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ABSTRACT

This paper proposes a robust high-dimensional sparse canonical correlation anal-
ysis (CCA) method for investigating linear relationships between two high-
dimensional random vectors, focusing on elliptical symmetric distributions. Tra-
ditional CCA methods, based on sample covariance matrices, struggle in high-
dimensional settings, particularly when data exhibit heavy-tailed distributions. To
address this, we introduce the spatial-sign covariance matrix as a robust estima-
tor, combined with a sparsity-inducing penalty to efficiently estimate canonical
correlations. Theoretical analysis shows that our method is consistent and ro-
bust under mild conditions, converging at an optimal rate even in the presence
of heavy tails. Simulation studies demonstrate that our approach outperforms
existing sparse CCA methods, particularly under heavy-tailed distributions. A
real-world application further confirms the method’s robustness and efficiency in
practice. Our work provides a novel solution for high-dimensional CCA, offer-
ing significant advantages over traditional methods in terms of both stability and
performance.

Keywords: Canonical correlation analysis, Elliptical symmetric distributions,
High dimensional data, Spatial-sign

1 INTRODUCTION

Canonical correlation analysis (CCA) is a fundamental multivariate statistical technique that ex-
plores the linear relationships between two sets of variables. It has been widely applied across
diverse fields such as biomedical research, neuroimaging, and genomics (Hardoon et al., [2004; |Chi
et al.l 2013} [Safo et al., 2018). By identifying maximally correlated linear combinations between
paired datasets, CCA serves as a powerful tool for uncovering complex cross-domain associations
and facilitating integrative data analysis.

Despite its wide applicability, classical sample covariance-based CCA often faces substantial limi-
tations in modern data settings. Two primary challenges hinder its effectiveness: the high dimen-
sionality of contemporary datasets and deviations from the multivariate normality assumption. In
high-dimensional scenarios—where the number of variables exceeds, or is comparable to, the sam-
ple size—the sample covariance matrices involved in CCA become ill-conditioned or singular, ren-
dering traditional CCA unstable or even inapplicable (Hardoon et al.,|2004;|Guo et al.|[2016). More-
over, when the underlying data distributions deviate from normality, as is common in genomics or
financial data, the performance of standard CCA deteriorates due to its sensitivity to outliers and
heavy tails.

To address these issues, a growing body of research has proposed robust and regularized extensions
of CCA that incorporate sparsity assumptions, shrinkage techniques, such as|Gonzélez et al.|(2008));
Parkhomenko et al.| (2009); [Witten et al.| (2009); Chen & Liu| (2011); (Chi et al.| (2013)); |(Cruz Cano
& Lee| (2014); \Gao et al.| (2015); [Wilms & Croux| (2015); |Gao et al.| (2017); |Safo et al.| (2018]).
These modern adaptations aim to improve estimation accuracy, enhance interpretability, and ensure
reliable inference in high-dimensional settings. As one of the most popular sparse CCA methods,
Witten et al.| (2009) proposed the penalized matrix decomposition (PMD) that replaces the sample
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covariance matrix of two random vectors with identity matrices to avoid singularity. However,
Chen et al.| (2017) showed that the sparse CCA directions from PMD may be inconsistent when
the covariance matrix of these two vectors are far from diagonal. So they relaxed the diagonal
assumption by assuming the sparsity of the covariance matrix. |Gao et al.|(2017) proposed a convex
programming with group lasso refinement, which does not impose any assumption on the covariance
matrix or precision matrix and achieves the minimax estimation risk (Gao et al.,[2015)). Mai & Zhang
(2019) proposed an iterative penalized least square approach to sparse CCA, which does not need
the sparse assumption of the covariance matrix, either.

To address the limitations of classical CCA under nonnormal data, various improved methods have
been developed. Nonparametric approaches, such as kernel CCA (Hardoon et al.| [2004), leverage
kernel techniques to capture nonlinear associations without distributional assumptions. On the other
hand, parametric and semiparametric methods offer probabilistic frameworks for CCA. For example,
Zoh et al.| (2016) proposed a probabilistic CCA tailored for count data. |[Agniel & Cai|(2017) intro-
duced a semiparametric normal transformation for analyzing mixed-type variables, which involves
nonparametric maximum likelihood estimation of marginal transformation functions. In addition,
there exists a substantial body of research on robust covariance matrix estimators designed to be
resistant to outliers and heavy-tailed distributions, which can enhance the reliability of classical
CCA based on Pearson correlations. Notable examples include the minimum covariance determi-
nant (MCD) (Rousseeuw, |1984), the S-estimator (Lopuhaa, |1989), and Tyler’s M-estimator (Tyler,
1987). Several studies have explored incorporating these robust covariance estimators into CCA
frameworks or replacing Pearson correlation with more robust association measures. Many of these
approaches rely on eigen-decomposition of robust covariance or correlation matrices (Alfons et al.,
2017a; |Branco et al.l 2005} Taskinen et al., 2006; [Visuri et al., |2003); however, their applicability
may be limited when the data lack finite moments, posing challenges for consistency and interpreta-
tion. |Yoon et al.|(2020) derived rank-based estimator instead of the sample correlation matrix within
the sparse CCA framework motivated by (Chi et al.| (2013)) and Wilms & Croux! (2015).

To overcome these challenges of high dimension and non-normality simultaneously, we propose
a robust high-dimensional sparse canonical correlation analysis method, based on the spatial-sign
covariance matrix (Oja, |2010). The spatial-sign covariance matrix, which is a robust estimator for
covariance, is well-suited for elliptical symmetric distributions and offers superior performance in
high-dimensional settings with heavy-tailed distributions. [Raninen et al.| (2021), Raninen & Ollila
(2021), and |Ollila & Breloy|(2022) proposed a series of linear shrinkage estimators based on spatial-
sign covariance matrices and showed their advantages over the existing methods based on sample
covariance matrix. [Feng| (2024) considered high dimensional sparse principal component analysis
via spatial-sign covariance matrix. [Lu & Feng| (2025) also proposed a high dimensional precision
matrix estimator based on spatial-sign covariance matrix and applied it to elliptical graphic model
and linear discriminant analysis.

In this article, we propose a spatial-sign based sparse canonical correlation analysis via [; penalty.
We establish the theoretical properties of the proposed method, demonstrating its consistency and
robustness under mild regularity conditions. Specifically, we show that the new estimator converges
at an optimal rate and remains robust to deviations from normality, such as the presence of heavy
tails in the data. The proposed method is compared with existing sparse CCA techniques, which
typically rely on Gaussian or sub-Gaussian assumptions. Simulation studies confirm that our method
outperforms these alternatives, especially under heavy-tailed conditions, in terms of both accuracy
and stability. Moreover, we apply our method to a real-world data set. The results further illustrate
the robustness and efficiency of our approach in practical scenarios.

The remainder of the article is organized as follows. Section 2 introduces the spatial-sign-based
sparse CCA method and presents its theoretical properties. Section 3 provides simulation studies
to evaluate the performance of the proposed approach, and Section 4 illustrates its practical utility
through a real data application. All technical details and proofs are provided in the Appendix.

2 SPATIAL-SIGN BASED SPARSE CANONICAL CORRELATION ANALYSIS

Let X; € RP* and X5 € RP2 be two random vectors with covariance matrices 37 = cov(X}),
35 = cov(Xy), and cross-covariance matrix 212 = cov(X7, X2). Classical CCA aims to identify
linear projections w{ X; and w4 X that achieve the highest possible correlation (Hotelling, |1936).
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Formally, it solves the optimization problem:

maximize {wlTElgwg} st w! Tjw; =1, wy Bowy =1, (1)
w1, w2

with a closed-form solution via the singular value decomposition of the normalized cross-covariance
matrix 21_1/221222_1/2.

In practice, these population quantities are estimated by their sample counterparts. However, in high-
dimensional scenarios where the number of variables exceeds the sample size, sample covariance
matrices 33; and 3, become singular, rendering the classical solution unstable or undefined. To
address this, sparse CCA formulations introduce ¢; penalties on w; and ws to induce sparsity and
avoid overfitting (Parkhomenko et al.|, 2009; Witten et al., 2009 |Chi et al., [2013; [Wilms & Croux)
2015)):

maximize {wfﬁlgwg — )\1”’11)1“1 — AQngHl} s.t. wfﬁ)lwl S 1, w;ﬁ:z’lUQ S 1.
w1, W2

The use of inequality constraints ensures convexity, which is advantageous for optimization.

Despite its success in high-dimensional contexts, this framework still relies on second-order mo-
ment assumptions and can perform poorly when data exhibit heavy tails or outliers. This limita-
tion has motivated recent developments that replace the sample covariance matrices with robust
alternatives—such as rank-based (Yoon et al.}|2020) or spatial-sign-based estimators—allowing for
improved performance in non-Gaussian environments.

Suppose X = (X[ ,XJ)T are generated from the elliptical symmetric distribution X ~
E,(pn,X%,r), ie.

X =p+rTu, (2)

where w is uniformly distributed on the sphere SP~! and  is a scalar random variable with F(r?) =
p and independent with u. So the covariance matrix of X is 3 = I'T'". The spatial-sign covariance
matrix S is defined as: § = E (U(X — p)U(X — pu)") ,where U(x) = ZI(x # 0). Suppose
we observe a set of independent and identically distributed samples { X1, ..., X,,} drawn from the
model specified in equation . Then, the corresponding sample spatial-sign covariance matrix S
is defined as S = LS U(X: — p)U(X; — o) " where fi is the sample spatial-median, i.e.
fo=argmingere Y5 | Xi — pll2. Let X; = (X}, X,5) " and define

Q Sl S12 )
S=( 2' 22,
( S21 SQ

where S; € RplXpl,Sg € RP2%XP2 apd S;, € RP1XP2,

As shown in Lemma 6 in [Lu & Feng| (2025)), the covariance matrix 3 could be well approximated
by tr(32)S as the dimension goes to infinity. So we replace the sample covariance matrix with the
sample spatial-sign covariance matrix and reformulate the problem as

mquu)ii’rurgze {w?pSlng — A flwill; — A2 ||w2\|1} s.t.w] pSiw; < 1,wg pSowy < 1. (3)
Here, it is unnecessary to estimate tr(3) because scaling the linear combinations by positive con-
stants does not affect the canonical correlation. Specifically, for any ¢; > 0 and co > 0, we have
cor(ciw] X1, cowg X3) = cor(w{ X1, w, Xs). So, without loss of generality, we directly as-
sume that tr(X,) = p; and tr(Xs) = ps. We refer to the estimation procedure obtained by solving
(3) as Spatial-Sign based Sparse Canonical Correlation Analysis, abbreviated as SSCCA.

The tuning parameters A1, Ao are selected similar to the BIC method proposed in|Yoon et al.[(2020).
Define . A .

f (1) = @) pS1a0y — 2] pS1ows + wapSsws
for the residual sum of squares. Furthermore, motivated by the performance of the adjusted degrees
of freedom variance estimator in Reid et al.|(2016), we also propose the following two criteria

. logn n . logn
BIC; = f (w1) + dfa, %, BIC; = log {ndf~f (wl)} + dfe, %
wi
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Here df 5, coincides with the size of the support of w; (Tibshirani & Taylor,2012). The criteria for
w- are defined analogously to those for w.

We use the same algorithm proposed by|Yoon et al|(2020) to solve our problem (3)). Here we directly
use the function find_w12bic in R package mixedCCA to solve the problem (3) and the tuning pa-
rameters are generated by the function lambdaseq_generate in R package mixedCCA. The sample
spatial-sign covariance matrix is estimated using the function SCov in R package SpatialNP.

We now proceed to establish the theoretical properties of the proposed estimators. To start with, we
have the following lemma on the estimation accuracy of the covariance matrix estimate pS.

Lemma 1. Assume that (i) The eigenvalues of 3 are bounded such that k—1/2 < dnin(X) <
Amax(E) < kY2, (ii) The random variable r in equation satisfies that E(|r|~') < ¢ and
E(|r| =) /{E(|r|~1)}* < ( for k = 2,3, 4 and constant { > 0 and v~ is sub-Gaussian distributed.
Then with probability at least 1 — «,

- 1 1 —1/2 c
MS—EMSC¢OW+OHQ ) &
n VP

Assumption (i) in Lemma [I] implies that the covariance X is both lower and upper bounded. As-
sumption (ii) in Lemma|l|ensures that the norm || X — p/| is bounded away from zero, which makes
the spatial-sign function U (-) well-behaved. This assumption is mild because for high-dimensional
data, it is widely observed that the norm of the sample vectors || X — || ~ ©(,/p). Similar assump-
tions and the proof of Lemma can be found in|Lu & Feng| (2025).

Let wi «, w2 , be the maximizer of the maximization problem and p; » = wI*212w27*. We
also need the following assumptions for the sparse CCA task.

Assumption 1 (Bounded condition number). The covariance matrices enjoy a bounded restricted
condition number such that

Ty,
SUD jap ||, <O fJawla=1 W 2jW

3 Ty .
nf |||, <Cryuwllo=1 W ' Xjw

< KVj=1,2,

for some constants C, 11,k > 0.
Assumption 2 (Gap of leading canonical correlation). There exists ¢ > 0 such that pj frilgxp,”; > 7.
>2

Assumption 3 (Sparsity of canonical correlation vector). max{|wi «|1, [|wa |1} < 7.

Assumption [I] is widely used in high dimensional data analysis (Mai & Zhang| 2019), which also
holds under Assumption (i) in Lemma [I] Assumption [2] ensures the identifiability of the leading
canonical correlation component. Assumption [3restricts the true left and right canonical correlation
vectors to the L; core. If we further assume that both w; . and ws . are s-sparse and all the entries
of them are bounded, then 71 = O(s). Similar assumptions on the sparsity can be found in the
literature on sparse PCA (Zou & Xue, |2018)) and sparse CCA (Mai & Zhang} 2019).

Denote ¢ = C[/{logp + log(a=1/2)}/n + p~1/?] as the estimation error bound in Lemma We
have the following results on the performance of the robust SSCCA estimate.

Theorem 1. Assume the error bound in Lemma |l| and Assumption 3| hold and choose N = C1ery
for some constant Cy > 0. With probability at least 1 — «, there exists a local maximizer (1, Ws)
of the nonconvex problem (3) which satisfies that,

W] Doty > (1+726) o1 — {(1 —er?) ™ 4 201(1 — erd)™V2 4 Cy)rie 4)
W, T1owWs S (1+78e)p1 . —{(1 —7ie)™t +2C1 (1 — T2e)" Y2 + Cy)rie
\/’UAJIEl'Li)l \/’LDJEQ'LI]Q N 1 + C’27-126 ’
@)

where the constants Cy and Cy only depend on the parameter Ty, p1 . and €. Additionally assume
Assumptions[l|and[2| hold, we have,

min_cos?(Z£(w;, w;.))

je{1,2}
B 4j{ (1+ Cy)7ie + Carite? {(1=72e)" ' +20,(1 — 72e)~1/2 + 02}7'126}
= T VAt RO+ Carze) L+ Carfe '
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Consequently, if we assume 772 (\ /(logp)/n +p~Y/ 2) — 0, then it follows that with high prob-
ability, cos? (Z(wj,w;.)) — 1 for j = 1,2, which establishes the consistency of our proposed
method. It is worth noting that the convergence rate derived here differs slightly from those in [Yoon
et al.| (2020) and Mai & Zhang (2019), where the term p~—'/2 does not appear. This discrepancy
arises from the approximation bias introduced when using pS to estimate 3. However, this bias
term becomes negligible when plogp/n — oo, effectively aligning the convergence behavior with
that in the aforementioned works.

3  SIMULATION

In this section, we compare the performance of our proposed method, SSCCA, with two existing
approaches: the method by |Yoon et al.|(2020), referred to as KSCCA, and the method by |Chi et al.
(2013), referred to as SCCA. For a fair comparison, all three methods are implemented using the
same convex optimization algorithm introduced in |Yoon et al|(2020). The key distinction among
the methods lies in the choice of covariance matrix estimators employed in the analysis.

We consider the case when 3; and 35 are block diagonal matrices with five blocks, each of
dimension d/5 x d/5, where the (i,j)-th element of each block takes value 0.8/°~7!. Here
d = p1 = pa = p/2. Similar to|Tan et al.|(2018)), we consider two cases of 31 :

(I) Low Rank
B = Siwier (w))' By
where ¢; = 0.9 is the largest generalized eigenvalue and wj and w3 are the leading pair
of canonical directions. Here w} = v/\/m,j = 1,2 where v = (v1,--- ,v4)7 and
v, = 1/v/3for k = 1,6,11 and v, = 0 otherwise.
(II) Approximately Low Rank

S = Siwier (w3) Ty + SWrA (W) 5,

where 1, w7}, w3 are the same as (I). Additionally, A € R3°*0 is a diagonal matrix with
diagonal entries 0.1, and W7, W5 € R4*50 are normalized orthogonal matrices such that

(W) S,W; =Tand (Wy)' S,Wy =1
The data consists of two n x d matrices X and Y. We consider three elliptical distributions:

(i) Multivarite Normal Distribution: X; ~ N (u, 3);
(ii) Multivariate ¢-distribution: X; ~ t(u, 3, 3)/v/3;
(iii) Mixture of multivariate Normal distribution: X; ~ M N (u, X, 10,0.8)//20.8;

Here ¢,(0, X, v) denotes a p-dimensional ¢-distribution with degrees of freedom v and scatter ma-
trix 3. MN(u, 3, k,v) refers to a mixture multivariate normal distribution with density func-
tion (1 — ) fp(0,3)+ vf, (0, /@22), where f,,(a, B) is the density function of the p-dimensional
normal distribution with mean a and covariance matrix B. We consider three sample sizes
n = 100, 200, 300 and two different dimensions p = 400, 800. All the results are based on 1000
replications and are executed on an Ubuntu 20.04 LTS server with 64 Intel(R) Xeon(R) CPU ES5-
2690 v4 @ 2.60GHz (56 cores), 128G RAM and the R platform with version 4.3.1.

To compare the performance of the methods, we evaluate the expected out-of-sample correlation

P W] Tio1s
(tof D) (10 i) |
and the prediction loss
) w3 wk
L(w;7 9):1_ ’ATQ gA 91/2 (9_172)7
(g Eqtig)
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a similar loss is used in |Gao et al.| (2017). By the definition of the true canonical correlation p,
for any w; and Wy we have that p < p, with equality when w; = w] and we = wj. Since
* 1

w) Bgw; = 1,L (w},w,) € [0,1] with L (w},w,) = 0if wy, = w;. We also evaluate the

variable selection performance using false positive and false negative rates, defined respectively as

# {J g #0,w;; # 0} # {5 : gy = 0,wy; = 0}
#{iwy £0) # 17 w; =0}

Tables present the average estimation error |p — p|, prediction loss, and false positive and nega-
tive rates under Model I. Similarly, for Model I, the corresponding results are summarized in Tables
Under the multivariate normal distribution setting, all three methods—SSCCA, KSCCA and
SCCA exhibit comparable performance across all evaluation metrics, including estimation accuracy,
prediction loss, and variable selection consistency. This is expected since classical covariance-based
estimators perform well under Gaussian assumptions, where outliers and extreme values are rare.

FPR, = 1— FNR, = 1— (g=1,2).

However, when the data deviates from normality and follows heavy-tailed distributions, substantial
differences emerge. Specifically, SSCCA demonstrates superior performance in both estimation and
prediction tasks. This improvement is attributed to the robustness of the spatial-sign covariance
matrix, which is less sensitive to outliers and heavy-tailed noise. By leveraging the distributional
properties of elliptical distributions, SSCCA effectively captures the underlying correlation structure
even when the data contains large deviations or lacks finite higher-order moments. In comparison,
KSCCA, which utilizes Kendall’s tau-based covariance estimation, performs better than SCCA un-
der heavy-tailed scenarios but is still less robust than SSCCA. While Kendall’s tau is more resistant
to non-normality than Pearson correlation, it can still be influenced by extreme values, particularly
when the tail heaviness is significant. On the other hand, SCCA, which relies on the conventional co-
variance matrix, suffers greatly in these settings. Its performance deteriorates due to the unreliability
and instability of the sample covariance matrix in the presence of heavy-tailed observations.

Overall, the empirical results across multiple simulation settings consistently highlight the advan-
tages of SSCCA in non-Gaussian environments. Its ability to maintain high estimation accuracy,
low prediction loss, and accurate variable selection under a variety of distributional settings makes
it a powerful and reliable tool for high-dimensional data analysis, particularly when robustness to
heavy tails and outliers is critical.

Table 1: The average of absolute difference between expected out-of-sample correlation and true
canonical correlation (|p — p|) of each method (multiplied by 100) under Model L.

Normal Distribution t3 Distribution Mixture Normal Distribution
n p |SCCA KSCCA SSCCA|SCCA KSCCA SSCCA|SCCA KSCCA SSCCA
100 400| 2.7 5.7 2.8 447 234 6.7 47.1 38.1 8.7
200 400| 0.7 1.2 0.7 18.3 2.4 0.8 9.7 4.3 0.7
300 400| 04 0.8 04 9.9 1.3 04 4.5 24 04
100 800 | 12.6 18.7 12.8 54.6 40.3 23.7 64.5 69.1 34.5
200 800| 0.7 1.3 0.7 18.2 2.5 0.7 19.9 9.9 34
300 800| 0.4 0.8 04 14.8 1.3 0.4 5.2 2.7 04

4 REAL DATA APPLICATION

In this section, we demonstrate the application of our proposed SSCCA method to the “nutrimouse”
data set which was generously provided by Pascal Martin from the Toxicology and Pharmacology
Laboratory. This data set originates from a nutrigenomic study in mice (Martin et al., [2007) and is
publicly available in the R package CCA (Gonzalez et al., 2008)). In this data set, two distinct but
biologically related sets of variables are available for 40 mice. The first set of variables contains
the expression measurements of 120 hepatic genes potentially implicated in nutritional pathways.
The second set of variables is comprised of concentrations of 21 hepatic fatty acids. Furthermore,
the mice are stratified by two factors: genotypes (wild-type and PPAR« deficient mice) and diets
(reference diet “REF", hydrogenated coconut oil diet “COC", sunflower oil diet “SUN", linseed
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Table 2: The average prediction loss of each method (multiplied by 100) under Model I.

SCCA KSCCA SSCCA
n_ p [L{wi,wi) L(wz,ws) [ L(wi, wi) L(wsz,ws) [ L(wi, 1) L(ws, W)
Normal Distribution
100 400 1.5 1.6 2.3 2.3 1.5 1.7
200 400 0.4 04 0.7 0.7 0.4 04
300 400 0.2 0.2 04 0.4 0.2 0.3
100 800 12.5 12.5 13.6 13.3 12.8 12.6
200 800 0.4 04 0.7 0.7 0.4 04
300 800 0.2 0.2 0.5 04 0.2 0.2
t3 Distribution
100 400 37 38 8.3 8.1 4.7 44
200 400 159 16.1 1.3 1.4 0.4 0.5
300 400 8.1 8.3 0.7 0.7 0.2 0.2
100 800 50.7 51.8 30.4 30 25.1 24.7
200 800 15.1 16.2 1.3 1.5 0.3 04
300 800 12.4 12.7 0.7 0.7 0.2 0.2
Mixture Normal Distribution
100 400 30.6 26 15.2 154 8.4 8.3
200 400 6 5.3 2.3 2.5 0.4 04
300 400 2.4 2.7 1.4 1.3 0.2 0.2
100 800 57.8 55.5 47.8 48 36.8 37.1
200 800 11.8 13.4 6.6 6.9 3.3 34
300 800 3.1 2.9 1.5 1.5 0.2 0.2

Table 3: The average false positive and false negative rates (multiplied by 100) of the selected model
size of each method under Model I.

SCCA KSCCA SSCCA
n p |FPRi FNRy FPR, FNRQ\FPRl FNR; FPR, FNRQ\FPRl FNR; FPRy FNR,
Normal Distribution
100400| 1.3 0.8 1 09 1.7 1.2 1 1.2 1 0.8 1.7 0.9
200400 O 0.8 0 0.8 0 1.3 0 1.2 0 0.7 0 0.8
300400, O 0.7 0 0.7 0 1.1 0 1.1 0 0.7 0 0.7
100800| 11.7 0.4 11.7 0.5 13.7 0.7 12.7 0.7 12 0.4 11.7 0.5
200800 O 0.4 0 0.3 0 0.6 0 0.6 0 0.4 0 0.4
300800, O 0.3 0 0.3 0 0.6 0 0.6 0 0.3 0 0.3
t3 Distribution
100400| 53.3 10.6 51.7 10.5 12 1.3 11.7 1.4 5 0.9 4 0.9
200400 17 9.4 183 95 0 1.4 0 1.5 0 0.7 0 0.8
300400 8.7 6.6 9 6.6 0 1.3 0 1.5 0 0.7 0 0.7
100800| 66.3 89 67.7 89 |333 0.7 357 06 |243 05 243 05
200800 17 1.9 20.7 1.9 0 0.8 0 0.7 0 0.4 0 0.4
300800| 13.7 5.8 15 59 0 0.7 0 0.8 0 0.3 0 0.3
Mixture Normal Distribution

100400| 55.7 2.1 59 1.5 | 28.3 1.3 25 1.5 7.3 0.9 7 1

200400( 10.3 1.9 8.7 1.7 1.3 1.8 1 1.7 0 0.8 0 0.7
3004001 2.3 1.7 1.3 1.8 0 1.8 0 1.7 0 0.7 0 0.6
100 800| 75.7 1.5 803 1 58.7 09 58 0.8 36.3 05 373 05
200 800| 22.7 1.1 20.7 1.1 4.7 1 5 0.9 3 0.3 3 04
300800 2.3 09 1.7 0.8 0 0.9 0 09 0 0.3 0 0.3
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oil diet “LIN" and fish oil diet “FISH"). We compare SSCCA to KSCCA and SCCA by focusing
on the first canonical pair. In our analysis, we let X; (with dimension p; = 120) be the gene
expression measurements, and X (with dimension p, = 21) be the fatty acids. All three methods
are implemented using the findw12bic function in the R package mixedCCA, with tuning parameters
selected via the BIC; criterion due to its superior variable selection performance (Yoon et al.,[2020).

Table 4: The average of absolute difference between expected out-of-sample correlation and true
canonical correlation (|p — p|) of each method (multiplied by 100) under Model II.

Normal Distribution t3 Distribution Mixture Normal Distribution

n p |SCCA KSCCA SSCCA|SCCA KSCCA SSCCA|SCCA KSCCA SSCCA
100 400| 3.1 2.2 3.2 34.2 5.7 49 31.2 11.1 5.8
200 400| 4 3.5 4 14.4 2.6 4 5.1 1.6 3.9
300 400| 4.2 3.8 4.2 9.7 3.3 4.2 2.9 2.2 4.2
100 800| 11.6 11 11.6 | 451 2538 22 51.8 37.7 27.3
200 800| 3.8 34 3.8 19.7 3.2 4.7 6.6 2.6 4.8
300 800| 4 3.7 4 11.6 3 4 2.4 1.9 4

Table 5: The average prediction loss of each method (multiplied by 100) under Model II.

SCCA KSCCA SSCCA
n_ p [Llwi,wi) L(wy,ws) [ L(wy,w1) L(ws, ws) | L(wy, wi) L(ws,ws)
Normal Distribution
100 400 0.7 0.8 1.5 1.5 0.7 0.7
200 400 0.2 0.2 0.6 0.5 0.2 0.2
300 400 0.1 0.2 04 0.3 0.1 0.2
100 800 10.7 10.5 11.6 11.3 10.7 10.4
200 800 0.3 0.3 0.6 0.5 0.3 0.3
300 800 0.2 0.2 04 0.4 0.2 0.1
ts Distribution
100 400 30.2 32 5.8 6.2 2.7 2.7
200 400 13.8 13.7 1.2 1 0.2 0.2
300 400 7.8 7.9 0.7 0.7 0.1 0.1
100 800 44.7 43.5 28 27.4 22.6 22.4
200 800 194 18.9 2.2 2.2 1.3 1.3
300 800 10 10 0.8 0.8 0.2 0.2
Mixture Normal Distribution
100 400 25.2 22.2 10.9 9.9 3.6 3.7
200 400 4 4.7 2.2 2.2 0.3 0.3
300 400 1.4 1.5 1.3 1.4 0.1 0.1
100 800 48.1 47.2 37.7 38.5 28.3 28.4
200 800 5.9 5.8 3.2 3.1 1.3 1.2
300 800 1.7 1.7 1.6 1.5 0.2 0.2

To evaluate the performance of different methods, we adopt a repeated random splitting strategy:
the data are randomly split into two parts, one with 80% of the observations as the training set, and
another with the remainder as the test set. We implement three methods on the training set to obtain
W1 train aNd W2 rain and compute the out-of-sample correlation

~T ~
wy ,trainz 12,test W2, train

ﬁ test — ~T ~ ~T ~
(wl7train21,testwl,train) 1/2 (w2,train 2:2,teslu72,lrain)1/2
based on the test set, where Y denotes the covariance matrix estimated from the test data. For

SSCCA, KSCCA, and SCCA, X corresponds to the spatial-sign covariance matrix, Kendall’s tau-
based covariance estimator, and sample covariance matrix, respectively. This process is repeated
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Table 6: The average of the false positive and false negative rates (multiplied by 100) of the selected
model size of each method under Model II.

SCCA KSCCA SSCCA
Normal Distribution
100400, O 0.8 0 09 0 1.3 0 1.3 0 0.8 0 0.9
200400, O 0.9 0 0.9 0 1.5 0 1.5 0 0.9 0 0.9
300400 O 0.9 0 0.8 0 1.5 0 1.4 0 0.9 0 0.9
100 800 10 0.5 9.7 0.5 10.7 0.7 10.7 0.6 10 0.5 9.7 0.5
200800, O 0.4 0 0.4 0 0.8 0 0.8 0 0.4 0 0.4
300800 O 0.4 0 0.5 0 0.8 0 0.8 0 04 0 04
t3 Distribution
100400 43.7 122 457 115 6.7 1.5 6.3 1.4 2 1 2 0.8
200400| 13.3 94 137 94 0 1.7 0 1.6 0 0.9 0 0.8
300400] 7 6.3 6.7 7.3 0 1.7 0 1.6 0 0.8 0 0.8
100800 54.7 98 557 9.7 323 07 283 0.7 22 05 217 05
200800| 20.7 57 213 58 1 0.9 1 0.9 1 0.4 1 0.4
300800] 10.3 5.7 10 5.7 0 1 0 0.9 0 04 0 0.5
Mixture Normal Distribution
100400| 52.7 2 49.3 1.8 16.7 1.6 16.3 1.7 3 1 3 0.8
200400, 6.3 1.8 9.7 1.6 0 2 0.3 1.9 0 0.9 0 0.9
300400| 0.7 1.3 0.7 1.3 0 2 0 2.1 0 0.8 0 0.8
100 800| 68.7 1.2 703 1 45 0.8 497 0.8 28 0.5 28 0.5
200800| 10 0.9 7.7 0.9 1.3 1 1 1 1 0.5 1 0.4
300800] 0.3 0.8 1 0.8 0 1.1 0 1.1 0 04 0 04

for 500 times. Table [7| summarizes the mean out-of-sample correlation and the average number of
selected genes and fatty acids across different methods based on 500 replications.

From Table[7} we see that all three methods yield jieq values significantly different from zero, con-
firming their utility. However, SSCCA demonstrates superior performance, achieving the highest
mean out-of-sample correlation while simultaneously selecting fewer variables on average com-
pared to both KSCCA and SCCA. This combination of stronger predictive performance and sparser
solutions underscores the advantages of SSCCA over KSCCA and SCCA in high-dimensional data
analysis.

5 CONCLUSION

This paper proposes a robust sparse CCA method tailored for high-dimensional data under elliptical
symmetric distributions. We establish the theoretical consistency of the estimator, demonstrating its
reliability. Through extensive simulation studies and real data analysis, we show that the proposed
method outperforms existing approaches, particularly in the presence of heavy-tailed distributions.
Future research could extend SSCCA to handle structured sparsity or grouped variables, enhancing
interpretability and performance with prior structural information. Adapting SSCCA to multi-set
canonical correlation analysis (MCCA) would also be valuable for analyzing multimodal data. The
primary limitation of our method lies in its reliance on the assumption of elliptical symmetric dis-
tributions. Exploring ways to relax this assumption and extend the methodology to accommodate
more general or asymmetric distributions presents an important avenue for future research.
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Supplementary Material of "High Dimensional Sparse Canonical
Correlation Analysis for Elliptical Symmetric Distributions"

The Supplementary Material contains additional simulation results and the proof of the theory part.

A ADDITIONAL SIMULATION RESULTS

Table [/| summaries the mean (standard deviation) of the out-of-sample correlation pig, the average
number of selected genes, and the average number of selected fatty acids for SSCCA, KSCCA, and
SCCA in the real-data example.

Table 7: The mean (standard deviation) of the out-of-sample correlation pg, the average number of
selected genes, and the average number of selected fatty acids for SSCCA, KSCCA, and SCCA. In
the parentheses are the standard deviations.

Method Prest # selected genes  # selected fatty acids
SSCCA  0.762 (0.183) 3.602 (1.442) 2.812 (1.302)
KSCCA 0.702 (0.203) 3.992 (1.562) 2.880 (1.317)
SCCA 0.733 (0.211) 3.936 (1.513) 2.634 (1.204)

We have conducted additional simulation studies comparing our proposed method, SSCCA, with
several robust CCA variants to address the issue of non-normality and heavy-tailed distributions.

In the simulation study, in addition to KSCCA and SCCA which were compared in Section [3| we
further add some other robust CCA variants, they are:

(1) the robust regression-based method proposed in Wilms & Croux| (2016)), which we denote as
W&C method;

(2) the robust CCA methods proposed by |Alfons et al.| (2017b) which are widely used and can be
easily implemented using the R package ccaPP. For ccaPP, we consider three alternatives which
utilize Spearman’s correlation, Kendall’s tau, and Huber’s M-estimator as CCA correlation mea-
sures, denoted as ccaPP-S, ccaPP-K, and ccaPP-M, respectively.

In Table[§] we present the results under the low-rank model (Model I in the simulation study) with
ts distributed samples.

As indicated by the simulation results, SSCCA demonstrates the best performance among all the
methods.

For the regression-based method W&C, we run the original code from the authors. Since the method
W&C needs to solve the least-trimmed-square problem multiple times, it is very time-consuming
and takes about tens of minutes to several hours to obtain the result for a single replication and
several days for all the replications. Instead, our method returns the result within 5 seconds. Also,
W&C does not perform well in the current settings, yielding a large average estimation error |p — p|
and false positive and false negative rates.

Furthermore, ccaPP-S, ccaPP-K, and ccaPP-M also exhibit inferior performance. This outcome
is expected, since these three approaches are not designed for variable selection and thus tend to
perform poorly in high-dimensional contexts. Overall, the empirical results across multiple simula-
tion settings consistently highlight the advantages of SSCCA in non-Gaussian and high-dimensional
environments.

The following Table[9] studies the extremely challenging case when X is generated from the Cauchy
distribution. From this table, we see that SSCCA demonstrates the best performance among all the
methods, and SCCA breaks down in this setting.

We also conduct numerical experiments using the Ly penalty. In the simulation study, we compare
our proposed SSCCA method with SSCCA with Lj penalty and KSCCA, which was compared in
the original manuscript. In Table [I0] we present the results under the low-rank model (Model I in
the simulation study) with ¢3 distributed samples.

12
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Table 8: The average of absolute difference between expected out-of-sample correlation and true
canonical correlation (|p — p|) (multiplied by 100), the false positive rate (FPR) and false negative
rate (FNR) for the estimated supports of the first (left) canonical vector, under Model I with ¢3
distributed samples, based on 300 replications.

Measure (n,p) SSCCA SCCA KSCCA W&C ccaPP-S ccaPP-K  ccaPP-M

|p—p| (100, 400) 6.7 44.7 234 61.1 62.8 61.8 72.7
(200, 400) 0.8 18.3 24 20.4 31.8 29.3 35.8

(100, 800) 23.7 54.6 40.3 81.1 78.4 78.2 89.9

(200, 800) 0.7 18.2 2.5 46.1 41.0 40.0 43.9

FPR(%) (100, 400) 5.0 533 12.0 46.7 13.3 243 11.0
(200, 400) 0.0 17.0 0.0 18.0 1.0 1.3 0.3

(100, 800) 243 66.3 333 71.3 37.7 51.3 333

(200, 800) 0.0 17.0 0.0 72.0 10.67 14.00 9.3

FNR(%) (100, 400) 0.9 10.6 1.3 9.1 51.0 37.2 76.9
(200, 400) 0.7 94 1.4 32 66.8 533 98.0

(100, 800) 0.5 8.9 0.7 6.9 31.3 23.5 46.6

(200, 800) 0.4 1.9 0.8 39 52.6 40.8 79.3

Table 9: The average of absolute difference between expected out-of-sample correlation and true
canonical correlation (|p — p|) (multiplied by 100), the false positive rate (FPR) and false negative
rate (FNR) for the estimated supports of the first (left) canonical vector, under Model I with Cauchy
distributed samples, based on 300 replications.

Measure (n,p) SSCCA SCCA KSCCA W&C

5—pl  (100,400) 6.4 _ 204 533
(200, 400) 0.7 - 4.6 25.2

(100, 800)  37.6 - 51.8 773

(200, 800) 2.6 - 7.6 46.5

FPR (%) (100,400) 5.3 - 283 550
(200, 400) 0.0 - 1.0 20.0

(100, 800)  40.0 - 613 773

(200, 800) 2.0 - 4.0 42.7

FNR (%) (100,400) 1.0 _ 1.7 8.7
(200, 400) 0.7 - 2.0 72

(100,800) 0.6 - 0.7 6.1

(200, 800) 0.4 - 0.9 5.4

As indicated by the simulation results, the performance of SSCCA with Ly penalty is inferior to
SSCCA with L; penalty. This may be because the non-convex nature of the Ly penalty, which
makes the optimization procedure harder. Nevertheless, from a theoretical aspect, the L penalty
preserves several advantages, e.g., the stability and the pure sparse solutions. Therefore, the theory
of the SSCCA method with the L penalty and a more careful implementation of it, warrant further
investigation.

In real data analysis, we also additionally compare SSCCA with W&C, ccaPP-S, ccaPP-K, and
ccaPP-M. Table summarizes the results. We can observe that all methods yield pig values signif-
icantly different from zero, confirming their effectiveness. Among them, SSCCA exhibits superior
performance, achieving the highest mean out-of-sample correlation while selecting fewer variables
on average compared with other robust CCA variants. In contrast, W&C shows inferior predictive
ability, with lower P and less sparse solutions than SSCCA. Notably, the three nonparametric

13



Under review as a conference paper at ICLR 2026

Table 10: The average of absolute difference between expected out-of-sample correlation and true
canonical correlation (|p — p|) (multiplied by 100), the false positive rate (FPR) and false negative
rate (FNR) for the estimated supports of the first (left) canonical vector, under Model I with ¢3
distributed samples, based on 300 replications.

Measure (n,p) SSCCA (L) SSCCA (Lp) KSCCA

h—pl (100, 600) 16.5 275 30.2
(200, 600) 0.7 12.4 2.3

(300, 600) 0.4 11.4 1.4

FPR (%) (100, 600) 17.0 30.3 25.3
(200, 600) 0.0 27.0 0.0

(300, 600) 0.0 29.7 0.0

FNR (%) (100, 600) 0.7 2.4 1.0
(200, 600) 0.4 2.5 1.0

(300, 600) 0.4 2.6 1.0

methods, ccaPP-S, ccaPP-K, and ccaPP-M, produce lower ps values. These additional evidences
further confirms SSCCA’s superiority in practical scenarios involving potential non-normality.

Table 11: The mean (standard deviation) of the out-of-sample correlation iy, the average number
of selected genes, and the average number of selected fatty acids for SSCCA, W&C, ccaPP-S,
ccaPP-K, and ccaPP-M. In the parentheses are the standard deviations.

Method Drest # selected genes  # selected fatty acids
SSCCA  0.762 (0.183)  3.602 (1.442) 2.812 (1.302)
W&C 0.681(0.222) 9.260(2.200) 5.224(1.592)
ccaPP-S  0.572(0.245)  41.584(7.675) 8.408(2.451)
ccaPP-K  0.574(0.229)  27.550(6.245) 6.400(2.258)
ccaPP-M  0.483(0.207)  56.034(26.069) 3.788(3.290)

B PROOF OF THEOREMI]
Proof of Theorem[I] By Lemma we have 1 — ef|w;||F < W, Zj; < 14 ellw, |7 forj = 1,2,
and

AT . ST & \an ST & . ST & \on . .

Wy BiaWe > Wy (pS12)w2 — |Wy (pPS12 — Bi2)wa| > Wy (pSi2)ws — el [|1]|wel]1
Let wy,. = (w] , (pS1)ws,.) /2w, and s, = (w,,, (pS2)ws,.) /2w, .. By Assumptions
and Lemmal[I] we have

1—erf <w/,(pSj)wjs <1+erd,j=1,2.

It follows that ||@; .1 < (1 — er?)~Y/27, j = 1,2. The following lower bound holds for the
objective function at (W1 ., W2 . ):

)

1 — Awe |1

.
L

>w( , (pS12)Wo. — A1 — e2) V2 (w1 + |Jwa,
1
b

1)
PS12)ts.. — 21 — er2) "%y
Do — [ (pS12 — i)ty | — 2A\(1 — €)1y

>(1+ 6T12)_1p1’* —€e(1— 67’12)_17’12 —2)\(1 - 67’12)_1/27'1.
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Let (w1, ws) be any pair such that

W] (pS12)tby — A[tr|l1 — Allbz |1 > @], (pS12)Bs,e — Al[tr ]t = Al (6)
we have

W] (pS12)wWe — Ay ||y — Aoy > (1+ er2) o1 — e(1 —er2) 12 — 2X\(1 — er?) V27,
Combining Lemma([I} we have

Wy Sioby > (14 erp) Hprn —e(1—erf) 7 — 201 — erf) "2 — elfan |1z, (7)

and

W] 3151 L Aterd) oy —e(l —erf) i — 201 — erf) T2 — el |2

Vo B /g Sows V14 ewi|[Ty/1+ el )
We also have the upper bound result by Lemma [T}

W] (pS12)z — Al|i[l1 — Al[tba||1 <tb) Siotbz + €| |1 |1 — Allr[l1 — Al[eba |2
<p1x + ellwrlyflwa 1 — Alldr ]y = Al
When (6)) holds, the upper bound result implies that,
prFellin|f][all =AM 1 = Allball > (1+er?) " prw—e(l—erf) Tl =2 (1—erf) /2.
Rearranging the above inequality, we obtain
Mlr]ly + [[zl1) < Brie + [lwy]]1[ldz ] ve, ©)

where
P1,+ 1 2C,

B = .
1+712€+1—7126+,/1_7—126

Note that the above results hold generally for any pair (w1, w-) that satisfies @) We now specify the
desired local maximizer for the theorem. Let A = C}71€ and (w1, W) be the global maximizer of
the objective in (3) with the constraint max ;e o3 ||w; |1 < Cori. Aslongas Cy > (1 — Tie)~1/2,
we have max ey 23 ||w; «|[1 < Ca1y and the maximizer (w1, w2) satisfies @

By choosing C; > + 20+ e we have C2 > 4B and [max{2BC{', (1 —
1

1—712¢ 1+7'126’

4
\/1—7'126
i)/} 271C1) £ 0.

By choosing Cs € [max{2BC; ", (1 — rZe)~1/2},271C}], we will show that max ;e 1 93 [|@; 1 <
Cy7y. So (wq,wq) will be a local maximizer of without the constraint. Suppose, for the sake
of contradiction, that |||y = Ca7y. It implies that 0 < ||wsl[; < Ca7y. By @]), the following
inequality must hold:
C1Cotie < (B + C3)Tie.

However, by the choice of Cy, we have 271C,Cy > B, 271010y > C% and C1Cy > B+ C3. This
contradicts the claim that @I) holds. Therefore with the choices of C'; and Cs, we have (7, ws) is
a local maximizer of (3) with max;¢q oy [|w;]l1 < Cyry and @ holds. Combing (7) and , we
obtain the first two inequalities in the theorem,

’lb;r212w2 >(1+ 7'126)71/)17* —{(1- 67’12)71 +2C,(1 - 67'12)71/2 + 02}7'126,

and

W] TiotwWs < (1 +7126) o1 — {(1 — 12e)~ 1 +2C1 (1 — 18e)~ V2 + Co}rie
V! Ty /g oty 14 Corie o
The last result follows from (I0) and the following Lemma 2]

O
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Lemma 2. Under Assumption if the pair (w1, w2) satisfies that

T
'wl 212’(.02
\/wlTEywl \/szngg

Z Pl,* - 67

then 0
max COSQ(Z(E;pwj, E;/zwj7*)) <1——.
je{t,2} gl

Additionally if Assumption[I|holds, then

2
max cos”(Z(w;,w;,)) <1— —.
P (£(wj, wj4)) 5

Proof. Lemma [2]is a direct consequence of Lemma 5 and Lemma 6 in Mai & Zhang (2019). We
provide a neat and self-contained proof here for completeness.

Let {uy} and {vy} be the left and right singular vectors of 21_1/2212 22_1/2. The singular value
decomposition (SVD) is 271/ 221 271/ 2 =3 & Pk, *ukvk and the canonical correlation vectors
of 315 are {X] 1/2 uy} and {35 1/2 vy }. It means that 319 = >, p, *21/ ULy, 22/ Wy =
N 1/2u1 and wa , = X, 1/2 V1.

Denote the normalized vector w; = ||E;/ ij I3 12;/ ij. By the decomposition of X2,
1/2
wlTElg'wg N Zk pk,*wlTEl/ ULV 22/ w2
VWl 1w Jw] Sows  J/w] Sw; Jw] X
wq 1W1\/ Wy 2W2 wq 1W1\/ Wy 2W32

<37 PE T wg)? + (] ve))
k

(@] u1)® + (w5 01)%} + (prs — V{2 = (0] w)® — (0] v1)°}
- 2
12— (] w1)? — (wj v1)%}

5 :

=pP1,x —
Therefore,

2 — (0] w1)® — (wy v1)* <

NI

By the facts that (w{ u;)? = cos?(Z(wy, ul)) [0,1] and (w5 v1)2 = cos?(£L(wq,v1)) € [0,1],
we have cos?(Z(wy,u;)) > 1 — 275 and cos?(Z (g, v1)) > 1 — 2 ie.,
26
max COSQ(A(E}/QUJJ—, E}/ij ) >1——
je{1.2} ! T v
For the second result, let w; = ||Z;/2wj||§1w7. Note that
|wj]l2lwjll2 — @ wis w13 + [lw« 13 — 2w, w;.

1 —cos(L(wj, wj+)) = |2 |lw; |2
J J5%

2[|w;[2]lwj |2

(W —wj) (W) —wjs) (W —w; L) T T (W — wji)
2[|wj[l2f|wy,«[|2 T 2= a2 w2

=k(1 — ] Sjw;.) = k{1 — cos(£L(Z} *w;, =} *w; L))}

J
=r{1 — cos(£(Z} *wy, =} *w; )},

where in the second last inequality we use Assumption [1]and the property that ||w;||; < Cor for
some Cy > 0 from the proof of Theorem [I] and in the second last identity we use the fact that

1255 %w;.4ll2 = 13;/*;|> = 1. Therefore,

cos(ZL(wj,wj,)) >1—k(1l—+1—-25y71),
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and finally,

-1
cos?(L(wj,wj.)) > 1—2k(1— /1 —-25y"1) =1 4rdy >1 4ro
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