78% 2778
Dr=Libri-1h 41.38% 43.45 41.38% 29.64 46.94% 28.76
Dy=Libri-10h 53.52% 51.69 53.52% 34.37 57.07% 30.77
64.29% 60.69 64.29% 44.61 66.18% 37.34
27.90% 26.71 27.90% 25.35 40.78% 25.47
Dr=Libri-1h 41.38% 33.67 41.38% 26.41 46.94% 26.46
Dy=Libri-100h 53.52% 37.86 53.52% 29.63 57.07% 27.56
64.29% 43.26 64.29% 33.95 66.18% 31.44
27.90% 16.17 27.90% 15.53 40.78% 1591
Dp=Libri-100h 41.38% 20.65 41.38% 1573 46.94% 15.90
Dy=None 53.52% 27.63 53.52% 18.24 57.07% 17.26
64.29% 37.60 64.29% 21.47 66.18% 19.97

C EVALUATION ON NOISY DATASETS

To validate the robustness of our technique on noisy speech, we further benchmark our S®-DAMON
and SAFARI with the SOTA ASR pruning baseline PARP (Lai et al., 2021) on the LibriSpeech
test-other set (Panayotov et al., 2015) with background noise when finetuned using different resources.

Observation and analysis. As shown in Tab. 8, we can observe that (1) although both our technique
and the baseline PARP suffer from a larger WER increase on the noisy test-other set as compared
to the reported ones on the test-clean set in our main text, both our S6-DAMON and SAFARI still
outperform PARP, e.g., an absolute 17.63%/16.13% lower WER for reducing ;64% FLOPs when
finetuned on LibriSpeech-100h, respectively; (2) our S6_.DAMON, i.e., enabling both SAFARI and
SALAD, still achieves a better WER-FLOPs trade-off than enabling SAFARI only, e.g., an absolute
7.27% lower WER for reducing ;64% FLOPs when finetuned on Dp=Libri-1h and Dy=Libri-10h,
indicating the consistent effectiveness of SALAD in terms of further pushing forward the compression
frontier on noisy datasets.

Table 9: Benchmark our S>-DAMON and SAFARI with the baseline PARP (Lai et al., 2021) on the
supervised-trained wav2vec2-base using different finetuning resources.

Resource PARP SAFARI (Ours) S6-DAMON (Ours)
FLOPs Savings (%) WER (%) | FLOPs Savings (%) WER (%) | FLOPs Savings (%) WER (%)

27.90% 13.58 27.90% 8.73 40.78 % 8.87

Libri-1h 41.38% 29.36 41.38% 13.34 46.94 % 9.90
53.52% 61.92 53.52% 20.73 57.07% 14.11
27.90% 10.57 27.90% 5.93 40.78 % 5.98

Libri-10h 41.38% 14.32 41.38% 7.50 46.94% 6.65
53.52% 34.83 53.52% 11.55 57.07% 8.23

D EVALUATION ON SUPERVISED-TRAINED SPEECH MODELS

Although the main goal of our work is to trim down the complexity of speech SSL models, following
the de-facto paradigm for low-resource ASR, our method can be also seamlessly applied to speech
models trained in a supervised manner. To demonstrate this, we benchmark our S5-DAMON and
SAFARI with the baseline PARP (Lai et al., 2021) on supervised-trained wav2vec2-base using varied
finetuning resources with distillation enabled for both our method and PARP. More specifically, we
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adopt a sparsity of 0.2/0.3/0.4 for PARP and SAFARI and adopt a (sr, sp) pair, which are defined in
Sec. 3.2/3.3 of our main text, respectively, of (0.4, 0.2)/(0.6, 0.2)/(0.6, 0.3) for S®-DAMON.

Observation and analysis. As shown in Tab. 9, we can observe that (1) again, both our S6_.DAMON
and SAFARI can consistently outperform PARP across different data resource settings and FLOPs
savings, and (2) our S®-DAMON can achieve a better WER-FLOPs trade-off than SAFARI, indicating
the necessity of exploiting input data sparsity via SALAD.

E MORE EVALUATION ON THE EFFECTIVENESS OF SALAD
E.1 BENCHMARK WITH OTHER TOKEN SKIPPING METHODS

To validate the effectiveness of the skipping strategies Tgble 10: Benchrr'larlf our SALAD with
made by SALAD, we benchmark with three token skip- different token skipping strategies.

ping methods: (1) random skip, (2) uniform skip with a Method Sovimtey oy
similar effect as reducing the sampling rate, and (3) layer- SALAD (Ours) 243 19.17
. . . e . urs
wise adaptive skip (Wang et al., 2021) based on attention 20  2a
scores, which is initially designed for NLP. In particu- Uniform Skip oo N
lar, we finetune wav2vec2-base with each of the skipping 200 1398
g e . . . Random Skip . 9
methods on LibriSpeech-1h and control their skip ratios 00 7987
to ensure comparable FLOPs savings. Adaptive Skip (Wang etal. 2021) >0 22038

Observation and analysis. As shown in Tab. 10, we can observe that (1) our SALAD consistently
wins the lowest WER under comparable FLOPs, e.g., an absolute 4.42% WER reduction over the
strongest baseline uniform skip when saving >30% FLOPs; and (2) the adaptive skip method can
hardly surpass the simple uniform skip strategy, indicating that without considering the intrinsic prop-
erties of human speech, the monotonic alignment between the input speech and output transcriptions
can be easily destroyed.

E.2 THE NECESSITY OF ENFORCING HIGH RECALL ON SATS

We train two SALADs w/ and w/o recall-aware training  Taple 11: Validate the necessity of RAT.
(RAT), which are next applied on wav2vec2-base with -
different NAT sr on LibriSpeech-1h. As shown in Tab. 11, Setting W0 RAT _ w/RAT

explicitly enforcing a high recall on SATs leads to consis- Acc (%) 79.38 75.69
tently lower WER especially under larger sr, validating Recall (%) 64.38 89.08
the necessity of maximally covering all SATs. NAT sr=0.4 19.56 18.42

NAT s7=0.6 21.63 19.17

E.3 CROSS-LINGUAL TRANSFER OF SALAD NAT 5r=0.8 23.89 20.21

Setup. Considering the semi-supervised training scheme Table 12: Evaluate the phoneme recogni-
of SALAD requires a large set of untranscribed speech, tion rate (PER) when applying SALAD
which may not be available for some spoken languages, we trained on English to other languages.
evaluate whether the SALAD trained on English can be di- sr Dutch Spanish Mandarin
rectly transferred to detect SATs/NATs for other languages.

In particular, we transfer SALAD trained on untranscribed B 19.82 13.86 26.67
LibriSpeech-100h to pursue the input sparsity for finetun- 0.2 18.89 13.76 26.61
ing wav2vec2-base on Dutch, Spanish, and Mandarin from 04 19.16 13.85 26.89

CommonVoice (Ardila et al., 2019). 0.6 19.55 13.99 26.84
0.8 2009 14.32 28.46

Observation and analysis. As shown in Tab. 12, we can
see that SALAD trained on English can transfer well to other languages, e.g., achieve a comparable
or lower PER under an sr of 0.6, indicating that SALAD can extract general phonetic features that
can be shared across spoken languages.

In addition, we also measure the achieved accuracy and recall of detecting SATs achieved by
SALAD on ten languages from CommonVoice, each with 1h labeled speech following the data split
in (Conneau et al., 2020). As shown in Tab. 13, we can observe that our SALAD can consistently
achieve a >68% accuracy and a >85% recall across all languages, indicating the general effectiveness
of SALAD across languages.
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Table 13: Visualize the accuracy and recall of SALAD on ten languages from CommonVoice (Ardila
etal., 2019).
Language Dutch Mandarin Spanish Tartar Russian Italian Kyzgyz Turkish Swedish France

Accuracy (%)  70.02 74.52 69.53 73.89 77.52 76.22 68.12 71.65 68.34 74.91
Recall (%) 91.51 85.65 95.31 89.27 85.92 86.44 94.36 88.76 94.36 87.16

Table 14: Apply our SARARI on wav2vec2-base/LibriSpeech-1h with varied FFN/SA sparsity.

FFN/$A GFLOPs WER FFN/SA GFLOPs WER FFN/SA GFLOPs WER
sparsity (%) sparsity (%) sparsity (%)

0.2/0.2 33.024 23.19 0.3/0.3 26.96 23.19 0.4/0.4 21.52 31.97
0.1/0.3 33.96 22.13 0.2/0.4 27.61 24.52 0.3/0.5 21.89 29.72
0.3/0.1 32.016 25.19 0.4/0.2 26.23 31.05 0.5/0.3 21.08 47.71

F ABLATION STUDIES ON THE DESIGN CHOICES OF SAFARI

F.1 MODULE-WISE SENSITIVITY TO STRUCTURED SPARSITY

To justify our choice of module-wise sparsity distribution, we conduct an ablation study to apply our
SAFARI on wav2vec2-base on top of LibriSpeech-1h and vary the sparsity in FFN and SA under
comparable FLOPs. As shown in Tab. 14, we consistently find that FFNs are more sensitive to
structured pruning, especially under large sparsity. This may be because task-specific information
is mostly learned by FFNs during finetuning thus their sufficient complexity is crucial. Therefore,
we by default set their sparsity to satisfy (spsa + sprrn)/2 = sp and spsa — sprpn = 0.2 for a
given sparsity sp in Sec. 4 of our main text.

Table 15: The achieved WER under var-

F.2  THE CHOICE OF ADJUSTMENT RATIOS ied adjustment ratios ar and sparsity sp.

We vary the adjustment ratio ar under different sparsity sp ar / sp ‘ 0.2 0.3 0.4
on top of wav2vec2-base and LibriSpeech-1h. As shown 0.1 2375 2653 33.14
in Tab. 15, we observe that the optimal ar varies for dif- ) ) ) )

. . . 0.2 22.86 28.65 3197
ferent sp and in general larger sparsity calls for higher 03 2296 2319 3076
adaptability of sparsity distributions. Therefore, we set : : : :
ar = sp across all experiments in Sec. 4 of our main text. 0.4 23.18  26.79  30.74

G MORE DETAILS ABOUT EXPERIMENT SETUP

Finetuning settings. We implement S®-DAMON on top of fairseq (Ott et al., 2019) and we follow
the default finetuning settings for each task, i.e., the default configurations in fairseq for ASR/PR and
those in SUPERB (Yang et al., 2021) for other speech processing tasks. In particular, all experiments
on ASR/PR are trained for 12k/15k/20k/80k steps on the 10m/1h/10h/100h splits using an Adam
optimizer with an initial learning rate of 5e-5 plus a tri-stage schedule (Baevski et al., 2020). We do
not freeze all the transformer layers for the first 10k steps (Baevski et al., 2020), following (Lai et al.,
2021). All experiments are trained on two NVIDIA A5000 GPUs using a distributed data-parallel
scheme. In addition, considering the transformer backbone accounts for >90% parameters in the
speech SSL models, all the reported FLOPs/Params savings and sparsity ratios are relative to the
transformer, following PARP (Lai et al., 2021).

Measurement settings. For the measurement on the Google Pixel 3 mobile phone, all Pytorch
models are converted to ONNX and then compiled to the TFLite format, following (Li et al., 2021a).
We separately compile (a) the convolutional feature extractor + SALAD, and (b) the transformer
backbone, where the output of (a) is fed into (b) as its input. The latency on both (a) and (b) as well
as the overall speed-up are reported in Sec. 4.4 of our main text.

H LIMITATIONS AND FUTURE WORK

Our work has two limitations: (1) we only apply our technique on the transformer component of
speech SSL models while leaving the convolutional feature extractor that transforms raw audio
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into tokens untouched since we find that it is sensitive to compression and suffers from non-trivial
WER increases under larger structured sparsity. Although the transformer component dominates
the computational cost, the overall speed-up can be limited under extremely large sparsity, e.g., our
method can achieve 8.15% speed-up on the transformer component while the overall (i.e., whole-
model) speed-up is constrained to 2.90 x according to Tab. 6 of our main text. In our future work, we
will design more lightweight and robust feature extractors, either in the frequency domain or in the
time domain, to push forward the achievable overall speed-up; (2) although the ultimate goal and
potential impacts mentioned in Sec. 1 of our main text is to facilitate the on-device deployment of
emerging foundation models (Bommasani et al., 2021), in this work we consider the speech domain
first as it is one of the most commonly adopted input modalities on mobile devices. In our future
work, we will extend our framework and insights to more advanced foundation models across NLP
and CV domains with the goal of democratizing the power of cutting-edge Al foundation models to
everyday devices.
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