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Abstract
Large Language Models (LLMs) have exhib-001
ited remarkable proficiency in comprehend-002
ing and generating natural language. On the003
other hand, personalized LLM response gen-004
eration holds the potential to offer substan-005
tial benefits for individuals. However, exist-006
ing work struggles with efficiently incorpo-007
rating user information for LLM personaliza-008
tion. In this study, we draw inspirations from009
real-world bionic memory mechanism to pro-010
pose a novel parameterized Memory-injected011
approach using parameter-efficient fine-tuning012
(PEFT), combined with a Bayesian Optimi-013
sation searching strategy to achieve LLM014
Personalization(MiLP). Our MiLP takes ad-015
vantage from the alignment between real-world016
memory mechanism and the LLM’s architec-017
ture. Extensive experiments have shown the018
superiority and effectiveness of MiLP. To en-019
courage further research into this area, we are020
releasing our implementations1.021

1 Introduction022

The undeniable capability of large language models023

in comprehending and producing natural language024

has been underscored by various studies (Brown025

et al., 2020; Chowdhery et al., 2022; Touvron et al.,026

2023). Simultaneously, there exists untapped po-027

tential to customize these models for delivering028

personalized responses to users, enabling them to029

receive tailored and fitting replies according to their030

individual requirements (Bender and Koller, 2020).031

For instance, in an LLM-based medical dialogue032

scenario, an assistant capable of recognizing the033

patient’s medical history can generate more tai-034

lored responses, rather than offering generic and035

potentially inappropriate suggestions(Huang et al.,036

2023). Individuals with limited access to the med-037

ical resources can benefit significantly from such038

applications, highlighting the imperative needs for039

LLM personalization(Chen et al., 2023).040

1https://anonymous.4open.science/r/MiLP-060F

Figure 1: Three types of methods for incorporating user
historical content to achieve personalized LLM.

Incorporating user historical information prop- 041

erly to LLM can be a key towards LLM personal- 042

ization. Existing works can be concluded into three 043

lines as illustrated in Fig.1. Text-Prompt based 044

methods leverage in-context learning by organiz- 045

ing user historical data into prompts, which are 046

then input to LLMs to consider personal informa- 047

tion (Petrov and Macdonald, 2023; Kang et al., 048

2023; Liu et al., 2023). However, this approach 049

faces limitations due to the constrained context 050

window of LLMs (Liu et al., 2024). Memory-based 051

approaches provide a solution by maintaining a 052

memory that stores user historical content. When 053

a query arises, a retriever selects relevant infor- 054

mation from memory to create prompts for LLMs, 055

enabling personalized responses (Dalvi et al., 2022; 056

Madaan et al., 2022; Lewis et al., 2020; Zhang et al., 057

2023). Despite their utility, these methods struggle 058

to capture fine-grained or implicitly relevant details 059

due to their reliance on similarity-based retrieval. 060

For example, a user context like "User has a dog" 061

may seem unrelated to a query such as "Recom- 062

mendations for houseplants." However, this con- 063
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text implies that toxic plants like tulips should be064

avoided for the safety of the dog. Additionally,065

noisy or complex user histories can hinder LLMs066

from focusing on the most pertinent information067

without a structured, learnable process. In domains068

such as healthcare, these challenges are particu-069

larly pronounced. LLMs analyzing a patient’s long-070

term medical history for clinical decision-making071

must integrate detailed and accurate observations072

to understand disease progression and comorbid-073

ity interactions. Fragmented or incomplete records074

retrieved from memory provide an inadequate or075

even misleading snapshot of the patient’s condi-076

tion2 (Liu et al., 2024; Cosentino et al., 2024). To077

address this, recent studies have proposed project-078

ing user historical content into a learnable represen-079

tation space (Ning et al., 2024; Deng et al., 2022;080

Zhong et al., 2022). Instead of directly retrieving081

user texts to prompt LLMs, these learned represen-082

tations enable reasoning over implicitly relevant083

information for generation. Building on this foun-084

dation, our study steps further on bionic memory085

process: integrating a memorization and search-086

ing mechanism directly into LLM. Different from087

traditional similarity-based retrieval methods, this088

approach enhances reasoning capabilities by mem-089

orizing user information into parameters and acti-090

vating the needed parameters during personalized091

response generation3.092

Previous studies in neuroscience have indicated093

that memory is stored in different parts of the brain094

and is activated accordingly when needed (Leven-095

son and Sweatt, 2005; Nadel et al., 2012). Concur-096

rently, efforts have revealed that the Feed Forward097

Layers (FFL) of Transformer architecture serve as098

a memory bank, storing both shallow patterns (e.g.,099

sentences ending with a certain word) and seman-100

tic patterns (e.g., sentences about a certain topic)101

(Tay et al., 2022; Chen et al., 2024). Subsequent102

attempts have been made to inject external knowl-103

edge into LLMs via parameter-efficient fine-tuning104

(PEFT) (Houlsby et al., 2019; Pfeiffer et al., 2020b;105

Li and Liang, 2021; Hu et al., 2021), maintaining a106

modular and adaptable structure without compro-107

mising the LLM’s original capabilities compared108

to fully fine-tuning (Ye et al., 2023; Wang et al.,109

2020; Diao et al., 2023; Yao et al., 2022; Wang110

et al., 2020). Drawing valuable inspiration from111

2https://www.epic.com/epic/post/
cool-stuff-now-epic-and-generative-ai/

3We provide discussions for Retrieval vs. Parameteriza-
tion in Appendix D

the alignment between real-world bionic memory 112

mechanisms and LLM’s memory mechanisms, we 113

propose to first memorize user historical content as 114

parameters in the LLM by leveraging a Bayesian 115

Optimal search algorithm, an instruction-tuning 116

technique is then used to generate personalized 117

response with consideration from parameterized 118

user historical content. Different memories, with 119

different characteristics highlighting the distinct 120

sensitivity to the allocated parameter budget and 121

the location of the injected layers(He et al., 2021; 122

Zhang et al., 2023). Unfortunately, most PEFT 123

applications are limited to a single PEFT architec- 124

ture with fixed decisions on its components (e.g. 125

hidden size, insertion layers) which can not store 126

and activate different memories for personalization. 127

To address this, we propose to leverage multiple 128

PEFT modules (e.g., LoRAs) (Zhou et al., 2023) 129

for different memory storage and utilize a high- 130

dimensional multi-objective Bayesian optimization 131

(BO) approach to determine the optimal configu- 132

rations for memory storage. In tandem, we draw 133

inspirations from the alignment between bionic 134

memory mechanism and the LLM’s memory mech- 135

anism to propose a novel parameterized Memory- 136

injected method that capitalizes on PEFT, comple- 137

mented by a novel Bayesian Optimization-based 138

searching strategy to handle multi-PEFT settings 139

for achieving LLM Personalization (MiLP). Our 140

contributions are threefold: 141

• Conceptional In contrast to traditional infor- 142

mation retrieval process, we leverage the alignment 143

between bionic memory and the LLM’s memo- 144

rization mechanism to parameterize user memory 145

directly into the LLM which offers a fresh perspec- 146

tive for the community in LLM personalization. 147

• Methodological We propose the MiLP frame- 148

work, which integrates a comprehensive Bayesian 149

Optimal searching algorithm and an instruction- 150

tuning process to handle multi-LoRA settings for 151

personalized response generation. 152

• Experimental Our empirical results demon- 153

strate significant improvements in both generation 154

and personalization tasks. Further analyses, in- 155

cluding ablation and scalability analysis, together 156

validate the effectiveness and superiority of MiLP. 157

2 Methodology 158

Overview Our proposed MiLP takes user’s content 159

including user profile, historical content (e.g., di- 160

alogues, posts) U = {c0, ..., cn} and a query x as 161
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Figure 2: Illustration of the proposed MiLP: The search space encompasses the number of LoRAs n, inserted layers
α and the size of injected LoRA. Given a suggested configuration θ (e.g., two LoRAs with fixed size r are injected
into the 0-th and (n-1)-th layer, respectively), the base LLM trains on this configuration and take the performance as
target. Then the BO search will make a new suggestion and iterate the process until it converges.

input and the goal is to inject and search for proper162

memory to output personalized response y. The163

parameterized user memory injection is achieved164

by applying multiple Low-Rank Adaption (LoRA)165

modules into the FFL of the base LLM Φ under an166

optimal configuration and a modified Bayesian Op-167

timisation approach is utilized to handle the multi-168

LoRA setting as illustrated in Fig 2. The LLM’s169

performance p (e.g., loss, metrics) will be targeted170

by the optimal search and this process will iterate171

until it converges. Finally, an instruction-tuning172

will be performed for aligning the generated re-173

sponse with human intents.174

2.1 LoRA Module175

Previous work have provided insights in the success176

of injecting knowledge into the LLM via PEFT tun-177

ing (Yao et al., 2022; Wang et al., 2020). Inspired178

by the function analysis of feed-forward layers in179

Transformer(Geva et al., 2021), our MiLP modi-180

fied the usage of Low-Rank Adaption (LoRA) (Hu181

et al., 2021) to the feed-forward layers of the base182

LLM. For a feed-forward layer h = Wlx, the183

forward process is modified to be:184

h = Wlx+BAx (1)185

where Wl ∈ Rd×k denotes the weights of the l−th186

feed-forward layer, B ∈ Rd×r, A ∈ Rr×k are187

the low-rank decomposed matrices and the rank 188

r ≪ min(d, k). 189

2.2 Parameterized Memory Injection 190

Determining how to properly store and activate per- 191

tinent information presents a challenge. Inspired 192

by the success of neural architecture search, we 193

start by defining a search space. Subsequently, we 194

employ a Bayesian optimization (BO) approach to 195

identify the optimal configuration for generating 196

personalized responses. In the following sections, 197

we provide a detailed explanation of our search 198

space design, along with the rationale behind it, 199

and describe the process of conducting BO. 200

2.2.1 Search Space 201

Search Space plays a pivotal role in searching the 202

optimal configuration for the suitable parameter- 203

ized memory storage within LLM. Similar to Zhou 204

et al. (2023), our searching space is as follow: 205

Inserted Layer Different feed-forward layer 206

within the LLM stores distinct information (Geva 207

et al., 2021) where the shallow layers tend to store 208

shallow patterns (e.g., sentences end with a cer- 209

tain word) while deep layers store semantic pat- 210

terns (e.g., sentences about a certain topic). Con- 211

sequently, applying LoRA to all layers can lead to 212

suboptimal results. Thus, we introduce a binary 213

parameter α at each layer li that controls whether 214
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LoRA in the layer is active or inactive.215

Number of LoRAs Our method is designed for a216

single user and it is intuitive that the volume of dis-217

tinct user content can vary, resulting in a range of218

learnable spaces for injecting such content (Wang219

et al., 2020). Thus, we incorporate the number of220

LoRAs, denoted as n, into our search space.221

Low-Rank Size Prior studies have demonstrated222

that the performance of LoRA is greatly influenced223

by the number of adjustable parameters (Chen et al.,224

2022). Therefore, it is crucial to dynamically ad-225

just its capacity to align with the demands of the226

specific task to achieve optimal performance. To227

address this, we follow Zhou et al. (2023) to include228

the rank r as a parameter in our search space, which229

signifies LoRA’s capability to store user-specific230

content in memory.231

2.2.2 Bayesian Optimal Search232

While much existing work concentrates on identi-233

fying a single PEFT module with the best perfor-234

mance, real-world applications often involve opti-235

mizing multiple PEFT models, a scenario that has236

been rarely explored (Zhou et al., 2023). To address237

this gap, we opt to employ a modified Bayesian238

Optimization (BO) approach to determine how dif-239

ferent parts of injected memory should be utilized240

in response to a user’s query.241

Bayesian Optimization leverages two key com-242

ponents:1) A probabilistic surrogate model to ap-243

proximate the objective function using previous ob-244

servations.2) An acquisition function that suggests245

which point in the search space should be evalu-246

ated next. The fundamental principle of Bayesian247

Optimization (BO) is to iteratively select points for248

evaluation, striking a balance between exploration249

(searching different areas) and exploitation (focus-250

ing on areas likely to yield the best results). The251

surrogate model estimates the objective function252

and its uncertainty, while the acquisition function253

identifies the most promising points to evaluate.254

By continuously updating the surrogate model and255

selecting points expected to improve the objective,256

BO efficiently explores the space for the optimal257

solution while minimizing the number of evalua-258

tions of the costly objective function.259

Surrogate Function Applying BO to our de-260

fined search space is non-trivial. Thus, we opt261

for the usage of Sparse AxisAligned Subspace262

(SAAS-GP) (Eriksson and Jankowiak, 2021) to263

serve as the surrogate function. SAAS-GP em-264

ploys robust, sparsity-inducing priors to address265

the challenge of modeling high-dimensional data. 266

It assumes that despite the nominal high dimen- 267

sionality, the effective dimensionality is signifi- 268

cantly lower, thereby simplifying the modeling 269

process. Given the user’s content U , a query 270

x and the base LLM Φ with a suggested con- 271

figuration θ, the performance p(l, rl|x,U ,Φ(θ)) 272

can be represented by the CrossEntropyLoss l = 273

− 1
N

∑N
i=1 logP (yi|y<i,U , x), where N is the the 274

length of targeted length, and ROUGE-L score rl 275

between generated ŷ and targeted response y. Thus, 276

we can give the surrogate function in our settings: 277

p(θ) ∼ N (µ(θ), σ2(θ)) (2) 278

where θ ∈ Θ is a suggested configuration from our 279

defined search space Θ as elaborated in Section 280

2.2.1, µ(θ) is the mean and σ2(θ) is the variance. 281

For the kernel function, we use log-Normal distri- 282

bution as the kernel. Then given a new configura- 283

tion θ∗, the posterior distribution of p(θ∗) can be 284

updated as follows: 285

p(θ∗)|{θi, f(θi)}ni=1 ∼ N (µ∗, σ
2
∗) (3) 286

where n is the number of observed points. The 287

mean and variance of the posterior distribution are 288

computed using the Gaussian process regression. 289

Acquisition Function For acquisition function, we 290

use the Negative Expected Hypervolume Improve- 291

ment (NEHVI) (Daulton et al., 2021) since it quan- 292

tifies the negative expected improvement in hyper- 293

volume when including a new point in the solution 294

set which in nature is suitable for handling multi- 295

objective optimization setting. The function in our 296

setting can be described as: 297

NEHV I(θ) = −E[H(p(θ+) ∪ p(θ))−H(p(θ+)] (4) 298

where H(·) is the hypervolume function, p(θ+) is a 299

reference point representing the best-known objec- 300

tive values achieved so far and p(θ) is the predicted 301

function value at θ calculated by the surrogate func- 302

tion. 303

2.3 Personalized Response Generation 304

Upon on the learned user representation from 305

historical content, the LLM can be fine-tuned 306

to generate personalized response. We resort to 307

the usage of instruction tuning which has shown 308

great ability for leading LLM to generate desired 309

response in just a few samples(Stiennon et al., 310

2020; Min et al., 2021; Ouyang et al., 2022). In 311

4



AmazonQA Reddit MedDia
# User 46,923 46,818 60

# Samples 51,936 95,881 10,920
# Len(History) 30.7 72.4 182

Avg. Len(Content) 23.6 22.8 27.8
Avg. Len(Response) 50.2 9.1 23.7

Table 1: Statistics comparison of the datasets

this work, we fine-tune the memory injected model312

on instruction-following examples in a supervised313

manner to aligned the LLM’s response with human314

intents with respect to the user historical content.315

316

3 Experimental Settings317

MiLP is tailored to fine-tune the base LLM to gen-318

erate personalized responses. To evaluate its ef-319

fectiveness, we compare our method across three320

public datasets that contain user historical content.321

For this evaluation, we utilize four different base322

LLMs of varying scales (Please check Appendix C323

for detailed scalability justification.).324

3.1 Datasets325

AmazonQA/Products(Deng et al., 2022) is a pub-326

lic E-commerce dataset of which each data sample327

contains user’s historical posted content, including328

questions, answers and reviews as well as the cor-329

responding product’s description4.330

Reddit(Zhong et al., 2022) is a public dataset col-331

lect from social media platforms where a user can332

post question and respond to other users. Each data333

sample contains a query, a response and a sequence334

of this user’s dialogue history5.335

MedicalDialogue(Zhang et al., 2023) is a medical336

dialogue dataset derived from open-source medi-337

cal corpus of which each data sample contains a338

patient’s profile, preference and the historical dia-339

logues between the patient and the doctor6.340

The detailed comparisons can be seen in Table341

1.For our experiments, we split the dataset in a342

user-oriented manner and format each user’s histor-343

ical content into a fixed text phrase which allows344

us to perform next user content prediction task to345

learn the user’s preference.346

3.2 Baselines347

We opt to compare our MiLP with three differ-348

ent configurations for LLM Personalization: Text-349

prompt (TpLP), RAG-based memory (Zhang et al.,350

4https://cseweb.ucsd.edu/jmcauley/datasets.html
5https://github.com/bangbangbang12315/MSP/tree/release/data
6https://github.com/MatthewKKai/MaLP/tree/main/data

2023) (MaLP), User-embedding (UeLP)(Ning 351

et al., 2024) in terms of four LLMs as the 352

base models7: DialoGPT(Zhang et al., 2020), 353

RoBERTa(Liu et al., 2019), LLaMA2-7B and 354

LlaMA2-13B(Touvron et al., 2023). For a fair com- 355

parison, we use the configuration with the best 356

performance as reported in their paper. 357

3.3 Evaluation Metrics 358

Automatic Evaluation We resort to the usage of 359

ROUGE-1 and ROUGE-L to measure the word 360

overlaps between the generated response and the 361

ground truth. Further, since the goal is to generate 362

personalized response, the Persona F1 (P-F1)(Ma 363

et al., 2021) is also used to measure the unigram 364

F1 between the generated response and the user’s 365

content (e.g., historical dialogues, profile etc.). 366

Human Evaluation Automatic evaluation can as- 367

sure the quality of the generated response with 368

respect to the ground-truth, however, we recognize 369

that human evaluation is needed. Thus, we follow 370

the scoring method of Wang et al. (2023) and calcu- 371

late the Win Rate, scoring the generated response 372

and compare the scores between different settings 373

and the standard generation of the Text-prompt 374

based method. 375

3.4 Implementation Details 376

For implementation details, we leverage the Trans- 377

formers (Wolf et al., 2020) and Adapters(Pfeiffer 378

et al., 2020a) as the base code and conduct exten- 379

sive experiments with the DialoGPT, RoBERTa, 380

LlaMA2-7B and LlaMA2-13B. We use the 381

AdamW optimizer(Loshchilov and Hutter, 2018; 382

Paszke et al., 2017) with a learning rate of 5e-4 and 383

also a linear warm-up scheduler initialized with 384

10% of the total training steps as warm-up steps 385

and a weight decay of 1e-4 to avoid over-fitting for 386

all the experiments. The batch size per device is 387

set to 8. Further, for all the LLMs, we follow their 388

default settings from the Transformers (Wolf et al., 389

2020) and add search space factors in the their con- 390

figurations. We modified the forward logic of in- 391

jected layers by combing the outputs from both the 392

base model layer and the injected lora module. For 393

BO algorithm implementation, we resorted to the 394

usage of BoTorch (Balandat et al., 2020) and follow 395

the suggested settings from Zhou et al. (2023) for 396

both surrogate function and acquisition function. 397

For prior distributions, we randomly sample 100 398

7Due to the resources limitation, we are unable to test
larger scale LLMs.
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initialisation points for all the experiments. For all399

datasets used, we split 70% of them as the training400

set, 10% of them as the validation set and 20% of401

them as the testing set. For search space, each fac-402

tor is an integer from different ranges. The details403

can be seen in Table 6. All the experiments are404

conducted on a computation node configured with405

four 80G Tesla A100 GPUs.406

4 Experimental Results407

4.1 Comparative Study408

Table 2 presents the automatic evaluation compar-409

ative results between baselines and our proposed410

MiLP on three datasets. It is evident that the in-411

clusion of memory improves performance across412

all baseline models, highlighting the ability of pro-413

vided personal information to enhance personal-414

ized response generation. MaLP, which incorpo-415

rates long- and short-term memory, outperforms416

text-prompt based methods, indicating the effec-417

tiveness of differentiating stored information. How-418

ever, our proposed MiLP exhibits superior perfor-419

mance compared to them. MiLP achieves average420

relative improvements of 4.38%, 5.05% and 2.09%421

in ROUGE-L scores over all base LLMs against422

the best baselines on three datasets, respectively.423

One interesting thing we found is that as the base424

LLMs goes deeper (e.g., the number of hidden lay-425

ers is larger), the relative improvements will also in-426

crease. For example, LlaMA2-13B equipped with427

MiLP achieves a relative improvement of 0.44% in428

ROUGE-L score while DialoGPT equipped with429

MiLP only achieves a relative improvement of430

1.19% on MedicalDialogue dataset against the best431

baseline. We attribute this to the deeper layers432

learning more semantic features (Geva et al., 2021).433

Moreover, the improvements in persona-F1434

score confirm that incorporating a memory mech-435

anism allows for the integration of more user-436

specific information into the generated response,437

thereby enhancing personalization. However, we438

observed that MiLP demonstrates better coverage439

of personalized information compared to the best440

baselines, achieving average increases of 0.090,441

0.088, and 0.117 in persona-F1 score across the442

three datasets, respectively. This can be attributed443

to the fact that the approach of retrieving pre-stored444

memory to augment LLM personalization relies on445

the quality of retrieval and the LLM’s understand-446

ing of the retrieved prompts, which may lead to447

sub-optimal results. In contrast, user-embedding-448

based method anticipated in the LLM’s decoding 449

process leading to a better performance. Addition- 450

ally, our MiLP injects memory directly into the in- 451

tricate LLM and achieves a better understanding of 452

the injected information through our proposed BO 453

approach, thereby producing more relevant user- 454

specific information when generating personalized 455

responses. The comprehensive results validate the 456

effectiveness and superiority of our proposed MiLP. 457

4.2 Quality Study8 458

We further conduct quality study to examine the 459

quality of generated responses as illustrated in Ta- 460

ble 3. We observed that leveraging a memory 461

achieves above 50% win rate for all base LLMs 462

over three datasets. We attribute this to the na- 463

ture that introducing user-specific information as 464

prompts can enhance LLM response generation in 465

terms of personalization. However, relying solely 466

on memory can lead to misunderstandings by the 467

LLM when generating responses, resulting in sub- 468

optimal outcomes. Our MiLP not only utilizes 469

user-specific information from the user’s histori- 470

cal content but also leverages the natural language 471

understanding and inference abilities of the LLM 472

itself through our proposed BO method. This en- 473

ables the LLM to comprehend which information 474

should be considered when generating a response, 475

leading to optimal performance compared to other 476

baselines in most scenarios. However, we also 477

notice that as the base LLM becomes more com- 478

plicated, its greater natural language understanding 479

and inferring ability are not always accompanied 480

with better performance. For example, the results 481

of LlaMA2-13B are incomparable with LLaMA2- 482

7B on MedicalDialogue dataset. We attribute this 483

disparity to the greater sparsity of user-specific in- 484

formation in the historical user content of the Med- 485

icalDialogue dataset compared to the other two 486

datasets. Consequently, the configuration space for 487

LlaMA2-13B is relatively sparser than that of other 488

models, leading to suboptimal performance. The 489

base LLM size selection with respect to the scale of 490

input information (e.g., user numbers, the memory 491

size etc.) is worthy to be explored in the future. 492

Despite these challenges, the increase in win rate 493

confirms the effectiveness of our proposed MiLP. 494

Human validation To validate the alignment of 495

our automatic scoring schema with human judg- 496

ments, we adopted the methodology of Wang et al. 497

8Please check Appendix E for Case Study
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Model Type AmazonQA Reddit MedDia
ROUGE-1 ROUGE-L P-F1 ROUGE-1 ROUGE-L P-F1 ROUGE-1 ROUGE-L P-F1

DialoGPT

TpLP 16.44 14.63 0.741 14.57 13.89 0.337 15.47 14.31 0.890
MaLP 17.02 16.31 0.843 16.12 13.40 0.399 17.15 15.87 0.929
UeLP 18.02 17.74 0.901 15.95 13.71 0.389 16.92 15.04 0.916
MiLP 18.61 17.83 0.925 16.38 14.51 0.409 17.67 15.94 1.072

RoBERTa

TpLP 17.35 15.41 0.704 13.91 12.81 0.391 14.81 13.99 0.947
MaLP 18.50 15.76 0.828 14.17 13.96 0.462 17.79 16.80 1.141
UeLP 18.97 16.19 0.899 15.96 14.86 0.491 16.21 14.33 0.971
MiLP 19.73 17.59 0.974 16.83 15.09 0.531 18.96 17.18 1.187

LlaMA2-7B

TpLP 19.61 17.71 1.817 14.37 13.70 0.533 17.19 16.77 1.818
MaLP 19.80 17.06 1.834 13.91 13.09 0.533 19.98 18.89 1.917
UeLP 20.91 18.79 2.083 16.61 14.74 0.613 18.27 16.73 2.081
MiLP 21.69 19.96 2.176 18.63 16.81 0.756 20.98 19.73 2.274

LlaMA2-13B

TpLP 24.91 23.36 2.107 20.87 20.19 0.678 22.77 21.32 2.009
MaLP 22.61 21.29 2.061 21.18 20.78 0.671 23.77 22.69 2.250
UeLP 25.02 23.74 2.089 22.03 21.80 0.704 22.18 20.88 2.131
MiLP 25.51 24.25 2.283 22.28 21.83 0.864 24.13 22.96 2.337

Table 2: Comparative results on different datasets using automatic metrics.

Model Type AmazonQA Reddit MedDia

DialoGPT

TpLP - - -
MaLP 57.37 51.95 69.33
UeLP 63.20 60.17 75.02
MiLP 63.97 60.76 75.78

RoBERTa

TpLP - - -
MaLP 57.91 56.39 63.83
UeLP 59.99 60.11 66.75
MiLP 61.97 60.19 67.63

LlaMA2-7B

TpLP - - -
MaLP 64.74 59.67 88.93
UeLP 65.91 61.870 89.43
MiLP 66.17 59.81 91.83

LlaMA2-13B

TpLP - - -
MaLP 71.82 72.96 87.89
UeLP 74.37 75.13 89.18
MiLP 75.48 76.61 90.67

Table 3: Quality study results on different datasets using
the Win Rate metric.

(2023) for point-wise evaluation. We hired two498

master’s students to evaluate 50 response pairs, con-499

sisting of responses generated by standard settings500

and MiLP using LLaMA2-13B, along with the cor-501

responding user content for each pair. The students502

were asked to indicate which response they deemed503

better by selecting 1 (win), 0 (tie), or -1 (lose) for504

each pair. Subsequently, we calculated the Pearson505

Correlation Coefficient (P.C) and the accuracy be-506

tween human selections and automatic selections.507

The high P.C of 0.86 and an accuracy of 91% collec-508

tively indicate the feasibility and high confidence509

of our evaluation method.510

4.3 Ablation Study on Search Space511

To explore the effectiveness of each factor within512

the search space, an ablation study is conducted. As513

can be observed in Table 4, search number n or size514

Space AmazonQA Reddit MedDia
Num 2.011 0.604 2.027
Size 2.017 0.601 2.034

Layer 1.921 0.597 2.001
Num+Size 2.016 0.604 2.073

Num+Layer 2.130 0.731 2.196
Size+Layer 2.195 0.767 2.197

Num+Size+layer 2.283 0.864 2.337

Table 4: Ablation study of using LlaMA2-13B as the
base on different search space using Persona-F1 score
as the metric.

r only achieves similar personal information cover- 515

age which we attribute to these two factors are more 516

related to the scale of stored memory. In contrast, 517

the choice of which layer to inject influences how 518

the LLM understands the injected memory. During 519

our experiments, when only searching which lay- 520

ers to inject, as the number of LoRAs and LoRA 521

size become larger, the overall performance will be 522

better.However, performance eventually dropped 523

once n and r reached a threshold. This observation 524

aligns with our understanding that there should be 525

a balance between the size of input information and 526

trainable parameters. Meanwhile, without being 527

aware of what memory should be used when gen- 528

erating responses will lead to a sub-optimal result. 529

These findings verify the necessity and effective- 530

ness of the comprehensive search space. 531

4.4 Ablation Study on MiLP Components9 532

To determine whether the effectiveness of MiLP 533

is due to instruction-tuning or the parameterized 534

memory injection component, we conducted an 535

ablation study. The results are presented in Ta- 536

9Please check Appendix B and C for Scalability Analysis.
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Components ROUGE-1 ROUGE-L P-F1
Instruction Tuning 23.67 22.07 2.107
Memory Injection 22.81 19.90 2.331

Full MiLP 24.13 22.96 2.337

Table 5: Ablation study of using LlaMA2-13B as the
base on different components on MedDia dataset.

ble 5. As shown, neither instruction-tuning alone537

nor parameterized memory injection alone can out-538

perform the fully configured MiLP. Additionally,539

we observed that ROUGE scores are higher with540

instruction-tuning, while the Persona-F1 score is541

higher with parameterized memory injection. We542

attribute this to instruction-tuning aligning the gen-543

erated response with human intents, while param-544

eterized memory provides more personal informa-545

tion. With all components incorporated, our MiLP546

demonstrates the highest effectiveness.547

5 Conclusion & Future Work548

In a nutshell, we propose a novel frame called549

MiLP to achieve Memory-injected LLM person-550

alization. MiLP uses LoRA as the base PEFT mod-551

ule and leverages a Bayesian Optimisation based552

approach to iterative inject and search user histori-553

cal information towards personalized response gen-554

eration from our defined search space. Addition-555

ally, we conduct extensive experiments to compare556

our method with three baselines on three datasets557

and the results verify the effectiveness and supe-558

riority of our MiLP. Further, an ablation study is559

conducted for validating the the necessity of each560

factor within the defined search space.561

In the future, exploring scalability with a larger562

number of users and larger LLMs is essential. Ad-563

ditionally, enhancing the inference ability to bet-564

ter understand user-specific needs is crucial. This565

includes integrating shared information and user566

graphs into the LLM to improve personalized re-567

sponse generation.568

6 Related Work569

Memory-Augmented LLM refers to apply a mem-570

ory that stores extra information for enhancing571

LLM’s output (Ouyang et al., 2022). Various ef-572

forts have been made to utilize memory in this573

context. Tandon et al. (2021) proposed leveraging574

a corrector that can rectify the model’s output based575

on similar mistakes stored in memory. However,576

this method focuses on repairing wrong outputs. In577

contrast, Madaan et al. (2022) argued that stored578

experiences can be used to prevent incorrect out-579

puts by incorporating feedback into the new query. 580

Another usage of memory is to include the mem- 581

ory into a learning frame such as self-learning or 582

teacher-student paradigm so that the LLM can learn 583

by iterative refinement(Madaan et al., 2023; Dalvi 584

et al., 2022). In tandem, the key for better usage of 585

memory is to equip powerful retrievers(Guu et al., 586

2020; Lewis et al., 2020; Yuan et al., 2022) and im- 587

prove the effectiveness of storing memory (Zhang 588

et al., 2023). Unlike previous studies, our MiLP 589

framework parameterizes and injects memory di- 590

rectly into the LLM through PEFT modules while 591

accounting for memory budgets. 592

Personalized LLM has garnered increasing atten- 593

tion for its ability to provide tailored experiences 594

that align with user expectations and needs (Salemi 595

et al., 2023). Previous works focused on identifying 596

user preferences using Ceteris Paribus (CP)-nets 597

(Asher et al., 2010) and modeling user historical 598

content into language models (Zhong et al., 2022; 599

Deng et al., 2022). However, these methods suffer 600

from limited natural language understanding ability 601

of language models. With the emergence of LLMs, 602

prompt-based methods have been developed to de- 603

sign detailed prompts that guide LLMs in produc- 604

ing desired outputs while being aware of user status 605

and contextual content (Wang et al., 2023; Wu et al., 606

2023; Aher et al., 2023). Another line of approach 607

attempts to leverages memory to store user rele- 608

vant information. When a new user query arises, 609

a retriever will retrieve relevant user information 610

from the memory to prompt the LLM to produce 611

personalized responses (Dalvi et al., 2022; Madaan 612

et al., 2022; Lewis et al., 2020; Zhang et al., 2023). 613

Moreover, recent studies have explored projecting 614

user information into embeddings, allowing param- 615

eterized user data to participate in the decoding 616

process of the LLM to generate personalized re- 617

sponses (Korbak et al., 2023; Salemi et al., 2023; 618

Xu et al., 2023; Ning et al., 2024). In contrast 619

to previous works, we build on the alignment be- 620

tween real-world bionic memory mechanisms and 621

LLM memory mechanisms. We leverage a novel 622

Bayesian Optimization strategy to inject parame- 623

terized user memory into the LLM, enabling it to 624

produce personalized responses. 625

In tandem, our work stands out from previous re- 626

search as we pioneer a parameterized memory in- 627

jection method. By leveraging this novel method, 628

user information can be stored and activated effec- 629

tively to produce personalized responses. 630
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Limitations631

Despite the empirical success, our approach has632

two notable limitations that warrant attention.633

Firstly, our approach relies on the user’s historical634

content, and the sparsity of user-specific informa-635

tion within this content can influence the quality636

of the generated response. In the near future, re-637

cent efficient search strategies on LoRAs, such as638

LoNAS (Munoz et al., 2024) and Shears (Muñoz639

et al., 2024), should be considered for more effi-640

cient and robust memory injection.641

Secondly, our method is designed for a single642

user. Therefore, it would be valuable to explore643

how the number of users and the scale of the LLM644

can impact the generated response (Please check645

the Appendix C for more justifications of scala-646

bility.). For example, when dealing with a larger647

group of users, it would be important to consider648

how to assign Personalized Fine-Tuning (PEFT)649

modules (e.g., type, number) for each user and how650

to select the base LLM (e.g., one single small LLM651

for one user or one single layer within a large LLM652

for one user). However, due to computational and653

data resource limitations, we are unable to explore654

this at present. We hope to address this in future655

work and see increasing attention given to this as-656

pect.657
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A Supplementary Experimental Settings986

Factor Range
α [0, 1]
n [0 ∼ 32]
r [8, 16, 32, 64, 96]

Table 6: Search range for each factor from the space.

B Scalability Analysis987

Methods Trainable Parameters (M)
Fully Training 7,000
multi-LoRA 50.38

multi-LoRA w BO 43.17

Table 7: The number of trainable parameters compari-
son using LlaMA2-7B in terms of fully training, multi-
LoRA and multi-LoRA with BO search.

To further evaluate the advantages of leveraging988

multi-LoRAs combined with Bayesian Optimiza-989

tion (BO) search, scalability emerges as a critical990

factor. Compared to fully training an LLM for a991

single user towards personalization, as in UeLP 992

(Ning et al., 2024), MiLP adopts a bionic memory- 993

inspired mechanism to inject user information into 994

parameters through pluggable PEFT modules, re- 995

ducing computational costs by up to 93%. Further- 996

more, the BO search algorithm ensures the optimal 997

configuration of multi-LoRA settings, achieving 998

an average relative 14.3% reduction in trainable 999

parameters compared to a full multi-LoRA setup 1000

(i.e., apply lora module to all layers) as can be seen 1001

in Table 7. 1002

While retrieval-based methods are straightfor- 1003

ward to deploy, we acknowledge that personaliza- 1004

tion requirements can vary significantly across real- 1005

world applications. For instance, in a medical assis- 1006

tant context, retrieving incorrect information could 1007

lead to catastrophic consequences, such as errors 1008

in dosage recommendations for downstream tasks. 1009

In such high-stakes scenarios, relying solely on 1010

retrievers—despite their simplicity and effective- 1011

ness—may raise accuracy concerns. Thus, it is 1012

often more advantageous to leverage the LLM’s 1013

inherent natural language understanding and infer- 1014

ence capabilities to utilize personal information 1015

effectively, rather than depending exclusively on 1016

similarity-based retrieval methods. 1017

C Scalability Justification 1018

First, the proposed MiLP offers a unique approach 1019

distinct from existing works. MiLP is not attempt- 1020

ing to undermine the value of existing training- 1021

free/user embedding works; rather, it aims to pro- 1022

vide a fresh perspective to the community on the 1023

benefits of parameterized memory. Secondly, we 1024

recognize that the requirements for personalization 1025

can vary across different real-world scenarios. For 1026

example, in a medical assistant context, retriev- 1027

ing incorrect information can lead to catastrophic 1028

outcomes (e.g., dosage recommendation etc.) in 1029

downstream tasks. In such high-stakes scenarios, 1030

relying solely on retrievers, despite their simplic- 1031

ity and effectiveness, may raise accuracy concerns. 1032

Therefore, it might be more beneficial to leverage 1033

the LLM’s natural language understanding and in- 1034

ference capabilities to utilize personal information 1035

effectively, rather than depending on similarity- 1036

based methods. We believe that our team, as well 1037

as the broader community, will continue to explore 1038

and build upon MiLP and other existing works to 1039

discover more applicable and effective methods for 1040

various scenarios. 1041
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Figure 3: The estimated memory usage between MaLP
and MiLP as user historical content becomes longer.

D Retrieval vs Parameterized Memory1042

To better understand the efficiency of parameter-1043

ized methods compared to retrieval-based methods,1044

beyond the generation quality discussed in Sections1045

?? and ??, we further analyze storage usage as user1046

historical content increases. For retrieval-based1047

methods, memory usage primarily arises from in-1048

corporating more user information as prompts dur-1049

ing the LLM’s inference process. We calculate the1050

memory usage for inference as follows:1051

Minference =Embeddingsseq +Activations

+ Embeddingsatt
(5)1052

where Embeddingsseq and Embeddingsatt rep-1053

resent the embeddings of the input sequence and1054

attention layers, respectively, the embedding di-1055

mension and byte size remain at default settings.1056

In contrast, parameterized memory methods1057

store user information as parameters, making the1058

memory usage dependent primarily on the storage1059

of these parameters. The memory usage for param-1060

eterized memory methods can be expressed as:1061

Mparameterization = Parameters/LoRA× n
(6)1062

where Parameters/LoRA represents the parame-1063

ters per LoRA module, determined by the low-rank1064

size and the model settings, and n denotes the num-1065

ber of LoRA modules.1066

We use MiLP and MaLP with LLaMA2-7B as1067

representative models. As shown in Figure 3, MiLP1068

demonstrates a significantly smaller memory foot- 1069

print compared to MaLP, highlighting its storage 1070

efficiency while maintaining competitive perfor- 1071

mance against baselines. Furthermore, prior stud- 1072

ies have shown that parameterized memory can be 1073

seamlessly integrated into LLMs, either through 1074

a cross-attention mechanism (Xu et al., 2024) or 1075

adapter-based approaches (Kim et al., 2024). This 1076

allows user-specific memory to be encapsulated 1077

within modules that can be dynamically loaded and 1078

integrated into an LLM for personalization. For 1079

retrievability, unlike traditional similarity-based 1080

methods, the retrieval process in parameterized 1081

memory involves activating relevant parameters in 1082

response to a given query, yielding a personalized 1083

output. When a new user is introduced, the corre- 1084

sponding parameterized module can be loaded into 1085

the base model to generate personalized responses 1086

(notably, if no prior user records exist, our method 1087

requires training). 1088

In summary, MiLP presents two key advantages 1089

over retrieval-based methods: 1) By parameteriz- 1090

ing user information, it perceives more implicitly 1091

relevant context, mitigating the risk of incorrect 1092

outputs caused by the similarity-comparison nature 1093

of retrieval-based methods; 2) MiLP offers optimal 1094

memory efficiency compared to maintaining a user 1095

memory, making it a practical and scalable solution 1096

for personalization. 1097

E Case Study 1098

As can be seen in Figure 4, Tex-prompt-based mem- 1099

ory only perceives that this patient has skin dis- 1100

ease and give general reasons as well suggestions. 1101

MaLP, on the other hand, captures the respiratory 1102

infection information due to its long- and short- 1103

term memory coordination and gives a more tar- 1104

geted analysis. However, the suggestions are still 1105

in general. Our MiLP, with the ability of under- 1106

standing and inferring user-specific information, 1107

produces more detailed responses such as "blood 1108

sugar control", "circulation" etc. It analyzes the po- 1109

tential causes and gives suggestions from both dia- 1110

betes and skin infection aspects. The response of 1111

MiLP covers the most personal information against 1112

other two settings which show the high quality of 1113

generated responses in terms of penalization and 1114

further confirm the power of our proposed method. 1115
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Figure 4: Case study of generated responses by LlaMA2-13B under three different settings based on provided
background information.
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