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Abstract

Music has long served as a vehicle for political001
expression, with protest songs playing a cen-002
tral role in articulating dissent and mobilizing003
collective action. Yet, despite their cultural sig-004
nificance, the linguistic and acoustic signatures005
that define protest music remain understudied.006
We present a multimodal computational analy-007
sis of protest and non-protest songs spanning008
multiple decades. Using NLP and audio analy-009
sis, we identify the linguistic and musical fea-010
tures that differentiate protest songs. Instead011
of focusing on classification performance, we012
treat classification as a diagnostic tool to inves-013
tigate these features and reveal broader patterns.014
Protest songs are not just politically charged015
they are acoustically and linguistically dis-016
tinct, and we quantify how.017

1 Introduction018

Music has long served as a vehicle for political019

expression, with protest songs playing a central020

role in articulating dissent, amplifying marginal-021

ized voices, and mobilizing collective action. From022

anthems echoing through mass gatherings to quiet023

songs of resistance passed down across generations,024

protest music has consistently voiced the collective025

conscience. As demonstrated during Kenya’s 2024026

Gen Z-led protests, music holds a dualistic power027

serving both as a cultural artefact and a potent po-028

litical tool for resistance and unity (Kirui, 2025).029

Protest songs often transform personal struggles030

into shared narratives. During the U.S. Civil Rights031

Movement, We Shall Overcome became a sym-032

bol of unity and resilience (Conklin, 2014). In033

South Africa, anti-apartheid songs voiced resis-034

tance against systemic oppression (Drewett, 2003).035

India’s anti-colonial movement used music to in-036

still courage and national identity (Raha, 2018),037

while anti-war songs during the Vietnam era ampli-038

fied global dissent. More recently, Turkey’s Gezi039

Park protests (Bianchi, 2018) and Burkina Faso’s040

pop-driven civic critique (Ouedraogo, 2018) illus- 041

trate the enduring mobilizing power of music in 042

diverse political contexts. 043

While prior work has emphasized the cultural 044

and social impact of protest music, the linguis- 045

tic and acoustic features that distinguish protest 046

songs from non-protest ones remain largely under- 047

explored. Most existing studies focus on symbolic, 048

thematic, or historical dimensions, with limited 049

use of computational methods. One exception is 050

(Miller, 1997), who manually annotated protest 051

songs from 1963 to 1970 to analyze thematic pat- 052

terns and stylistic features. However, such manual 053

analyses limited in scope and scale fall short of 054

capturing the full range of linguistic and acoustic 055

markers that define protest music. 056

To address this gap, we present a multimodal 057

computational analysis of protest music. We com- 058

pile a dataset of protest songs from (Jiang and Jin, 059

2022), sourced via Wikidata, and pair it with a 060

matched set of non-protest songs selected using 061

GPT-4 inference (OpenAI, 2023), aligned by time 062

period and ensuring genre diversity. 063

2 Our Contributions 064

This work presents a comprehensive computational 065

study of protest music through the following con- 066

tributions: 067

• A multimodal protest music dataset. We 068

curate a novel dataset of 446 protest and 069

370 non-protest songs spanning diverse gen- 070

res, languages and decades. Each song in- 071

cludes full lyrics, 30 second audio excerpts, 072

and source separated vocal/accompaniment 073

tracks. Protest songs are sourced from Wiki- 074

data (Jiang and Jin, 2022), while non-protest 075

songs are filtered via GPT inference (OpenAI, 076

2023). 077

• Text-based classification. We use multi- 078

ple transformer-based embeddings for protest 079
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song classification, including both music in-080

formed and general purpose text architectures.081

Our comparative analysis shows that protest082

lyrics exhibit systematic and classifiable dif-083

ferences from non-protest songs.084

• Interpretable linguistic feature analysis.085

We extract and analyze a diverse set of in-086

terpretable linguistic features to isolate the di-087

mensions that distinguish protest lyrics from088

non-protest ones. Protest songs exhibit sig-089

nificantly higher repetition, lexical diversity,090

and sentiment polarity, among other stylistic091

differences.092

• Audio-based classification. We evaluate a093

range of pretrained audio models both general-094

purpose and music specific for protest classi-095

fication directly from raw audio. Vocal seg-096

ments consistently yield higher performance097

than instrumental ones, underscoring the cen-098

trality of vocal expression in protest music.099

• Audio feature analysis. We extract and ana-100

lyze a range of interpretable audio features101

to investigate the auditory dimensions that102

distinguish protest songs from non-protest103

songs. Key features such as repetition, spec-104

tral rolloff, energy fluctuations etc extracted105

from librosa (McFee et al., 2015) library are106

used for comparative analysis. Also, we107

human-annotated perceptual audio features108

and found protest songs to be generally faster,109

more energetic, and less acoustic than non-110

protest songs111

Source Separation. We decompose audio112

tracks into vocals and accompaniment to ana-113

lyze whether protest signals are more strongly114

embedded in the lyrics or the musical arrange-115

ment. Each stem is classified independently116

to assess its contribution to protest prediction.117

Additionally, we conduct a controlled mixing118

experiment, combining protest vocals with119

non-protest accompaniment and vice versa,120

to quantify the influence of vocal and instru-121

mental components on protest music classifi-122

cation.123

3 Dataset124

Our dataset consists of two primary categories:125

protest songs and non-protest songs. The126

protest songs were sourced from a list curated127

by (Jiang and Jin, 2022), which was itself 128

compiled from Wikipedia and includes 459 129

tracks linked to various protest movements 130

across different decades and regions. For each 131

song in this collection, we obtained relevant 132

metadata, Spotify and Wikipedia links, and 133

retrieved lyrics using the Genius API1. Of 134

these, lyrics were successfully extracted for 135

458 tracks, with only one track missing due to 136

unavailability. 137

To construct a suitable non-protest compari- 138

son set, we curated a collection of 400 songs 139

spanning a wide range of musical genres from 140

roughly the same time periods as the protest 141

songs. GPT-4 (OpenAI, 2023) inference was 142

employed to ensure that these tracks were not 143

associated with any social or political move- 144

ments. Specifically, we used GPT’s search 145

functionality to identify popular songs from 146

diverse genres, carefully maintaining a bal- 147

anced distribution across both decades and 148

musical styles. It was then manually veri- 149

fied that the songs are well spread across time 150

and are not related to any protest. Through 151

the same lyrics extraction pipeline used for 152

protest songs, we successfully retrieved lyrics 153

for 370 of the non-protest tracks. 154

The genre distribution across the two cate- 155

gories reveals some notable contrasts. In 156

the protest set, pop (21.69%), rock (18.03%), 157

and disco (16.06%) were the most promi- 158

nent genres, followed by hip hop (14.93%), 159

country (9.58%), reggae (9.30%), blues 160

(5.35%), classical (2.54%), metal (2.25%), 161

and jazz (0.28%). In contrast, the non- 162

protest set was dominated by rock (27.91%) 163

and metal (17.79%), with country (12.88%), 164

hip hop (11.04%), pop (10.12%), reggae 165

(7.36%), disco (5.21%), blues (3.07%), clas- 166

sical (3.07%), and jazz (1.53%) following be- 167

hind. Genre labels for each song were derived 168

using a music classification model fine-tuned 169

on the GTZAN dataset.2 170

Audio availability posed certain limitations. 171

For protest songs, we were able to locate pub- 172

licly accessible audio for 330 of the 459 tracks, 173

primarily through Spotify links. In the case 174

1(https://genius.com)
2https://huggingface.co/

hungphan111/music_genres_
classification-finetuned-gtzan-finetuned-gtzan

2
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of non-protest songs, audio was available for175

355 tracks. These were retrieved using the176

Pytube library, which enabled us to extract au-177

dio from publicly available YouTube uploads.178

To ensure consistency in analysis, we used179

30-second excerpts from each song. Since the180

beginning of many YouTube videos contains181

silence or low-volume intros, we extracted182

segments from the 15 to 45-second mark to183

capture audio-rich sections for more accurate184

processing.185

Song Type Initial Count Lyrics Audio
Protest 459 458 330
Non-Protest 400 370 355

Table 1: Dataset Summary

4 Methodology186

4.1 Overview187

We adopt a multimodal approach to character-188

ize and classify protest music using both tex-189

tual and audio representations. Our pipeline190

involves (1)Using only the textual part of the191

song (Lyrics) for analysis. (2) Using the audio192

part of the song for analysis (both vocals and193

accompaniment) (3) We also perform source194

separation to isolate vocals and accompani-195

ment for analysis and 4) conduct human an-196

notation to validate high-level musical differ-197

ences. The annotated features such as repeti-198

tion, ornamentation and melodic disjunctness199

were selected based on prior qualitative analy-200

sis by (Miller, 1997).201

4.2 Linguistic Analysis202

Embeddings. We encode each song’s lyrics203

using several pretrained transformer models,204

including RoBERTa (Liu et al., 2019), XLM-205

RoBERTa (Conneau et al., 2020), DistilBERT206

(Sanh et al., 2020), and Veucci’s Bert based207

lyrics-to-genre model3. RoBERTa, XLM-208

RoBERTa, and DistilBERT are language-209

driven models trained on general textual cor-210

pora, capturing syntactic and semantic proper-211

ties. In contrast, Veucci’s model is fine-tuned212

on genre-labeled lyrics and is more sensitive213

to musicality-related patterns. These models214

3https://huggingface.co/Veucci/lyric-to-genre

convert lyrics into fixed-size embeddings via 215

mean pooling over the final-layer token repre- 216

sentations. To accommodate lyrics exceeding 217

the models’ 512-token context window, we 218

apply a sliding window approach with 50% 219

overlap. Embeddings from each chunk are 220

averaged to produce a single vector per song. 221

Rather than fine-tuning transformer models 222

which risks overfitting on our limited dataset 223

we use frozen embeddings as input features. 224

These are evaluated using a range of classi- 225

fiers: (1) Statistical models such as Logis- 226

tic regression (Cox, 1958) , support vector 227

machines (SVM) (Cortes and Vapnik, 1995), 228

random forests for interpretability, and (2) 229

lightweight neural models with trainable fi- 230

nal layers, including a linear layer and a shal- 231

low multilayer perceptron (MLP) have been 232

used. This setup enables a balanced compar- 233

ison of language- and audio-based features 234

across model complexity and generalization. 235

We employed an 80:20 train-test split to evalu- 236

ate model performance. Additionally, we used 237

k-fold cross-validation on the training set to 238

enhance the robustness of our results and mit- 239

igate variance due to data partitioning. The 240

final performance metrics reported are aver- 241

aged F1 (Van Rijsbergen, 1979) metric scores 242

computed across the folds, providing a more 243

reliable estimate of the model’s generalization 244

capability. 245

Linguistic Features. In addition to deep em- 246

beddings, we extract a set of interpretable lin- 247

guistic features designed to capture stylistic 248

and structural properties of the lyrics. These 249

include sentiment score, average line length, 250

rhyme density, lexical density, the number of 251

figurative expressions (such as metaphors and 252

similes), unique word ratio, and repetition 253

metrics such as unigram and bigram repeti- 254

tion. All features are normalized and used to 255

train traditional classifiers, including logistic 256

regression and ensemble-based models. 257

4.3 Audio Analysis 258

Deep Audio Representations. We extract 259

fixed-size embeddings using pretrained audio 260

models Contrastive Language-Audio Pretrain- 261

ing (CLAP) by (Elizalde et al., 2022), Hid- 262

den Unit BERT (HuBERT) by (Hsu et al., 263

3
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2021), and Wave2Vec by (Baevski et al., 2020)264

without fine-tuning. CLAP captures joint265

language-musical cues, HuBERT focuses266

on speech-related features, and Wave2Vec,267

trained on raw audio, provides deeper speech268

representations. These embeddings serve as269

inputs to classifiers such as Support Vector270

Machines (SVM), Random Forest, and Mul-271

tilayer Perceptrons (MLP), allowing for ef-272

fective comparison between musicality and273

speech-driven representations. To ensure274

a fair and consistent evaluation, we adopt275

an 80:20 train-test split, stratified to main-276

tain class balance across both sets. Within277

the training set, we perform k-fold cross-278

validation to account for variance in model279

performance due to data partitioning. Final280

results are reported as the average F1 score281

across folds on the held-out test set, providing282

a robust measure of classification effective-283

ness.284

Audio Feature Extraction. We extract low-285

level audio features using Librosa (McFee286

et al., 2015) spectral flux, shimmer, and287

MFCCs which capture fine-grained aspects288

of timbre, dynamics, and texture. These audio289

features are used to train a logistic regression290

classifier, following the same setup as for lin-291

guistic features.292

Human Annotation. To complement our293

computational analysis, we conducted human294

annotation on a subset of protest and non-295

protest songs (20 songs from each set were296

chosen for annotation) . Annotators rated mu-297

sical attributes such as repetition, ornamenta-298

tion, vocal roughness, melodic contour, and299

emotional delivery. These attributes were se-300

lected based on a qualitative framework from301

(Miller, 1997). The annotations were used to302

validate the directionality and salience of ob-303

served differences between the two categories.304

About 50 annotators participated in the exper-305

iment. Annotators were mostly from 20-25306

age group and were students with mostly no307

formal musical training.308

Source Separation. We use Spleeter, an309

deep learning based source separation tool310

developed by Deezer, to decompose each au-311

dio track into two stems: vocals and accom-312

paniment (which includes instruments and 313

background music). This separation enables 314

a more fine-grained analysis of whether the 315

protest signal is embedded more strongly in 316

the lyrical delivery or in musical arrangement. 317

For each stem, we extract CLAP and HuBERT 318

embeddings and classify them independently 319

to assess their contribution to protest predic- 320

tion. Beyond individual stem analysis, we 321

conduct a controlled mixing experiment: we 322

combine the vocal tracks of protest songs with 323

the accompaniment of non-protest songs and 324

vice versa. This allows us to quantify which 325

component vocal or instrumental carries more 326

predictive weight in classification. We mea- 327

sure the percentage of mixed tracks classified 328

as protest or non-protest, providing empirical 329

insight into how each part contributes to the 330

perception and modeling of protest music. 331

5 Results and Discussion 332

5.1 Text-based Results 333

Among the language models evaluated, XLM- 334

RoBERTa achieved the highest performance 335

with an F1-score of 91.10%, significantly out- 336

performing both RoBERTa (82.66%) and Dis- 337

tilBERT (82.47%). Veucci’s lyrics-to-genre 338

model performed reasonably well with an F1- 339

score of 80.82%, but still lagged behind the 340

textual models including smaller ones , sug- 341

gesting that linguistic features, rather than 342

domain-specific lyric or musical cues, play 343

a central role in distinguishing protest songs. 344

To further explore this hypothesis, we trained 345

logistic regression and ensemble models us- 346

ing only the extracted linguistic features. The 347

linguistic features(along with p values (Fisher, 348

1925) used were: Average Line Length (p- 349

value = 1.23 × 10−8), Rhyme Density (p- 350

value = 0.3928), Lexical Density (p-value 351

= 3.13 × 10−4), Sentiment Score (p-value 352

= 4.26 × 10−8), Unique Words (p-value = 353

7.76 × 10−4), One-gram Repetition Rate (p- 354

value = 4.06× 10−16), Two-gram Repetition 355

Rate (p-value = 4.21 × 10−19), Three-gram 356

Repetition Rate (p-value = 1.08× 10−18) as 357

shown in figure 1. 358

These models also outperformed Veucci, pro- 359

viding additional support for our claim. The 360

results are displayed in Table 2. The statistical 361
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Model Model Size Accuracy Precision Recall F1 Score
XLM-
RoBERTa

270M 89.37% 89.26% 93.01% 91.10%

RoBERTa 125M 81.61% 83.41% 83.72% 82.66%
DistilBERT 66M 80.57% 84.52% 83.32% 82.47%
Ensemble – 80.16% 82.04% 84.31% 81.64%
Veucci 110M 81.47% 84.97% 83.38% 80.82%
Logistic Regres-
sion

– 76.97% 75.24% 86.81% 80.61%

Table 2: Performance Comparison of Textual Models

Figure 1: Comparison of linguistic features

models were also trained and evaluated using362

the 80:20 split. This further strengthens our363

claim that in the textual dimension linguistic364

features are more significant than music spe-365

cific lyrical features in distinguishing protest366

and non protest songs.367

5.2 Audio-based Results368

We evaluated three large-scale pretrained au-369

dio models CLAP, HuBERT, and Wav2Vec2370

by extracting frozen embeddings and training371

lightweight classifiers on top of them. As372

shown in Table 3, CLAP significantly out-373

performed HuBERT and Wav2Vec2, achiev-374

ing an F1-score of 90.62%. While CLAP375

is marginally larger in size, its superior per-376

formance is meaningful. Unlike HuBERT377

and Wav2Vec2, which are primarily trained378

on speech data, CLAP is trained to capture379

joint language-audio representations with a380

strong emphasis on music. It is thus more381

attuned to musical attributes such as tim-382

bre, rhythm, and expressive style. These re-383

sults indicate that in the audio domain, mu-384

sic specific features not general acoustic or385

speech based cues play a more critical role 386

in distinguishing protest songs from non- 387

protest ones. In addition, we trained a lo- 388

gistic regression model on musical features 389

extracted via Librosa, which achieved an F1- 390

score of 86.45%. The Audio features used 391

were spectral_flatness (9.30 × 10−25), 392

spectral_flux (1.28×10−21), mfcc (7.73× 393

10−17), rms (1.39 × 10−16), repetition 394

(1.60× 10−8), spectral_contrast (1.70× 395

10−6) etc as shown in figure 2. 396

Figure 2: Comparison of audio features

Despite its simplicity, this model outper- 397

formed both HuBERT and Wav2Vec2, rein- 398

forcing the insight that musically grounded 399
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features can outperform large models trained400

on general-purpose or speech-centric audio401

data. This further reinforces that in the audio402

domain, music-specific features are more ef-403

fective than general-purpose or speech-based404

features in distinguishing between protest and405

non-protest songs.406

5.3 Effect of Source Separation on Model407

Performance408

As shown in Table 4, both CLAP and Hu-409

BERT achieved higher F1-scores for vocals410

(0.7470 and 0.6921, respectively) than for ac-411

companiment (0.7273 and 0.6239). However,412

when evaluating mixed protest/non-protest413

tracks, both models attributed more protest414

content to the accompaniment. CLAP de-415

tected protest in 33.13% of accompaniment416

segments, compared to just 6.13% in vocals,417

while HuBERT flagged 65.64% of accompa-418

niment and 42.33% of vocals. Despite Hu-419

BERT’s overall higher protest detection rates,420

CLAP showed a smaller difference between421

vocal and accompaniment F1-scores (0.7470422

vs. 0.7273), suggesting it relies more evenly423

on musical features. In contrast, HuBERT’s424

higher protest detection in accompaniment425

could be due to its reliance on speech-like426

features, which may not generalize well to427

musical components. These results suggest428

that models may misattribute protest signals429

to accompaniment due to biases in how they430

interpret musical features, rather than reflect-431

ing a true distribution of protest cues between432

vocals and instrumentation.433

5.4 Modality Comparison and Insights434

Text-based models generally outperformed435

audio-based models in our dataset, particu-436

larly with larger pretrained transformers like437

XLM-R. However, the performance gap was438

not large: the best audio model (CLAP) was439

within 2–3% F1 of XLM-RoBERTa. This sug-440

gests that acoustic qualities such as vocal de-441

livery, energy, and repetition are also strong in-442

dicators of protest intent. The competitive per-443

formance of interpretable linguistic features444

and statistical classifiers further supports the445

hypothesis that protest songs possess stylized,446

expressive cues that are detectable both textu-447

ally and sonically.448

5.5 Human Annotation Results 449

Nine musical and expressive features were an- 450

notated across protest and non-protest songs. 451

Each feature was rated on a 5-point scale. The 452

annotated features included perceived speed 453

(tempo or pacing), energy (overall intensity, 454

volume, and emotional charge), and dance- 455

ability (rhythmic quality conducive to move- 456

ment). We also evaluated acousticness, re- 457

flecting the degree of natural or acoustic in- 458

strumentation versus electronic sounds, and 459

three dimensions of instrumentation: the com- 460

plexity and presence of backing instruments, 461

the prominence and clarity of melody, and 462

the emphasis on lyrics in the mix. Additional 463

features included ornamentation, referring to 464

expressive musical flourishes such as trills, 465

glides, and vibrato, and disjunctness, which 466

measures melodic smoothness versus the pres- 467

ence of jumps or wide intervals. The results 468

are summarized in Table 5, showing mean rat- 469

ings for protest and non-protest songs, their 470

differences, and the statistical significance (p- 471

values) based on independent t-tests. The 472

inter-annotator agreement test was conducted, 473

we used cohen kappa (Cohen, 1960) for ana- 474

lyis, for all annotated musical features, and the 475

results were as follows: Speed (Cohen’s k = 476

0.58), Energy (Cohen’s k = 0.54), Danceabil- 477

ity (Cohen’s k = 0.30), Acousticness (Cohen’s 478

k = 0.35), Disjunctness; melodic smoothness 479

vs. jumps (Cohen’s k = 0.30), Ornamenta- 480

tion; presence of extra musical effects (Co- 481

hen’s k = 0.08), and Instrumentation Contri- 482

bution: Melody (Cohen’s k = 0.24), Lyrics 483

(Cohen’s k = 0.18), Instruments (Cohen’s k = 484

0.28). These values indicate moderate agree- 485

ment for Speed, Energy, Acousticness, and In- 486

strumentation; Instruments, with fair to slight 487

agreement for the rest. Since annotators did 488

not have formal music training, lower consis- 489

tency is understandable for more complex or 490

technical features. 491

6 Conclusion 492

Our results reveal that protest music is primar- 493

ily distinguished by general linguistic features 494

rather than domain specific lyric or musical el- 495

ements. Textually, the key differentiators are 496

broad linguistic markers such as sentiment, 497

lexical diversity, and n-gram repetition rate. 498
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Model Size Accuracy Precision Recall F1-Score
CLAP 438M 0.9130 0.9355 0.8788 0.9062
HuBERT (Large) 317M 0.7938 0.7586 0.8327 0.7938
Wav2Vec2 (Large, 960h) 317M 0.6934 0.7000 0.6364 0.6666
Logistic Regression – 0.8629 0.8655 0.8636 0.8645

Table 3: Performance of audio-based.

Model Audio Type Accuracy Precision Recall F1 Score
HuBERT Accompaniment 0.6985 0.7727 0.5231 0.6239
HuBERT Vocal 0.7280 0.7321 0.6312 0.6921
CLAP Accompaniment 0.7574 0.7857 0.6769 0.7273
CLAP Vocal 0.7794 0.7600 0.7350 0.7470

Protest Component after mixing CLAP (% Protest) HuBERT (% Protest)
Vocals 6.13% 42.33%
Accompaniment 33.13% 65.64%

Table 4: Performance and protest detection rates of CLAP and HuBERT on source-separated audio.

These features suggest that protest songs rely499

on general linguistic cues that convey a sense500

of urgency, rebellion, or defiance, rather than501

on specific thematic or genre bound choices.502

In the audio domain, protest songs are more503

effectively characterized by music specific504

features. Notably, models trained on inter-505

pretable, genre agnostic features such as spec-506

tral flux and repetition from the Librosa library507

still achieved high scores. This reinforces508

that the observed patterns are not merely ar-509

tifacts of genre. Through source separation510

and human evaluation, we observe that vo-511

cals play a more prominent role than accom-512

paniment in distinguishing protest from non-513

protest songs. This aligns with the emotional514

intensity and rawness often associated with515

protest music. Yet, interestingly, our intermix-516

ing experiments reveal that accompaniment,517

while seemingly secondary, contributes more518

significantly than anticipated in shaping the519

perception of protest. The combination of in-520

strumental and vocal elements particularly in521

how they interact appears to be a crucial factor522

in determining whether a song is perceived as523

protest music. Taken together, these findings524

suggest that protest music conveys its message525

through a multimodal approach: linguistically,526

by leveraging general textual signals that com-527

municate the song’s intent, and musically, by528

employing expressive and structurally distinct529

audio features. The interplay between these530

two domains text and music forms a holistic 531

signature that makes protest music uniquely 532

identifiable across both verbal and musical 533

planes. 534

7 Future Work 535

This work lays the groundwork for under- 536

standing protest music as a multimodal vehi- 537

cle of cultural resistance, aiming to explore its 538

role in global social change. Future research 539

can build upon this by expanding the dataset 540

to include non-Western protest traditions such 541

as Arabic shaabi and Korean minjung kayo, 542

while also incorporating temporal metadata to 543

facilitate diachronic and cross-cultural anal- 544

ysis. Although we aimed for genre balance 545

during dataset construction, genre remains a 546

potential confounding variable. Future stud- 547

ies should explicitly control for genre to en- 548

sure that observed distinctions are attributable 549

to protest-related features rather than genre- 550

specific conventions. On the modeling front, 551

joint lyric-audio models with cross-modal at- 552

tention offer a promising direction, particu- 553

larly when fine-tuned on protest-specific cor- 554

pora to better capture rhetorical nuance. Addi- 555

tionally, the growing influence of digital plat- 556

forms warrants an investigation into how so- 557

cial media alters the creation, dissemination, 558

and perception of protest music. Finally, in- 559

corporating human-centered evaluation such 560

as listener surveys and focus groups will offer 561
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Feature Protest (Avg) Non-Protest (Avg) Difference p-value
Speed 3.97 2.17 1.80 7.74× 10−44

Energy 4.16 2.38 1.78 2.71× 10−41

Danceability 3.36 2.17 1.19 4.84× 10−13

Acousticness 2.03 3.40 -1.37 1.59× 10−19

contribution of Instruments 4.07 3.16 0.91 1.13× 10−9

contribution of Melody 2.72 3.61 -0.89 5.69× 10−8

contribution of Lyrics 3.11 3.40 -0.29 0.107
Ornamentation (Musical Effects) 3.46 3.07 0.40 4.21× 10−4

Disjunctness (Melodic Jumps) 3.32 2.22 1.10 6.84× 10−14

Table 5: Human annotation results comparing protest and non-protest songs. Statistically significant differences
(p < 0.005) (Dunn, 1961) after Bonferroni are in bold.

deeper insights into how protest intent is per-562

ceived by diverse audiences and can inform563

the design of more socially aware classifica-564

tion systems. To improve annotation consis-565

tency for complex musical features, future566

work may also consider involving trained mu-567

sicians in the annotation process.568

8 Ethical Considerations569

All data used in this study, including song570

lyrics and audio excerpts, were obtained from571

publicly accessible, licensed platforms such572

as Spotify and YouTube, and analyzed strictly573

for academic research purposes under fair use574

provisions. The human annotation study was575

conducted with voluntary participants who576

were fully informed about the study’s goals577

and procedures; no personal or identifiable578

information was collected. Throughout this579

project, we have remained attentive to issues580

of cultural sensitivity, particularly given the581

politically charged and historically grounded582

nature of protest music. Every effort was583

made to contextualize songs respectfully and584

accurately, avoiding reductive interpretations585

or cultural appropriation. Our goal is to am-586

plify, not oversimplify, the expressive and po-587

litical power of protest music across traditions588

and geographies.589
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