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ABSTRACT

Transformer models excel in time series tasks due to their attention mechanisms.
However, they often suffer from “block-like” attention patterns caused by high
feature correlation, leading to feature confusion and reduced performance. In this
study, we mathematically prove and quantify this limitation, demonstrating how
it affects the sparsity of the attention matrix and hinders effective feature repre-
sentation. To overcome this issue, we propose a novel, model-agnostic, and plug-
and-play method called SEAT (Sparsification-Enhanced Attention Transformer)
that leverages frequency domain sparsification. By transforming time series data
into the frequency domain, our method induces inherent sparsity, reduces feature
similarity, and mitigates block-like attention, allowing the attention mechanism
to focus more precisely on relevant features. Experiments on benchmark datasets
demonstrate that our approach significantly enhances the accuracy and robustness
of Transformer models while maintaining computational efficiency. This provides
a mathematically grounded solution to inherent flaws in attention mechanisms,
offering a versatile and effective approach for advancing time series analysis.

1 INTRODUCTION

In long-term sequence forecasting (LTSF) tasks, attention mechanisms play a crucial role in cap-
turing dependencies within time series data. However, existing approaches, particularly those em-
ploying “Point-wise Attention” exhibit significant limitations. This strategy maps various features
at each time step to embeddings, treating each as a token. Consequently, attention mechanisms allo-
cate weights to each corresponding token. Experimental studies Zhang & Yan (2023) have revealed
that, in conventional Transformers for LTSF tasks, cross-dimensional dependencies are not explicitly
captured during the embedding process. This limitation adversely affects forecasting capabilities,
as attention values tend to exhibit segmentation; adjacent data points often receive similar attention
weights. The “Point-wise Attention” approach typically results in a block-like distribution of feature
map values within time series representations. This block-shaped pattern causes approximate values
of different features in the attention mechanism to become conflated, leading to model overfitting to
noise. Consequently, the decision boundaries of the model become ambiguous, negatively impacting
overall performance.

Subsequent research has attempted to mitigate these issues by employing alternative attention strate-
gies, such as using pairs of patches. For instance, PatchTST Nie et al. (2023) utilizes patching
and channel independence within Transformer architectures to significantly enhance performance,
demonstrating that Transformers retain considerable potential for improvement in time series fore-
casting when appropriately adapted. Pathformer Chen et al. (2024) adopts a patch-based method
to divide the time series into various temporal resolutions. Through this multi-scale division, dual
attention is applied to these patches, enabling the capture of global correlations and local temporal
dependencies.

Despite these advancements, existing methods primarily focus on enhancing feature extraction with-
out fundamentally improving the quality of time series feature representation. Block-like attention
may result in the attention weight matrix assigning significantly higher weights to certain time slices
compared to others, leading to the aggregation of similar features within the attention output and
increasing feature confusion. Such effects can adversely impact the model’s learning capability and
performance limits, as will be substantiated in the Methods section.
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To address these challenges, we propose SEAT, a model-agnostic enhancement framework appli-
cable to any Transformer architecture’s input signals. SEAT employs frequency modelling across
the entire time series and introduces a finite energy representation in the frequency domain, cap-
italizing on the sparse features present in time series data. This design enables the Transformer’s
attention mechanism to focus on independent feature representations as “Channel-wise Attention.”
By explicitly modelling the Fourier transform to reconstruct features as incremental signals, SEAT
enhances the model’s ability to distinguish approximate features and reduce feature redundancy and
similarity. Consequently, this approach improves predictive performance in long-term forecasting
tasks across various Transformer-based models. In summary, our contributions are threefold:

1. We provide a theoretical analysis of the limitations in attention mechanisms within time
series forecasting Transformers, investigating the causes of feature confusion and suscepti-
bility to overfitting.

2. Based on rigorous mathematical proofs, we design SEAT, a sparse sensing enhancement
framework tailored for time series attention, ensuring the independence and sparsity of
input features within Transformer architectures.

3. Our framework is decoupled from the underlying model architecture, offering plug-and-
play functionality and compatibility with any existing Transformer-based architecture.

2 RELATED WORK

2.1 TIME-DOMAIN-BASED TRANSFORMERS

Time series forecasting has been significantly advanced by the integration of Transformer archi-
tectures Ashish (2017). Leveraging the self-attention mechanism, Transformer-based models have
demonstrated exceptional performance in capturing long-range dependencies, a critical aspect for
effective LTSF. Notable models in this domain include:

Autoformer Wu et al. (2021) introduced an auto-correlation mechanism specifically designed to
leverage the inherent periodicity of time series data. This mechanism discovers dependencies and ag-
gregates representations at the sub-series level, significantly improving the model’s ability to utilize
long-range information. By focusing on periodic patterns, Autoformer overcomes the information
bottleneck that constrains the original Transformer architecture, thereby enhancing its forecasting
performance for non-stationary time series.

Pyraformer Liu et al. (2022a) further addresses these limitations through a hierarchical time se-
ries decomposition approach. Its pyramid structure exhibits multiresolution properties, allowing the
model to decompose time series into distinct temporal scales. At coarser resolutions, long-term
dependencies are captured, while finer resolutions discern intricate short-term variations. This hi-
erarchical decomposition facilitates a nuanced understanding of temporal dynamics, enhancing the
model’s ability to accurately forecast future trends and patterns. However, distinguishing long-term
and short-term features is often limited by window parameter selection and data resolution, necessi-
tating model structure modifications for different datasets, which reduces robustness and increases
susceptibility to overfitting.

Nonstationary Transformer Liu et al. (2022b) introduces a dual approach to improve the mod-
elling of non-stationary time series. It enhances data stationarity through techniques that mitigate
non-stationarity within the time series and reformulates the Transformer’s internal mechanisms to
reintegrate non-stationary information. This twofold innovation significantly advances the Trans-
former’s capability in handling non-stationary data, improving both predictability and forecasting
performance.

iTransformer Liu et al. (2024) marks a significant advancement by surpassing traditional Trans-
former models in time series forecasting. It treats individual series as variate tokens, utilizing atten-
tion mechanisms to capture multivariate correlations and employing layer normalization and feed-
forward networks to learn robust series representations. However, relying solely on time-domain
tokens poses challenges in comprehensively portraying integral properties of time series data, such
as overarching trends and periodic fluctuations. Additionally, the quadratic complexity and large
parameter count inherent in Transformer models make them prone to overfitting, especially when
applied to non-stationary time series.
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2.2 FREQUENCY-DOMAIN-BASED TRANSFORMERS

Time-frequency transforms offer a promising avenue for transforming long-time series into sparse
representations. The development of frequency domain methods can be traced back to the introduc-
tion of Fourier transforms and wavelet transforms, which provided novel perspectives for analyzing
periodicity and global dependencies within time series data. Frequency-domain methods, tradi-
tionally used for signal processing tasks, excel at decomposing time series into their constituent
frequencies, revealing periodic and seasonal components that are often crucial for accurate fore-
casting. Early frequency domain approaches, such as FNet Lee-Thorp et al. (2021) and AFNO
Guibas et al. (2021), were primarily designed to enhance computational efficiency by leveraging
Fourier transforms to replace self-attention or token-mixing mechanisms, thereby achieving faster
computation.

There has been a growing trend towards integrating frequency-domain methods with sophisticated
techniques such as attention mechanisms to achieve superior predictive performance in time series
analysis. Traditional Transformer architectures applied to time series data rely on point-wise atten-
tion mechanisms, where individual temporal points undergo attention computations and predictions
in isolation. As a result, these models often struggle to maintain and accurately model holistic,
global features that inherently encode crucial information for accurate forecasting. In contrast, FED-
former Zhou et al. (2022) represents a paradigm shift by leveraging Transformer structures within
the spectral domain for feature extraction. This innovative approach enables FEDformer to more
effectively capture global characteristics vital for comprehending the intricate dynamics within time
series data. By harnessing the complementary strengths of both temporal and spectral representa-
tions, FEDformer fosters a deeper, more nuanced understanding of underlying patterns and trends,
thereby enhancing its predictive capabilities.

Similar to the objectives of numerous decomposition methods Wu et al. (2021); Zhou et al. (2021),
the adoption of spectral domain approaches aims to facilitate the decomposition of time series data
into distributions that are more conducive to learning. By transforming the time series into the
frequency domain, these methods enable a more effective decomposition of temporal dynamics,
transforming the data into representations that are easier for models to comprehend and utilize for
prediction tasks. However, they share a common limitation: when dealing with complex time series,
most frequency models tend to prioritize learning low-frequency features while overlooking high-
frequency features, exhibiting a frequency bias. For example, FITS Xu et al. (2024) incorporates
a low-pass filter in the frequency domain to capture essential time series information, but this in-
evitably results in the loss of high-frequency components. This bias can hinder the model’s ability
to fully capture the intricate dynamics present across all temporal scales, potentially impacting the
accuracy and robustness of forecasts.

Fredformer Piao et al. (2024) aims to alleviate frequency bias by equally learning features across
different frequency bands. This approach helps prevent the model from overlooking lower amplitude
features crucial for accurate predictions. In these previous studies, attention layers are designed to
function directly in the frequency domain to enhance spatial or frequency representations.

Transformer-based models for long-term time series forecasting (LTSF) have primarily advanced
through two approaches. Time-domain models focus on enhancing attention mechanisms and em-
ploying patch-based training strategies. In contrast, frequency-domain models develop specialized
filters and address biases between high and low-frequency components to improve performance.
However, these methods mainly concentrate on updating and iterating Transformer architectures
without deeply considering the inherent input properties of time series data and their impact on at-
tention mechanisms, making it difficult to effectively mitigate high feature confusion. In the follow-
ing sections, we provide a mathematical definition of this issue and introduce our SEAT framework
to address it.

3 METHOD

3.1 PROBLEM STATEMENT

In the realm of time series forecasting (TSF), the problem statement can be formally defined as
follows: Given a set of data points X = {xt1, . . . , xtD}Lt=1 ∈ RD×L within a lookback window of
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a time series, where L represents the size of the window, D ≥ 1 is the number of variables, and xtj

denotes the value of the j-th variable at the t-th time step. The objective of TSF is to predict the
forecasting horizon X̂ = {x̂(L+1)1, . . . , x̂(L+T )D}L+T

t=L+1 ∈ RD×T .

3.2 SOLVING BLOCK-LIKE ATTENTION FROM THE INPUT SIDE

The block-like distribution of attention feature maps is observed in many Transformer-based time se-
ries tasks, where the magnitudes of the feature values exhibit a block-like pattern. This phenomenon
arises from the model’s confusion among different approximate feature values. The conventional
attention mechanism can be expressed by the following formula:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

The phenomenon of “Block-like Attention” arises when contiguous elements within blocks of the
attention score matrix exhibit similar magnitudes of values calculated by Aij = Qi · KT

j . This
phenomenon signifies a clustering of high or low attention intensities within localized regions of the
matrix, leading to a distinct block-like pattern. The presence of such patterns can be indicative of
the model focusing its attention on specific subsets of input features or interactions, thereby pro-
viding insights into the model’s decision-making processes. We can quantify the degree of feature
confusion using the following mathematical definition, where the default method for Similarity is
the cosine similarity function and fi, fj are features:

Sim(F ) =

{
0, if N = 1

1
N∗(N−1)

∑
i ̸=j Similarity(fi, fj), if N ≥ 2

(2)

In the following, we define two primary attention mechanisms.

Point-wise Attention (Temporal Attention) Definition: Point-wise attention, also known as tem-
poral attention, is a mechanism within deep learning architectures that assigns significance scores to
individual data points or temporal instances within a sequence. This approach enables the model to
dynamically adjust its focus on specific points in time, capturing nuances and salient features that
may be crucial for downstream tasks. By selectively attending to these key points, point-wise atten-
tion enhances the model’s ability to comprehend complex temporal patterns and dynamics within the
data. Notably, the effectiveness of this approach has been demonstrated in seminal works (Ashish
(2017); Hu et al. (2018); Nie et al. (2023)).

Channel-wise Attention Definition: Channel-wise attention, on the other hand, emphasizes the
significance of individual feature channels within a multidimensional tensor. In this framework, each
channel represents a unique feature map capturing distinct aspects of the input data. Channel-wise
attention aims to dynamically reweight these feature channels, allowing the network to concentrate
its representational power on the most informative and discriminative channels. Specifically, for
time series data, each variable token is embedded into a high-dimensional space, where channel-
wise attention operates to capture intricate multivariate correlations. By highlighting the channels
that are most relevant to the task at hand, this mechanism enhances the overall feature representation,
leading to improved performance in tasks such as classification, regression, or forecasting. Notable
papers have highlighted the effectiveness of channel-wise attention (Wang et al. (2017); Woo et al.
(2018); Liu et al. (2024)).

Compared to “Point-wise Attention” features, using multivariate data as tokens at the same time
step results in naturally similar tokens for adjacent time steps. Although the sampling is discrete,
the time series varies continuously, leading to many similar features that yield high similarity scores.
Sparse feature representation facilitates the computation of a sparse attention matrix. This means
that the attention matrix of size N ∗ N needs to meet a specified minimal error threshold ϵ > 0,
such that N0 =

∑
i,j I(Aij > ϵ) is significantly less than N2 where I(·) is an indicator function

that takes the value of 1 when the condition is true and 0 otherwise. Experiments show that sparse
and independent feature sets yield a smaller Sim value, indicating that sparse features exhibit lower
similarity compared to dense features.

Standard Attention mechanisms exhibit certain limitations, notably the susceptibility to noise inter-
ference during weight computation, potentially leading to distractions on irrelevant elements. Be-
yond Top-k Attention, other sparse Attention mechanisms have emerged, such as Fixed Factorized
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Attention and Strided Attention (Child et al. (2019)). According to our proposed metric Sim, models
with lower feature confusion exhibit enhanced feature-capturing capabilities, fostering stronger gen-
eralization abilities. While sparse attention mechanisms theoretically risk overlooking certain global
contextual information, they can partially mimic the effects of global context through meticulous de-
sign and optimisation. For instance, the BigBird (Zaheer et al. (2020)) adeptly captures long-range
dependencies by blending sparse attention, global attention, and random skip connections.

However, in the domain of time series analysis, Block-like attention may hinder the model’s ability
to perceive global characteristics, while multi-scale attention frequently Chen et al. (2024) grapples
with overfitting issues. Skip-connected attention, while improving attention focus, may compromise
temporal resolution and lead to information loss, thereby restricting model performance. Prior re-
search (Wu et al. (2020); Zhou et al. (2021); Nie et al. (2023)) has primarily focused on designing
attention architectures and patterns. In contrast, our work demonstrates that incorporating sparsity
at the input end can potentially address the shortcomings of existing attention mechanisms.

In our study, we propose SEAT to leverage frequency domain transformation to induce sparsity in
time series data, thereby optimizing the performance of attention mechanisms from the input end.
This approach is agnostic to the underlying attention model architecture, functioning as a versatile,
plug-and-play component tailored specifically to enhance attention functionality. Our method of-
fers a novel perspective on enhancing attention mechanisms, emphasizing the potential benefits of
sparsity induction from the frequency domain at the input stage.

3.3 FOURIER DOMAIN OF THE TIME SERIES

The key to effectively addressing the challenge of block-wise attention lies in the ability of time-
frequency transformation to impart sparse representations to time-series data. In this context, we
will embark on a rigorous mathematical derivation to prove that long time-series data exhibit sparse
representations under frequency domain transformations. Furthermore, we posit that by integrating
feature partitioning into patches with frequency domain transformation, we can achieve an even
more sparse representation of time-series data than either method alone.

Theorem 1: Sparse Representation in the Frequency Domain Given a signal x(t) of time series
data in L2 space, if its Fourier transform X(f) is supported on a finite set of frequencies, then x(t)
has a sparse representation in the frequency domain.

The Nyquist Sampling Theorem (Vaidyanathan (2001)), also known as the Shannon Sampling The-
orem, fundamentally establishes the conditions under which a continuous-time signal can be accu-
rately reconstructed from its discrete-time samples, ensuring that the Discrete Fourier Transform
(DFT) yields equivalent results to the Continuous Fourier Transform (CFT) within the context of
the sampled signal’s representation. We assume that the sampled data of the time series satisfies the
sampling theorem. This implies that the sampling frequency fs used to acquire the discrete samples
x[n] of the original continuous signal x(t) is sufficiently high, specifically fs ≥ 2B, where B is the
maximum frequency content of the signal’s spectrum X(f).

Furthermore, we assume that the signals we acquire adhere to the finite bandwidth theorem, which
states that the spectral content of the signal is confined within a limited frequency range. Given
that the signals we collect are inherently discrete, due to the nature of the sampling process, it is
crucial to consider the appropriate frequency resolution for the specific prediction task at hand. For
instance, in tasks involving daily analysis, frequency features at the minute level may be deemed
irrelevant or treated as noise. To ensure compliance with the finite bandwidth principle in practical
sampling scenarios, we can adopt suitable sampling strategies that capture the signal within a rea-
sonable frequency bandwidth range, thereby facilitating effective and efficient data processing for
the intended prediction tasks.

Proof of Theorem 1: Given the assumptions mentioned above, we can deduce that in our long time-
series analysis tasks, where the sampling theorem is satisfied, the use of the Discrete Fourier Trans-
form (DFT) becomes equivalent to the Continuous Fourier Transform (CFT) for solving time-series
problems. Thus, for these tasks, we can confidently employ the DFT as a valid and computationally
efficient tool for analyzing and processing time-series data.

Assuming the signal x[n] is expressed as x[n] =
∑M

m=1 Amejωmn where Am represents the ampli-
tude of the m-th frequency component, and ωm denotes the angular frequency of the m-th frequency

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

component. It is further assumed that ωm satisfies the condition ωm = 2πkm

N where km is an integer
and N is a constant that typically represents the total number of samples in the discrete domain.

The DFT of a discrete signal x[n] is given by:

X[k] =

N−1∑
n=0

x[n]e−j 2π
N kn =

M∑
m=1

Am

N−1∑
n=0

ej(ωm− 2π
N k), k = 0, 1, . . . , N − 1. (3)

Under the frequency basis function we selected, the following equation can be calculated:

Sm,k =

N−1∑
n=0

ej(ωm− 2π
N k) =

{
N, if k = km
1−ej2π(km−k)

1−ej
2π
N

(km−k)
= 0, if k ̸= km

(4)

As a result, the frequency domain representation X[k] exhibits non-zero values only at k = km,
where km corresponds to the indices of the frequency components present in the signal. Given that
our time series can be arbitrarily long, the representation in the frequency domain of the “hidden
space” of time series becomes sparse within frequency components.

3.4 FOURIER ATTENTION

Fourier attention operates by initially applying the Fourier Transform to the queries, keys, and
values, subsequently conducting an attention mechanism within the frequency domain, and ulti-
mately converting the outcomes back to the time domain via the inverse Fourier Transform. LetF (·)
andF−1(·) represent the Fourier Transform and inverse Fourier Transform, respectively. The Fourier
attention mechanism can be formally expressed as follows:

Attention(Q,K, V ) = F−1

(
σ

(
F (Q)F (K)

T√
dq

)
F (V )

)
, (5)

whereσ(·) denotes the softmax function, and dq is the dimensionality of the queries. Citing from
previous research Zhang et al. (2022), calculating attention in the Fourier domain is equivalent to
time-domain attention. Our method can be extended to attention in the frequency domain.

3.5 SEAT

Our proposed SEAT framework can be decomposed into several principal components, encompass-
ing the Normalization Layer, SEAT Block, Feature Extraction Layer and Projection Layer.

Normalization Layer: Reversible instance normalization (RevIN)Kim et al. (2021), a generally
applicable normalization-and-denormalization method with learnable affine transformation is well-
known and widely used as the normalization layer. For better comparison of different models abili-
ties, we use Revin normalization uniformly for all models.

SEAT Block: We drew a precise schematic diagram of the SEAT block structure in Fig 1. This
novel framework is designed to induce sparsity in time series data through frequency domain trans-
formations. This model-agnostic approach serves as a versatile and easily integrated component,
compatible with any underlying attention architecture. By focusing on sparsity induction via fre-
quency domain transformations, SEAT is specifically designed to enhance the overall performance
of attention mechanisms from a new perspective in the input stage.

Feature Extraction Layer: This is a temporal feature extractor specifically based on transformer ar-
chitecture since we designed SEAT to enhance the ac- curacy and robustness of attention mechanism.
Two primary types of attention mechanisms can be introduced: one represented by “Channel-wise
Attention” as in the case of iTransformer (Liu et al. (2024)), and the other by “Point-wise Attention”
as exemplified by PatchTST (Nie et al. (2023)).

Regarding the whole processing pipeline of SEAT,as shown in Figure 1, we utilize the Revin normal-
ization technique Kim et al. (2021) to preprocess the input time series. Subsequently, the sequence
undergoes transposition and is fed into the SEAT block. Within this block, each time point of the
individual series is embedded into variable tokens, facilitating the application of the Fast Fourier
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Figure 1: Overall Structure of SEAT.

Transform (FFT). This transformation converts the time series into the frequency domain. A linear
module is then employed to enable the model to learn robust and sparse representations of the se-
quence. Following this, an Inverse Fast Fourier Transform (IFFT) and skip connection are applied to
revert the sequence into the time domain. The resulting sparser representation of the sequence, once
obtained, undergoes transposition and is subsequently input into an attention-based feature extrac-
tor. Ultimately, the sequence undergoes a de-normalization process and projection, yielding robust
predictions for Long-Term Sequence Forecasting (LTSF).

In summary, while Channel-wise Attention focuses on the interrelationships between different fea-
ture channels, Point-wise Attention emphasizes dependencies between individual points or segments
within the data. Both mechanisms are integral to enhancing model performance, depending on the
specific structure and demands of the task at hand. Our SEAT model utilizes the iTransformer as the
Temporal Feature Extractor, enabling it to serve as a versatile, plug-and-play component that can
seamlessly integrate with any state-of-the-art (SOTA) transformer to enhance the model’s overall
performance.

4 EXPERIMENT

Datasets: we have undertaken extensive experiments on eight meticulously curated benchmarks,
notably including the ETT datasets, which are subdivided into four distinct subsets: ETTh1, ETTh2,
ETTm1, and ETTm2. Additionally, we have also employed the Weather, Exchange ECL, and Traffic
datasets, adhering to the precedents established in Zhou et al. (2021); Zeng et al. (2023); Hebrail &
Berard (2012); Zhao et al. (2019). These benchmarks, renowned for their rigour and comprehensive-
ness, provide a robust framework for assessing the performance and effectiveness of our forecasting
models, particularly in the context of long-term horizon predictions.

Baselines Compared: Our proposed SEAT represents a model-agnostic approach that exhibits
broad applicability to any deep neural network architecture. In this study, we extensively com-
pare the well-acknowledged and advanced Transformers and designed a plug-and-play experiment
to meticulously evaluate the efficacy of SEAT by integrating it into seven state-of-the-art Transform-
ers designed specifically for time-series forecasting: iTransformer (Liu et al. (2024)), PatchTST (Nie
et al. (2023)), Crossformer (Zhang & Yan (2023)), Pyraformer (Liu et al. (2022a)), Autoformer (Wu
et al. (2021)), Informer (Zhou et al. (2021)), and Reformer (Kitaev et al. (2020)). This compre-
hensive experiment serves to validate the generality and enhancement capabilities of SEAT when
applied to diverse yet sophisticated Transformer-based frameworks. The SEAT base model is typi-
cally employed with iTransformer as backbone architecture without explicit indication in the Main
Result. We compute the MSE and MAE on Revin (Kim et al. (2021)) normalized data to measure
different variables on the same scale. More details on experimental settings, including training de-
tails and hyperparameters, are provided in the Appendix. Experiments are implemented in PyTorch
(Paszke et al. (2019)) and conducted on a single NVIDIA 4090 24G.
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4.1 MAIN RESULT

Table 1: Mean result of SEAT versus other SOTAs transformers. In eight benchmark datasets, our
method achieved first place in six out of the mean squared error (MSE) metrics and seven out of the
mean absolute error (MAE) metrics.

Models SEAT iTransformer PatchTST Crossformer Pyraformer Autoformer Informer Reformer
Ours 2024 2023 2023 2022 2021 2021 2020

Metric mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae
ETTh1 0.436 0.433 0.454 0.447 0.469 0.454 0.529 0.522 0.865 0.731 0.518 0.500 1.078 0.813 0.961 0.757
ETTh2 0.372 0.398 0.383 0.407 0.387 0.407 0.942 0.684 3.755 1.551 0.432 0.451 3.490 1.532 3.574 1.525
ETTm1 0.396 0.400 0.407 0.410 0.387 0.400 0.513 0.496 0.750 0.615 0.583 0.513 0.948 0.717 0.928 0.688
ETTm2 0.281 0.325 0.288 0.332 0.281 0.326 0.757 0.610 1.509 0.845 0.332 0.370 1.489 0.867 1.415 0.862
Weather 0.249 0.277 0.258 0.278 0.259 0.281 0.259 0.315 0.278 0.342 0.317 0.359 0.723 0.605 0.485 0.500

ECL 0.173 0.266 0.178 0.270 0.205 0.290 0.244 0.334 0.298 0.389 0.230 0.339 0.377 0.449 0.302 0.392
Exchange 0.349 0.402 0.360 0.403 0.367 0.404 0.940 0.707 1.308 0.945 0.493 0.493 1.411 0.968 1.000 0.837

Traffic 0.442 0.286 0.428 0.282 0.481 0.304 0.550 0.304 1.185 0.553 0.761 0.479 0.868 0.472 0.648 0.347
1st count 6 7 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Main Results: Table 1 presents concise forecasting outcomes, with the best accurate predictions
highlighted in red and the second-best underlined. A lower MSE/MAE signifies superior predic-
tion accuracy. SEAT ensures the independence and sparsity of input features within Transformer
architectures. SEAT optimizes the utilization of input data, facilitating more efficient and effective
processing within the attention layers of the Transformer model. SEAT method has demonstrated
significant advantages across eight benchmark datasets. Our proposed model aggregates sparser fea-
tures in the input end of the attention module and achieves the best result in long temporal modelling,
enhancing the model’s ability to handle high-dimensional time series and mitigating overfitting.

4.2 PLUG AND PLAY EXPERIMENTS

Plug-and-play experiment: In our plug-and-play experimental results, we observe that SEAT sig-
nificantly improves the performance of various Transformer models. This phenomenon is clearly
visualized in Figure 2. These visualizations demonstrate that SEAT effectively enhances prediction
accuracy, regardless of whether it is applied to iTransformer, PatchTST, or other models. Table 2
illustrates the improvements in prediction accuracy by contrasting the original models with those
augmented by SEAT. By calculating the percentage improvements, we clearly demonstrate the ben-
eficial effects brought by this powerful plugin. As a model-agnostic enhancement, SEAT delivered
immediate performance gains across all the models we evaluated. SEAT ensures the independence
and sparsity of input features within Transformer architectures, optimizing the utilization of input
data and facilitating more efficient and effective processing within the attention layers of the Trans-
former model. The substantial improvements observed across diverse datasets underscore its broad
applicability and adaptability, thereby reinforcing SEAT’s value as an effective tool for LSTF task.

Figure 2: SEAT’s Impact on Various Transformer Models’ MSE Performance. The entire bars
represent the original MSE scores, while the light green segments indicate the performance after
applying the SEAT plugin, and the dark green segments represent the improvement specifically
attributed to SEAT. These visualizations demonstrate the effectiveness of SEAT in enhancing the
forecasting accuracy of diverse transformer models.
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Table 2: Improvements of SEAT over different models with prediction lengths
Models iTransformer PatchTST Crossformer Pyraformer Autoformer Informer Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1
Original 0.454 0.447 0.469 0.454 0.529 0.522 0.865 0.731 0.518 0.500 1.078 0.813 0.961 0.757
+SEAT 0.436 0.433 0.447 0.443 0.484 0.466 0.488 0.474 0.486 0.468 1.026 0.736 0.588 0.530

Improvement +4.0% +3.3% +4.7% 2.6% +8.5% +10.7% +43.6% +35.2% +6.2% +6.4% +4.8% +9.5% +38.8% +29.9%

ETTh2
Original 0.383 0.407 0.387 0.407 0.389 0.416 3.755 1.551 0.432 0.451 3.490 1.532 3.574 1.525
+SEAT 0.372 0.398 0.374 0.402 0.394 0.416 0.433 0.434 0.459 0.449 0.677 0.571 0.459 0.451

Improvement +2.9% +2.2% +3.4% 1.2% +58.2% +39.1% +88.5% +72.0% -6.3% +0.4% +80.6% +62.7% +87.2% +70.4%

ETTm1
Original 0.407 0.410 0.387 0.400 0.513 0.496 0.750 0.615 0.583 0.513 0.948 0.717 0.928 0.688
+SEAT 0.396 0.400 0.380 0.396 0.410 0.411 0.427 0.425 0.529 0.480 0.629 0.530 0.599 0.507

Improvement +2.7% +2.4% +1.8% 1.0% +20.1% +17.0% +43.0% +30.9% +9.3% +6.4% +33.6% +26.1% +35.4% +26.3%

ETTm2
Original 0.288 0.332 0.281 0.326 0.757 0.610 1.509 0.845 0.332 0.370 1.489 0.867 1.415 0.862
+SEAT 0.281 0.325 0.279 0.326 0.292 0.332 0.302 0.336 0.304 0.342 0.389 0.406 0.318 0.348

Improvement +2.4% +2.1% +0.7% +0.2% +61.4% +45.7% +80.0% +60.2% +8.4% +7.6% +73.9% +53.2% +77.5% +59.6%

weather
Original 0.258 0.278 0.259 0.281 0.259 0.315 0.278 0.342 0.317 0.359 0.723 0.605 0.485 0.500
+SEAT 0.249 0.277 0.254 0.281 0.261 0.292 0.257 0.284 0.278 0.304 0.289 0.320 0.273 0.299

Improvement +3.5% +0.4% +1.9% -0.4% -0.8% +7.3% +7.6% +17.0% +12.3% +15.3% +60.0% +47.1% +43.7% +40.2%

ECL
Original 0.178 0.270 0.205 0.290 0.244 0.334 0.298 0.389 0.230 0.339 0.377 0.449 0.302 0.392
+SEAT 0.173 0.266 0.186 0.277 0.167 0.260 0.206 0.309 0.208 0.308 0.258 0.358 0.210 0.312

Improvement +2.8% +1.5% +9.3% 4.5% +31.6% +22.2% +30.9% +20.6% +9.6% +9.1% +31.6% +20.3% +30.2% +20.4%

Exchange
Original 0.360 0.403 0.367 0.404 0.940 0.707 1.308 0.945 0.493 0.493 1.411 0.968 1.000 0.837
+SEAT 0.349 0.402 0.365 0.405 0.367 0.414 0.396 0.429 0.459 0.466 0.368 0.428 0.448 0.459

Improvement +3.1% +0.2% +0.3% -0.2% +61.0% +41.4% +69.7% +54.6% +6.9% +5.5% +73.9% +55.8% +55.2% +45.2%

traffic
Original 0.428 0.282 0.481 0.304 0.550 0.304 1.185 0.553 0.761 0.479 0.868 0.472 0.648 0.347
+SEAT 0.442 0.286 0.477 0.291 0.479 0.311 0.794 0.436 0.713 0.392 1.030 0.567 0.638 0.333

Improvement -3.3% -1.4% +0.8% +4.3% +12.9% -2.3% +33.0% +21.16% +6.2% +18.2% -18.7% -20.1% +1.4% +4.0%

4.3 ATTENTION STUDY

Figure 3: Self-attention scores from iTransformer and SEAT trained on ETTh1. The left heatmap
represents the iTransformer’s performance, which is likely the most advanced model to our knowl-
edge. We integrate SEAT as a plugin into the iTransformer, and the right heatmap clearly illustrates
the significantly improved self-attention scores achieved after applying SEAT. The visualization re-
sults demonstrate enhanced clarity and robustness in feature representation, thereby underscoring
the significant efficacy of SEAT in augmenting the model’s predictive capabilities.

Figure 3 presents a representative attention score map of the iTransformer for the Long-Term Short-
Term Forecasting (LTSF) task. It is observable that the attention values in iTransformer tend to
segment, with nearby data points sharing similar attention weights, resulting in ambiguous feature
representations. Meanwhile, applying SEAT transforms the input signals into the frequency domain,
leading to sparser and more distinct feature representations optimized for the attention mechanism.
This transformation broadens the range of attention values and increases their distribution variance.
The enhanced variance arises because frequency domain transformations decompose the time se-
ries into orthogonal frequency components, effectively reducing feature correlation and improving
feature distinguishability. With sparser and less redundant features, the attention mechanism can as-
sign a wider range of weights, more accurately reflecting the true importance of diverse features. A
broader range and higher variance in attention values enable the model to differentiate more distinct
and relevant features, thereby reducing feature redundancy and mitigating overfitting to noise.
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Consequently, the attention mechanism in SEAT more effectively captures both cross-time and
cross-dimension dependencies, resulting in clearer and more robust feature representations. These
improvements facilitate more precise pattern recognition and enhance the overall learning capacity
of the model, significantly boosting forecasting performance.

5 CONCLUSION

In this study, we introduce SEAT, a Sparse Sensing Enhancement Framework specifically designed
to optimize attention mechanisms for time series forecasting within Transformer architectures.
Through rigorous mathematical proofs and empirical analysis, we have demonstrated its feasibil-
ity and effectiveness. By ensuring the independence and sparsity of input features, the framework
enhances both model performance and interpretability. Additionally, it overcomes the limitations of
existing attention mechanisms by offering seamless plug-and-play functionality and compatibility
with any Transformer-based architecture. This adaptability positions SEAT as a significant contri-
bution to the field, paving the way for future advancements in attention-based models.

REFERENCES

Vaswani Ashish. Attention is all you need. Advances in neural information processing systems, 30:
I, 2017.

Peng Chen, Yingying ZHANG, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang,
and Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for time series
forecasting. In The Twelfth International Conference on Learning Representations, 2024.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Dazhao Du, Bing Su, and Zhewei Wei. Preformer: predictive transformer with multi-scale segment-
wise correlations for long-term time series forecasting. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catanzaro.
Efficient token mixing for transformers via adaptive fourier neural operators. In International
Conference on Learning Representations, 2021.

Georges Hebrail and Alice Berard. Individual Household Electric Power Consumption. UCI Ma-
chine Learning Repository, 2012.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2021.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing tokens with
fourier transforms. arXiv preprint arXiv:2105.03824, 2021.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
casting. In International Conference on Learning Representations, 2022a.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in Neural Information Processing Systems,
35:9881–9893, 2022b.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. In The Eleventh International Conference on
Learning Representations, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, and Yasushi Sakurai. Fredformer:
Frequency debiased transformer for time series forecasting. arXiv preprint arXiv:2406.09009,
2024.

PP Vaidyanathan. Generalizations of the sampling theorem: Seven decades after nyquist. IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(9):1094–
1109, 2001.

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang,
and Xiaoou Tang. Residual attention network for image classification. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3156–3164, 2017.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block
attention module. In Proceedings of the European conference on computer vision (ECCV), pp.
3–19, 2018.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419–22430, 2021.

Sifan Wu, Xi Xiao, Qianggang Ding, Peilin Zhao, Ying Wei, and Junzhou Huang. Adversarial sparse
transformer for time series forecasting. Advances in neural information processing systems, 33:
17105–17115, 2020.

Zhijian Xu, Ailing Zeng, and Qiang Xu. FITS: Modeling time series with $10k$ parameters. In The
Twelfth International Conference on Learning Representations, 2024.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Xiyuan Zhang, Xiaoyong Jin, Karthick Gopalswamy, Gaurav Gupta, Youngsuk Park, Xingjian Shi,
Hao Wang, Danielle C Maddix, and Yuyang Wang. First de-trend then attend: Rethinking atten-
tion for time-series forecasting. arXiv preprint arXiv:2212.08151, 2022.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The Eleventh International Conference on Learning
Representations, 2023.

Liang Zhao, Olga Gkountouna, and Dieter Pfoser. Spatial auto-regressive dependency interpretable
learning based on spatial topological constraints. ACM Trans. Spatial Algorithms Syst., 5(3), aug
2019. ISSN 2374-0353.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International conference
on machine learning, pp. 27268–27286. PMLR, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 SAMPLING THEOREM

If the signal x(t) possesses a limited bandwidth, with its spectrum X(f) = 0 for all |f | > B, then
it can be perfectly reconstructed from samples taken at a sampling frequency fs that satisfies the
condition fs ≥ 2B. The reconstruction is achieved using the following formula:

x(t) =

∞∑
n=−∞

x[n] sinc
(
t− nT

T

)
, where T =

1

fs
. (6)

In this equation, x[n] represents the discrete samples of the signal taken at intervals of T , which is
the reciprocal of the sampling frequency fs. The sinc function, defined as sinc(x) = sin(πx)

πx , plays
a crucial role in interpolating between the samples to reconstruct the continuous signal x(t). This
process is a direct consequence of the Nyquist-Shannon sampling theorem, which ensures that a
bandlimited signal can be uniquely determined from its samples taken at a sufficiently high rate.

Therefore, we assume that the sampled data of the time series satisfies the sampling theorem. This
implies that the sampling frequency fs used to acquire the discrete samples x[n] of the original
continuous signal x(t) is sufficiently high, specifically fs ≥ 2B, where B is the maximum frequency
content of the signal’s spectrum X(f). Given this assumption, the discrete samples contain enough
information to perfectly reconstruct the original continuous signal x(t) using the reconstruction
formula provided earlier.

A.2 PATCHING AND SEAT MAKES SPARSER FEATURE REPRESENTATION FOR TIME SERIES

Consider a feature set F , where Fs denotes a set of features {f1, f2, . . . , fN}. Each feature fi =
(ai,1, ai,2, . . . , ai,N ) in F is characterized by N dimensions. To investigate the Patching algorithm
through an inductive approach, we will initiate our discussion by focusing on the merging of a pair
of features. We hypothesize that the N th and (N − 1)th dimensions exhibit the highest degree
of similarity. A single step in the patching process involves removing fN , resulting in fp, which
represents one step of patching by eliminating highly correlated features.

Our objective is to evaluate whether this merging process, colloquially referred to as “Patching”,
leads to a sparser feature matrix by comparing the mathematical expressions before and after the
operation. The new feature after patching can be defined as f̃i = (ai,1, ai,2, . . . , ai,N ) in Fp.

Sim(F ) =

∑
i̸=j

∑N
k=1 ai,kaj,k

N(N − 1)
(7)

Sim(Fp) =

(∑
i ̸=j,i,j≤N−2

∑N
k=1 ai,kaj,k

)
+ 2

∑N
k=1

∑N−2
i=1 ai,kac,k

(N − 1)(N − 2)
(8)

The assumption can be rewritten as follows:

N∑
k=1

aN,kaN−1,k >

N∑
k=1

ai,kaj,k, for all i ̸= j (9)

Sim(F ) =

∑
i̸=j,i,j≤N−1

∑N
k=1 ai,kaj,k + 2

∑
i<N

∑N
k=1 ai,kaN,k + 2

∑N
k=1 aN−1,kaN,k

N ∗ (N − 1)
(10)

Since the similarity between fN and fN−1 is the largest, this leads to a significant contribution that
is explicitly included in Sim(F ) but diminished in Sim(Fp), therefore Sim(F ) ≥ Sim(Fp). The
Patching operation results in a sparser feature matrix.
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The integration of feature segmentation into patches and frequency domain transformations has
yielded a sparser representation of time series data compared to utilizing either method in isolation.
Previous research (Nie et al. (2023); Du et al. (2023)) has employed patching techniques to divide
univariate time series into patches, which can be either overlapped or non-overlapped. The key
feature in PatchTST, characterized by channel independence and patching, can also be interpreted
as feature independence and a sparser feature representation in our context.

A.3 EXPERIMENT SETTING

we have standardized the parameters across all models to ensure a fair comparison on a uniform
platform (time-series-library). Specifically, we have fixed the input dimension to 96 and varied the
prediction horizon for time series forecasting, encompassing lengths of [96, 192, 336, 720]. The
batch size is set to 32, learning rate is set to 1e-3,d model is set to 512 and dropout is set to 0.1.

Table 3: Performance comparison in terms of forecasting error metrics. This table illustrates the
performance comparison among different models in terms of forecasting error metrics, adhering to a
unified setting to ensure fairness. The mse and mae values highlight the accuracy of the predictions.
The best-performing results are highlighted in red, while the second-best results are marked in blue
with underlining. Lower MSE/MAE values signify higher predictive accuracy. The incorporation
of SEAT into various benchmark attention models demonstrates significant performance enhance-
ments, showcasing SEAT’s effectiveness in improving the forecasting capabilities of Transformer-
based models as a model-agnostic plugin.

Models iTransformer +SEAT PatchTST +SEAT Crossformer +SEAT Pyraformer +SEAT Autoformer +SEAT Informer +SEAT Reformer +SEAT Impr.2024 2023 2023 2023 2022 2021 2020

Metric mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae

E
T

T
h1

96 0.386 0.405 0.377 0.396 0.414 0.419 0.389 0.404 0.423 0.448 0.416 0.426 0.790 0.696 0.424 0.432 0.485 0.468 0.418 0.433 1.006 0.780 0.848 0.641 0.826 0.687 0.554 0.505 16.97% 14.35%
192 0.441 0.436 0.425 0.423 0.460 0.445 0.439 0.435 0.471 0.474 0.478 0.461 0.738 0.662 0.478 0.464 0.554 0.517 0.526 0.478 0.927 0.721 0.977 0.718 0.906 0.732 0.555 0.517 11.48% 10.74%
336 0.487 0.458 0.466 0.443 0.501 0.466 0.474 0.453 0.570 0.546 0.499 0.469 0.922 0.766 0.509 0.485 0.503 0.491 0.491 0.469 1.197 0.878 1.058 0.765 1.022 0.786 0.600 0.530 17.46% 15.25%
720 0.503 0.491 0.475 0.471 0.500 0.488 0.484 0.480 0.653 0.621 0.543 0.510 1.011 0.799 0.539 0.514 0.531 0.523 0.509 0.491 1.182 0.873 1.220 0.819 1.091 0.821 0.642 0.570 16.34% 14.59%

E
T

T
h2

96 0.297 0.349 0.289 0.339 0.302 0.348 0.288 0.341 0.745 0.584 0.320 0.361 1.324 0.870 0.328 0.372 0.350 0.397 0.365 0.389 2.535 1.272 0.440 0.458 2.410 1.234 0.379 0.398 43.18% 33.44%
192 0.380 0.400 0.372 0.390 0.388 0.400 0.357 0.388 0.877 0.656 0.377 0.402 4.264 1.608 0.422 0.420 0.430 0.440 0.447 0.440 3.557 1.522 0.787 0.608 4.812 1.930 0.472 0.449 45.90% 36.41%
336 0.428 0.432 0.413 0.425 0.426 0.433 0.425 0.434 1.043 0.731 0.438 0.440 5.218 1.944 0.486 0.462 0.463 0.471 0.497 0.475 4.388 1.725 0.734 0.604 4.245 1.638 0.484 0.467 45.28% 36.15%
720 0.427 0.445 0.415 0.439 0.431 0.446 0.426 0.446 1.104 0.763 0.439 0.461 4.213 1.780 0.498 0.483 0.484 0.497 0.528 0.492 3.478 1.609 0.747 0.614 2.828 1.296 0.499 0.488 43.45% 34.14%

E
T

T
m

1 96 0.334 0.368 0.332 0.365 0.329 0.367 0.329 0.366 0.404 0.426 0.334 0.373 0.609 0.540 0.371 0.391 0.519 0.490 0.475 0.444 0.765 0.655 0.427 0.427 0.749 0.575 0.479 0.450 20.82% 15.29%
192 0.377 0.391 0.373 0.383 0.367 0.385 0.356 0.380 0.450 0.451 0.376 0.390 0.606 0.537 0.422 0.418 0.567 0.503 0.545 0.492 0.696 0.586 0.554 0.493 0.879 0.668 0.551 0.481 16.07% 12.15%
336 0.426 0.420 0.406 0.406 0.399 0.410 0.390 0.403 0.532 0.515 0.442 0.424 0.864 0.666 0.428 0.430 0.558 0.507 0.539 0.496 1.098 0.799 0.620 0.525 1.017 0.736 0.640 0.528 22.62 % 17.55%
720 0.491 0.459 0.474 0.445 0.454 0.439 0.444 0.435 0.666 0.589 0.487 0.455 0.919 0.718 0.486 0.463 0.689 0.551 0.557 0.488 1.234 0.827 0.914 0.675 1.065 0.774 0.728 0.569 22.34% 16.93%

E
T

T
m

2 96 0.180 0.264 0.174 0.257 0.175 0.259 0.176 0.260 0.287 0.366 0.176 0.261 0.415 0.480 0.194 0.272 0.234 0.313 0.198 0.279 0.487 0.551 0.204 0.295 0.553 0.564 0.199 0.276 33.17% 26.10%
192 0.250 0.309 0.240 0.300 0.241 0.302 0.248 0.307 0.414 0.492 0.261 0.315 0.647 0.609 0.260 0.312 0.292 0.349 0.263 0.317 0.568 0.592 0.314 0.376 1.215 0.833 0.284 0.327 32.73% 27.49%
336 0.311 0.348 0.307 0.343 0.305 0.343 0.300 0.340 0.597 0.542 0.306 0.345 1.297 0.881 0.319 0.348 0.337 0.375 0.333 0.360 1.567 0.970 0.400 0.427 1.221 0.843 0.334 0.365 39.34 % 30.83%
720 0.412 0.407 0.405 0.399 0.402 0.400 0.394 0.395 1.730 1.042 0.424 0.406 3.676 1.411 0.435 0.413 0.464 0.443 0.423 0.412 3.333 1.353 0.638 0.527 2.670 1.206 0.454 0.423 48.58% 38.28%

w
ea

th
er 96 0.174 0.214 0.160 0.210 0.177 0.218 0.185 0.231 0.158 0.230 0.172 0.221 0.210 0.294 0.172 0.222 0.235 0.304 0.195 0.243 0.333 0.393 0.204 0.258 0.354 0.424 0.194 0.244 16.25% 17.31%

192 0.221 0.254 0.214 0.256 0.225 0.259 0.213 0.255 0.206 0.277 0.231 0.275 0.240 0.314 0.223 0.263 0.301 0.354 0.253 0.293 0.858 0.652 0.267 0.306 0.314 0.384 0.242 0.280 15.89% 16.44%
336 0.278 0.296 0.269 0.293 0.278 0.297 0.269 0.295 0.272 0.335 0.283 0.312 0.295 0.356 0.278 0.301 0.329 0.367 0.299 0.321 0.664 0.583 0.317 0.340 0.590 0.566 0.293 0.314 17.13% 17.53%
720 0.358 0.347 0.353 0.349 0.354 0.348 0.349 0.345 0.398 0.418 0.358 0.359 0.367 0.404 0.355 0.351 0.403 0.410 0.364 0.359 1.035 0.793 0.370 0.374 0.681 0.627 0.364 0.358 19.52 % 19.39%

E
C

L

96 0.148 0.240 0.138 0.234 0.181 0.270 0.157 0.248 0.219 0.314 0.136 0.230 0.285 0.377 0.178 0.285 0.196 0.313 0.173 0.279 0.340 0.420 0.219 0.325 0.274 0.372 0.190 0.294 24.78 % 16.61%
192 0.162 0.253 0.159 0.253 0.188 0.274 0.169 0.262 0.231 0.322 0.156 0.248 0.289 0.384 0.197 0.301 0.220 0.330 0.211 0.308 0.378 0.452 0.241 0.346 0.293 0.389 0.200 0.303 21.19% 14.46%
336 0.178 0.269 0.174 0.268 0.204 0.293 0.188 0.281 0.246 0.337 0.172 0.266 0.308 0.400 0.212 0.315 0.246 0.350 0.210 0.312 0.387 0.460 0.271 0.372 0.321 0.408 0.217 0.318 21.19% 14.12%
720 0.225 0.317 0.222 0.309 0.246 0.324 0.232 0.316 0.280 0.363 0.203 0.295 0.309 0.396 0.239 0.334 0.259 0.362 0.238 0.333 0.403 0.464 0.301 0.390 0.318 0.400 0.235 0.333 16.67% 11.44%

E
xc

ha
ng

e 96 0.086 0.206 0.087 0.207 0.088 0.205 0.086 0.206 0.256 0.367 0.088 0.211 0.898 0.798 0.106 0.234 0.158 0.288 0.122 0.249 0.974 0.794 0.122 0.250 0.820 0.758 0.121 0.247 50.06 % 37.38%
192 0.177 0.299 0.179 0.304 0.176 0.299 0.176 0.298 0.470 0.509 0.184 0.307 1.065 0.870 0.205 0.326 0.268 0.379 0.234 0.353 1.314 0.942 0.215 0.339 0.900 0.782 0.237 0.349 44.35% 32.45%
336 0.331 0.417 0.324 0.416 0.301 0.397 0.331 0.417 1.268 0.883 0.367 0.443 1.287 0.957 0.353 0.431 0.434 0.487 0.416 0.473 1.403 0.988 0.368 0.450 1.080 0.877 0.403 0.464 39.48% 29.20%
720 0.847 0.691 0.806 0.682 0.901 0.714 0.868 0.701 1.767 1.068 0.829 0.694 1.980 1.155 0.922 0.726 1.111 0.818 1.063 0.787 1.954 1.146 0.768 0.675 1.199 0.929 1.029 0.775 27.75% 19.54%

tr
af

fic

96 0.395 0.268 0.396 0.267 0.462 0.295 0.457 0.277 0.522 0.290 0.488 0.337 0.839 0.466 0.844 0.471 0.613 0.385 0.680 0.372 0.877 0.475 0.973 0.517 0.641 0.344 0.617 0.321 -1.63% -1.37%
192 0.417 0.276 0.444 0.289 0.466 0.296 0.466 0.278 0.530 0.293 0.445 0.278 1.086 0.602 0.701 0.384 0.953 0.612 0.700 0.396 0.791 0.431 0.924 0.516 0.638 0.344 0.633 0.340 7.93% 8.49%
336 0.433 0.283 0.445 0.286 0.482 0.304 0.482 0.293 0.558 0.305 0.469 0.305 0.850 0.470 0.843 0.460 0.691 0.432 0.699 0.379 0.921 0.495 1.112 0.622 0.636 0.340 0.636 0.326 -1.13% -0.65%
720 0.467 0.302 0.481 0.300 0.514 0.322 0.501 0.314 0.589 0.328 0.515 0.325 1.244 0.675 0.789 0.430 0.785 0.488 0.773 0.422 0.884 0.487 1.112 0.612 0.675 0.359 0.665 0.343 3.70% 4.67%

A.4 CODE OF ETHICS

We have read and understood the ICLR Code of Ethics, as outlined on the conference website. We
fully acknowledge the importance of adhering to these ethical guidelines throughout all aspects of
my participation in ICLR, including paper submission, reviewing, and discussions.
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