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Abstract

Argument mining (AM) is the process of au-001
tomatically extracting arguments, their compo-002
nents and/or relations amongst arguments and003
components from text. As the number of plat-004
forms supporting online debate increases, the005
need for AM becomes ever more urgent, espe-006
cially in support of downstream tasks. Relation-007
based AM (RbAM) is a form of AM focus-008
ing on identifying agreement (support) and009
disagreement (attack) relations amongst ar-010
guments. RbAM is a challenging classifica-011
tion task, with existing methods failing to per-012
form satisfactorily. In this paper, we show013
that general-purpose Large Language Models014
(LLMs), appropriately primed and prompted,015
can significantly outperform the best perform-016
ing (RoBERTa-based) baseline. Specifically,017
we experiment with two open-source LLMs018
(Llama-2 and Mistral) with ten datasets.019

1 Introduction020

Argument mining (AM) is the process of automatically021
extracting arguments, their components and/or relations022
amongst arguments and components from natural lan-023
guage text (Lippi and Torroni, 2016; Lawrence and024
Reed, 2019). The general AM problem can be split into025
three main tasks: 1) argument identification, involving026
segmenting text into units and determining which are027
argumentative; 2) identification of argumentative com-028
ponents, typically involving classifying claims and/or029
premises of argumentative text; and 3) identification of030
argumentative relations, aiming at determining how dif-031
ferent texts are related within argumentative discourse.032

As the number of platforms supporting online de-033
bate increases, the need for AM becomes ever more034
urgent (Lawrence and Reed, 2019). In this paper, we035
focus on a special form of AM, within the third cate-036
gory, and matching the kind of debate abstractions in037
platforms such as kialo.com, where arguments (textual038
comments) are connected via support or attack argumen-039
tative relations. Specifically, we will focus on the form040
of AM framed as the following (binary) relation-based041
AM (RbAM) task (Carstens and Toni, 2015; Cocarascu042
and Toni, 2017; Cocarascu et al., 2020):1 given a pair043

1In (Carstens and Toni, 2015; Cocarascu and Toni, 2017),

(A,B) of texts A and B, determine whether A attacks 044
or supports B. For example, take the three arguments, 045
drawn from the Debatepedia/Procon dataset (Cabrio and 046
Villata, 2014), a1=‘Abortion should be legal’, a2=‘A 047
baby should not come into the world unwanted’, and 048
a3=‘Abortion increases the likelihood that women will 049
develop breast cancer’. Here, a2 can be deemed to 050
support a1 and a3 to attack a1. 051

RbAM can be used to support several downstream 052
tasks, for example, to gather evidence (Carstens and 053
Toni, 2015), to determine which online arguments are 054
acceptable (Bosc et al., 2016), and to analyse divisive 055
issues about new regulations (Konat et al., 2016). How- 056
ever, it is a challenging task, with different BERT-based 057
models performing reasonably well on some datasets 058
but individual baselines failing to perform well across 059
datasets (Cocarascu et al., 2020; Ruiz-Dolz et al., 2021). 060

In this paper, we focus on deploying general-purpose 061
LLMs, with appropriate priming and prompting, to ad- 062
dress the RbAM task uniformly across several datasets. 063
In doing so we draw inspiration from recent works show- 064
ing that LLMs perform significantly better than exist- 065
ing baselines on other AM tasks (Chen et al., 2023; 066
Al Zubaer et al., 2023; van der Meer et al., 2022) (see 067
§2). Overall, our contributions are as follows: 068

• We provide a method for performing RbAM effec- 069
tively with chat-based LLMs, appropriately, but 070
simply, primed and prompted (see §3). 071

• We demonstrate empirically, with a wide-ranging 072
evaluation with ten datasets from the literature (see 073
§4), that our LLM-based method for RbAM out- 074
performs the state-of-the-art RoBERTa baseline for 075
RbAM (Ruiz-Dolz et al., 2021) (see §5). 076

2 Related Work 077

Relation-Based Argument Mining. The field of 078
RbAM has received significant attention in recent 079
years (Cabrio and Villata, 2018). Hou and Jochim 080
(2017) introduced a Joint Inference model and com- 081
pared it against baseline methods of logistic regression, 082
attention-based LSTMs, and the EDITS method from 083
Cabrio and Villata (2012), which recognises textual en- 084
tailment by calculating the distance between arguments. 085

the task is framed as a ternary classification problem, including
a third class no relation. Here, we focus on the binary version
experimented with in (Cocarascu et al., 2020).
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Their method outperformed the baselines with an F1086
score of 65, on the Debatepedia/Procon dataset (Cabrio087
and Villata, 2014), which we also use (but they do not088
include the Procon debates). Cocarascu and Toni (2017)089
used a deep learning architecture with two separate090
LSTMs on the embeddings of the two arguments in each091
pair, concatenating the outputs using a softmax layer.092
Their method achieved an F1 score of 89 on the Web-093
Content dataset (Carstens and Toni, 2015) that we also094
use. Cocarascu et al. (2020) used four deep learning095
architectures with different types of embeddings and096
compared them against baselines of Random Forests097
and SVMs. Their method achieved a best macro F1098
score of 54, which performed similarly to the baselines,099
on ten datasets, most of which we also use2. Another100
relevant work is by Trautmann et al. (2020), who experi-101
mented with several variants of LSTMs, CAM-Bert, and102
TACAM-BERT on the UKP corpus (Stab et al., 2018)103
that we also use, achieving a best F1 score of 80 with104
TACAM-BERT. Meanwhile, Jo et al. (2021) used Logi-105
cal Mechanisms and Argumentation Schemes, with, as106
baselines, TGA Net, Hybrid Net, BERT, BERT+Latent107
Cross, and BERT+Multi-task Learning. Their best108
model achieved an F1 score of 77 with a dataset also109
collected from the online debate site Kialo as one of our110
datasets, and an F1 score of 80 on a similar dataset to111
Debatepedia/Procon (Cabrio and Villata, 2014) that we112
use (but without including the Procon debates). Finally,113
Ruiz-Dolz et al. (2021) evaluated various BERT-based114
models against LSTMs, achieving an F1 score of 70115
with RoBERTa-large on the US2016 debate corpus and116
the Moral Maze multi-domain corpus, both from AIFdb117
(which we do not use – see footnote 2).118

None of the mentioned approaches to RbAM use119
LLMs, nor do they achieve the satisfactory performance120
across datasets that we aim for.121

Argument Mining via Large Language Models. Re-122
cently, the exceptional performance of LLMs across123
a variety of NLP tasks has led to investigations into124
their performance in a number of AM tasks. Chen et al.125
(2023) tested the capabilities of LLMs for claim detec-126
tion, evidence detection, stance detection3, evidence127
type classification, and argument generation. They used128
GPT-3.5-Turbo, Flan-UL2, and Llama 2 13B models129
for testing, demonstrating that the LLMs perform well130
in these tasks. Thorburn and Kruger (2022) fine-tuned131
GPT Neo, a pre-trained LLM, to generate, by prompting,132
natural language arguments supporting or attacking a133
topic argument. However, work is still to be done before134
LLMs can be deemed to reason argumentatively, a find-135
ing echoed by Hinton and Wagemans (2023). Further136
challenges are pointed out by Ruiz-Dolz and Lawrence137
(2023), who attempted to use LLMs to detect argumen-138

2We do not use AIFdb (https://corpora.aifdb.org/)
as it is not obvious how to map it univocally onto RbAM.

3This deals with classifying the stance of arguments to-
wards topics, whereas RbAM deals with classifying the rela-
tion between (two) arguments.

tative fallacies but showed that LLMs did not surpass 139
the performance of the RoBERTa-based Transformer 140
model. Meanwhile, Al Zubaer et al. (2023) focused on 141
the classification of argument components in the legal 142
domain with the GPT-3.5 and GPT-4 models, using a 143
bespoke a few-shot prompting strategy, showing that the 144
LLMs did not surpass the domain-specific BERT-based 145
baseline. More promising results were found in a study 146
of LLMs’ potential for generating counter-narratives 147
to counteract online hate speech when supplemented 148
by argumentative strategies and analysis (Furman et al., 149
2023). Here, the argumentative information, provided 150
by either fine-tuning or priming, was shown to improve 151
the quality of the generated counter-narratives in both 152
English and Spanish. LLMs’ potential for AM was also 153
seen by van der Meer et al. (2022), who used LLMs for 154
argument quality prediction, amounting to classifying 155
the validity and novelty of a given argument, comprising 156
a premise and a conclusion. They achieved best perfor- 157
mance using a few-shot learning priming strategy with 158
LLMs for the validity task and a Transformer-based 159
model fine-tuned for the novelty task. 160

Importantly, to the best of our knowledge, no study 161
to date considered the use of LLMs for RbAM. 162

3 LLMs for RbAM 163

Our method is overviewed in Figure 1. It consists of 164
few-shot priming, which has shown to perform well 165
with LLMs without the need for fine-tuning (Brown 166
et al., 2020), followed by prompting. The primer uses 167
four labelled examples of attack and support relations 168
between arguments, before we provide an example in 169
the prompt for the LLM to classify as attack or support. 170
The four examples in the primer are fixed text compris- 171
ing a parent argument (Arg1), a child argument (Arg2) 172
and the classification of the relation from the child to 173
the parent argument, as shown in the top, pink part of 174
the box in Figure 1. Then, the prompt amounts to a pair 175
of arguments presented as the four in the primer, but 176
without indicating the relation, as shown in the bottom, 177
turquoise part of the box in Figure 1. In the experiments, 178
the parent and child arguments in the prompt are inputs 179
(from the RbAM datasets described in §4). Examples 180
of some of these prompts are given in Appendix A. 181

4 Experimental Set-up 182

We describe the datasets used, the baseline we compare 183
against and the LLMs we experiment with.4 184

Datasets We used ten existing datasets, as follows 185
(see Appendix B for additional information, including 186
statistics). Note that the datasets labelled * directly 187
fit the RbAM task definition (classification of pairs of 188
texts). The dataset labelled † is an extension of a dataset 189

4All our experiments are executed with two RTX 4090
24GB on an Intel(R) Xeon(R) w5-2455X. In total, it took
112.3 hours to run all the LLM experiments.
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Figure 1: Experimental pipeline with the (few-shot
learning) primer and the prompt template P(A,B).

already fitting the RbAM task definition to include ad-190
ditional relations between sentences and topics. For all191
these RbAM datasets, we have ignored any relations192
other than attack and support, given our focus on binary193
RbAM. The other datasets are originally given for differ-194
ent tasks, e.g. to determine relations between sentences195
and topics or between premises and claims: we adapt196
them to the RbAM task as discussed in the following.197

Persuasive essays (Essay) (Stab and Gurevych, 2017)198
is a corpus of annotated 402 persuasive essays.199

Microtexts* (Mic) (Peldszus and Stede, 2015) is a200
corpus of 112 short texts on controversial issues, with201
576 arguments. They were originally written in German202
and then translated to English.203

Nixon-Kennedy debate* (NK) (Menini et al., 2018)204
is a corpus from the 1960 Nixon-Kennedy presidential205
campaign covering five topics.206

Debatepedia-Procon* (DP) (Cabrio and Villata,207
2014) is a corpus extracted from two online debate plat-208
forms: Debatepedia and Procon.209

IBM-Debater (IBM) (Bar-Haim et al., 2017) is a210
dataset containing 55 controversial topics collected from211
the debate motions database at the International Debate212
Education Association (IDEA) website.213

ComArg† (Boltužić and Šnajder, 2014) is a corpus of214
user comments collected from Procon and IDEA where215
each argument has a stance for or against one of two216
topics. For our experiments we adapted the dataset217
so that the parent argument is the topic. Also, we set218
explicit and vague/implicit attacks to be attacks and219

vague/implicit and explicit supports to be supports. 220
CDCP* (Park and Cardie, 2018) is a corpus anno- 221

tated with only support relations containing 731 user 222
comments on Consumer Debt Collection Practices from 223
the eRulemaking platform. 224

UKP (Stab et al., 2018) is a corpus with arguments 225
obtained from Web documents (including news reports, 226
editorials, blogs, debate forums, and encyclopedias) 227
over eight controversial topics. We adapted the parent 228
argument to be ‘topic is good’ (e.g. ‘abortion is good’, 229
where abortion is one of the topics). 230

Web-Content* (Web) (Carstens and Toni, 2015)5 231
contains arguments adapted from the Argument Cor- 232
pus (Walker et al., 2012), plus arguments from news 233
articles, movies, ethics and politics. 234

Kialo* was collected from the online debate platform 235
Kialo. Debates (in English) were scraped from Kialo 236
(in 2022) on topics related to Politics, Law, and Sports. 237

Baseline We opted to fine-tune RoBERTa, given its 238
performances in (Ruiz-Dolz et al., 2021). We fine-tuned 239
it with 75% of each dataset separately for 50 epochs 240
(25% of the datasets were kept for validation), a batch 241
size of 8, and a learning rate of 1e-5. For each dataset, 242
we selected the best model (over the 50 epochs), i.e. that 243
which achieved the highest F1 score on the validation 244
set. We then used these candidate models (one for each 245
dataset) to perform inference for the other datasets and 246
selected the best (which turned out to be the one trained 247
on Kialo) as the baseline (for performances of all these 248
models see Appendix C). 249

Large Language Models. We chose two families of 250
LLMs, both open-source (details are in Appendix D). 251
Since LLMs have a huge number of parameters and 252
require a large amount of GPU space, there have been 253
attempts to reduce the space they take by compressing 254
them to smaller sizes. For example, GPTQ (Frantar 255
et al., 2022) uses one-shot weight quantisation based on 256
approximate second-order information to reduce the bit 257
size of each weight in the LLM. So, for all three LLMs 258
considered, we also experimented with 4bit quantisation 259
(so each weight is stored in 4bits on the GPU) as it had 260
the best trade-off between accuracy and space. 261

The Llama 2 models (Touvron et al., 2023) have been 262
pre-trained with 2 trillion tokens and are generally good 263
at causal language modelling. In our experiments, we 264
used the Llama 2 13B model (and its GPTQ quantised 265
version) which has 13 billion parameters and the Llama 266
2 70B (GPTQ quantised as the base model needs nearly 267
140GB of GPU space) which has 70 billion parameters. 268

The Mistral 7B model (Jiang et al., 2023) is a 7 269
billion parameter pre-trained and fine-tuned LLM. The 270
model is claimed to perform better than any other open 271
source 13 billion parameter LLM (including Llama 2 272
13B) (Jiang et al., 2023). The Mixtral 8x7B model 273
(Jiang et al., 2024) builds on the Mistral 7B model by 274

5To access the dataset, see: https://www.doc.ic.ac.
uk/~oc511/ACMToIT2017_dataset.xlsx
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RoBERTa Llama13B Llama13B-4bit Llama70B-4bit Mistral7B Mixtral-8x7B-4bit
Essays 85 / 38 / 80 87 / 31 / 82 91 / 36 / 86 94 / 52 / 90 89 / 42 / 85 94 / 43 / 89

Nixon-Kennedy 56 / 67 / 62 67 / 12 / 39 66 / 5 / 34 64 / 71 / 68 54 / 68 / 61 66 / 50 / 58
CDCP 75 / - / 75 87 / - / 87 94 / - / 94 92 / - / 92 75 / - / 75 93 / - / 93
UKP 68 / 81 / 75 70 / 82 / 77 75 / 84 / 80 84 / 89 / 87 78 / 83 / 81 81 / 84 / 83

Debatepedia/Procon 90 / 89 / 90 83 / 71 / 77 84 / 72 / 79 96 / 95 / 96 90 / 89 / 90 94 / 93 / 94
IBM-Debater 85 / 82 / 83 81 / 66 / 75 88 / 82 / 85 94 / 92 / 93 89 / 89 / 89 95 / 93 / 94

ComArg 71 / 74 / 72 68 / 62 / 65 70 / 58 / 65 77 / 56 / 68 56 / 71 / 63 79 / 73 / 76
Microtexts 73 / 53 / 67 76 / 45 / 67 84 / 41 / 72 81 / 52 / 73 71 / 54 / 67 80 / 45 / 70

Web-Content 67 / 67 / 67 66 / 63 / 64 68 / 53 / 60 72 / 72 / 72 57 / 72 / 64 70 / 66 / 68
Kialo - / - / - 74 / 56 / 65 75 / 54 / 65 87 / 84 / 86 83 / 83 / 83 85 / 82 / 84

Average 74 / 61 / 75 76 / 49 / 70 79 / 48 / 72 84 / 66 / 82 74 / 65 / 76 84 / 63 / 81
Macro F1 68 62 64 75 70 73

Inference Time (s) 0.005 0.11 0.34 1.73 0.06 0.28

Table 1: F1 scores (as a percentage) for support / attack / both relations in various datasets (rows) for the models
used (columns). RoBERTa here is the baseline (see §4) and boldface font indicates the best performing model (for
both relations) for each dataset. The last row gives the time it takes for a single inference for each model, in seconds.

using 8 of them: for every token, the model selects275
two of the Mistral 7B models to produce an output and276
combines them (Jiang et al., 2024). Its performance is277
claimed to be equal to the Llama 2 70B model (Jiang278
et al., 2024). In our experiments, we used the Mistral 7B279
model and the Mixtral 8x7B model (GPTQ quantised280
as the base model needs nearly 95GB of GPU space).281

5 Results282

Table 1 shows the results.6 We can see that Llama283
70B-4bit achieved the highest macro F1 score of 75,284
outperforming all of the baselines. Also, in seven of the285
datasets (Essay, NK, UKP, DP, Mic, Web, and Kialo), it286
achieved the highest F1 score of all LLMs (as well as287
better than all baselines in all of these datasets except288
two, see Appendix C). However, the inference time of289
1.73 seconds per argument pair for this model was rather290
high (we believe this is not just because it is the biggest291
model, but also because it is GPTQ quantised).292

Mixtral 8x7B-4bit performed almost as well as Llama293
70B-4bit, with a macro F1 score of 73, with average294
F1 score for the support labels as for Llama 70B-4bit295
but the average F1 score for the attack labels 3 points296
lower. However, it achieved the highest F1 scores in two297
datasets (IBM and ComArg). Its inference time was (a298
much lower) 0.28 seconds per argument pair (we believe299
it may be faster still if we did not use quantisation).300

Mistral 7B performed well given that it is smaller301
than the other LLMs used, achieving a macro F1 score302
of 70 which was better than any of the baselines (see Ap-303
pendix C). However, it did not outperform other LLMs304
in any dataset. Mistral 7B was also the fastest, with an305
inference time of 0.06 seconds per argument pair.306

6In the vast majority of cases, the LLMs responded with ei-
ther attack or support, as expected. However, for 43 instances
the LLMs generated other labels (see Appendix E), a very
small number in comparison with the total number of pairs
assessed (159604): we ignored them in the results.

Llama 13B and Llama 13B-4bit achieved similar 307
macro F1 scores, 62 and 64, respectively. However, 308
their performance on each dataset was varied. Llama 309
13B-4bit performed best on CDCP, which was expected 310
as CDCP only contains support labels and Llama 13B- 311
4bit tends to output support more often. Note that, with 312
GPTQ quantisation, the performance improves. They 313
both performed worse than the best baselines (see Ap- 314
pendix C). We note that Llama13B-4bit was unexpect- 315
edly slower than Llama13B. 316

6 Conclusion and Future Work 317

We have introduced a method for the RbAM task us- 318
ing general purpose LLMs, appropriately primed and 319
prompted. We showed, with experiments on ten datasets 320
and five open-source LLMs (more than half of which 321
quantised), that Llama 70B-4bit and Mixtral 8x7B- 322
4bit surpassed the RoBERTa baseline, with the former 323
outperforming the latter but also bringing the downsides 324
of slower inference time and greater GPU requirements. 325

For future work there are many potential avenues, 326
including the following three: 1) We could mask the 327
entities in sentences to outline their argumentative struc- 328
ture, which is shown to improve performance for the 329
argument retrieval task (Ein-Dor et al., 2020). 2) We 330
plan to work on improving the prediction on the at- 331
tack relations as LLMs and also baselines performed 332
worse on them. 3) We plan to extend this work for the 333
more challenging (ternary) RbAM task, i.e. determin- 334
ing whether there is a support, an attack or no relation 335
between two arguments. 336
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7 Limitations337

There are some limitations of our work. First, the task338
that we consider is the (binary) RbAM task (identifying339
support/attack) whereas, in most real-world applications,340
it would be a (ternary) RbAM task (identifying sup-341
port/attack/no relation) as we discussed in §6. Further,342
the datasets we used are in English: we are not sure if343
LLMs will perform as well on RbAM in other languages.344
GPU limitations affect our selection of small/quantised345
models, and we were not able to fine-tune any of the346
LLMs as it was computationally infeasible.347

8 Ethics Statement348

There are potential risks of LLMs such as social bias349
and generation of misinformation. In this work, we350
only use LLMs to generate a single token which is sup-351
port/attack, so there are no risks of generating biased or352
false information.353
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Appendix587

A Example Prompts588

In this section we give example prompts generated from589
each dataset (except the Kialo and UKP datasets as these590
datasets do not allow us to share them), as seen from591
Figures 2,3,4,5,6,7,8,9.592

Figure 2: An example prompt drawn from the Essays
dataset used in the RbAM experiments.

Figure 3: An example prompt drawn from the Micro-
texts dataset used in the RbAM experiments.

B Datasets593

Number of support/attack relations for all these datasets594
are given in Table 2. This information is important when595

Figure 4: An example prompt drawn from the Nixon-
Kennedy dataset used in the RbAM experiments.

Figure 5: An example prompt drawn from the Debate-
pedia/Procon dataset used in the RbAM experiments.
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Figure 6: An example prompt drawn from the IBM-
Debater dataset used in the RbAM experiments.

Figure 7: An example prompt drawn from the ComArg
dataset used in the RbAM experiments.

Figure 8: An example prompt drawn from the CDCP
dataset used in the RbAM experiments.

Figure 9: An example prompt drawn from the Web-
Content dataset used in the RbAM experiments.
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the F1 scores are calculated. Also, when RoBERTa is596
fine-tuned on these datasets it is important point how597
balanced the datasets are.598

Datasets #Support #Attack Total#
Essays 4841 497 5338

Microtexts 322 121 443
Nixon-Kennedy 356 378 734

Debatepedia/Procon 319 261 580
IBM-Debater 1325 1069 2394

ComArg 640 484 1124
CDCP 1284 0 1284
UKP 4944 6195 11139

Web-content 1348 1316 2664
Kialo 68549 65355 133904

Table 2: Number of support/attack relations in each
dataset.

Number of average words and characters for each599
dataset are given in Table 3. This kind of statistics600
help with understanding why all the models under-601
performed on a specific dataset. For example, in the602
Nixon-Kennedy dataset the average argument is very603
long with 103.57 words per argument which contains604
a lot more information for any model to process and it605
can be seen that the accuracy is lacking.606

Datasets
Average #
of words

Average # of
characters

Essays 14.7 87.09
Microtexts 13.58 81.3

Nixon-Kennedy 103.57 539.21
Debatepedia/Procon 34.81 215.22

IBM-Debater 10.78 68.84
ComArg 56.81 318.55
CDCP 15.4 88.11
UKP 15.33 83.64

Web-content 19.87 112.94
Kialo 21.84 135.69

Table 3: Statistical features of each dataset.

C RoBERTa Baselines607

Table 4 shows the results for the baselines in the RbAM608
task, i.e. RoBERTa fine-tuned on each dataset and then609
evaluated on the remaining datasets.610

RoBERTa fine-tuned with the Kialo dataset achieved611
the highest macro F1 score of 68 and an F1 score better612
than other baselines in four datasets (NK, UKP, and613
Web). However, note that, since the dataset is large it614
took a long time to fine-tune, specifically 53.73 hours.615

RoBERTa fine-tuned with the DP and the IBM616
datasets both achieved a macro F1 score of 66, which617
came close to the RoBERTa fine-tuned with the Kialo618
dataset. RoBERTa fine-tuned with the DP dataset619
achieved a better F1 score than other baselines in three620

datasets (ComArg, Mic, and Kialo). These datasets are 621
smaller than Kialo and so fine-tuning took 0.23 hours 622
for the DP dataset and 0.96 hours for the IBM dataset. 623

We thus selected RoBERTa fine-tuned with the Kialo 624
dataset as the best baseline, as it performed better than 625
other baselines. We note here also that for all of the 626
baseline models, a single inference took 0.005 seconds 627
for each test sample. 628

D LLMs 629

The amount of GPU space needed for Llama 13B is 630
27GB, Llama 13B-4bit is 7.4GB, Llama 70B-4bit is 631
37GB, Mistral 7B is 15GB, and Mixtral 8x7B-4bit is 632
25GB. For every model, we use the default parameter se- 633
lection for temperature=0.7, top_p=1, do_sample=False. 634
However, max_new_tokens=1 as inference time is faster 635
and we only need a single token generated for sup- 636
port/attack. Also, the models that are not quantised 637
are loaded with 16-bit precision for faster inference. 638

E Extra labels 639

Across the datasets, there were 43 instances where the 640
LLMs generated additional labels than attack/support. 641
The additional labels the LLMs generate are different 642
for all the models, as shown in Table 5. 643
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Essay NK CDCP UKP DP IBM ComArg Mic Web Kialo
Essay - / - / - 95 / 5 / 86 95 / 0 / 86 71 / 25 / 67 90 / 42 / 85 89 / 41 / 84 94 / 45 / 90 79 / 14 / 73 56 / 16 / 52 85 / 38 / 80
NK 65 / 0 / 32 - / - / - 65 / 0 / 32 54 / 46 / 50 65 / 31 / 47 60 / 55 / 58 65 / 4 / 34 64 / 1 / 32 46 / 48 / 47 56 / 67 / 62

CDCP 1 / - / 1 98 / - / 98 - / - / - 42 / - / 42 90 / - / 90 77 / - / 77 98 / - / 98 95 / - / 95 34 / - / 34 75 / - / 75
UKP 67 / 42 / 53 61 / 28 / 43 61 / 0 / 27 - / - / - 68 / 75 / 72 73 / 75 / 74 74 / 67 / 70 51 / 47 / 49 58 / 38 / 47 68 / 81 / 75
DP 75 / 34 / 57 72 / 23 / 50 71 / 0 / 39 62 / 67 / 64 - / - / - 84 / 82 / 83 85 / 78 / 82 71 / 0 / 39 61 / 43 / 53 90 / 89 / 90

IBM 76 / 37 / 59 72 / 26 / 51 71 / 0 / 39 58 / 69 / 63 82 / 78 / 80 - / - / - 87 / 83 / 85 60 / 33 / 48 68 / 17 / 45 85 / 82 / 83
Com-
Arg 76 / 36 / 59 72 / 2 / 42 73 / 0 / 41 59 / 62 / 60 82 / 73 / 78 73 / 71 / 72 - / - / - 72 / 5 / 43 72 / 3 / 42 71 / 74 / 72

Mic 85 / 28 / 70 83 / 3 / 61 84 / 0 / 61 52 / 44 / 50 83 / 51 / 74 77 / 52 / 71 83 / 33 / 69 - / - / - 60 / 34 / 53 73 / 53 / 67
Web 68 / 13 / 41 67 / 15 / 41 67 / 0 / 34 51 / 67 / 59 65 / 59 / 62 65 / 60 / 63 69 / 32 / 51 61 / 40 / 51 - / - / - 67 / 67 / 67
Kialo 70 / 18 / 45 68 / 14 / 42 68 / 0 / 35 46 / 63 / 54 79 / 71 / 75 74 / 73 / 73 74 / 52 / 63 67 / 3 / 36 61 / 36 / 49 - / - / -
Avg. 76 / 23 / 57 76 / 13 / 57 73 / 0 / 44 55 / 49 / 57 78 / 53 / 74 75 / 57 / 73 81 / 44 / 71 69 / 16 / 52 57 / 26 / 47 74 / 61 / 75
Mac.
Avg. 0.50 0.45 0.36 0.52 0.66 0.66 0.62 0.42 0.42 0.68

Train
Time
(in

hours)

2.14 0.29 0.52 4.47 0.23 0.96 0.45 0.18 1.07 53.73

Table 4: F1 scores for various datasets (rows) by the RoBERTa baselines, fine-tuned on the datasets (columns),
where F1-S stands for the F1 score of the support relation, F1-A stands for the F1 score of the attack relation and
boldface font indicates the best performing baseline for each dataset. The training time it takes for each RoBERTa
model, fine-tuned on the datasets is given in hours in the last row.

Llama 13B Llama 13B-4bit Llama 70B Mistral Mixtral

Kialo
compare (25)
conflict (1) compare (1) analogy (1)

irrelevant (2)
contradiction (2)

compare(2)
contrast(1)

Essays paraphrase (1) contradiction (1)
UKP contradiction (1)
Web reply (1)
ComArg paraphrase (1)
CDCP paraphrase (1)
NK rebuttal (2)

Table 5: These are the additional labels the LLMs generated (columns) on the datasets (rows). The number in the
parentheses represents the number of times the label has been generated.
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