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ABSTRACT

It is well recognized that historical biases exist in training data against a certain
sensitive group (e.g., non-white, women) which are socially unacceptable, and
these unfair biases are inherited to trained AI models. Various learning algorithms
have been proposed to remove or alleviate unfair biases in trained AI models. In this
paper, we consider another type of bias in training data so-called sampling bias in
view of fairness AI. Here, sampling bias means that training data do not represent
well the population of interest. Sampling bias occurs when special sampling
designs (e.g., stratified sampling) are used when collecting training data, or the
population where training data are collected is different from the population of
interest. When sampling bias exists, fair AI models on training data may not be fair
in test data. To ensure fairness on test data, we develop computationally efficient
learning algorithms robust to sampling bias. In particular, we propose a robust
fairness constraint based on the Lq norm which is a generic algorithm to be applied
to various fairness AI problems without much hamper. By analyzing multiple
benchmark data sets, we show that our proposed robust fairness AI algorithm
improves existing fair AI algorithms much in terms of the robustness to sampling
bias and has significant computational advantages compared to other robust fair AI
algorithms.

1 INTRODUCTION

AI (Artificial Intelligence) is being widely used in various decision-makings directly related to human
social life, such as credit scoring, criminal risk assessment, and college admissions (Angwin et al.,
2016). However, it is well recognized that there exist historical biases in training data against a certain
sensitive group (e.g., non-white, women) which are not socially acceptable due to ethics or regulatory
frameworks for fairness, and these unfair biases are inherited to trained AI models (Kleinberg et al.,
2018; Mehrabi et al., 2019). A lot of learning algorithms have been proposed to remove or alleviate
unfair biases in trained AI models to treat sensitive groups as equally as possible. In general, these
algorithms try to search AI models which are not only accurate but also similar between sensitive
groups in a certain sense.

In this paper, we consider another type of biases in training data, so-called sampling bias in view of
fairness AI. Here, we say that sampling bias exists in given training data when the training data do
not represent the population of interest well. Possible causes of sampling bias are the usage of special
sampling designs other than the simple random sampling (e.g., stratified sampling) and population
mismatch (i.e., the population where training data are collected is different from the population of
interest, or the population keeps changing as time goes). When sampling bias exists, fair AI models
on training data may not be fair on test data. Hence, to ensure fairness on test data, we need a device
to learn AI models whose fairness is robust to sampling bias.

Contributions: This paper aims to develop computationally efficient learning algorithms that
yield fair prediction models whose fairness is robust to sampling bias. Our main contributions are
summarized as follows:

• We propose a robust fairness constraint which yields prediction models whose fairness is
robust to sampling bias.
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• To resolve computational issues, we introduce the Lq-robust fairness constraints and imple-
ment the corresponding learning algorithm. Our learning algorithm is flexible enough to
apply to various fairness constraints without much hamper.

• We demonstrate by analyzing several benchmark datasets that our learning algorithm pro-
vides prediction models which are robust to sampling bias.

Related works: Various learning methods have been proposed to train an accurate and fair model,
which are classified by the two notions - definition of fairness and process of learning. Most definitions
of fairness can be roughly categorized into two groups - group fairness and individual fairness. Group
fairness (Calders et al., 2009; Hardt et al., 2016) requires that a certain quantity of a prediction model
should be similar between sensitive groups while individual fairness (Dwork et al., 2012) demands
the predictions of two similar individuals should be similar.

Fair learning algorithms are divided into three groups in view of the process of learning. The pre-
processing methods remove bias in training data (Kamiran & Calders, 2012) before training prediction
models. Meanwhile, the in-processing methods train a prediction model by minimizing the cost
function subject to fairness constraints (Kamishima et al., 2012; Menon & Williamson, 2018). Since
most fairness constraints are not differentiable, various surrogate constraints have been proposed
(Zafar et al., 2017; 2019; Donini et al., 2018; Wu et al., 2019; Padala & Gujar, 2020). The last one is
the post-processing methods, which first train a prediction model without any constraints and then
transform the trained prediction model for each sensitive group to meet a fairness criterion (Hardt
et al., 2016; Jiang et al., 2020; Wei et al., 2020). This paper focuses on the in-processing methods and
modifies them to be robust to sampling bias.

Several works have been done for fairness AI considering biases other than historical or regulatory
biases. Fogliato et al. (2020) took into account a possible noisy measurement bias in the observed
label y. Hashimoto et al. (2018); Lamy et al. (2019); Wang et al. (2020) have considered problems
where the information of sensitive groups are not available or contaminated by noises.

For sampling bias, Taskesen et al. (2020) implemented a learning algorithm based on the DRO
(distributional robust optimization) approach. But, this algorithm is only applicable when both the
loss and fairness constraint are convex. Mandal et al. (2020) has developed an interesting optimization
algorithm for learning fair prediction models under sampling bias. The algorithm of Mandal et al.
(2020), however, requires learning prediction models iteratively and thus is hard to be applied for
computationally intensive prediction models such as deep neural networks. Our learning algorithm
can be considered as a smooth version of Mandal et al. (2020) to reduce computational burdens.The
corresponding optimization algorithms are based on standard (stochastic) gradient descent and so our
learning algorithm can be applied to most standard fairness AI algorithms to make them robust to
sampling bias without much modification.

2 REVIEW OF LEARNING ALGORITHMS FOR FAIRNESS

Let (Y,X, Z) be the random vector of a triplet of output, input, and sensitive variable, whose
distribution is P. For simplicity, we consider a binary classification problem where Y ∈ {−1, 1}
and a binary sensitive variable Z ∈ {0, 1}. For a given loss function l and a class F of prediction
models, the aim of supervised learning is to find f∗ defined as f∗ = argminf∈FE{l(Y, f(X))}.
Due to historical biases or social prejudices, the optimal prediction model f∗ would not be socially
acceptable because it treats individuals or sensitive groups unfairly. Thus, we want to search f , which
is fair and at the same time makes the population risk E{l(Y, f(X))} as small as possible.

Suppose that Ffair is a subset of F , which consists of all fair prediction models. Then, the goal of fair
supervised learning is to find f∗fair defined as f∗fair = argminf∈Ffair

E{l(Y, f(X))}. There are various
proposals for Ffair but most of existing classes Ffair can be formulated as Ffair = {f ∈ F : φ(f, P ) ≤
ε}, where φ is a real valued function so called a fairness constraint function. Below, we give the two
fairness constraint functions which we use in the numerical studies.

• Group fairness: Most of between group fairness constraints can be formalized as
φ(f, P ) = |E(η(f, Y,X)|Z = 0) − E(η(f, Y,X)|Z = 1)| for a certain functional η.
The fairness constraint φ becomes the disparity impact Barocas & Selbst (2016) if If
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η(f, y,x) = I(f(x) > 0). In practice, to avoid computational difficulty in using I(·), we
use the surrogated disparity impact constraint where η(f, y,x) = {1 + f(x)}+ (Zafar et al.,
2017; Padala & Gujar, 2020). The mean score parity (Coston et al., 2019) is obtained by
letting η(f, y,x) = f(x).

• Individual Fairness: In practice, group fairness is not sufficient since a group faired prediction
model can be seriously unfair for certain subgroups. To resolve this problem, the notion of
individual fairness is considered which requires that similar individuals should be treated
similarly Dwork et al. (2012). In this paper, we consider (γ, ξ)-Uniform Individual Fairness
defined as

φ(f ; γ, ξ, P ) = P

(
sup

v:d(X,v)≤ξ
D(f(X), f(v)) > γ

)
,

where D(·, ·) is a similarity metric between treatments and d(·, ·) is a similarity metric
between individuals.

In practice, we do not know P but have training data (y1,x1, z1), . . . , (yn,xn, zn). One of the most
popular approaches for estimating f∗fair is a constrained empirical risk minimization approach, which
estimates f∗fair by f̂fair defined as f̂fair = argminf∈F̂fair

∑n
i=1 l(yi, f(xi))/n, where F̂fair = {f ∈ F :

φ(f, Pn) < ε} and Pn is the empirical distribution.

3 PROBABILITY MODEL FOR SAMPLING BIAS

Let P tr and P te be the two probability measures for training and test datasets, respectively. When
P tr 6= P te, sampling bias exists and standard fair learning algorithms could be problematic.

To model the relation between P tr and P te, let s : X → (0,∞) be a weight function. The probability
model for sampling bias assumes that ptr(y,x) ∝ s(x)pte(y,x). Unless s(x) is a constant function,
P tr 6= P te and sampling bias emerges. We call s(·) the bias function. The following four examples of
sampling bias are selected from Mehrabi et al. (2019).

• Sampling bias: Sampling bias is caused by non-random sampling of subgroups, e.g., strati-
fied sampling.

• Self-selection bias: Each datum decides to participate in the training data by her own
decision. An example of self-selection bias is a college admission where only the data of
applicants are available, and those who do not apply are excluded from the training data.
But, the model is required to be fair for all students.

• Population bias: The population where data are collected is different from the target popula-
tion. For example, population bias can occur on social platforms where the main users are
different according to their gender and age.

• Temporal bias: Temporal bias occurs when populations or behaviors change over time. Data
collected at different time points may vary according to various criteria, such as system
users or system usage.

The interpretation of the bias function s depends on a specific case of sampling bias. If the population
is unbiased but training data are biased, which is the case of sampling bias and self-selection bias,
the bias function can be interpreted as an inclusion probability. That is, we first sample (y,x) from
P = P te and include it to training data with probability proportional to s(x). On the other hand,
the population of interest is different from the population of training data, which is the case for the
population bias and temporal bias, a datum (y,x) is generated from P = P tr and is accepted for test
data with probability proportional to 1/s(x).

In this paper, we assume that the bias function s depends only on x but not on y. This assumption
is made because we want to separate out unfair (historical or regulatory) bias and sampling bias.
Unfair bias exists in P (y|x) which is not affected by the bias function s as long as it depends only on
x. That is, the biased probability model shares the same unfair bias and the same Bayes classifier
regardless of s. The main purpose of this paper is to study how the sampling bias affects the fairness
of estimated prediction models and develop an algorithm that yields prediction models whose fairness
is robust to sampling bias.
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4 ROBUST FAIRNESS CONSTRAINTS AND CORRESPONDING LEARNING
ALGORITHMS

4.1 ROBUST FAIRNESS CONSTRAINT

Suppose that the bias function s(·) is known. Let wi = 1/s(xi) and w = (w1, . . . , wn)>. For
given f, an unbiased estimator of φ(f, P te), the fairness function on test data is φ(f, Pn,w),
where Pn,w(·) ∝

∑n
i=1 wiδ(yi,xi,zi)(·), which is the well known Horvitz-Thompson esti-

mator (H-T estimator) (Horvitz & Thompson, 1952). Then, f̂fair,w defined as f̂fair,w =

argminf∈F̂fair,w

∑n
i=1 l(yi, f(xi))/n, where F̂fair,w = {f ∈ F : φ(f, Pn,w) < ε} would be a

reasonable estimator for fair prediction.

In practice, we do not know the bias function, and in such cases, we may require that φ(f, Pn,w) < ε
for all possible values of w. This requirement, however, would be too restrictive so that only very
simple prediction models could satisfy this requirement. A reasonable remedy is to require that
φ(f, Pn,w) < ε only for w close to the equal weights.

Without loss of generality, we assume that
∑n
i=1 wi = 1. When there is no sampling bias

(i.e., s(·) is a constant function), we have wi = 1/n. For given δ ∈ (0, 1), we let Wδ ={
w : wi = (1− δ) 1

n + δvi, (v1, . . . , vn)> ∈ Sn
}
, where Sn is the n dimensional simplex on Rn.

We propose the δ-robust fairness constraint as

Ffair,δ =

{
f : sup

w∈Wδ

φ(f, Pn,w) ≤ ε
}
. (1)

In turn, we propose to estimate f by f̂fair,δ defined as

f̂fair,δ = argminf∈F̂fair,δ

n∑
i=1

l(yi, f(xi))/n. (2)

The constant δ is a regularization parameter that could be proportional to the expected amount of
sampling bias in practice.

4.2 Lq ROBUST FAIRNESS CONSTRAINTS

Solving (2) would be difficult even though it is not impossible in particular when φ(f, Pn,w) is
nonlinear in w. Note that most group fairness constraint functions are nonlinear. To resolve this
obstacle, in this subsection, we propose a relaxed version of (1) such that the corresponding estimator
can be obtained computationally easily.

Let Q(n) be a distribution on Sn, which is specified later on. For given q > 0 we define the Lq
δ-robust fairness constraint as

Ffair,δ,q =
{
f : {Ewφ

q(f, Pn,w)}1/q ≤ ε
}
, (3)

where w = (1 − δ)(1/n, . . . , 1/n)> + δv and v ∼ Q(n). Then, we estimate f by f̂fair,δ,q de-
fined as f̂fair,δ,q = argminf∈F̂fair,δ,q

∑n
i=1 l(yi, f(xi))/n. Theoretically, the Lq robust fairness con-

straints becomes to the robust fairness constraints as q becomes larger since {Ewφ
q(f, Pn,w)}1/q →

supw∈Wδ
φ(f, Pn,w) as q →∞ provided that the support of Q(n) is equal to Sn. In this sense, the

robust fairness constraint in (1) can be called the L∞ robust fairness constraint. Our numerical study
indicates that the Lq robust fairness constraint performs well for q ∈ [1.5, 2] provided that Q(n) is
selected carefully.

An important technical issue in the Lq robust fairness constraint is to choose Q(n). Even though
the Lq robust fairness constraint converges to the L∞ robust fairness constraint as q → ∞, the
robustness of f̂fair,δ,q for a finite q strongly depends on the choice of Q(n). For given f, let wf =
argmaxw∈Wδ

φ(f, Pn,w). In most fairness constraint functions, wf locates at the boundary ofWδ

instead of the interior. The proof of this claim for the disparity impact constraint is given in Appendix
A.1. Thus, it would be helpful to select Q(n) that puts most of its mass near the boundary ofWδ.
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Figure 1: Comparison of the normalized gamma distribution and the normalized inverse-gamma
distribution: the distribution functions of wis.

For this purpose, we consider a normalized distribution defined as follows. Let G be a distribution
on [0,∞) and let R1, . . . , Rn be independent random variables following G. Then, the distribution
of the random vector W = (W1, . . . ,Wn)> defined as Wi = Ri/

∑n
l=1Rl is called the normalized

G-distribution. If G is a Gamma distribution, then the normalized G-distribution becomes a Dirichlet
distribution. The normalized inverse-Gaussian distribution is used for Bayesian analysis by Lijoi et al.
(2005). By choosing G appropriately, we can have Q(n) that has desirable properties for our purpose.

For w to be close to the boundary ofWδ, most of wis are close to 0, and the remaining fews are large.
This would happen when there are few outliers among R1, . . . , Rn. That is, if the tail of G becomes
fatter, the corresponding Q(n) has more mass near the boundary. Motivated by this observation, we
propose to use the inverse-gamma distribution with the parameter (α, β) (i.e. the distribution of 1/D,
where D is a gamma random variable with parameter (α, β)) for G. Since β does not affect Q(n),
we let β = 1. The inverse Gamma distribution has a polynomially decreasing tail, and does not
even have the first moment when α ≤ 1. Figure 1 compares the normalized gamma and normalized
inverse-gamma distributions on Sn with n = 100 as follows. We first generate w from Q(n) and
draw the distribution Φ(t) defined as Φ(t) =

∑n
i=1 I(wi ≤ t). Figure 1 compares the Φs of the

normalized gamma distribution and the normalized inverse-gamma distribution for various values of
α. Note that the normalized inverse-gamma distribution has more mass near 0 but also more mass on
large values of w.

4.3 LEARNING WITH Lq ROBUST FAIRNESS CONSTRAINTS

There are three regularization parameters δ, q and α in the Lq robust fairness constraint. The larger the
δ is, the more robust the resulting prediction model is. Thus, we can control the fairness-robustness
by choosing δ accordingly. On the other hand, even though larger q and smaller α increase fairness-
robustness, the impact of q and α diminishes very fast. In addition, a too-large value of q makes
the optimization problem numerically unstable. Our numerical studies indicate that the Lq robust
fairness constraints with α ∈ (0.5, 1) and q ∈ [1.5, 2] yield sufficiently fairness-robust prediction
models. On the other hand, numerical instability occurs frequently when q > 2.

Once the three regularization parameters are selected, we estimate f̂fair,δ,q by minimizing

n∑
i=1

l(yi, f(xi))/n+ λ {Ewφ
q(f, Pn,w)}1/q , (4)

where λ is the Lagrangian multiplier corresponding to ε. A standard gradient descent algorithm with
approximating (Ewφ

q(f, Pn,w))
1/q by a Monte-Carlo simulation works well.

4.4 MINI-BATCH LEARNING ALGORITHM

When training data are large, we frequently resort to a mini-batch learning algorithm, in which case
we need a special technique to deal with the Lq robust fairness constraint. For this problem, we
propose to modify the learning algorithms as follows. Let D be a mini-batch which is a subset of
{1, . . . , n} with |D| = m. Let wD = (wD,i, i ∈ D) be a random vector followingQ(m)

δ , whereQ(m)
δ
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is the distribution function of (1− δ)(1/m, . . . , 1/m)>+ δv and v ∼ Q(m). At each iteration of the
mini-batch learning, we replace the Lq robust fairness constraint by {EwDφ

q(f, PD,wD )}1/q , where
PD,wD (·) ∝

∑
i∈D wD,iδ(yi,xi,zi)(·). Of course, {EwDφ

q(f, PD,wD )}1/q can be approximated by a
Monte Carlo simulation. The mini-batch learning algorithm for the Lq robust fairness constraint is
summarized in Algorithm 1.

Algorithm 1 Mini-batch learning algorithm

1: Initialize:
Model parameter θ0.

2: for epoch t = 1, 2, .. do
3: For given mini-batch Dt of size m, draw wDt,k ∼ Q

(m)
δ for k = 1, . . . ,K.

4: Update θ :

θt+1 ← θt − η∇θ

 1

m

∑
i∈Dt

l(yi, fθ(xi)) + λ

{
1

K

K∑
k=1

φq(fθ, Pm,wDt,k
)

}1/q
 (5)

5: end for

It should be noted that the above mini-batch learning algorithm is not a stochastic version of the
original optimization problem (4). This is because the gradient in (5) is not an unbiased estimator of
the gradient of (4). However, we can think of this mini-batch algorithm as a stochastic version of a
new robust fairness constraint as follows. Let A be the collection of all subsets D of {1, . . . , n} with
|D| = m. Then, we define the mini-batch Lq robust fairness constraint as

φmini(f) =
1

|A|
∑
D∈A
{EwDφ

q(f, PD,wD )}1/q . (6)

We have confirmed empirically that the mini-batch robust fairness constraint also works well whose
details are given in Appendix A.4.

5 NUMERICAL STUDIES

To investigate the impact of sampling bias to the fairness of the trained classifier, we analyze four
real-world datasets, which are popularly used in fairness AI research and publicly available: (i) The
Adult Income dataset (Adult, Dua & Graff (2017)); (ii) The Bank Marketing dataset (Bank, Dua
& Graff (2017)); (iii) The Law School dataset (Law school, Wightman & Ramsey (1998)); (iv)
The Compas Propublica Risk Assessment dataset (COMPAS, Larson et al. (2016)). Except for the
Adult dataset, which has separate training and test datasets, we obtain training and test datasets by
splitting the dataset randomly with 8:2 ratio and repeat the training/test split 5 times for performance
evaluation.

We consider linear logistic models for F and use the binary cross-entropy for the loss function. The
results for deep neural networks are provided in Appendix A.4. We train the models by a stochastic
gradient descent algorithm using PyTorch. The SGD optimizer is used with a momentum of 0.9 and a
learning rate of 0.1. All experiments are conducted on a GPU server with NVIDIA TITAN Xp GPUs.

In this study, we focus on the three fairness constraints introduced in Section 2: the disparate impact
(DI), the mean score parity (MSP), and the uniform individual fairness (UIF). We compare fairness-
robust prediction models trained by our algorithm with those trained by standard in-processing
methods (Goh et al., 2016; Wu et al., 2019) as well as unconstrained methods. For DI, we replace
the indicator function in the fairness constraint with the hinge function. For choosing the Lagrange
multiplier λ in (4), we first set a specific level ε in the fairness constraint (e.g., ε = 0.03) and
select λ so that the resulting prediction model f̂ meets Ewφ

q(f, Pn,w) ≈ εq. For δ, the three values
{0.2, 0.6, 1} are considered. A similar procedure is used for choosing the Lagrangian parameter in
the in-processing methods
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Figure 2: Comparison of the DI and MSP values of trained prediction model when sampling bias
exists in training data. The colored bands for each line of the Bank, Law school and COMPAS
datasets represent the pointwise 2-se (standard error) confidence intervals.

5.1 BIASED TRAINING DATA

We investigate the impact of sampling bias in training data to fairness by analyzing synthetically
generated biased data from the four real-world datasets. We generate a biased training dataset as
follows. (i) First, we fit a prediction model f̃ by use of the in-processing method with a specific
level of fairness (e.g., φ(f̃ , P tr

n ) ≈ 0.03). (ii) We compute the worst case weight w̃ defined as
w̃ = argmaxw∈Bφ(f̃ , P tr

n,w) for a subset B of Sn. We select B, whose specification is given in
Appendix A.2. (iii) For given τ ∈ [0, 1],we set wτ = (1−τ)w0+τŵ,where w0 = (1/n, . . . , 1/n)>

and ŵ ∝ 1/w̃. (iv) Finally, we generate a synthetic biased training dataset by sampling from the
original training dataset with probability wτ . Note that a large value of τ results in a large sampling
bias in synthetic training data.

Performance assessment: For a given τ,we train prediction models based on a synthetically biased
training data and evaluate the fairness values (i.e., the values of the fairness function of the trained
prediction models) and the accuracies on the test data. The results of the fairness values of various
trained prediction models for τ ∈ {0.1, 0.2, . . . , 0.5} are compared in Figure 2, where the parameter
α and q are set to be 0.75 and 1.5, respectively. As we expect, the Lq robust fairness constraint
improves the fairness-robustness significantly. A large value of δ improves the fairness-robustness
much. Of course, the accuracies, which are reported in Appendix A.4, decreases as δ increases. In
practice, we could choose δ that trades off the accuracy and fairness-robustness optimally.

Sensitivity analysis of α and q: We investigate how the choice of α and q affects the fairness-
robustness. The left panel of Figure 3 compares the DI values of the trained prediction models with
various values of α when δ and q are fixed at 0.6 and 1.5, respectively. The results are similar except
the case of α = 1. The choice of α being 0.75 or 0.5 looks reasonable.

The right panel of Figure 3 compares the accuracies of the trained models with the Lq robust DI
constraint for q = 1.5 and q = 2 whose DI values on test data are near 0.03, where δ and α are set to
be 0.6 and 0.75, respectively. The accuracies with q = 1.5 are higher than those with q = 2 for the
Bank dataset while they are similar for the Law school dataset. Similar results are observed for MSP,
which are given in Appendix A.4.

5.2 BIASED TEST DATA

Performance assessment for DI and MSP: We train a model with the original training dataset
and evaluate the fairness of the prediction model on the weighted test dataset. For a given prediction
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(a) Sensitive analysis of α (b) Sensitive analysis of q

Figure 3: Sensitive analysis for the Lq robust fairness algorithm. (a) We compare the test DI values
for sensitive analysis of α. We fix q = 1.5 and δ = 0.6. (b) For sensitive analysis of q, we compare
the test accuracy when q = 1.5 and q = 2. We fix δ = 0.6 and α = 0.5. The tuning parameter λ is
selected when the test DI value is similar to 0.03. In each figure, the colored bands represent the
pointwise 2-se confidence intervals.

Figure 4: Comparison of the DI and MSP values of trained prediction model when sampling bias
exists in test data. The colored bands for each line of the Bank, Law school and COMPAS datasets
represent the pointwise 2-se confidence intervals.

model f, we evaluate φ(f, P te
n,ŵκ

) for various values of κ, where ŵκ is the one which maximizes
φ(f, P te

n,w) among those satisfying ‖w −w0‖∞ ≤ κ. See Appendix A.3 for the detailed procedure
to select ŵκ. Figure 4 summarizes the results of DI and MSP for various values of δ with (α, q)
being (0.75, 1.5), which amply indicate that the Lq robust fairness constraint performs quite well for
the case of sampling bias in test data.

Performance assessment for UIF: The left panel of Figure 5 compares the 1 − Con. values of
the robustly trained prediction models with α = 0.75 and q = 2 as well as trained models by the
in-processing and unconstrained methods. Con. (consistency) is a measure of the consistency between
f(x) and f(x′) when x and x′ are the same except the sensitive variable. See Yurochkin & Sun
(2020); Mukherjee et al. (2020) for the detailed definition of Con. The results confirm that the Lq
robust fairness constraint also performs well for UIF. The right panel of Figure 5 investigates the
sensitivity of the Lq robust UIF constraint to the choice q while δ and α are fixed at 0.2 and 0.75,
respectively. Note that UIF is linear in w and hence the Lq robust UIF does not work for q = 1. The
results suggest that q ∈ [1.5, 2] would be a reasonable choice. More results of numerical studies for
UIF are given in Appendix A.4.

Comparison with the L∞ robust fairness constraint: We compare the Lq and L∞ constraints
when δ = 1. For the L∞ constraint, we use the algorithm of Mandal et al. (2020). For prediction
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Figure 5: Comparison of the fairness values and sensitive analysis of q for UIF based on the Adult
dataset when sampling bias exists in test data.

models, we consider linear models since the algorithm of Mandal et al. (2020) is only available for
linear models.

The results are presented in Appendix A.5. The Lq with q = 1.5 and L∞ robust fairness constraints
perform similarly when training data are balanced in the output labels (i.e. n0 = n1 where ny is the
number of data whose labels are y) while the Lq constraint is sightly superior when training data are
imbalanced (e.g. n0 = 3n1). In addition, computation time of our algorithm is much faster (more
than 40 times faster for the Adult dataset) than that of Mandal et al. (2020). These results suggest
that the proposed learning algorithm with the Lq robust fairness constraint can be understood as a
computationally efficient proxy of the learning algorithm with the L∞ robust fairness constraint.

6 CONCLUSION

In this paper, we have focused on fairness-robustness. We do not claim that our method is best in the
sense that it achieves the best accuracy among fairness-robust prediction models. Theoretical studies
for this direction would be worth pursuing.

When the bias function s depends on the output label y, the situation becomes much more difficult. A
representative example of such cases is the case-control design, where we randomly select samples
from each class. Within the author’s knowledge, not much study about the fairness of y-biased data
has been done. We leave this topic as future work.

There are many possible areas where the idea of the Lq robust fairness can be applied. Obviously,
we have only considered in-processing methods. Robustifying pre-processing and post-processing
methods are also interesting, and the Lq robust fairness could be modified for this purpose. Another
area would be Distributionally robust optimization (DRO), where a prediction model is trained by
minimizing the worst-case training loss. The Lq robust fairness constraint can be applied to DRO
which may yield computationally efficient learning algorithms.
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A APPENDIX

A.1 LOCATION OF wf FOR THE DI CONSTRAINT

Recall that
wf := argmaxw∈Wδ

φ(f, Pn,w)

as the “worst” weight with respect to the constraint function φ(·) with given function f and a sample
set with size n.

Proposition 1 (Location of wf ). Suppose that the four sets {i : f(xi) > 0, zi = z} and {i : f(xi) ≤
0, zi = z} for z ∈ {0, 1} are all nonempty. Then

wf ∈ ∂Wδ,

for any δ > 0, where ∂A is the boundary of a set A.

Proof. For given w ∈ Wδ, let

φ̃(f, Pn,w) =

∑n
i=1 wiI(f(xi) > 0)I(zi = 0)∑n

i=1 wiI(zi = 0)
−
∑n
j=1 wjI(f(xj) > 0)I(zj = 1)∑n

j=1 wjI(zj = 1)
.

Note that φ(f, Pn,w) = |φ̃(f, Pn,w)|.

Suppose that wf is an interior point ofWδ.Without loss of generality, we assume that φ̃(f, Pn,wf ) >
0. Choose i1 ∈ {i : f(xi) > 0, zi = 0}, i2 ∈ {i : f(xi) ≤ 0, zi = 0} and l1 ∈ {i : f(xi) > 0, zi =
1}, l2 ∈ {i : f(xi) ≤ 0, zi = 1}. Since wf is an interior point ofWδ, we can choose γ > 0 such
that w̃ defined as w̃k = wf,k for k 6∈ {i1, i2, l1, l2 and w̃i1 = wf,i1 + γ, w̃i2 = wf,i2 − γ, w̃l1 =

wf,l1 − γ, w̃l2 = wf,l2 + γ, also belongs toWδ. However, it holds that φ̃(f, Pn,w̃) > φ̃(f, Pn,wf ),
which contradicts the definition of wf . Thus, wf should be located at the boundary ofWδ.
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Figure 6: Comparison of the prediction performance when sampling bias exists in training data.
Classification accuracies are presented for prediction models trained with the DI constraint, and
AUCs are presented for prediction models trained with the MSP constraint. The colored bands for
each line of the Bank, Law school and COMPAS datasets represent the pointwise 2-se confidence
intervals.

A.2 THE SET B USED IN SECTION 5.1

Let π0 = n0/n and π1 = n1/n, where n0 =
∑n
i=1 I(zi = 0) and n1 =

∑n
i=1 I(zi = 1). Define the

set Bκ for κ ∈ [0, 1] as

Bκ =

{
w ∈ Sn : ‖w −w0‖ ≤ κ/n,

n∑
i=1

wiI(zi = 0) = π0,

n∑
i=1

wiI(zi = 1) = π1

}
. (7)

We let B = B0.99. The set Bκ is considered by Mandal et al. (2020) for their numerical studies.

A.3 THE WEIGHT ŵκ IN SECTION 5.2

The ŵκ is defined as
ŵκ = argmaxw∈Bκφ(f, P te

n,w),

where Bκ is defined in (7).

A.4 OMITTED RESULTS

Tradeoff between robust fairness and prediction performance: It was shown that large δ im-
proves fairness-robustness much whose results are presented in Figure 2 and 4. In this subsection,
we investigate how the prediction performance is affected by the choice of δ. For the DI constraint,
we measure classification accuracy, while AUC is measured for the MSP constraint. Figures 6 and 7
summarize the results for the cases where sampling bias exists in training and test data, respectively.
Generally, large δ negatively affects the prediction performances. However, the AUC is less affected
and even is improved with a larger δ for the COMPAS dataset. There would be more interesting
stories in the relation of fairness-robustness and score estimation.

Sensitivity analysis of α and q for the MSP constraint: We perform the sensitivity analysis for
the MSP constraint as is done for the DI constraint in Figure 3. The left panel of Figure 8 presents
the MSP values of the trained prediction models with α ∈ {0.3, 0.5, 0.75, 1.}. As expected, the
prediction model trained with smaller α is more robust. Similarly to the DI constraint, 0.75 or 0.5
looks reasonable for the choice of α. The right panel of Figure 8 presents the AUC values of the
trained prediction models with the MSP constraint for q = 1.5 and q = 2. Here, δ and α are set to be
0.6 and 0.75. For the Bank dataset, the prediction model trained with q = 1.5 is more accurate than
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Figure 7: Comparison of the prediction performance when sampling bias exists in test data. Classifi-
cation accuracies are presented for prediction models trained with the DI constraint, and AUCs are
presented for prediction models trained with the MSP constraint.

(a) Sensitive analysis of α (b) Sensitive analysis of q

Figure 8: Sensitive analysis for the Lq robust fairness algorithm with the MSP constraint. (a) We
compare the test MSP values for sensitive analysis of α. We fix q = 1.5 and δ = 0.6. (b) For sensitive
analysis of q, we compare the test AUC when q = 1.5 and q = 2. We fix δ = 0.6 and α = 0.5. The
tuning parameter λ is selected when the test MSP value is similar to 0.03. In each figure, the colored
bands represent the pointwise 2-se confidence intervals.

that with q = 2, while there is no big difference for the Law school dataset. We believe that q = 1.5
would be a reasonable choice for most practical purposes.

More experiments for UIF: Figures 9 and 10 present complementary results for Figure 5. The
implications obtained from Figure 5 which is for the Adult dataset are still valid for the other three
datasets. Furthermore, when sampling bias exists in training data, we also demonstrate the robustness
of our proposed method as shown in Figure 11 and 12.

Comparison of the batch learning and mini-batch learning: Figure 13 compares the results
obtained by the batch learning and mini-batch learning with the DI constraint when sampling bias
exists in test data. The parameters (α, δ, q) are set to be (0.75, 0.6, 1.5) and the batch size is set
to 2000. The DI values and accuracies of the two learning methods are similar indicating that the
mini-batch learning algorithm also works well.

Results for deep neural networks: We also investigate the performance of DNN models trained
with robust fairness algorithm. We use the DNN model with two hidden layers of the same dimension
as the input vector. Figure 14-17 show patterns similar to those for the logistic regression model, but
DNN models have better prediction performances in most cases.
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Figure 9: Comparison of the fairness values for UIF based on the Bank, Law school and COMPASS
datasets when sampling bias exists in test data. The colored bands for each line of the Bank, Law
school and COMPAS datasets represent the pointwise 2-se confidence intervals.

Figure 10: Sensitive analysis of q for UIF based on the Bank, Law school, and COMPAS datasets
when sampling bias exists in test data. The colored bands for each line of the Bank, Law school and
COMPAS datasets represent the pointwise 2-se confidence intervals.

Figure 11: Comparison of the fairness values for UIF based on the Adult, Bank, Law school, and
COMPAS dataset when sampling bias exists in training data. The colored bands for each line of the
Bank, Law school and COMPAS datasets represent the pointwise 2-se confidence intervals

Figure 12: Sensitive analysis of q for UIF based on the Adult, Bank, Law school, and COMPAS
dataset when sampling bias exists in training data. The colored bands for each line of the Bank, Law
school and COMPAS datasets represent the pointwise 2-se confidence intervals
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Figure 13: Comparison of the batch learning and mini-batch learning. The colored bands for each
line are the pointwise 2-se confidence intervals.

Figure 14: Comparison of the DI and MSP values of trained DNN models when sampling bias exists
in training data. The colored bands for each line of the Bank, Law school and COMPAS datasets
represent the pointwise 2-se confidence intervals.
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Figure 15: Comparison of the prediction performances of trained DNN models under the robust
fairness constraint when sampling bias exists in training data. Classification accuracies are presented
for DNN models trained with the DI constraint, and AUCs are presented for DNN models trained
with the MSP constraint. The colored bands for each line of the Bank, Law school and COMPAS
datasets represent the pointwise 2-se confidence intervals.

Figure 16: Comparison of the DI and MSP values of trained DNN models when sampling bias exists
in test data. The colored bands for each line of the Bank, Law school and COMPAS datasets represent
the pointwise 2-se confidence intervals.
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Figure 17: Comparison of the prediction performance of DNN models when sampling bias exists in
test data. Classification accuracies are presented for DNN models trained with DI constraint, and
AUCs are presented for DNN models trained with MSP constraint. The colored bands for each line
of the Bank, Law school and COMPAS datasets represent the pointwise 2-se confidence intervals.

Table 1: The means and standard errors of computation times for the balanced Adult dataset.

Method Computation time
L∞ 318.80± 2.45
Lq 7.83± 0.09

A.5 RESULTS FOR COMPARING THE Lq AND L∞ ROBUST FAIRNESS CONSTRAINTS

Brief summary of the algorithm of Mandal et al. (2020): The algorithm of Mandal et al. (2020)
solves (2) directly when δ = 1. It first considers a Lagrangian form of (2) given as

n∑
i=1

l(yi, f(xi)) +
∑

w∈W1

λwφ(f, Pn,w). (8)

Then, it learns f by minimizing (8) with respect to f ∈ F and maximizing (8) with respect to λw
subject to supw∈W1

|λw| ≤ B for some B > 0 iteratively until convergence. Though the algorithm
is theoretically well founded, computational burden would be large. First of all, the algorithm requires
to learn f iteratively and hence is hard to be applied to computationally intensive models such as
deep neural networks. Only the linear logistic regression is considered in Mandal et al. (2020). In
addition, maximization of (8) with respect to λw needs to solve a linear programming problem on
W1, which would be computationally demanding when n is large (and thusW1 becomes a large
dimensional simplex).

Results: We consider two cases for training data - balanced and imbalanced ones with respect
to the label distribution. For given ratio ν = n0/n1, we sample 2000 many samples from the
original training data whose label ratio is equal to ν. We select the regularization parameters as
follows. We first tune B in the algorithm of Mandal et al. (2020) so that the trained prediction model
has sufficiently small DI values for biased test data with κ = 1. Then, we tune the regularization
parameters α and λ in our algorithm so that the DI values of the trained prediction model on biased
test datasets with κ = 0 and κ = 1 is similar to those of the model trained by the algorithm of Mandal
et al. (2020). Then, we compare the prediction accuracies of the two prediction models on the test
dataset with κ = 0. Figure 18 shows that the accuracies of the two prediction models are similar,
while Figure 19 indicates that our algorithm is slightly superior for imbalanced cases. In addition, we
compare the computation time of the two algorithms in Table 1 which shows that our robust fairness
algorithm is much faster.
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Figure 18: Comparison of the Lq and L∞ constraints for balanced data cases. The colored bands for
each line are the pointwise 2-se confidence intervals.

Figure 19: Comparison of the Lq and L∞ constraints for imbalanced data cases. The colored bands
for each line are the pointwise 2-se confidence intervals.
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