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Abstract

Distributionally robust reinforcement learning (DRRL), often framed as a robust
Markov decision process (RMDP), seeks to find a robust policy that achieves good
performance under the worst-case scenario among all environments within a pre-
specified uncertainty set centered around the training environment. Unlike previous
work, which relies on a generative model or a pre-collected offline dataset enjoying
good coverage of the deployment environment, we tackle robust RL via interactive
data collection, where the learner interacts with the training environment only and
refines the policy through trial and error. In this robust RL paradigm, two main
challenges emerge: managing the distributional robustness while striking a balance
between exploration and exploitation during data collection. Initially, we establish
that sample-efficient learning without additional assumptions is unattainable owing
to the curse of support shift; i.e., the potential disjointedness of the distributional
supports between training and testing environments. To circumvent such a hardness
result, we introduce the vanishing minimal value assumption to RMDPs with a
total-variation distance robust set, postulating that the minimal value of the optimal
robust value function is zero. Such an assumption effectively eliminates the support
shift issue for RMDPs with a TV distance robust set, and we present an algorithm
with a provable sample complexity guarantee. Our work makes the initial step to
uncovering the inherent difficulty of robust RL via interactive data collection and
sufficient conditions for sample-efficient algorithms with sharp sample complexity.

1 Introduction

Reinforcement learning (RL) serves as a framework for addressing complex decision-making prob-
lems through iterative interactions with environments. The advancements in deep reinforcement
learning have enabled the successful application of the general RL framework across various domains,
including mastering strategic games, such as Go (Silver et al., 2017), robotics (Kober et al., 2013),
and tuning large language models (LLMs; Ouyang et al. (2022)). The critical factors contributing
to these successes encompass not only the potency of deep neural networks and modern deep RL
algorithms but also the availability of substantial training data. However, there are scenarios, such as
healthcare (Wang et al., 2018) and autonomous driving (Kiran et al., 2021), among others, where
collecting data in the target domain is challenging, costly, or even unfeasible.

In such cases, the sim-to-real transfer (Kober et al., 2013; Sadeghi and Levine, 2016; Peng et al.,
2018; Zhao et al., 2020) becomes a remedy – a process in which the RL agents are trained in some
simulated environment and subsequently deployed in real-world settings. Nevertheless, the training
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environment may differ from the real-world environment. Such a discrepancy, also known as the sim-
to-real gap, will typically result in suboptimal performance of RL agents in real-world applications.
One promising strategy to control the impact in performance degradation due to the sim-to-real gap is
robust RL (Iyengar, 2005; Pinto et al., 2017; Hu et al., 2022), which aims to learn policies exhibiting
strong (i.e. robust) performance under environmental deviations from the training environment,
effectively hedging the epistemological uncertainty arising from the differences between the training
environment and the unknown testing environments.

A robust RL problem is often formulated within a robust Markov decision process (RMDP) framework,
with various types of robust sets characterizing different environmental perturbations. In this robust
RL context, prior works have developed algorithms with provable sample complexity guarantees.
However, these algorithms typically rely on either a generative model (Yang et al., 2022; Panaganti
and Kalathil, 2022; Xu et al., 2023; Shi et al., 2023) or offline data with good coverage of deployment
environments (Zhou et al., 2021b; Panaganti et al., 2022; Shi and Chi, 2022; Ma et al., 2022; Blanchet
et al., 2023). Notably, the current literature does not explicitly address the exploration problem,
which stands as one of the fundamental challenges in reinforcement learning through trial-and-error
(Sutton and Barto, 2018). Meanwhile, the empirical success of robust RL methods (Pinto et al., 2017;
Kuang et al., 2022; Moos et al., 2022) typically relies on reinforcement learning through interactive
data collection in the training environment, where the agent iteratively and actively interacts with
the environment, collecting data, optimizing and robustifying its policy. Given that all the existing
literature on robust RL theory relies on a generative model or pre-collected data, it is natural to ask:

Can we design a provably sample-efficient robust RL algorithm that relies on
interactive data collection in the training environment?

Answering the above question faces a fundamental challenge, namely, that during the interactive data
collection process, the learner no longer has the oracle control over the training data distributions that
are induced by the policy learned through the interaction process. In particular, it could be the case
that certain data patterns that are crucial for the policy to be robust across all testing environments
are not accessible through interactive data collection, even through a sophisticated design of an
exploration mechanism during interaction process. For example, specific states may not be accessible
within the training environment dynamics but could be reached in the testing environment dynamics.

In contrast, previous work has demonstrated that robust RL through a generative model or a pre-
collected offline dataset with good coverage does not face such difficulty. In the generative model
setup, fortunately, the learner can directly query any state-action pair and obtain the sampled next state
from the generator. Intuitively, once the states that could appear in the testing environment trajectory
are queried enough times, it is possible to guarantee the performance of the learned policy in testing
environments. The situation is similar if one has a pre-collected offline dataset that possesses good
coverage of the testing environment. This motivates us to make the initial steps towards answering
the above questions regarding robust RL with interactive data collection.

1.1 Contributions

In this work, we study robust RL in a finite-horizon RMDP with an S ×A-rectangular total-variation
distance (TV) robust set (see Assumption 2.1 and Definition 2.4) through interactive data collection.
We give both a fundamental hardness result in the general case and a sample-efficient algorithm
within tractable settings. More specifically, our contributions are three folds.

Fundamental hardness. We construct a class of hard-to-learn RMDPs (see Example 3.1) and
demonstrate that any learning algorithm inevitably incurs an Ω(ρ ·HK)-online regret (Theorem 3.2)
under at least one RMDP instance. Here, ρ signifies the radius of the TV robust uncertainty set, H is
the horizon, and K is the number of interactive episodes. This linear regret lower bound underscores
the impossibility of sample-efficient robust RL via interactive data collection in general.

Identifying a tractable case. Upon close examination of the challenging instance, we recognize
that the primary obstacle to achieving sample-efficient learning lies in the curse of support shift,
i.e., the disjointedness of distributional support between the training environment and the testing
environments. In a broader sense, the curse of support shift also refers to the situation when the states
appearing in testing environments are extremely hard to arrive in the training environment.

To rule out these pathological instances, we propose the vanishing minimal value assumption (As-
sumption 4.1), positing that the optimal robust value function reaches zero at a specific state. Such an
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Table 1: Comparison between OPROVI-TV and prior results on RMDP with S ×A-rectangular TV robust sets
under various settings (generative model/offline dataset/interactive data collection). For the infinite horizon
γ-discounted RMDPs, we denote Hγ := (1− γ)−1 as the effective horizon length. In the offline setting, C⋆

rob

and Cfull represent the robust partial coverage coefficient and full coverage coefficient, respectively. In the
general case, our lower bound reads intractable, meaning that there exist hard instances where it is impossible to
learn the nearly optimal robust policy via a finite number of interactive samples.

Model Assump. Algorithm Data oracle Sample complexity
ρ ∈ [0, 1)

general case

RPVL (Xu et al., 2023) generative model Õ
(

H5SA
ε2

)
DRVI (Shi et al., 2023) generative model Õ

(
min{Hγ ,ρ

−1}H2
γSA

ε2

)
lower bound (Shi et al., 2023) generative model Ω

(
min{Hγ ,ρ

−1}H2
γSA

ε2

)
P2MPO (Blanchet et al., 2023) offline dataset Õ

(
C⋆
robH

4S2A
ε2

)
lower bound (this work) interactive data collection intractable

“fail-state”
assumption RFQI (Panaganti et al., 2022) offline dataset Õ

(
CfullH

4
γSA

ρ2ε2

)
vanishing

minimal value
(Assumption 4.1)

OPROVI-TV (this work) interactive data collection Õ
(

min{H,ρ−1}H2SA
ε2

)
assumption naturally applies to the sparse reward RL paradigm and offers a broader scope compared
to the “fail-state” assumption utilized in prior studies on offline RMDP with function approximation
(Panaganti et al., 2022). For a comprehensive discussion on this comparison, please see Remark B.3.
On the theoretical front, we establish that the vanishing minimal value assumption effectively miti-
gates the support shift issues between the training and the testing environments (Proposition 4.2),
rendering robust RL with interactive data collection feasible for RMDPs with TV robust sets.

Efficient algorithm with sharp sample complexity. Under the vanishing minimal value assumption,
we develop an algorithm named OPtimistic RObust Value Iteration for TV Robust Set (OPROVI-TV,
Algorithm 1), that is capable of finding an ε-optimal robust policy with a total number of

Õ
(
min{H, ρ−1} ·H2SA/ε2

)
(1.1)

interactive samples (Theorem 4.3). Here S andA denote the number of states and actions, ρ represents
the radius of the TV robust set, and H is the horizon length of each episode. To our best knowledge,
this is the first provably sample-efficient algorithm for robust RL with interactive data collection.

According to (1.1), the sample complexity of finding an ε-optimal robust policy decreases as the
radius ρ of the robust set increases. When the radius ρ = 0, an RMDP reduces to a standard MDP,
and the sample complexity (1.1) recovers the minimax-optimal sample complexity for online RL in
standard MDPs up to logarithm factors, i.e., Õ(H3SA/ε2).

In the end, we further extend our algorithm and theory to a new type of RMDPs, S ×A-rectangular
discounted RMDP equipped with robust sets consisting of transition probabilities with bounded ratio
to the nominal kernel (See Appendix B.4.3). This newly identified class of RMDPs naturally does
not suffer from the support shift issue. It is equivalent to the S × A-rectangular RMDP with TV
robust set and vanishing minimal value assumption in an appropriate sense due to Proposition 4.2.
Consequently, by a clever usage of Algorithm 1, we can also solve this new model sample-efficiently,
as is shown in Corollary B.5. Such a result echoes our intuition on the curse of support shift.

Comparison to related works. Due to the space limit, we only compare with the most related work
through Table 1. A detailed discussion of related works is in Appendix A.

2 Preliminaries

Notations. For a set X , we denote ∆(X ) as the set of probability distributions on X . For a distribution
p ∈ ∆(X ), we define the shorthand for expectation and variance as Ep(·)[f ] := EX∼p(·)[f(X)] and
Vp(·)[f ] = Ep(·)[f

2] − (Ep(·)[f ])
2. Given any set Q ⊆ ∆(X ), we define the robust expectation

operator as EQ[f ] := infp(·)∈Q EX∼p(·)[f(X)]. For any x, a ∈ R, we denote (x)+ = max{x, 0}
and x ∨ a = max{x, a}. We use O(·) to hide absolute constant factors and use Õ to further hide
logarithmic factors. For a positive integer H ∈ N+, we denote the set {1, 2, . . . ,H} by [H].
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2.1 Robust Markov Decision Processes

We first introduce our underlying model for doing robust RL, the episodic robust Markov decision
process (RMDP), denoted by a tuple (S,A, H, P ⋆, R,Φ). Here the set S is the state space and the
set A is the action space, both with finite cardinality. The integer H is the length of each episode. The
set P ⋆ = {P ⋆

h}Hh=1 is the collection of nominal transition kernels where P ⋆
h : S ×A 7→ ∆(S). The

set R = {Rh}Hh=1 is the collection of reward functions where Rh : S ×A 7→ [0, 1]. For simplicity,
we denote P = {P (·|·, ·) : S ×A 7→ ∆(S)} as the space of all possible transition kernels, and we
denote S = |S| and A = |A|. Most importantly and different from standard MDPs, the RMDP is
equipped with a mapping Φ : P 7→ 2P that characterizes the robust set of any transition kernel in P .
Formally, for any transition kernel P ∈ P , we call Φ(P ) the robust set of P . One could interpret the
nominal transition kernel P ⋆

h as the transition of the training environment, while Φ(P ⋆
h ) contains all

possible transitions of the testing environments.

Given an RMDP (S,A, H, P ⋆, R,Φ), we consider using a Markovian policy to make decisions. A
Markovian decision policy (or simply, policy) is defined as π = {πh}Hh=1 with πh : S 7→ ∆(A) for
each step h ∈ [H]. To measure the performance of a policy π in the RMDP, we introduce its robust
value function, defined as for any (s, a) ∈ S ×A,

V π
h,P⋆,Φ(s) := inf

P̃h∈Φ(P⋆
h ),1≤h≤H

E{P̃h}H
h=1,{πh}H

h=1

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣ sh = s

]
,

Qπ
h,P⋆,Φ(s, a) := inf

P̃h∈Φ(P⋆
h ),1≤h≤H

E{P̃h}H
h=1,{πh}H

h=1

[
H∑
i=h

Ri(si, ai)

∣∣∣∣∣ sh = s, ah = a

]
.

Here the expectation is taken w.r.t. the state-action trajectories induced by policy π under the transition
P̃ . One can also extend the definition of the robust value functions in terms of any collection of
transition kernel P = {Ph}Hh=1 ⊂ P as V π

h,P,Φ and Qπ
h,P,Φ, which we usually use in the sequel.

Among all the policies, we define the optimal robust policy π⋆ as the policy that can maximize the
robust value function at the initial time step h = 1, i.e.,

π⋆ ∈ argmax
π={πh}H

h=1

V π
1,P⋆,Φ(s1), ∀s1 ∈ S. (2.1)

In other words, the optimal robust policy π⋆ maximizes the worst case expected total rewards in all
possible testing environments. For simplicity and without loss of generality, we assume in the sequel
that the initial state s1 ∈ S is fixed. Our results could be directly generalized to s1 ∼ p0(·) ∈ ∆(S).
Similarly, we can also define the optimal robust policy associated with a given stochastic process
defined through any collection of transition kernels P = {Ph}Hh=1 ⊂ P in the same way as (2.1). We
denote the optimal robust value functions associated with P as V ⋆

h,P,Φ and Q⋆
h,P,Φ respectively.

S × A-rectangularity and robust Bellman equations. We consider robust sets Φ that have the
S × A-rectangular structure (Iyengar, 2005). which requires that the robust set is decoupled and
independent across different (s, a)-pairs. This kind of structure results in a dynamic programming
representation of the robust value functions (efficient planning), and is thus commonly adopted in the
literature of distributionally robust RL. More specifically, we assume the following.

Assumption 2.1 (S ×A-rectangularity). We assume that the mapping Φ satisfies for any transition
kernel P ∈ P , the robust set Φ(P ) is in the form of

Φ(P ) =
⊗

(s,a)∈S×A

P(s, a;P ), where P(s, a;P ) ⊆ ∆(S).

Under above Assumption 2.1, we have the so-called robust Bellman equation (Iyengar, 2005; Blanchet
et al., 2023) which gives a dynamic programming representation of robust value functions.

Proposition 2.2 (Robust Bellman equation). Under Assumption 2.1, for any transition P =
{Ph}Hh=1 ⊆ P and any policy π = {πh}Hh=1 with πh : S 7→ ∆(A), it holds that

V π
h,P,Φ(s) = Eπh(·|s)

[
Qπ

h,P,Φ(s, ·)
]
, Qπ

h,P,Φ(s, a) = Rh(s, a) + EP(s,a;Ph)

[
V π
h+1,P,Φ

]
.

Regarding the robust value functions of the optimal robust policy, we also have the following dynamic
programming solution which plays a key role in our algorithm design and theoretical analysis.
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Proposition 2.3 (Robust Bellman optimal equation). Under Assumption 2.1, for any P =
{Ph}Hh=1 ⊆ P , the robust value functions of any optimal robust policy of P satisfies that,

V ⋆
h,P,Φ(s) = max

a∈A
Q⋆

h,P,Φ(s, a), Q⋆
h,P,Φ(s, a) = Rh(s, a) + EP(s,a;Ph)

[
V ⋆
h+1,P,Φ

]
.

Taking π⋆
h(·|s) = argmaxa∈AQ

⋆
h,P,Φ(s, a), then π⋆ = {π⋆

h}Hh=1 is optimal robust policy under P .

Total-variation distance robust set. In Assumption 2.1, the robust set P(s, a;P ) is often modeled
as a “distribution ball” centered at P (·|s, a). In this paper, we mainly consider this type of robust sets
specified by a total-variation distance ball. We put it in the following definition.
Definition 2.4 (Total-variation distance robust set). Total-variation distance robust set is defined as

Pρ(s, a;P ) :=
{
P̃ (·) ∈ ∆(S) : DTV

(
P̃ (·)

∥∥P (·|s, a)) ≤ ρ
}
,

for some ρ ∈ [0, 1), where DTV(·∥·) denotes the total variation distance defined as

DTV

(
p(·)∥q(·)

)
:=

1

2

∑
s∈S

∣∣p(s)− q(s)
∣∣, ∀p(·), q(·) ∈ ∆(S). (2.2)

The TV robust set has recently been extensively studied by Yang et al. (2022); Panaganti and Kalathil
(2022); Panaganti et al. (2022); Xu et al. (2023); Blanchet et al. (2023); Shi et al. (2023), which all
focus on robust RL with a generative model or with a pre-collected offline dataset. More importantly,
we emphasize that by (2.2) in Definition 2.4, we do not define the TV distance through the notion
of f -divergence which requires that the distribution p is absolute continuous w.r.t. q, as is generally
adopted by the above previous works on learning RMDPs with TV robust sets. According to (2.2),
we allow p to have a different support than q. That is, there might exist an s ∈ S such that p(s) > 0
and q(s) = 0. Given that, the TV robust set in Definition 2.4 could contain transition probabilities
that have different supports than the nominal transition probability P ⋆(·|s, a).
An essential property of the TV robust set is that the robust expectation involved in the robust Bellman
equations (Propositions 2.2 and 2.3) has a duality representation that only uses the expectation under
the nominal transition kernel, as is shown in the following theorem and proved in Appendix C.1.

Proposition 2.5 (Strong duality representation). Under Definition 2.4, the following duality repre-
sentation for the robust expectation holds, for any V : S 7→ [0, H] and Ph : S ×A 7→ ∆(S),

EPρ(s,a;Ph)

[
V
]
= sup

η∈[0,H]

{
− EPh(·|s,a)

[
(η − f)+

]
− ρ

2
·
(
η −min

s∈S
V (s)

)
+
+ η
}
. (2.3)

Value gap between maximum and minimum. Finally, another useful property of the robust value
functions of an RMDP with TV robust sets is a fine characterization of the gap between the maximum
and the minimum of the robust value function, which is first identified and utilized by Shi et al. (2023)
for an infinite horizon RMDP with TV robust sets. In this work, we prove and use a similar result for
the finite horizon case, concluded in the following proposition. The proof is in Appendix C.2.

Proposition 2.6 (Gap between maximum and minimum). Under Assumption 2.1 with the robust set
specified by Definition 2.4, the robust value functions satisfies that

max
(s,a)∈S×A

Qπ
h,P,Φ(s, a)− min

(s,a)∈S×A
Qπ

h,P,Φ(s, a) ≤ min
{
H, ρ−1

}
,

max
s∈S

V π
h,P,Φ(s)−min

s∈S
V π
h,P,Φ(s) ≤ min

{
H, ρ−1

}
,

for any transition P = {Ph}Hh=1 ⊂ P , any policy π, and any step h ∈ [H].

2.2 Robust RL with Interactive Data Collection
We study how to learn the optimal robust policy π⋆ in (2.1) from interactive data collection. Specifi-
cally, the learner is required to interact with only the training environment, i.e., P ⋆, for some K ∈ N
episodes. In each episode k, the learner adopts a policy πk to interact with the training environment
P ⋆ and to collect data. When the k-th episode ends, the learner updates its policy to πk+1 based on
historical data and proceeds to the subsequent (k + 1)-th episode. The process ends after K episodes.
Sample complexity. We use the notion of sample complexity as the key evaluation metric. For any
given algorithm and predetermined accuracy level ε > 0, the sample complexity is the minimum
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sgood sgood sgood

sbad sbad

R1 = 1 R2 = 1 R3 = 1

R2 = 0 R3 = 0

Figure 1: Illustration of the hard example in Example 3.1.
The solid lines represent possible transitions of the nominal
transition kernel. The dashed lines represent the transitions
induced by the worst case transition kernel in the robust set.
The red solid line represents the transition where the two
RMDP instances differ in that different actions lead to higher
transition probability from sbad to sgood. We notice that when
starting from s1 = sgood, the nominal transition kernel keeps
the agent at sgood and no information at sbad is revealed.

number of episodes K required for the algorithm to output an ε-optimal robust policy π̂ satisfying
V ⋆
1,P⋆,Φ(s1) − V π̂

1,P⋆,Φ(s1) ≤ ε. The goal is to design algorithms whose sample complexity has
small or even optimal dependence on the problem parameters S,A,H, ρ, and 1/ε.

Online regret. Another evaluation metric that is related to the minimization of sample complexity is
the online regret, which is the cumulative difference between the optimal robust policy π⋆ and the
executed policies {πk}Kk=1. Formally, we define RegretΦ(K) :=

∑K
k=1 V

⋆
1,P⋆,Φ(s1)−V πk

1,P⋆,Φ(s1).
The goal is to design algorithms that can achieve a sublinear-in-K regret with small dependence on
S,A,H, ρ. It turns out that any sublinear-regret algorithm can be easily converted to a polynomial-
sample complexity algorithm by applying the standard online-to-batch conversion (Jin et al., 2018).

3 A Hardness Result: The Curse of Support Shift

Unfortunately, we show in this section that in general such a problem of robust RL with online data
collection is impossible – there exists a simple class of two RMDPs such that an Ω(K)-online regret
lower bound exists. However, previous works on robust RL with a generative model or offline data
with good coverage do provide sample-efficient ways to find the optimal robust policy for this class
of RMDPs. This is a separation between robust RL with interactive data collection and generative
model/offline data. Please see also Figure 1 for an illustration of the example.

Example 3.1 (Hard example of robust RL with interactive data collection). Consider two RMDPs M0

and M1 which only differ in their nominal transition kernels. The state space is S = {sgood, sbad},
and the action space is A = {0, 1}. The horizon length H = 3. The reward function R always is 1
at the good state sgood and is 0 at the bad state sbad, i.e.,

Rh(s, a) =

{
1, s = sgood
0, s = sbad

, ∀(a, h) ∈ A× [H].

For the good state sgood, the next state is always sgood. For the bad state sbad, there is a chance to
get to the good state sgood, with the transition probability depending on the action it takes. Formally,

P ⋆,Mθ

h (sgood|sgood, a) = 1, ∀(a, h) ∈ A× {1, 2}, ∀θ ∈ {0, 1},

P ⋆,Mθ

2 (sgood|sbad, a) =
{
p, a = θ

q, a = 1− θ
, ∀θ ∈ {0, 1},

where p, q are two constants satisfying 0 < q < p < 1. Intuitively, when at the bad state, the optimal
action would result in a higher transition probability p to the good state than the transition probability
q induced by the other action. Finally, we consider the robust set being specified by a total-variation
distance ball centered at the nominal transition kernel, that is, for any P ,

Φ(P ) =
⊗

(s,a)∈S×A

Pρ(s, a;P ), Pρ(s, a;P ) =
{
P̃ (·) ∈ ∆(S) : DTV

(
P̃ (·)

∥∥P (·|s, a)) ≤ ρ
}
, (3.1)

where ρ ∈ [0, q] is the parameter characterizing the size of the robust set. We set s1 = sgood.

For this class of RMDPs, we have the following hardness result for doing robust RL with interactive
data collection, an Ω(ρ ·K)-online regret lower bound. The proof is in Appendix D.1.
Theorem 3.2 (Hardness result (based on Example 3.1)). There exists two RMDPs {M0,M1}, the
following regret lower bound holds,

inf
ALG

sup
θ∈{0,1}

E
[
RegretMθ,ALG

Φ (K)
]
≥ Ω

(
ρ ·HK

)
,

where RegretMθ,ALG
Φ (K) refers to the online regret of algorithm ALG for RMDP Mθ.
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The reason why any algorithm fails for this class of RMDPs is the support shift of the worst-case
transition kernel. In robust RL, the performance of a policy π is evaluated via the robust expected
total rewards, or equivalently, the expected return under the most adversarial transition kernel P †,π.
In such an example, as we explicitly show in the proof, when in the good state sgood, the worst-case
transition kernel P †,π would transit the state to sbad with a constant probability ρ > 0. But the state
sbad is out of the scope of the data collection process because starting from s1 = sgood the nominal
transition kernel always transits the state to sgood. As a result, the performance of the learned policy
at the bad state sbad is not guaranteed, and inevitably incurs an Ω(ρ ·K)-lower bound of regret, a
hardness result. Furthermore, by strategically constructing RMDPs with the horizon 3H based on
Example 3.1, we can derive a lower bound of Ω(ρ ·HK). See Appendix B.3 for more discussions.

4 A Solvable Case, Efficient Algorithm, and Sharp Analysis

Motivated by the hard instance (Example 3.1), we now investigate a special subclass of RMDPs with
S ×A-rectangular total variation robust set that we show allows for doing sample-efficient robust RL
through interactive data collection. In Section 4.1, we introduce the assumption we impose on the
RMDP. We propose our algorithm design in Section 4.2, with theoretical analysis in Section 4.3.

4.1 Vanishing Minimal Value: Eliminating Support Shift

To overcome the difficulty of support shift identified in Section 3, we make the following vanishing
minimal value assumption on the underlying RMDP.

Assumption 4.1 (Vanishing minimal value). We assume that the underlying RMDP satisfies that
mins∈S V

⋆
1,P⋆,Φ(s) = 0. Also, WLOG, we assume that the initial state s1 /∈ argmins∈S V

⋆
1,P⋆,Φ(s).

Assumption 4.1 imposes that the minimal robust expected total rewards over all possible initial states
is 0. Assuming that the initial state s1 /∈ argmins∈S V

⋆
1,P⋆,Φ(s) avoids making the problem trivial.

A close look at Assumption 4.1 actually gives that the minimal robust value function of any policy π
at any step is zero, that is, mins∈S V

π
h,P⋆,Φ(s) = 0 for any policy π and any step h ∈ [H]. With this

observation, the following proposition explains why this assumption helps to overcome the difficulty,
with the proof of the proposition in Appendix C.3.

Proposition 4.2 (Equivalent expression of TV robust set with vanishing minimal value). For any
function V : S 7→ [0, H] with mins∈S V (s) = 0, we have that

EPρ(s,a;P⋆
h ) [V ] = ρ′ · EBρ′ (s,a;P

⋆
h )[V ], with ρ′ = 1− ρ

2
> 0,

where the TV robust set Pρ(s, a;P
⋆
h ) is defined in (3.1) and the set Bρ′(s, a;P ⋆

h ) is defined as2

Bρ′(s, a;P ⋆
h ) =

{
P̃ (·) ∈ ∆(S) : sup

s′∈S

P̃ (s′)

P ⋆
h (s

′|s, a)
≤ 1

ρ′

}
.

As Proposition 4.2 indicates, under Assumption 4.1, the robust Bellman equations (Propositions 2.2
and 2.3) at step h ∈ [H] is equivalent to taking an infimum over another robust set Bρ′(s, a;P ⋆

h )
that shares the same support as the nominal transition kernel P ⋆(·|s, a), discounted by a constant
ρ′ < 1. Intuitively, this new robust set rules out the difficulty originated in unseen states in training
environments and the discount factor ρ′ hedges the difficulty from prohibitively small probability of
reaching certain states that may appear often in the testing environments. This renders robust RL with
interactive data collection possible. See Appendix B.4.1 for discussions/examples of Assumption 4.1.

4.2 Algorithm Design: OPROVI-TV

In this section, we propose our algorithm that solves robust RL with interactive data collection for
RMDPs with S ×A-rectangular total-variation (TV) robust sets (Assumption 2.1 and Definition 2.4)
and satisfying the vanishing minimal value assumption (Assumption 4.1). Our algorithm, OPtimistic
RObust Value Iteration for TV Robust Set (OPROVI-TV, Algorithm 1), can automatically balance
exploitation and exploration during the interactive data collecting process while managing the
distributional robustness of the learned policy. The full Algorithm 1 is provided in Appendix B.4.2.

2Here we implicitly define 0
0
= 0 and a

0
= ∞ for any a > 0.
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Step I: Training Environment Transition Estimation (Line 3 to 5). At the beginning of each
episode k ∈ [K], we maintain an estimate of the transition kernel P ⋆ of the training environment
by using the historical data D = {(sτh, aτh, sτh+1)}

k−1,H
τ=1,h=1 collected from the interactiion with

the training environment. Specifically, we simply adopt a vanilla empirical estimator, defined
as P̂ k

h (s
′|s, a) = Nk

h (s, a, s
′)/(Nk

h (s, a) ∨ 1) for any (s, a, h, s′) ∈ S × A × S × [H], where
the count functions Nk

h (s, a, s
′) and Nk

h (s, a) are calculated based on the current dataset D by
Nk

h (s, a, s
′) =

∑k−1
τ=1 1

{
(sτh, a

τ
h, s

τ
h+1) = (s, a, s′)

}
and Nk

h (s, a) =
∑

s′∈S N
k
h (s, a, s

′) for any
(s, a, h, s′) ∈ S ×A×S × [H]. This just coincides with the transition estimator adopted by existing
non-robust online RL algorithms (Auer et al., 2008; Azar et al., 2017; Zhang et al., 2021).

Step II: Optimistic Robust Planning (Line 6 to 11). Given P̂ k(·|·, ·) that estimates the training
environment, we perform an optimistic robust planning to construct the policy πk to execute. Basically,
the optimistic robust planning follows the robust Bellman optimal equation (Proposition 2.3) to
approximate the optimal robust policy, but differs in that it maintains an upper bound and a lower
bound of the optimal robust value function and chooses the policy that maximizes the optimistic
estimate to incentivize exploration during data collection. Here the purpose of maintaining the lower
bound estimate is to facilitate the construction of the variance-aware optimistic bonus (see following),
which helps to sharpen our theoretical analysis.

▷ Simplifying the robust expectation. To utilize the vanishing minimal value condition (Assump-
tion 4.1), we take a closer look into the robust Bellman equation. By strong duality (Proposition 2.5),
the robust expectation EPρ(s,a;P )[V ] for any V ∈ [0, H] satisfying mins∈S V (s) = 0 is equivalent to

EPρ(s,a;P )

[
V
]
= sup

η∈[0,H]

{
− EP (·|s,a)

[(
η − V

)
+

]
+
(
1− ρ

2

)
· η
}
. (4.1)

Consequently, with a slight abuse of the notation, in the remaining of the paper, we re-define the
operator EPρ(s,a;P )[V ] as the right hand side of (4.1). Due to Assumption 4.1, the robust Bellman
(optimal) equation (Proposition 2.2 and Proposition 2.3) still holds under this new definition.

▷ Optimistic robust planning. With this in mind, the optimistic robust planning goes as follows.
Starting from V

k

H+1 = V k
H+1 = 0, we recursively define that for any (s, a) ∈ S ×A,

Q
k

h(s, a) = min
{
Rh(s, a) + EPρ(s,a;P̂k

h )

[
V

k

h+1

]
+ bonuskh(s, a),min

{
H, ρ−1

}}
, (4.2)

Qk

h
(s, a) = max

{
Rh(s, a) + EPρ(s,a;P̂k

h )

[
V

k

h+1

]
− bonuskh(s, a), 0

}
, (4.3)

where the robust expectation EPρ(s,a;P̂k
h ) follows the definition in the right hand side of (4.1), and the

bonus function bonuskh(s, a) ≥ 0 is defined later. Here we truncate the optimistic estimateQ
k

h via the
upper bound min{H, ρ−1} of the true optimal robust value function Q⋆

h,P⋆,Φ. This truncation arises
from the combined implication of Proposition 2.6 and the fact that min(s,a)∈S×AQ

⋆
h,P⋆,Φ(s, a) = 0

under Assumption 4.1. As we establish in Lemma E.2, Q
k

h and Qk

h
form upper and lower bounds

for Q⋆
h,P⋆,Φ and Qπk

h,P⋆,Φ under a proper choice of the bonus. After performing (4.2) and (4.3), we
choose the data collection policy πk

h to be the optimal policy with respect to the optimistic estimator
Q

k

h and define V
k

h and V k
h accordingly by

πk
h(·|·) = argmax

a∈A
Q

k

h(·, a), V
k

h(s) = Eπk
h(·|s)

[
Q

k

h(s, ·)
]
, V k

h(s) = Eπk
h(·|s)

[
Qk

h
(s, ·)

]
. (4.4)

We remark that the purpose of maintaining the lower bound estimate (4.3) is to facilitate the construc-
tion of the bonus and to help to sharpen our theoretical analysis. The construction of the policy πk is
still based on the optimistic estimator, which is why we call it optimistic robust planning. As indicated
by theory, the optimistic robust planning can effectively guide the policy to explore uncertain robust
value function estimates, striking a balance between exploration and exploitation while managing
distributional robustness.

▷ Bonus function. The bonus function bonuskh(s, a) is a Bernstein-style bound defined as√√√√VP̂k
h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
c1ι

Nk
h (s, a) ∨ 1

+
2EP̂k

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
H

+
c2H

2Sι

Nk
h (s, a) ∨ 1

+
1√
K
,(4.5)
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where ι = log(S3AH2K3/2/δ), c1, c2 > 0 are absolute constants, and δ signifies a pre-selected fail
probability. Under (4.5), Q

k

h and Qk

h
become upper and lower bounds of the optimal robust value

functions (Lemma E.2). More importantly, the bonus (4.5) is carefully designed for robust value
functions such that the summation of this bonus term (especially the leading variance term in (4.5))
over time steps is well controlled, for which we also develop new analysis methods. This is critical
for obtaining a sharp sample complexity of Algorithm 1.

4.3 Theoretical Guarantees

This section establishes the online regret and the sample complexity of OPROVI-TV (Algorithm 1).
Our main result is following, upper bounding the online regret of Algorithm 1, proved in Appendix E.

Theorem 4.3 (Online regret of OPROVI-TV). Given an RMDP with S×A-rectangular total-variation
robust set of radius ρ ∈ [0, 1) (Assumption 2.1 and Definition 2.4) satisfying Assumptions 4.1,
choosing the bonus function as (4.5) with sufficiently large c1, c2 > 0, then with probability at least
1− δ, Algorithm 1 satisfies

RegretΦ(K) ≤ O
(√

min
{
H, ρ−1

}
H2SAKι′

)
,

where ι′ = log2(SAHK/δ) and O(·) hides absolute constants and lower order terms in K.

Theorem 4.3 shows that Algorithm 1 enjoys a sublinear online regret of Õ(
√
K), meaning that it is

able to approximately find the optimal robust policy through interactive data collection. This is in
contrast with the general hardness result in Section 3 where sample-efficient learning is impossible
in the worst case. Thus we show the effectiveness of the minimal value assumption for robust RL
with interactive data collection. As a corollary, we have the following sample complexity bound for
Algorithm 1. It is obtained directly from Theorem 4.3 and a standard online to batch conversion.

Corollary 4.4 (Sample complexity of OPROVI-TV). Under the same setup and conditions as in
Theorem 4.3, with probability at least 1− δ, Algorithm 1 can output an ε-optimal policy within

O
(
min

{
H, ρ−1

}
H2SAι′′/ε2

)
(4.6)

episodes, where ι′′ = log(SAH/εδ) and O(·) hides absolute constants.

We compare the sample complexity (4.6) with prior arts on non-robust online RL and robust RL with a
generative model. On the one hand, (4.6) with ρ = 0 equals to Õ(H3SA/ε2), matching the minimax
sample complexity lower bound for online RL in non-robust MDPs (Azar et al., 2017). This means
that our algorithm design can naturally handle non-robust MDPs as a special case (please also see
Remark B.4 for why one can reduce Algorithm 1 to general non-robust MDPs under Assumption 4.1).
On the other hand, the previous work of Shi et al. (2023) for robust RL in infinite horizon RMDPs
with a TV robust set and a generative model showcases a minimax optimal sample complexity of

Õ
(
min

{
Hγ , ρ

−1
}
H2

γSA/ε
2
)
,

for ρ ∈ [0, 1), where weHγ := 1/(1−γ) is the effective horizon of the infinite γ-discounted RMDPs.
As a result, the sample complexity (4.6) of Algorithm 1 matches their result. We highlight that our
algorithm does not rely on a generative model and operates purely through interactive data collection.

Extensions of Algorithm 1 and its theory. In Appendix B.4.3, we extend Algorithm 1 to solve
a new type of RMDPs whose robust set consists of transition probabilities with bounded ratio to
the nominal kernel. The intuition is because it is equivalent to the S ×A-rectangular RMDP with
a TV robust set and vanishing minimal value assumption in an appropriate sense (Proposition 4.2)
Consequently, by a clever usage of Algorithm 1, we can also solve this new model sample-efficiently,
as is shown in Corollary B.5. Such a result echoes our intuition on the curse of support shift.

5 Conclusions and future works

This work shows that in the absence of any structural assumptions, robust RL via interactive data
collection necessarily induces a linear regret lower bound in the worst case due to the curse of support
shift. Under the vanishing minimal value assumption, an assumption that is able to effectively rule
out the potential support shift issues for RMDPs with a TV robust set, we propose a sample-efficient
robust RL algorithm for those RMDPs with sharp analysis. Potential future works include extending
to function approximation settings and other types of robust sets. See discussion in Appendix B.5.
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A Related Works

We give a detailed discussion on the related works in this section.

Robust reinforcement learning in robust Markov decision processes. Robust RL is usually
framed as a robust Markov decision process (RMDP) (Iyengar, 2005; El Ghaoui and Nilim, 2005;
Wiesemann et al., 2013). There is a long line of work dedicated to the problem of how to solve for
the optimal robust policy of a given RMDP, i.e., planning (Iyengar, 2005; El Ghaoui and Nilim, 2005;
Xu and Mannor, 2010; Wang and Zou, 2022; Wang et al., 2022; Kuang et al., 2022; Wang et al.,
2023a; Yu et al., 2023; Zhou et al., 2023; Li and Lan, 2023; Wang et al., 2023c; Ding et al., 2024).
Recently, the community has also witnessed a growing body of work on sample-efficient robust RL
in RMDPs with different data collection oracles, including the generative model setup (Yang et al.,
2022; Panaganti and Kalathil, 2022; Si et al., 2023; Wang et al., 2023b; Yang et al., 2023b; Xu et al.,
2023; Clavier et al., 2023; Wang et al., 2023d; Shi et al., 2023), offline setting (Zhou et al., 2021b;
Panaganti et al., 2022; Shi and Chi, 2022; Ma et al., 2022; Blanchet et al., 2023; Liu and Xu, 2024b;
Wang et al., 2024), and interactive data collection setting (Badrinath and Kalathil, 2021; Wang and
Zou, 2021; Liu and Xu, 2024a).

Our work falls into the paradigm of sample-efficient robust RL with interactive data collection. Wang
and Zou (2021) and Badrinath and Kalathil (2021) propose efficient online learning algorithms to
obtain the optimal robust policy of an infinite horizon RMDP, but none of them handle the challenge of
exploration in online RL by assuming the access to explorative policies. This assumption enables the
learner to collect high-quality data essential for effective learning and decision-making. In contrast,
our work focuses on developing efficient algorithms for the fully online setting, where there is no
predefined exploration policy to use. Under this more challenging setting, we address the exploration
challenge through algorithmic design rather than relying on assumed access to explorative policies.

During the preparation of this work, we are aware of several concurrent and independent works (Liu
and Xu, 2024a,b; Wang et al., 2024), which study a different type of RMDPs known as d-rectangular
linear MDPs (Ma et al., 2022; Blanchet et al., 2023). In particular, Liu and Xu (2024b) and Wang
et al. (2024) consider the offline setting, while Liu and Xu (2024a) investigate robust RL through
interactive data collection (off-dynamics learning), thus bearing closer relevance to our work. More
specifically, under the existence of a “fail-state”, the algorithm in Liu and Xu (2024a) can learn an
ε-optimal robust policy with provable sample efficiency. In contrast, our work first explicitly uncovers
the fundamental hardness of doing robust RL in RMDPs with a TV distance based robust set and
without additional assumptions. To overcome the inherent difficulty, we adopt a vanishing minimal
value assumption that strictly generalizes the “fail-state” assumption used in Liu and Xu (2024a).
Moreover, our focus is on tabular S ×A-rectangular RMDPs, with customized algorithmic design
and theoretical analysis which allow us to obtain a sharp sample complexity bound.

Finally, in Table 1, we compare the sample complexity of our algorithm with prior work on robust RL
for RMDPs with S ×A-rectangular TV robust sets under various settings (generative model/offline
dataset). We remark that the works of Panaganti and Kalathil (2022) and Blanchet et al. (2023) are in
the paradigm of function approximation, and here we reduce their general sample complexity result
to the tabular setup we consider.

Sample-efficient online non-robust reinforcement learning. Our work is also closely related to
online non-robust RL, which is often formulated as a Markov decision process (MDP) with online
data collection. For non-robust online RL, the key challenge is the exploration-exploitation tradeoff.
There has been a long line of work (Azar et al., 2017; Dann et al., 2017; Jin et al., 2018; Zanette
and Brunskill, 2019; Zhang et al., 2020, 2021; Ménard et al., 2021; Wu et al., 2022; Li et al., 2023;
Zhang et al., 2023) addressing this challenge in the context of tabular MDPs, where the state space
and action space are finite and also relatively small. In particular, many algorithms (e.g., UCBVI in
Azar et al. (2017)) have been proven capable of finding an ε-optimal policy within Õ(H3SA/ε2)
sample complexity. Notably, a standard MDP corresponds to an RMDP with a TV robust set and
ρ = 0, suggesting that OPROVI-TV can naturally achieve nearly minimax-optimality for non-robust
RL. Moving beyond the tabular setups, recent works also investigate online non-robust RL with
linear function approximation (Jin et al., 2020; Ayoub et al., 2020; Zhou et al., 2021a; Zhong and
Zhang, 2023; Huang et al., 2023b; He et al., 2023; Agarwal et al., 2023) and even general function
approximations (Jiang et al., 2017; Sun et al., 2019; Du et al., 2021; Jin et al., 2021; Foster et al.,
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2021; Liu et al., 2022; Zhong et al., 2022; Liu et al., 2023; Huang et al., 2023a; Xu and Zeevi, 2023;
Agarwal et al., 2023).

Corruption robust reinforcement learning. Generally speaking, our research is also related to
another form of robust RL, namely corruption robust RL (Lykouris et al., 2021; Wei et al., 2022;
Zhang et al., 2022; Ye et al., 2023a,b; Yang et al., 2023a; Ye et al., 2024). This branch of researches
on robust RL addresses scenarios where training data is corrupted, presenting a distinct challenge
from distributionally robust RL. The latter concerns testing time robustness, where the agent is
evaluated in a perturbed environment after being trained on nominal data. These two forms of robust
RL, while sharing the overarching goal to enhance agent resilience, operate within different contexts
and confront distinct challenges. Thus, a direct comparison between these two types of robust RL is
difficult because each addresses unique aspects of resilience.

B Further Discussions

This section complements the main part of the paper by further commenting and discussing several
aspects of the paper. Due to space limits, these important remarks are provided here.

B.1 Discussions on Introduction (Section 1)

About a generative model and a simulator. A generative model here means a mechanism that
when queried at some state, action, and time step, returns a sample of next state. Here we distinguish
this notion with the notion of simulator or simulated environment which generally refers to a human-
made training environment that mimics the real-world environment. With a generative model on
hand, interactive data collection is no longer needed, but in a simulated environment, it is common to
train a robust policy through interactive data collection in practice.

The definition of total-variation robust set. We notice that all of the previous work on sample-
efficient robust RL in RMDPs with TV robust sets (Yang et al., 2022; Panaganti and Kalathil, 2022;
Panaganti et al., 2022; Xu et al., 2023; Blanchet et al., 2023; Shi et al., 2023) relies on defining the
TV distance through the general f -divergence so that a strong duality representation holds. But this
implicitly requires the testing environment transition probability is absolute continuous w.r.t. the
training environment transition probability. In this paper, we do not make such a restriction. We prove
the same strong duality even if the absolute continuity does not hold. In fact, all the previous work
can be directly extended to such TV distance definition via our more general strong duality result.

An existing work. We note that an existing work (Dong et al., 2022) also studies the problem of
robust RL with interactive data collection. They study S ×A-rectangular RMDPs with a TV robust
set, assuming that the support of the training environment transition is the full state space S. They
claim the existence of an algorithm that enjoys a Õ(

√
K)-online regret. We point out that their proof

exhibits an essential flaw (misuse of Lemma 12 therein) and therefore the regret they claim is invalid.

The range of the robust set size ρ. We do not signify the situation when ρ = 1 since in that case
the TV robust set contains all possible transition probabilities, making the problem statistically trivial.
In that case, no sample is needed.

B.2 Discussions on Preliminaries (Section 2)

B.2.1 Robust Markov Decision Processes

Robust Bellman equations. We remark that the original version of the robust Bellman equation
(Iyengar, 2005) is for infinite horizon RMDPs and a customized proof of robust Bellman equation for
finite horizon RMDPs (Proposition 2.2) can be found in Appendix A.1 of Blanchet et al. (2023). The
robust Bellman optimal equation (Proposition 2.3) is then a corollary or can be proved similarly.

Strong duality under TV distance robust set. An essential property of the TV robust set is that
the robust expectation involved in the robust Bellman equations (Propositions 2.2 and 2.3) has a
duality representation that only uses the expectation under the nominal transition kernel. Previous
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works, e.g., Yang et al. (2022), have proved such a result when the TV distance is defined through
f -divergence. Here we extend such a result to the TV distance defined directly though (2.2) that
allows a difference support between p and q.

Remark B.1. Despite all previous works on RMDPs with TV robust sets relying on the definition
of TV distance DTV(p(·)∥q(·)) with absolute continuity of p with respect to q to obtain the strong
duality representation in the form of (2.3), their results can be directly extended to TV distance that
allows for different support between p and q thanks to Proposition 2.5.

Value gap between maximum. We note that in the proof of Proposition 2.6, we actually show a
tighter form of bound of the gap between the maximum and minimum as

1

ρ
·
(
1− (1− ρ)H

)
.

But in the sequel, we mainly use the form of min{H, ρ−1} for its brevity and the fact of (1− (1−
ρ)H)/ρ = Θ(min{H, ρ−1}) in the sense that

c ·min
{
H, ρ−1

}
≤ (1− (1− ρ)H)/ρ ≤ min

{
H, ρ−1

}
for any H ≥ H0 ∈ N+ and ρ ∈ [0, 1] with some constant c > 0 that is independent of (H, ρ).

In contrast with a crude bound of H , such a fine upper bound decreases when ρ is large, which is
essential to understanding the statistical limits of doing robust RL in RMDPs with TV robust sets.

B.2.2 Robust RL with Interactive Data Collection

Sample complexity. The metric of sample complexity is connected with the sample complexity
used in robust RL with generative models and offline settings (see related works for the references),
wherein the sample complexity means the minimum number of generative samples or pre-collected
offline data required to achieve ε-optimality. In contrast, here the sample complexity is measuring the
least number of interactions with the training environment needed to learn π⋆, where no generative
or offline sample is available. Such a learning protocol casts unique challenges on the algorithmic
design and theoretical analysis to get the optimal sample complexity.

B.3 Discussions on Hardness Result: The Curse of Support Shift (Section 3)

In contrast of the interactive data collection setting we consider, doing robust RL with a generative
model or an offline dataset with good coverage properties does not face the difficulty we displayed
through Example 3.1. It turns out that any RMDP with S ×A-rectangular total-variation robust set
(including Example 3.1) can be solved in a sample-efficient manner therein, see Yang et al. (2022);
Panaganti and Kalathil (2022); Panaganti et al. (2022); Xu et al. (2023); Blanchet et al. (2023); Shi
et al. (2023) and Remark B.1. The intuitive reason is that, for the generative model setting, the learner
can directly query any state-action pair to estimate the nominal transition kernel P ⋆, and thus no
support shift happens. The same reason holds for the offline setup with a good-coverage dataset.

There is a broader understanding of the curse of support shift that hinders the tractability of robust
RL via interactive data collection. The concept of support shift could be comprehended within
a broader context beyond the disjointness of certain parts of the support sets of the training and
testing environments. Instead, ensuring a “high probability of disjointness” is enough to maintain
the integrity of the hardness result. For instance, we can modify the state sgood in Example 3.1 so
that it is no longer an absorbing state. Rather, sgood could transit to sbad with a small probability,
such as 2−H . This modification expands the support of the training environment to encompass the
entire state space. Nevertheless, acquiring information about sbad necessitates exponential samples,
thereby preserving the hardness result.

B.4 Discussions on A Solvable Case, Efficient Algorithm, and Sharp Analysis (Section 4)

B.4.1 Vanishing Minimal Value Assumption

Another understanding of Assumption 4.1. To understand this from another perspective, it
could be shown that under the conclusions of Proposition 4.2, the robust value functions of any
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policy π is equivalent to the robust value functions of this policy under a another discounted RMDP
(S,A, H, P ⋆, R′,Φ′) with R′

h(s, a) = (ρ′)h−1Rh(s, a) and Φ′ given by

Φ′(P ) =
⊗

(s,a)∈S×A

Bρ′(s, a;P ). (B.1)

And therefore we are equivalently considering this new type of RMDPs. Please refer to Section B.4.3
for more discussions on the connections between the two types of RMDPs.

Examples of Assumption 4.1. In the sequel, we provide a concrete condition that makes Assump-
tion 4.1 hold, which imposes that the state space of the RMDP has a “closed” subset of “fail-states”
with zero rewards.

Condition B.2 (Fail-states). There exists a subset Sf ⊂ S of fail states such that

Rh(s, a) = 0, P ⋆
h (Sf |s, a) = 1, ∀(s, a, h) ∈ Sf ×A× [H].

This type of “fail-states” condition is first proposed by Panaganti et al. (2022) (with |Sf | = 1) to
handle the computational issues for robust offline RL under function approximations (out of the scope
of our work). In contrast, here we make the vanishing minimal value assumption in order for tackling
the support shift or extrapolation issue for the interactive data collection setup. The comparison
between the vanishing minimal value assumption (Assumption 4.1) and the “fail-states” condition
(Condition B.2) is given below.

Remark B.3 (Comparison between Assumption 4.1 and Condition B.2). We first observe that
Condition B.2 implies that mins∈S V

π
h,P⋆,Φ(s) = 0 for any policy π and step h ∈ [H], therefore

satisfying the minimal value assumption (Assumption 4.1). Conversely, the vanishing minimal value
assumption in Assumption 4.1 is strictly more general than the fail-state condition in Condition B.2.
To illustrate, one can consider an RMDP characterized by the state space S = {s1, s2}, action space
A = {a1}, time horizon H = 2, reward function Rh(s, a) = 1{s = s2}, and transition probabilities
defined as follows:

P ⋆
1 (s1|s1, a1) = 1− ρ, P ⋆

1 (s2|s1, a1) = ρ, P ⋆
1 (s1|s2, a1) = 0, P ⋆

1 (s2|s2, a1) = 1,

where ρ is the radius of the robust set. It is evident that no fail-state emerges within such an
RMDP structure. However, this RMDP satisfies the vanishing minimal value assumption since
V ⋆
1,P⋆,Φ(s1) = 0.

Remark B.4 (Reduction to non-robust MDP without loss of generality). It is noteworthy that
assuming the vanishing minimal value (Assumption 4.1) or the presence of fail-states (Condition B.2)
in the non-robust case (ρ = 0) is without loss of generality. This is achievable by expanding the prior
state space S of MDP to include an additional state sf , denoted as the fail-state. More importantly,
this augmentation does not alter the optimal value or the optimal value function of the original MDP.
Consequently, it becomes sufficient to seek the optimal policy within the augmented MDP, which
satisfies the conditions of vanishing minimal value (Assumption 4.1) or the existence of fail-states
(Condition B.2). This indicates that our algorithm and theoretical analysis in the sequel can be
directly reduced to non-robust MDPs without additional assumptions.

B.4.2 Algorithm Design: OPROVI-TV

The full algorithm OPROVI-TV is given in Algorithm 1.

B.4.3 Extensions to Robust Set with Bounded Transition Probability Ratio

In this section, we show that our algorithm design (Algorithm 1) can also be applied to S × A-
rectangular discounted RMDPs with robust sets given by (B.1) (i.e., bounded ratio between training
and testing transition probabilities). We establish that our main theoretical result in Section 4.3 can
imply a sublinear regret upper bound for this model, which means that this type of RMDPs can also
be solved sample-efficiently by a clever usage of Algorithm 1. This coincides with our intuition on
support shift in Section 4.1.
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Algorithm 1 OPtimistic RObust Value Iteration for TV Robust Set (OPROVI-TV)

1: Initialize: dataset D = ∅.
2: for episode k = 1, · · · ,K do
3: Training environment transition estimation:
4: Update the count functions Nk

h (s, a, s
′) and Nk

h (s, a) based on D.
5: Calculate the transition kernel estimator P̂ k

h as Nk
h (s, a, s

′)/(Nk
h (s, a) ∨ 1).

6: Optimistic robust planning:
7: Set V

k

H+1 = V k
H+1 = 0.

8: for step h = H, · · · , 1 do
9: Set Q

k

h(·, ·) and Qk

h
(·, ·) as (4.2) and (4.3), with the bonus function bonuskh(·, ·) defined in

(4.5).
10: Set πk

h(·|·) = argmaxa∈A Q
k

h(·, a), V
k

h(·) = Eπk
h(·|·)

[Q
k

h(·, ·)], and V k
h(·) =

Eπk
h(·|·)

[Qk

h
(·, ·)].

11: end for
12: Execute the policy in training environment and collect data:
13: Receive the initial state sk1 ∈ S.
14: for step h = 1, · · · , H do
15: Take action akh ∼ πk

h(·|skh), observe reward Rh(s
k
h, a

k
h) and the next state skh+1.

16: end for
17: Set D as D ∪ {(skh, akh, skh+1)}Hh=1.
18: end for
19: Output: Randomly (uniformly) return a policy from {πk}Kk=1.

S × A-rectangular discounted RMDPs with robust set (B.1). We first formally define the
model we consider. We define a finite-horizon discounted RMDP as a finite-horizon RMDP Mγ =
(S,A, H, P ⋆, Rγ ,Φ

′), where the robust set Φ′ is given by (B.1), i.e.,

Φ′(P ) =
⊗

(s,a)∈S×A

{
P̃ (·) ∈ ∆(S) : sup

s′∈S

P̃ (s′)

P ⋆
h (s

′|s, a)
≤ 1

ρ′

}
:=

⊗
(s,a)∈S×A

Bρ′(s, a;P ⋆). (B.2)

This robust set contains transition probabilities that share the same support as the nominal transition
kernel. The reward function Rγ = {γh−1 · Rh}Hh=1, where γ ∈ (0, 1) is the discount factor and
Rh ∈ [0, 1] is the true reward at step h. That is, the robust value function is now the worst case
expected discounted total reward.

Algorithm and regret bound. Now we show that we can apply Algorithm 1 to solve robust RL in
S ×A-rectangular discounted RMDPs with robust set (B.2) via interactive data collection.

As motivated by the discussions under Proposition 4.2, we define an auxiliary finite-horizon TV-
RMDP M̃ as M̃ = (S̃,A, H, P̃ ⋆, R̃, Φ̃) which include an additional “fail-state” sf . More specifi-
cally, the state space S̃ = S ∪ {sf}. The transition kernel P̃ ⋆ is defined as, for any step h ∈ [H],

P̃ ⋆
h (·|s, a) = P ⋆

h (·|s, a), ∀(s, a) ∈ S ×A and P̃ ⋆
h (·|sf , a) = δsf (·), ∀a ∈ A. (B.3)

The reward function R̃ is defined as, for any step h ∈ [H],

R̃h(s, a) =

(
γ

ρ′

)h−1

·Rh(s, a), ∀(s, a) ∈ S ×A and R̃h(sf , a) = 0, ∀a ∈ A.

We suppose that the discount factor γ ≤ ρ′ so that the reward function R̃h ∈ [0, 1]. The robust
mapping Φ̃ is defined as, for any P̃ : S̃ × A 7→ ∆(S̃),

Φ̃(P̃ ) =
⊗

(s,a)∈S̃×A

{
P̃ (·) ∈ ∆(S̃) : DTV

(
P (·)

∥∥P̃ (·|s, a)) ≤ ρ
}

:=
⊗

(s,a)∈S̃×A

P̃ρ(s, a; P̃ ), ρ = 2− 2ρ′.

19



Therefore, M̃ is an RMDP with S × A-rectangular TV robust set of radius ρ and satisfying As-
sumption 4.1 (because it satisfies the “fail-state” Condition B.2). Furthermore, for any initial state
s1 ∈ S̃ \ {sf} = S, the interaction with the transition kernel P̃ ⋆ is equivalent to the interaction
with the transition kernel P ⋆ of the original RMDP Mγ , since by the definition (B.3), starting
from any s ̸= sf the agent would follow the same dynamics as P ⋆. What’s more, for any policy
π̃h : S̃ 7→ ∆(A) for M̃, it naturally induces the unique policy π̃S,h : S 7→ ∆(A) for the original
RMDP Mγ .

Therefore, we can run Algorithm 1 on the auxiliary RMDP M̃, starting from the initial state
s1 ∈ S̃ \ {sf}, which only needs the interaction with P ⋆. Suppose the output policy by the algorithm
is {π̃k}Kk=1, then the following corollary shows the induced policy {π̃k

S}Kk=1 for the original RMDP
Mγ enjoys a sublinear regret.

Corollary B.5 (Online regret of Algorithm 1 for discounted RMDPs with robust sets (B.2)). Consider
an S × A-rectangular γ-discounted RMDP with robust set (B.2) satisfying 0 ≤ γ ≤ ρ′ ∈ (1/2, 1].
There exists an algorithm ALG (specified by the above discussion) such that its online regret for this
RMDP is bounded by

RegretALG
Φ′ (K) ≤ O

(√
min

{
H, (2− 2ρ′)−1

}
H2SAKι′

)
,

where ι′ = log2(SAHK/δ) and O(·) hides absolute constants and lower order terms in K.

Proof of Corollary B.5. See Appendix F.1 for a detailed proof of Corollary B.5.

Corollary B.5 shows that besides S × A-rectangular RMDPs with TV robust set and vanishing
minimal value assumption, the S × A-rectangular discounted RMDP with robust set of bounded
transition probability ratio (B.2) can also be solved sample-efficiently by robust RL via interactive
data collection. This also echoes our intuition on the support shift issue in Section 4.1. Furthermore,
the regret decays as ρ′ decays in which case the transition probability ratio bound becomes higher,
i.e., the robust set becomes larger.

Remark B.6. The upper bound in Corollary B.5 does not depend on the discount factor γ since
Algorithm 1 adopts a coarse bound of R̃h ≤ 1. The upper bound can be directly improved to be
γ-dependent using a tighter truncation in step (4.2) of Algorithm 1.

B.5 Discussions of Limitations and Future Works

In this work, we show that in the absence of any structural assumptions, robust RL through interactive
data collection necessarily induces a linear regret lower bound in the worst case due to the curse of
support shift. Meanwhile, under the vanishing minimal value assumption, an assumption that is able
to effectively rule out the potential support shift issues for RMDPs with a TV robust set, we propose
a sample-efficient robust RL algorithm for those RMDPs. We discuss some potential extensions here
and the associated challenges next.

Extension to function approximation setting. The vanishing minimal value assumption also
suffices for developing sample-efficient algorithms for S ×A-rectangular TV-robust-set RMDPs with
linear or even general function approximation (Blanchet et al., 2023). Nonetheless, achieving the
nearly optimal rate under general function approximation remains elusive.

Extension to other types of robust set. Beyond the TV distance based robust set we consider,
recent literature on robust RL also investigate other types of ϕ-divergence based robust set including
KL divergence, χ2 distance (Yang et al., 2022; Shi and Chi, 2022; Blanchet et al., 2023; Xu et al.,
2023; Shi et al., 2023). An interesting direction of future work is to investigate is it also possible
and, if possible, can we design provably sample-efficient robust RL algorithms with interactive data
collection for RMDPs with those types of robust sets. Notably, the KL divergence based robust set
naturally does not suffer from the curse of support shifts that gives rise to the hardness for the TV
robust set case. However, we find that there are other difficulties for robust RL in KL divergence
based RMDPs through interactive data collection. Meanwhile, the optimal sample complexity for
robust RL in RMDPs with KL divergence robust set is still elusive even in the offline learning setup
(Shi and Chi, 2022). We leave the study of RMDPs with KL divergence robust set for future work.
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C Proofs for Properties of RMDPs with TV Robust Sets

C.1 Proof of Proposition 2.5

To simplify the notations, we present the following lemma, which directly implies Proposition 2.5.

Lemma C.1 (Strong duality for TV robust set). The following duality for total variation robust set
holds, for f : S 7→ [0, H],

inf
Q(·):DTV(Q(·)∥Q⋆(·))≤σ

EQ(·)[f ] = sup
η∈[0,H]

{
−EQ⋆(·)

[
(η − f)+

]
− σ

2
·
(
η −min

s∈S
f(s)

)
+

+ η

}
,

where σ ∈ [0, 1] and the TV distance DTV(Q(·)∥Q⋆(·)) is defined as

DTV(Q(·)∥Q⋆(·)) = 1

2

∑
s∈S

|Q(s)−Q⋆(s)|.

Proof of Lemma C.1. First, we note that when Q⋆(s) > 0 for any s ∈ S, i.e., any Q(·) ∈ ∆(S) is
absolute continuous w.r.t. Q⋆(·), it has been proved by Yang et al. (2022) that

inf
Q(·):DTV(Q(·)∥Q⋆(·))≤σ

EQ(·)[f ] = sup
η∈R

{
−EQ⋆(·)

[
(η − f)+

]
− σ

2
·
(
η −min

s∈S
f(s)

)
+

+ η

}
.

Furthermore, as is shown in Lemma H.8 in Blanchet et al. (2023), the optimal dual variable η⋆ lies in
[0, H] when f ∈ [0, H]. Therefore, for Q⋆(·) such that Q⋆(s) > 0 for any s ∈ S, we have

inf
Q(·):DTV(Q(·)∥Q⋆(·))≤σ

EQ(·)[f ] = sup
η∈[0,H]

{
−EQ⋆(·)

[
(η − f)+

]
− σ

2
·
(
η −min

s∈S
f(s)

)
+

+ η

}
.

Now for any Q⋆(·) ∈ ∆(S), we can prove the same result by averaging Q⋆(·) with a uniform
distribution and taking the limit. More specifically, denote U(·) ∈ ∆(S) as the uniform distribution
on S, i.e., U(s) = 1/|S| for any s ∈ S. Consider the following distributionally robust optimization
problem, for any ϵ ∈ [0, 1],

P(ϵ) := inf
Q(·):DTV

(
Q(·)∥(1−ϵ)Q⋆(·)+ϵ·U(·)

)
≤σ

EQ(·)[f ].

By our previous discussions, since (1− ϵ)Q⋆(s) + ϵ · U(s) > 0 for any s ∈ S and ϵ > 0, we have
that

P(ϵ) = D(ϵ), ∀ϵ ∈ (0, 1], (C.1)

where the function D(·) : [0, 1] 7→ R+ is defined as

D(ϵ) := sup
η∈[0,H]

{
−(1− ϵ) · EQ⋆(·)

[
(η − f)+

]
− ϵ · EU(·)

[
(η − f)+

]
− σ

2
·
(
η −min

s∈S
f(s)

)
+

+ η

}
.

By the definition of P(·) and D(·), our goal is to prove that P(0) = D(0). To this end, it suffices
to prove that (i) limϵ→0+ D(ϵ) exists and limϵ→0+ D(ϵ) = D(0); and (ii) limϵ→0+ P(ϵ) = P(0). To
prove (i), consider that for any ϵ > 0, by the definition of D(·),

|D(0)− D(ϵ)| ≤ sup
η∈[0,H]

{
ϵ · EQ⋆(·)

[
(η − f)+

]
+ ϵ · EU(·)

[
(η − f)+

]}
≤ ϵ · 2H.

Since the right hand side tends to 0 as ϵ tends to 0, we know that limϵ→0+ D(ϵ) exists, limϵ→0+ D(ϵ) =
D(0). This also indicates that limϵ→0+ P(ϵ) exists due to (C.1). This proves (i). Now we prove (ii).
Notice that since the set{

Q(·) ∈ ∆(S) : DTV

(
Q(·)∥(1− ϵ)Q⋆(·) + ϵ · U(·)

)
≤ σ

}
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is a closed subset of R|S|, and EQ(·)[f ] is a continuous function of Q(·) ∈ R|S| w.r.t. the ∥ · ∥2-norm,
we can denote the optimal solution to the optimization problem involved in P(ϵ) as

Q†
ϵ(·) = arginf

Q(·):DTV

(
Q(·)∥(1−ϵ)Q⋆(·)+ϵ·U(·)

)
≤σ

EQ(·)[f ],

which also gives that

P(ϵ) = EQ†
ϵ(·)[f ] =

∑
s∈S

Q†
ϵ(s)f(s).

With these preparations, we are able to prove (ii). On the one hand, consider for any ϵ ∈ (0, 1],

DTV

(
(1− ϵ) ·Q†

0(·) + ϵ · U(·)
∥∥(1− ϵ) ·Q⋆(·) + ϵ · U(·)

)
≤ (1− ϵ) · σ ≤ σ.

Therefore, for any ϵ ∈ (0, 1], it holds that

P(ϵ) = inf
Q(·):DTV

(
Q(·)∥(1−ϵ)Q⋆(·)+ϵ·U(·)

)
≤σ

EQ(·)[f ]

≤ E(1−ϵ)·Q†
0(·)+ϵ·U(·)[f ] = (1− ϵ) · EQ†

0
[f ] + ϵ · EU(·)[f ],

which implies that

lim
ϵ→0+

P(ϵ) ≤ EQ†
0
[f ] = P(0). (C.2)

On the other hand, for any ϵ ∈ (0, 1],

σ ≥ 1

2

∑
s∈S

∣∣∣Q†
ϵ(s)− (1− ϵ) ·Q⋆(s)− ϵ · U(s)

∣∣∣
≥ (1− ϵ) ·DTV(Q

†
ϵ(·)∥Q⋆(·))− ϵ ·DTV(Q

†
ϵ(·)∥U(·)),

and by using DTV(Q
†
ϵ(·)∥U(·)) ≤ 1, we obtain that

DTV(Q
†
ϵ(·)∥Q⋆(·)) ≤ σ + ϵ

1− ϵ
. (C.3)

Consider a sequence of {ϵi}∞i=1 converging to 0, i.e., limi→0+ ϵi = 0. Since {Q†
ϵi(·)}

∞
i=1 is a

sequence contained in a compact subset of R|S|, it has a converging (w.r.t. ∥ · ∥2) subsequence
denoted by {Q†

ϵik
(·)}∞k=1 whose limit is denoted as Q†(·) ∈ ∆(S). By (C.3), we know that

DTV(Q
†
ϵik

(·)∥Q⋆(·)) ≤ σ + ϵik
1− ϵik

. (C.4)

Taking limit on both sides of (C.4) (limit of LHS exists since the TV distance is a continuous function
(w.r.t. ∥ · ∥2) of its first entry and the limit of RHS obviously exists), we obtain that

DTV(Q
†(·)∥Q⋆(·)) ≤ σ. (C.5)

Now we can arrive at the following,

lim
ϵ→0+

P(ϵ) = lim
ϵ→0+

EQ†
ϵ(·)[f ] = lim

k→0+
EQ†

ϵik
(·)[f ] = EQ†(·)[f ]

≥ inf
Q(·):DTV(Q(·)∥Q⋆(·))≤σ

EQ(·)[f ] = P(0), (C.6)

where the first and the last equality follows from the definition of P(·), the second equality follows
from the choice of the sequence {ϵik}∞k=1 that converges to 0, the third equality is due to the continuity
of EQ(·)[f ] of Q(·) (w.r.t. ∥ · ∥2), and the inequality follows from (C.5). Finally, with (C.2) and (C.6),
we conclude that

lim
ϵ→0+

P(ϵ) = P(0),

which proves (ii). Consequently, by (i) and (ii)

P(0) = lim
ϵ→0+

P(ϵ) = lim
ϵ→0+

D(ϵ) = D(0).

Recalling the definitions of P(·) and D(·), we conclude the proof of Lemma C.1.
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C.2 Proof of Proposition 2.6

Proof of Proposition 2.6. Here we prove a stronger result that for any policy π and step h ∈ [H]

max
(s,a)∈S×A

Qπ
h,P,Φ(s, a)− min

(s,a)∈S×A
Qπ

h,P,Φ(s, a) ≤
1

ρ
·
(
1− (1− ρ)H−h+1

)
, (C.7)

max
s∈S

V π
h,P,Φ(s)−min

s∈S
V π
h,P,Φ(s) ≤

1

ρ
·
(
1− (1− ρ)H−h+1

)
. (C.8)

First, we note that for the last step h = H , (C.7) and (C.8) naturally hold since RH ∈ [0, 1]. Now
suppose that (C.8) hold for some step h+ 1. By robust Bellman equation (Proposition 2.2), we have
that

Qπ
h,P⋆,Φ(s, a) = Rh(s, a) + EPρ(s,a;P⋆

h )

[
V π
h+1,P⋆,Φ

]
≤ 1 + EPρ(s,a;P⋆

h )

[
V π
h+1,P⋆,Φ

]
, ∀(s, a) ∈ S ×A, (C.9)

where the inequality uses the fact that Rh ≤ 1. Now we denote the state with the least robust value as

s0 ∈ argmin
s∈S

V π
h+1,P⋆,Φ(s). (C.10)

Inspired by Shi et al. (2023), we choose a transition kernel P̃h satisfying that∥∥∥P̃h(·|s, a)
∥∥∥
1
= 1− ρ, P ⋆

h (s
′|s, a) ≥ P̃h(s

′|s, a) ≥ 0, ∀(s, a, s′) ∈ S ×A× S,

which implies that

DTV

(
P̃h(·|s, a) + ρ · δs0(·)

∥∥∥P ⋆
h (·|s, a)

)
≤ ρ, ∀(s, a) ∈ S ×A.

Here δs0(·) is the point measure centered at s0 defined in (C.10). Combined with (C.9), we have that

Qπ
h,P⋆,Φ(s, a) ≤ 1 + EP̃h(·|s,a)+ρ·δs0 (·)

[
V π
h+1,P⋆,Φ

]
= 1 + EP̃h(·|s,a)

[
V π
h+1,P⋆,Φ

]
+ ρ · V π

h+1,P⋆,Φ(s0)

≤ 1 + (1− ρ) ·max
s∈S

V π
h+1,P⋆,Φ(s) + ρ ·min

s∈S
V π
h+1,P⋆,Φ(s). (C.11)

Consequently from (C.11), we further obtain that for any (s, a) ∈ S ×A,

Qπ
h,P⋆,Φ(s, a)− min

(s,a)∈S×A
Qπ

h,P⋆,Φ(s, a)

≤ 1 + (1− ρ) ·max
s∈S

V π
h+1,P⋆,Φ(s) + ρ ·min

s∈S
V π
h+1,P⋆,Φ(s)− min

(s,a)∈S×A
Qπ

h,P⋆,Φ(s, a)

= 1 + (1− ρ) ·
(
max
s∈S

V π
h+1,P⋆,Φ(s)−min

s∈S
V π
h+1,P⋆,Φ(s)

)
+min

s∈S
V π
h+1,P⋆,Φ(s)− min

(s,a)∈S×A
Qπ

h,P⋆,Φ(s, a)

≤ 1 + (1− ρ) ·
(
max
s∈S

V π
h+1,P⋆,Φ(s)−min

s∈S
V π
h+1,P⋆,Φ(s)

)
, (C.12)

where the first inequality uses (C.11) and the last inequality uses the following fact,

min
(s,a)∈S×A

Qπ
h,P⋆,Φ(s, a) = min

(s,a)∈S×A

{
Rh(s, a) + EPρ(s,a;P⋆

h )

[
V π
h+1,P⋆,Φ

]}
≥ min

s∈S
V π
h+1,P⋆,Φ(s).

Now applying the assumption that (C.8) holds at step h+1 to the right hand side of (C.12), we obtain
that

max
(s,a)∈S×A

Qπ
h,P⋆,Φ(s, a)− min

(s,a)∈S×A
Qπ

h,P⋆,Φ(s, a) ≤ 1 +
1− ρ

ρ
·
(
1− (1− ρ)H−h

)
=

1

ρ
·
(
1− (1− ρ)H−h+1

)
.
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Thus given (C.8) at step h+ 1, we can derive (C.7) at step h. Now by noticing that

min
(s,a)∈S×A

Qπ
h,P⋆,Φ(s, a) ≤ min

s∈S
V π
h,P⋆,Φ(s) ≤ max

s∈S
V π
h,P⋆,Φ(s) ≤ max

(s,a)∈S×A
Qπ

h,P⋆,Φ(s, a),

we can conclude that (C.8) also holds at step h. As a result, by an induction argument, we finish the
proof of Proposition 2.6.

C.3 Proof of Proposition 4.2

Proof of Proposition 4.2. We consider some fixed (s, a, h) ∈ S × A × [H] throughout proof. By
Lemma C.1, we have that

EPρ(s,a;P⋆
h ) [V ] = sup

η∈R

{
−EP⋆

h (·|s,a)
[
(η − V )+

]
− ρ

2
·
(
η −min

s∈S
V (s)

)
+

+ η

}

= sup
η∈[0,H]

{
−EP⋆

h (·|s,a)
[
(η − V )+

]
− ρ

2
·
(
η −min

s∈S
V (s)

)
+

+ η

}

= sup
η∈[0,H]

{
− EP⋆

h (·|s,a)
[
(η − V )+

]
+
(
1− ρ

2

)
· η
}
, (C.13)

where the second equality follows from the fact the optimal dual variable η⋆ is in [0, H] when
V ∈ [0, H] (see e.g., Lemma H.8 in Blanchet et al. (2023)), and the last equality is obtained by the
fact that mins∈S V (s) = 0.

Part (i). For any η ∈ [0, H] and Q ∈ Bρ′(s, a;P ⋆
h ), we have that

−EP⋆
h (·|s,a)

[
(η − V )+

]
+
(
1− ρ

2

)
· η ≤

(
1− ρ

2

)
·
(
− EQ(·)

[
(η − V )+

]
+ η
)

≤
(
1− ρ

2

)
·
(
− EQ(·)

[
η − V

]
+ η
)

=
(
1− ρ

2

)
· EQ(·)

[
V
]
, (C.14)

where the first inequality uses the definition of Bρ′(s, a;P ⋆
h ), the second equality follows from the

fact that (x)+ ≥ x. Furthermore, since (C.14) holds for any η ∈ [0, H] and Q ∈ Bρ′(s, a;P ⋆
h ), we

have that

sup
η∈[0,H]

{
− EP⋆

h (·|s,a)
[
(η − V )+

]
+
(
1− ρ

2

)
· η
}

≤
(
1− ρ

2

)
· inf
Q∈Bρ′ (s,a;P

⋆
h )

EQ(·)
[
V
]
.(C.15)

Combining (C.13) and (C.15), we conclude that

EPρ(s,a;P⋆
h )

[
V
]
≤ ρ′ · EBρ′ (s,a;P

⋆
h )

[
V
]
.

Part (ii). Since ρ ∈ [0, 1], we know that there exists a η̃ ∈ [0, H] such that∑
s′:V (s′)<η̃

P ⋆
h (s

′|s, a) ≤ 1− ρ

2
≤

∑
s′:V (s′)≤η̃

P ⋆
h (s

′|s, a),

which further implies that we have the following interpolation for some λ ∈ [0, 1]:

1− ρ

2
= λ

∑
s′:V (s′)<η̃

P ⋆
h (s

′|s, a) + (1− λ)
∑

s′:V (s′)≤η̃

P ⋆
h (s

′|s, a).

We define a probability measure P̃ ⋆ ∈ ∆(S) as

P̃ ⋆
h =

λP ⋆
h (s

′|s, a) · 1{V (s′) > η̃}+ (1− λ)P ⋆
h (s

′|s, a) · 1{V (s′) ≥ η̃}
1− ρ

2

. (C.16)
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It is not difficult to verify that P̃ ⋆
h ∈ Bρ′(s, a;P ⋆

h ). Hence, we have(
1− ρ

2

)
· EBρ′ (s,a;P

⋆
h )[V ] ≤

(
1− ρ

2

)
· EP̃⋆

h (·)
[
V
]

=
(
1− ρ

2

)
· EP̃⋆

h (·)
[
V − η̃

]
+
(
1− ρ

2

)
· η̃

= −EP⋆
h (·|s,a)

[
(η̃ − V )+

]
+
(
1− ρ

2

)
· η̃, (C.17)

where the last inequality uses the definition of P̃ ⋆
h in (C.16). Furthermore, by (C.17) we have that

ρ′ · EBρ′ (s,a;P
⋆
h )

[
V
]
≤ sup

η∈[0,H]

{
− EP⋆

h (·|s,a)
[
(η − V )+

]
+
(
1− ρ

2

)
· η
}

(C.18)

= EPρ(s,a;P⋆
h )

[
V
]
,

where the equality follows from (C.13).

Combining Part (i) and Part (ii). Finally, combining (C.15) and (C.18), we prove Proposition 4.2.

D Proofs for Hardness Results

D.1 Proof of Theorem 3.2

Proof of Theorem 3.2. We first explicitly give the expressions of the robust value functions in Exam-
ple 3.1, based on which we derive the desired online regret lower bound.

Robust value function. Firstly, we can explicitly write down the expression of the robust value
functions for any policy π under Example 3.1, i.e., V π

h,P⋆,Mθ ,Φ
and Qπ

h,P⋆,Mθ ,Φ
. From now on we

fix a policy π.

For step h = 3, the robust value function is the reward received. We can directly obtain for any
a ∈ A,

Qπ
3,P⋆,Mθ ,Φ(sgood, a) = V π

3,P⋆,Mθ ,Φ(sgood) = 1, (D.1)

Qπ
3,P⋆,Mθ ,Φ(sbad, a) = V π

3,P⋆,Mθ ,Φ(sbad) = 0.

For step h = 2, by the robust Bellman equation (Proposition 2.2), we have that for the good state
sgood,

Qπ
2,P⋆,Mθ ,Φ(sgood, a) (D.2)

= 1 + inf
P∈Pρ(sgood,a;P

⋆,Mθ
2 )

EP (·)
[
V π
3,P⋆,Mθ ,Φ

]
= 1 + (1− ρ), ∀a ∈ A,

where the last equality is because V π
3,P⋆,Mθ ,Φ

takes the minimal value 0 at the bad state sbad and thus
the most adversarial transition distribution is achieved at

P †(s′) = (1− ρ) · 1{s′ = sgood}+ ρ · 1{s′ = sbad}.

Similarly, we have that for the bad state sbad,

Qπ
2,P⋆,Mθ ,Φ(sbad, a) = 0 + inf

P∈Pρ(sbad,a;P
⋆,Mθ
2 )

EP (·)
[
V π
3,P⋆,Mθ ,Φ

]
(D.3)

=

{
p− ρ, a = θ

q − ρ, a = 1− θ
.

Finally by the robust Bellman equation again, we have that

V π
2,P⋆,Mθ ,Φ(sgood) = 1 + (1− ρ),

V π
2,P⋆,Mθ ,Φ(sbad) = π2(θ|sbad) · (p− ρ) + π2(1− θ|sbad) · (q − ρ).
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Notice that by q < p we know that V π
2,P⋆,Mθ ,Φ

(sbad) < p− ρ < 1 + (1− ρ) < V π
2,P⋆,Mθ ,Φ

(sgood).

For step h = 1, we consider the robust values on the initial state s1 = sgood, by robust Bellman
equation,

Qπ
1,P⋆,Mθ ,Φ(sgood, a) = 1 + inf

P∈Pρ(sgood,a;P
⋆,Mθ
1 )

EP (·)
[
V π
2,P⋆,Mθ ,Φ

]
(D.4)

= 1 + (1− ρ) ·
[
1 + (1− ρ)

]
+ ρ ·

[
π2(θ|sbad) · (p− ρ) + π2(1− θ|sbad) · (q − ρ)

]
, ∀a ∈ A.

By robust Bellman equation, we also derive V π
1,P⋆,Mθ ,Φ

(sgood) = Qπ
1,P⋆,Mθ ,Φ

(sgood, a) for ∀a ∈ A.

Lower bound the online regret under Example 3.1. With all the previous preparation, we can
lower bound the online regret for robust RL with interactive data collection in Example 3.1. But first,
we present the following general lemma.

Lemma D.1 (Performance difference lemma for robust value function). For any RMDP satisfying
Assumption 2.1 and any policy π, the following inequality holds,

V π⋆

1,P⋆,Φ(s)− V π
1,P⋆,Φ(s)

≥ E(Pπ⋆,†,π⋆)

[
H∑

h=1

∑
a∈A

(
π⋆
h(a|sh)− πh(a|sh)

)
·Qπ

h,P⋆,Φ(sh, a)

∣∣∣∣∣s1 = s

]
,

where the expectation is taken with respect to the trajectories induced by policy π⋆, transition kernel
Pπ⋆,†. Here the transition kernel Pπ⋆,† is defined as

Pπ⋆,†
h (·|s, a) = arginf

P∈P(s,a;P⋆
h )

EP (·)
[
V π⋆

h+1,P⋆,Φ

]
,

where P(s, a;P ⋆
h ) is the robust set for state-action pair (s, a) (see Assumption 2.1).

Proof of Lemma D.1. Please refer to Appendix D.2 for a detailed proof of Lemma D.1.

Now back to Example 3.1, our previous calculation actually shows that, by (D.1) for step h = 3,∑
a∈A

(
π⋆,Mθ

3 (a|s3)− π3(a|s3)
)
·Qπ

3,P⋆,Mθ ,Φ(s3, a) = 0, ∀s3 ∈ {sgood, sbad}. (D.5)

and by (D.4) we also have that for step h = 1,∑
a∈A

(
π⋆,Mθ

1 (a|s1)− π1(a|s1)
)
·Qπ

1,P⋆,Mθ ,Φ(s1, a) = 0, where s1 = sgood. (D.6)

Finally, let’s consider step h = 2. By (D.2), we have that for the good state, it holds that∑
a∈A

(
π⋆,Mθ

2 (a|sgood)− π2(a|sgood)
)
·Qπ

2,P⋆,Mθ ,Φ(sgood, a) = 0, (D.7)

Meanwhile, by (D.3), we have that for the bad state, it holds that (recall that q < p)∑
a∈A

(
π⋆,Mθ

2 (a|sbad)− π2(a|sbad)
)
·Qπ

2,P⋆,Mθ ,Φ(sbad, a)

= max
{
p− ρ, q − ρ

}
−
(
π2(θ|sbad) · (p− ρ) + π2(1− θ|sbad) · (q − ρ)

)
= p− ρ−

(
π2(θ|sbad) · (p− ρ) + π2(1− θ|sbad) · (q − ρ)

)
=
p− q

2
·
( ∣∣∣π⋆,Mθ

2 (θ|sbad)− π2(θ|sbad)
∣∣∣+ ∣∣∣π⋆,Mθ

2 (1− θ|sbad)− π2(1− θ|sbad)
∣∣∣ )

= (p− q) ·DTV

(
π⋆,Mθ

2 (·|sbad)
∥∥∥π2(·|sbad)) , (D.8)
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where according to (D.3) the optimal policy of Mθ at h = 2 and sbad is π⋆,Mθ

2 (θ|sbad) = 1. Now
combining (D.5), (D.6), (D.7), and (D.8) with Lemma D.1, we can conclude that

V π⋆,Mθ

1,P⋆,Mθ ,Φ(sgood)− V π
1,P⋆,Mθ ,Φ(sgood)

≥ E
a1∼π

⋆,Mθ
1 (·|sgood),s2∼Pπ⋆,Mθ ,†

1 (·|sgood,a1)

[∑
a∈A

(
π⋆
2(a|s2)− π2(a|s2)

)
·Qπ

2,P⋆,Mθ ,Φ(s2, a)

]

= Pπ⋆,Mθ ,†
1 (sbad|sgood, 0) · (p− q) ·DTV

(
π⋆,Mθ

2 (·|sbad)
∥∥∥π2(·|sbad)) , (D.9)

where the adversarial transition kernel Pπ⋆,Mθ ,†
1 is given by

Pπ⋆,Mθ ,†
1 (·|sgood, 0) = argmin

P∈P(sgood,0;P
⋆,Mθ
1 )

EP (·)

[
V π⋆,Mθ

2,P⋆,Mθ ,Φ

]
= (1− ρ) · 1{· = sgood}+ ρ · 1{· = sbad}. (D.10)

Consequently, taking (D.10) back into (D.9), we have that

V π⋆,Mθ

1,P⋆,Mθ ,Φ(sgood)− V π
1,P⋆,Mθ ,Φ(sgood) ≥ ρ · (p− q) ·DTV

(
π⋆,Mθ

2 (·|sbad)
∥∥∥π2(·|sbad)) .

This implies that for any algorithm executing π1, · · · , πK , its online regret is lower bounded by the
following,

RegretMθ,ALG
Φ (K) =

K∑
k=1

V π⋆,Mθ

1,P⋆,Mθ ,Φ(sgood)− V πk

1,P⋆,Mθ ,Φ(sgood)

≥ ρ · (p− q) ·
K∑

k=1

DTV

(
π⋆,Mθ

2 (·|sbad)
∥∥∥πk

2 (·|sbad)
)
.

However, since in RMDPs of Example 3.1, the online interaction process is always kept in sgood
and there is no information on θ which can only be accessed at (s, h) = (sbad, 2). As a result, the
estimates πk

2 (·|sbad) of π⋆,Mθ

2 (·|sbad) = 1{· = θ} can do no better than a random guess. Put it
formally, consider that

sup
θ∈{0,1}

EMθ,ALG

[
RegretMθ,ALG

Φ (K)
]

≥ ρ · (p− q) · sup
θ∈{0,1}

EMθ,ALG

[
K∑

k=1

DTV

(
π⋆,Mθ

2 (·|sbad)
∥∥∥πk

2 (·|sbad)
)]

= ρ · (p− q) · sup
θ∈{0,1}

K∑
k=1

EALG
[
πk
2 (1− θ|sbad)

]
. (D.11)

Here in the last equality we can drop the subscription of Mθ because the algorithm outputs πk
2

independent of the θ due to our previous discussion. Notice that∑
θ∈{0,1}

K∑
k=1

EALG
[
πk
2 (1− θ|sbad)

]
=

K∑
k=1

∑
θ∈{0,1}

EALG
[
πk
2 (1− θ|sbad)

]
=

K∑
k=1

1 = K,

which further indicates that

sup
θ∈{0,1}

K∑
k=1

EALG
[
πk
2 (1− θ|sbad)

]
≥ K

2
. (D.12)

Therefore, by combining (D.11) and (D.12), we conclude that

inf
ALG

sup
θ∈{0,1}

EMθ,ALG

[
RegretMθ,ALG

Φ (K)
]
≥ (p− q) · ρK

2
.
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This is the desired online regret lower bound of Ω(ρ ·K) for the RMDPs presented in Example 3.1.
Furthermore, we can construct two RMDPs {M̃0,M̃1} with horizon 3H by concatenating H

RMDPs {M0,M1} presented in Example 3.1. Notably, at any steps {3i+ 1}H−1
i=0 , we define

R3i+1(sbad, a) = 1, P ⋆,M̃θ

3i+1 (sgood|sbad, a) = 1, ∀(a, θ) ∈ A× {0, 1}.

Then we have

inf
ALG

sup
θ∈{0,1}

EM̃θ,ALG

[
RegretM̃θ,ALG

Φ (K)
]
≥ H · Ω(ρ ·K) = Ω(ρ ·HK),

which completes the proof of Theorem 3.2.

D.2 Proof of Lemma D.1

Proof of Lemma D.1. For any step h ∈ [H], we have that by robust Bellman equation (Proposi-
tion 2.2),

Qπ⋆

h,P⋆,Φ(s, a)−Qπ
h,P⋆,Φ(s, a) = EPρ(s,a;P⋆

h )

[
V π⋆

h+1,P⋆,Φ

]
− EPρ(s,a;P⋆

h )

[
V π
h+1,P⋆,Φ

]
.

By the definition of the transition kernel Pπ⋆,† in Lemma D.1 and the property of infimum, we have
that

Qπ⋆

h,P⋆,Φ(s, a)−Qπ
h,P⋆,Φ(s, a) ≥ E

Pπ⋆,†
h (·|s,a)

[
V π⋆

h+1,P⋆,Φ

]
− E

Pπ⋆,†
h (·|s,a)

[
V π
h+1,P⋆,Φ

]
= E

Pπ⋆,†
h (·|s,a)

[
V π⋆

h+1,P⋆,Φ − V π
h+1,P⋆,Φ

]
. (D.13)

By robust Bellman equation (Proposition 2.2) and (D.13), we further obtain that

V π⋆

h,P⋆,Φ(s)− V π
h,P⋆,Φ(s) = Eπ⋆

h(·|s)
[
Qπ⋆

h,P⋆,Φ(s, ·)
]
− Eπh(·|s)

[
Qπ

h,P⋆,Φ(s, ·)
]

= Eπ⋆
h(·|s)

[
Qπ

h,P⋆,Φ(s, ·)
]
− Eπh(·|s)

[
Qπ

h,P⋆,Φ(s, ·)
]

+ Eπ⋆
h(·|s)

[
Qπ⋆

h,P⋆,Φ(s, ·)
]
− Eπ⋆

h(·|s)
[
Qπ

h,P⋆,Φ(s, ·)
]

≥
∑
a∈A

(
π⋆
h(a|s)− πh(a|s)

)
·Qπ

h,P⋆,Φ(s, a)

+ E
a∼π⋆

h(·|s),P
π⋆,†
h (·|s,a)

[
V π
h,P⋆,Φ − V π

h,P⋆,Φ

]
. (D.14)

Thus by recursively applying (D.14) over h ∈ [H], we can conclude that

V π⋆

1,P⋆,Φ(s)− V π
1,P⋆,Φ(s)

≥ E(Pπ⋆,†,π⋆)

[
H∑

h=1

∑
a∈A

(
π⋆
h(a|sh)− πh(a|sh)

)
·Qπ

h,P⋆,Φ(sh, a)

∣∣∣∣∣s1 = s

]
,

which completes the proof of Lemma D.1.

E Proofs for Theoretical Analysis of OPROVI-TV

In this section, we prove our main theoretical results (Theorem 4.3). In Appendix E.1, we outline the
proof of the theorem. In Appendix E.2, we list all the key lemmas used in the proof of the theorem.
We defer the proof of all the lemmas to subsequent sections (Appendices E.3 to E.8).
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Before presenting all the proofs, we define the typical event E as

E =


∣∣∣∣ (EP⋆

h (·|s,a) − EP̂k
h (·|s,a)

) [(
η − V ⋆

h+1,P⋆,Φ

)
+

]∣∣∣∣
≤

√√√√VP̂k
h (·|s,a)

[(
η − V ⋆

h+1,P⋆,Φ

)
+

]
· c1ι

Nk
h (s, a) ∨ 1

+
c2Hι

Nk
h (s, a) ∨ 1

,

∣∣∣P ⋆
h (s

′|s, a)− P̂h(s
′|s, a)

∣∣∣ ≤
√√√√min

{
P ⋆
h (s

′|s, a), P̂ k
h (s

′|s, a)
}
· c1ι

Nk
h (s, a) ∨ 1

+
c2ι

Nk
h (s, a) ∨ 1

,

∀(s, a, s′, h, k) ∈ S ×A× S × [H]× [K], ∀η ∈ N1/(S
√
K)

(
[0, H]

),
where ι = log(S3AH2K3/2/δ), c1, c2 > 0 are two absolute constants, N1/S

√
K([0, H]) denotes an

1/S
√
K-cover of the interval [0, H].

Lemma E.1 (Typical event). For the typical event E defined in (E.35), it holds that P(E) ≥ 1− δ.

Proof of Lemma E.1. This is a direct application of Bernstein inequality and its empirical version
(Maurer and Pontil, 2009), together with a union bound over (s, a, s′, h, k, η) ∈ S ×A×S × [H]×
[K]×N1/(S

√
K)([0, H]). Note that the size of N1/(S

√
K)([0, H]) is of order SH

√
K.

In this section, we always let the event E hold, which by Lemma E.1 is of probability at least 1− δ.

E.1 Proof of Theorem 4.3

Proof of Theorem 4.3. With Lemma E.2 (optimism and pessimism), we upper bound the regret as

RegretΦ(K) =

K∑
k=1

V ⋆
1,P⋆,Φ(s1)− V πk

1,P⋆,Φ(s1) ≤
K∑

k=1

V
k

1(s1)− V k
1(s1). (E.1)

In the sequel, we break our proof into three steps.

Step 1: upper bounding (E.1). According to the choice of Q
k

h, Qk

h
, V

k

h, V k
h in (4.2), (4.3), and

(4.4), let’s consider that for any (h, k) ∈ [H]× [K] and (s, a) ∈ S ×A,

Q
k

h(s, a)−Qk

h
(s, a)

= min

{
Rh(s, a) + EPρ(s,a;P̂k

h )

[
V

k

h+1

]
+ bonuskh(s, a), min

{
H, ρ−1

}}
−max

{
Rh(s, a) + EPρ(s,a;P̂k

h )

[
V

k

h+1

]
− bonuskh(s, a), 0

}
≤ EPρ(s,a;P̂k

h )

[
V

k

h+1

]
− EPρ(s,a;P̂k

h )

[
V k

h+1

]
+ 2 · bonuskh(s, a)

= EPρ(s,a;P̂k
h )

[
V

k

h+1

]
− EPρ(s,a;P⋆

h )

[
V

k

h+1

]
+ EPρ(s,a;P⋆

h )

[
V k

h+1

]
− EPρ(s,a;P̂k

h )

[
V k

h+1

]
︸ ︷︷ ︸

Term (i)

+ EPρ(s,a;P⋆
h )

[
V

k

h+1

]
− EPρ(s,a;P⋆

h )

[
V k

h+1

]
︸ ︷︷ ︸

Term (ii)

+2 · bonuskh(s, a). (E.2)

Step 1.1: upper bounding Term (i). By using a Bernstein-style concentration argument customized
for TV robust expectations (Lemma E.3), we can bound Term (i) by the bonus function, i.e.,

Term (i) ≤ 2 · bonuskh(s, a). (E.3)

29



Step 1.2: upper bounding Term (ii). By our definition of the operator EPρ(s,a;P⋆
h )[V ] in (4.1), we

have

Term (ii) = sup
η∈[0,H]

{
− EP⋆

h (·|s,a)

[(
η − V

k

h+1

)
+

]
+
(
1− ρ

2

)
· η
}

− sup
η∈[0,H]

{
− EP⋆

h (·|s,a)

[(
η − V k

h+1

)
+

]
+
(
1− ρ

2

)
· η
}

≤ sup
η∈[0,H]

{
EP⋆

h (·|s,a)

[(
η − V k

h+1

)
+
−
(
η − V

k

h+1

)
+

]}
. (E.4)

By Lemma E.2 which shows that V
k

h+1 ≥ V k
h+1 and the fact that (η − x)+ − (η − y)+ ≤ y − x for

any y > x, we can further upper bound the right hand side of (E.4) by

Term (ii) ≤ EP⋆
h (·|s,a)

[
V

k

h+1 − V k
h+1

]
. (E.5)

Step 1.3: combining the upper bounds. Now combining (E.3) and (E.5) with (E.2), we have that

Q
k

h(s, a)−Qk

h
(s, a) ≤ EP⋆

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
+ 4 · bonuskh(s, a).

By Lemma E.4, we can upper bound the bonus function, and after rearranging terms we further obtain
that

Q
k

h(s, a)−Qk

h
(s, a) ≤

(
1 +

12

H

)
· EP⋆

h (·|s,a)

[
V

k

h+1 − V k
h+1

]

+ 4

√√√√VP⋆
h (·|s,a)

[
V πk

h+1,P⋆,Φ

]
· c1ι

Nk
h (s, a) ∨ 1

+
4c2H

2Sι

Nk
h (s, a) ∨ 1

+
4√
K
, (E.6)

where c1, c2 > 0 are two absolute constants. For the sake of brevity, we introduce the following
notations of differences, for any (h, k) ∈ [H]× [K],

∆k
h := V

k

h(s
k
h)− V k

h(s
k
h),

ζkh := ∆k
h −

(
Q

k

h(s
k
h, a

k
h)−Qk

h
(skh, a

k
h)
)
, (E.7)

ξkh := EP⋆
h (·|skh,a

k
h)

[
V

k

h − V k
h

]
−∆k

h+1. (E.8)

If we further define the filtration {Fh,k}(h,k)∈[H]×[K] as

Fh,k = σ
(
{(sτi , aτi )}(i,τ)∈[H]×[k−1]

⋃
{(ski , aki )}i∈[h−1]

⋃
{skh}

)
,

then we can find that {ζkh}(h,k)∈[H]×[K] is a martingale difference sequence with respect to
{Fh,k}(h,k)∈[H]×[K] and {ξkh}(h,k)∈[H]×[K] is a martingale difference sequence with respect to
{Fh,k ∪ {akh}}}(h,k)∈[H]×[K]. Also, we further have that

∆k
h = ζkh +

(
Q

k

h(s
k
h, a

k
h)−Qk

h
(skh, a

k
h)
)

(E.9)

≤ ζkh +

(
1 +

12

H

)
· EP⋆

h (·|skh,a
k
h)

[
V

k

h+1 − V k
h+1

]

+ 4

√√√√VP⋆
h (·|s,a)

[
V πk

h+1,P⋆,Φ

]
· c1ι

Nk
h (s

k
h, a

k
h) ∨ 1

+
4c2H

2Sι

Nk
h (s

k
h, a

k
h) ∨ 1

+
4√
K

= ζkh +

(
1 +

12

H

)
· ξkh +

(
1 +

12

H

)
·∆k

h+1+

4

√√√√VP⋆
h (·|s,a)

[
V πk

h+1,P⋆,Φ

]
· c1ι

Nk
h (s

k
h, a

k
h) ∨ 1

+
4c2H

2Sι

Nk
h (s

k
h, a

k
h) ∨ 1

+
4√
K
,
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where the inequality applies (E.6). Recursively applying (E.9) and using the fact that (1 + 12
H )h ≤

(1 + 12
H )H ≤ c for some absolute constant c > 0, we can upper bound the right hand side of (E.1) as

RegretΦ(K) ≤
K∑

k=1

∆k
1 ≤ C1 ·

K∑
k=1

H∑
h=1

(ζkh + ξkh)

+

√√√√VP⋆
h (·|s,a)

[
V πk

h+1,P⋆,Φ

]
· ι

Nk
h (s

k
h, a

k
h) ∨ 1

+
H2Sι

Nk
h (s

k
h, a

k
h) ∨ 1

+
1√
K
. (E.10)

where C1 > 0 is an absolute constant.

Step 2: controlling the summation of variance terms. In view of (E.10), it suffices to upper
bound its right hand side. The key difficulty is the analysis of the summation of the variance terms,
which we focus on now. By Cauchy-Schwartz inequality,

K∑
k=1

H∑
h=1

√√√√VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]
Nk

h (s
k
h, a

k
h) ∨ 1

≤

√√√√ K∑
k=1

H∑
h=1

VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]
·

K∑
k=1

H∑
h=1

1

Nk
h (s

k
h, a

k
h) ∨ 1

. (E.11)

On the right hand side of (E.11), the summation of the inverse of the count function is a well bounded
term (Lemma E.13). So the key is to upper bound the the summation of the variance of the robust
value functions to obtain a sharp bound. To this end, we invoke Lemma E.5 to obtain that with
probability at least 1− δ,

K∑
k=1

H∑
h=1

VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]
≤ C2 ·

(
min

{
H, ρ−1

}
·HK +min

{
H, ρ−1

}3 ·Hι), (E.12)

where C2 > 0 is an absolute constant. With inequality (E.12) and Lemma E.13 that
K∑

k=1

H∑
h=1

1

Nk
h (s

k
h, a

k
h) ∨ 1

≤ C ′
2 ·HSAι,

with C ′
2 > 0 being another constant, we can upper bound the summation of the variance terms (E.11)

as

K∑
k=1

H∑
h=1

√√√√VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]
Nk

h (s
k
h, a

k
h) ∨ 1

≤ C3

√
min

{
H, ρ−1

}
·H2SAKι+min

{
H, ρ−1

}3 ·H2SAι2. (E.13)

where C3 > 0 is also an absolute constant.

Step 3: finishing the proof. With (E.10) and (E.13), it suffices to control the remaining terms.
For the summation of the martingale difference terms, notice that by the definitions in (E.7) and
(E.8), both ζkh and ξkh are bounded by min{H, ρ−1} according to (4.2) and Lemma E.2 (optimism
and pessimism). As a result, using Azuma-Hoeffding inequality, with probability at least 1− δ

K∑
k=1

H∑
h=1

(ζkh + ξkh) ≤ C4 ·min
{
H, ρ−1

}
·
√
HKι,

where C4 > 0 is an absolute constant. For the summation of the inverse of the count function in
(E.10), it suffices to invoke again Lemma E.13. Combining all together, with probability at least
1− 3δ, we have

RegretΦ(K) ≤ C5 ·
(√

min
{
H, ρ−1

}
·H2SAKι2 +min

{
H, ρ−1

}3 ·H2SAι3
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+min
{
H, ρ−1

}
·
√
HKι+H3S2Aι2 +H

√
K

)
= O

(√
min

{
H, ρ−1

}
·H2SAKι′

)
,

where C5 > 0 is an absolute constant and ι′ = log2(SAHK/δ). This completes the proof of
Theorem 4.3.

E.2 Key Lemmas

Lemma E.2 (Optimistic and pessimistic estimation of the robust values). By setting the bonuskh as
in (4.5), then under the typical event E , it holds that

Qk

h
(s, a) ≤ Qπk

h,P⋆,Φ(s, a) ≤ Q⋆
h,P⋆,Φ(s, a) ≤ Q

k

h(s, a),

V k
h(s) ≤ V πk

h,P⋆,Φ(s) ≤ V ⋆
h,P⋆,Φ(s) ≤ V

k

h(s), (E.14)

for any (s, a, h, k) ∈ S ×A× [H]× [K].

Proof of Lemma E.2. See Appendix E.3 for a detailed proof.

Lemma E.3 (Proper bonus for TV robust sets and optimistic and pessimistic value estimators). By
setting the bonuskh as in (4.5), then under the typical event E , it holds that

EPρ(s,a;P̂k
h )

[
V

k

h+1

]
− EPρ(s,a;P⋆

h )

[
V

k

h+1

]
+ EPρ(s,a;P⋆

h )

[
V k

h+1

]
− EPρ(s,a;P̂k

h )

[
V k

h+1

]
≤ 2 · bonuskh(s, a),

Proof of Lemma E.3. See Appendix E.4 for a detailed proof.

Lemma E.4 (Control of the bonus term). Under the typical event E , the bonuskh in (4.5) is bounded
by

bonuskh(s, a)

≤

√√√√VP⋆
h (·|s,a)

[
V πk

h+1,P⋆,Φ

]
· c1ι

Nk
h (s, a) ∨ 1

+
4 · EP⋆

h (·|s,a)

[
V

k

h+1−V
k
h+1

]
H

+
c2H

2Sι

Nk
h (s, a) ∨ 1

+
1√
K
,

where ι = log(S3AH2K3/2/δ) and c1, c2 > 0 are absolute constants.

Proof of Lemma E.4. See Appendix E.5 for a detailed proof.

Lemma E.5 (Total variance law for robust MDP with TV robust sets). With probability at least 1− δ,
the following inequality holds

K∑
k=1

H∑
h=1

VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]
≤ c3 ·

(
min{H, ρ−1} ·HK +min{H, ρ−1}3 ·Hι

)
.

where ι = log(S3AH2K3/2/δ) and c3 > 0 is an absolute constant.

Proof of Lemma E.5. See Appendix E.6 for a detailed proof.

E.3 Proof of Lemma E.2

Proof of Lemma E.2. We prove Lemma E.2 by induction. Suppose the conclusion (E.14) holds at
step h+ 1. For step h, let’s first consider the robust Q function part. Specifically, by using the robust
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Bellman optimal equation (Proposition 2.3) and (4.2), we have that

Q⋆
h,P⋆,Φ(s, a)−Q

k

h(s, a)

≤ max

{
EPρ(s,a;P⋆

h )

[
V ⋆
h+1,P⋆,Φ

]
− EPρ(s,a;P̂k

h )

[
V

k

h+1

]
− bonuskh(s, a),

Q⋆
h,P⋆,Φ(s, a)−min

{
H, ρ−1

}}
≤ max

{
EPρ(s,a;P⋆

h )

[
V ⋆
h+1,P⋆,Φ

]
− EPρ(s,a;P̂k

h )

[
V ⋆
h+1,P⋆,Φ

]
− bonuskh(s, a), 0

}
,(E.15)

where the second inequality follows from the induction of V ⋆
h+1,P⋆,Φ ≤ V

k

h+1 at step h+ 1 and the
fact that Q⋆

h,P⋆,Φ ≤ min{H, ρ−1} (by Proposition 2.6 and Assumption 4.1). By Lemma E.7, we
have that

EPρ(s,a;P⋆
h )

[
V ⋆
h+1,P⋆,Φ

]
− EPρ(s,a;P̂k

h )

[
V ⋆
h+1,P⋆,Φ

]

≤

√√√√VP̂k
h (·|s,a)

[
V ⋆
h+1,P⋆,Φ

]
· c1ι

Nk
h (s, a) ∨ 1

+
c2Hι

Nk
h (s, a) ∨ 1

+
1√
K
,

Now by further applying Lemma E.11 to the variance term in the above inequality, we can obtain that

EPρ(s,a;P⋆
h )

[
V ⋆
h+1,P⋆,Φ

]
− EPρ(s,a;P̂k

h )

[
V ⋆
h+1,P⋆,Φ

]

≤

√√√√(VP̂k
h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
+ 4H · EP̂k

h (·|s,a)

[
V

k

h+1 − V k
h+1

])
· c1ι

Nk
h (s, a) ∨ 1

+
c2Hι

Nk
h (s, a) ∨ 1

+
1√
K

≤

√√√√VP̂k
h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
· c1ι

Nk
h (s, a) ∨ 1

+

√√√√EP̂k
h (·|s,a)

[
V

k

h+1 − V k
h+1

]
· 4Hc1ι

Nk
h (s, a) ∨ 1

+
c2Hι

Nk
h (s, a) ∨ 1

+
1√
K

≤

√√√√VP̂k
h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
· c1ι

Nk
h (s, a) ∨ 1

+
EP̂k

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
H

+
c′2H

2ι

Nk
h (s, a) ∨ 1

+
1√
K
, (E.16)

where the first inequality is due to Lemma E.11, the second inequality is due to
√
a+ b ≤

√
a+

√
b,

and the last inequality is from
√
ab ≤ a + b where c′2 > 0 is an absolute constant. Therefore,

combining (E.15) and (E.16), and the choice of bonuskh(s, a) in (4.5), we can conclude that

Q⋆
h,P⋆,Φ(s, a) ≤ Q

k

h(s, a).

Furthermore, it holds that Qπk

h,P⋆,Φ(s, a) ≤ Q⋆
h,P⋆,Φ(s, a). Thus it reduces to prove Qk

h
(s, a) ≤

Qπk

h,P⋆,Φ(s, a). Again, by using the robust Bellman equation (Proposition 2.2) and (4.3), we have that

Qk

h
(s, a)−Qπk

h,P⋆,Φ(s, a)

≤ max

{
EPρ(s,a;P̂k

h )

[
V k

h+1

]
− EPρ(s,a;P⋆

h )

[
V πk

h+1,P⋆,Φ

]
− bonuskh(s, a),

0−Qπk

h,P⋆,Φ(s, a)

}
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≤ max

{
EPρ(s,a;P̂k

h )

[
V πk

h+1,P⋆,Φ

]
− EPρ(s,a;P⋆

h )

[
V πk

h+1,P⋆,Φ

]
− bonuskh(s, a), 0

}
,(E.17)

where the second inequality follows from the induction of V k
h+1 ≤ V πk

h+1,P⋆,Φ at step h+ 1 and the

fact that Qπk

h,P⋆,Φ ≥ 0. By Lemma E.8, we have that

EPρ(s,a;P̂k
h )

[
V πk

h+1,P⋆,Φ

]
− EPρ(s,a;P⋆

h )

[
V πk

h+1,P⋆,Φ

]

≤

√√√√VP̂k
h (·|s,a)

[
V ⋆
h+1,P⋆,Φ

]
· c1ι

Nk
h (s, a) ∨ 1

+
EP̂k

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
H

+
c′2H

2Sι

Nk
h (s, a) ∨ 1

+
1√
K
.

Now by applying Lemma E.11 to the variance term, with an argument similar to (E.16), we can
obtain that

EPρ(s,a;P̂k
h )

[
V πk

h+1,P⋆,Φ

]
− EPρ(s,a;P⋆

h )

[
V πk

h+1,P⋆,Φ

]
(E.18)

≤

√√√√VP̂k
h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
· c1ι

Nk
h (s, a) ∨ 1

+
2EP̂k

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
H

+
c′′2H

2ι

Nk
h (s, a) ∨ 1

+
1√
K
,

Thus by combining (E.17) and (E.18), and the choice of bonuskh(s, a) in (4.5), we can conclude that

Qk

h
(s, a) ≤ Qπk

h,P⋆,Φ(s, a).

Therefore, we have proved that at step h, it holds that

Qk

h
(s, a) ≤ Qπk

h,P⋆,Φ(s, a) ≤ Q⋆
h,P⋆,Φ(s, a) ≤ Q

k

h(s, a).

Finally for the robust V function part, consider that by robust Bellman equation (Proposition 2.2) and
(4.4),

V k
h(s) = Eπk

h(·|s)

[
Qk

h
(s, ·)

]
≤ Eπk

h(·|s)

[
Qπk

h,P⋆,Φ(s, ·)
]
= V πk

h,P⋆,Φ(s),

and that by robust Bellman optimal equation (Proposition 2.3), the choice of πk, and (4.4),

V ⋆
h,P⋆,Φ(s) = max

a∈A
Q⋆

h,P⋆,Φ(s, a) ≤ max
a∈A

Q
k

h(s, a) = V
k

h(s),

which proves that

V k
h(s) ≤ V πk

h,P⋆,Φ(s) ≤ V ⋆
h,P⋆,Φ(s) ≤ V

k

h(s).

Since the conclusion (E.14) holds for the V function part at step H + 1, an induction proves
Lemma E.2.

E.4 Proof of Lemma E.3

Proof of Lemma E.3. We upper bound the differences by a concentration inequality Lemma E.9,

EPρ(s,a;P̂k
h )

[
V

k

h+1

]
− EPρ(s,a;P⋆

h )

[
V

k

h+1

]
+ EPρ(s,a;P̂k

h )

[
V k

h+1

]
− EPρ(s,a;P⋆

h )

[
V k

h+1

]

≤ 2

√√√√VP̂k
h (·|s,a)

[
V ⋆
h+1,P⋆,Φ

]
· c1ι

Nk
h (s, a) ∨ 1

+
2 · EP̂k

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
H

+
2c′2H

2Sι

Nk
h (s, a) ∨ 1

+
2√
K
, (E.19)
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where c1, c′2 > 0 are absolute constants. Then applying Lemma E.11 to the variance term in (E.19),
with an argument the same as (E.16) in the proof of Lemma E.2, we can obtain that

EPρ(s,a;P̂k
h )

[
V

k

h+1

]
− EPρ(s,a;P⋆

h )

[
V

k

h+1

]
+ EPρ(s,a;P̂k

h )

[
V k

h+1

]
− EPρ(s,a;P⋆

h )

[
V k

h+1

]

≤ 2

√√√√VP̂k
h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
· c1ι

Nk
h (s, a) ∨ 1

+
4 · EP̂k

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
H

+
2c′′2H

2ι

Nk
h (s, a) ∨ 1

+
2√
K
.

Therefore, by looking into the choice of bonuskh(s, a) in (4.5), we can conclude that

EPρ(s,a;P̂k
h )

[
V

k

h+1

]
− EPρ(s,a;P⋆

h )

[
V

k

h+1

]
+ EPρ(s,a;P̂k

h )

[
V

k

h+1

]
− EPρ(s,a;P⋆

h )

[
V

k

h+1

]
≤ 2 · bonuskh(s, a),

This finishes the proof of Lemma E.3.

E.5 Proof of Lemma E.4

Proof of Lemma E.4. Recall that the bonuskh(s, a) is defined as

bonuskh(s, a) =

√√√√VP̂k
h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
· c1ι

Nk
h (s, a) ∨ 1

+
2EP̂k

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
H

+
c2H

2Sι

Nk
h (s, a) ∨ 1

+
1√
K
.

The main thing we need to consider is to control the first term and the second term. We first deal with
the second term of bonuskh(s, a) by invoking Lemma E.10, which gives

2EP̂k
h (·|s,a)

[
V

k

h+1 − V k
h+1

]
H

≤
(

2

H
+

2

H2

)
· EP⋆

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
+

c′2HSι

Nk
h (s, a) ∨ 1

≤
3EP⋆

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
H

+
c′2HSι

Nk
h (s, a) ∨ 1

, (E.20)

where the second inequality is from H ≥ 2. Then we deal with the first term (variance term) of
bonuskh(s, a) by invoking Lemma E.12, which gives√√√√VP̂k

h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
· c1ι

Nk
h (s, a) ∨ 1

(E.21)

≤

√√√√(VP⋆
h (·|s,a)

[
V πk

h+1,P⋆,Φ

]
+ 4H · EP⋆

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
+

c′′2 H
4Sι

Nk
h (s,a)∨1

+ 1
)
· c1ι

Nk
h (s, a)

≤

√√√√VP⋆
h (·|s,a)

[
V πk

h+1,P⋆,Φ

]
· c1ι

Nk
h (s, a) ∨ 1

+

√√√√4H · EP⋆
h (·|s,a)

[
V

k

h+1 − V k
h+1

]
· c1ι

Nk
h (s, a) ∨ 1

+

√
c1c′′2SH

2ι

Nk
h (s, a) ∨ 1

+

√
c1ι

Nk
h (s, a) ∨ 1

≤

√√√√VP⋆
h (·|s,a)

[
V πk

h+1,P⋆,Φ

]
· c′1ι

Nk
h (s, a) ∨ 1

+
EP⋆

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
H

+

(
4c1 +

√
c1c′′2S

)
H2ι

Nk
h (s, a) ∨ 1

Thus by combining (E.20) and (E.21) with the choice of bonuskh, we can conclude the proof of
Lemma E.4.
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E.6 Proof of Lemma E.5

Proof of Lemma E.5. The key idea is to relate the visitation distribution (w.r.t. P ⋆) and the variance
(w.r.t. P ⋆) to the value function of πk, after which we can derive an upper bound for the total variance.
Throughout this proof, we use the shorthand that

H = min
{
H, ρ−1

}
.

According to Proposition 2.6 and Assumption 4.1, for any policy π and any step h, the robust value
function of π holds that

max
s∈S

V π
h,P⋆,Φ(s) ≤ H, (E.22)

which we usually apply in the sequel. Also, to facilitate our analysis, we define

T̃ k
h (·|s, a) = argmin

P (·)∈Ph(s,a;P⋆
h )

EP (·)

[
V πk

h+1,P⋆,Φ

]
, ∀(s, a, h) ∈ S ×A× [H],

and set T̃ k = {T̃ k
h }Hh=1, which is the most adversarial transition for the true robust value function of

πk.

Now consider the following decomposition of our target,

K∑
k=1

H∑
h=1

VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]
=

K∑
k=1

H∑
h=1

VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]
− E(skh,a

k
h)∼(P⋆,πk)

[
H∑

h=1

VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]]

+

K∑
k=1

E(skh,a
k
h)∼(P⋆,πk)

[
H∑

h=1

VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]]

=

K∑
k=1

H∑
h=1

VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]
− E(skh,a

k
h)∼(P⋆,πk)

[
H∑

h=1

VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]]
︸ ︷︷ ︸

Term (i): martingale difference term

+

K∑
k=1

E(skh,a
k
h)∼(T̃k,πk)

[
H∑

h=1

VT̃k
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]]
︸ ︷︷ ︸

Term (ii): total variance law

+

K∑
k=1

E(skh,a
k
h)∼(P⋆,πk)

[
H∑

h=1

VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]]
− E(skh,a

k
h)∼(T̃k,πk)

[
H∑

h=1

VT̃k
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]]
︸ ︷︷ ︸

Term (iii): error from P ⋆ to T̃ k

.

In the sequel, we upper bound each of the three terms respectively.

Term (i): martingale difference term. This is a summation of martingale difference term (with
respect to filtration Gk = σ({(sτh, aτh)}(h,τ)∈[H]×[k])). By Azuma-Hoeffding’s inequality, with
probability at least 1− δ,

Term (i) ≤ c ·H ·H2 ·
√
Kι, (E.23)

where c > 0 is an absolute constant. We have utilized the fact of (E.22) to obtain the upper bound
HH

2
on each martingale difference term in the summation.
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Term (ii): total variance law. The upper bound of this term is the core part of the analysis, for
which we summarize it in the following lemma.

Lemma E.6 (Total variance law). Under the same setup as Theorem 4.3, given any deterministic
policy π, define that

T̃h(·|s, a) = argmin
P (·)∈Pρ(s,a;P⋆

h )

EP (·)

[
V π
h+1,P⋆,Φ

]
, ∀(s, a, h) ∈ S ×A× [H], (E.24)

and set T̃ = {T̃h}Hh=1. Then we have

E(sh,ah)∼(T̃ ,π)

[
H∑

h=1

VT̃h(·|sh,ah)

[
V π
h+1,P⋆,Φ

]]
≤ 2H ·H.

We defer the proof of Lemma E.6 to Appendix E.7. With Lemma E.6, we consider taking policy
π = πk for k ∈ [K] therein (which are deterministic policies), and obtain that the Term (ii) is upper
bounded by

Term (ii) ≤ 2H ·H ·K. (E.25)

Term (iii): error from P ⋆ to T̃ k. We first relate the visitation distribution under P ⋆ to that under
T̃ k. On the one hand, by the choice of the adversarial transition kernel T̃ k

h , it holds that

DTV

(
P ⋆
h (·|s, a)

∥∥∥ T̃ k
h (·|s, a)

)
≤ ρ, ∀(s, a, h) ∈ S ×A× [H]. (E.26)

On the other hand, by (E.22), we can upper bound the variance term by

VP⋆
h (·|s,a)

[
V πk

h+1,P⋆,Φ

]
≤ H

2
, ∀(s, a, h) ∈ S ×A× [H]. (E.27)

Therefore, by combining (E.26) and (E.27), we can conclude that

E(skh,a
k
h)∼(P⋆

h ,πk)

[
H∑

h=1

VP⋆(·|skh,a
k
h)

[
V πk

h+1,P⋆,Φ

]]

≤ E(skh,a
k
h)∼(T̃k,πk)

[
H∑

h=1

VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]]

+H ·

(
sup

(s,a,h)∈S×A×[H]

DTV

(
P ⋆
h (·|s, a)

∥∥∥ T̃ k
h (·|s, a)

)
· sup
(s,a,h)∈S×A×[H]

VP⋆
h (·|s,a)

[
V πk

h+1,P⋆,Φ

])

≤ E(skh,a
k
h)∼(T̃k,πk)

[
H∑

h=1

VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]]
+ ρH ·H2

. (E.28)

We then relate the variance term under P ⋆ to that under T̃ k. Specifically, we have

VP⋆
h (·|s,a)

[
V πk

h+1,P⋆,Φ

]
= EP⋆

h (·|s,a)

[(
V πk

h+1,P⋆,Φ

)]2
−
(
EP⋆

h (·|s,a)

[
V πk

h+1,P⋆,Φ

])2
≤ ET̃k

h (·|s,a)

[(
V πk

h+1,P⋆,Φ

)]2
−
(
ET̃k

h (·|s,a)

[
V πk

h+1(s
′)
])2

+ 2 · sup
(s,a)∈S×A

DTV

(
P ⋆
h (·|s, a)

∥∥∥ T̃ k
h (·|s, a)

)
·
(
max
s′∈S

V π
h+1,P⋆,Φ(s

′)

)2

≤ VT̃k
h (·|s,a)

[
V πk

h+1,P⋆,Φ

]
+ 2ρ ·H2

, ∀(s, a, h) ∈ S ×A× [H], (E.29)
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where the last inequality follows from the definition of T̃ k and (E.22). Combining (E.28) and (E.29),
we can upper bound Term (iii) by the following,

Term (iii) =
K∑

k=1

E(skh,a
k
h)∼(P⋆,πk)

[
H∑

h=1

VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]]
(E.30)

− E(skh,a
k
h)∼(T̃k,πk)

[
H∑

h=1

VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]]

+

K∑
k=1

E(skh,a
k
h)∼(T̃k,πk)

[
H∑

h=1

VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]]

− E(skh,a
k
h)∼(T̃k,πk)

[
H∑

h=1

VT̃k
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]]
≤ 3ρH ·H2 ·K ≤ 3H ·H ·K,

where in the last inequality we use the fact that for any ρ ∈ [0, 1], it holds that

ρH = ρ ·min
{
H, ρ−1

}
= min

{
ρH, 1

}
≤ 1.

Finishing the proof. Finally, combining the upper bounds for Terms (i), (ii), and (iii), i.e., (E.23),
(E.25), and (E.30), we conclude that with probability at least 1− δ, it holds that

K∑
k=1

H∑
h=1

VP⋆
h (·|skh,a

k
h)

[
V πk

h+1,P⋆,Φ

]
≤ c ·H ·H2 ·

√
Kι+ 2H ·H ·K + 3H ·H ·K

≤ c′ ·H ·H ·K + c′′ ·H ·H3 · ι,

where in the last inequality we use
√
ab ≤ a + b for any a, b > 0. Plug in the notation that

H = min{H, ρ−1} and finish the proof of Lemma E.5.

E.7 Proof of Lemma E.6

Proof of Lemma E.6. Using the property of variance, we have that for any (sh, ah) ∈ S ×A,

VT̃h(·|sh,ah)

[
V π
h+1,P⋆,Φ

]
= ET̃h(·|sh,ah)

[(
V π
h+1,P⋆,Φ

)2]− (ET̃h(·|sh,ah)

[
V π
h+1,P⋆,Φ

])2
. (E.31)

By robust Bellman equation (Proposition 2.2) and the definition of T̃h in (E.24), we have that

V π
h,P⋆,Φ(sh) = Rh(sh, πh(sh)) + ET̃h(·|sh,πh(sh))

[
V π
h+1,P⋆,Φ

]
. (E.32)

Therefore, by (E.31) and (E.32), we have that

VT̃h(·|sh,πh(sh))

[
V π
h+1,P⋆,Φ

]
= ET̃h(·|sh,πh(sh))

[(
V π
h+1,P⋆,Φ

)2]− (V π
h,P⋆,Φ(sh)−Rh(sh, πh(sh))

)2
. (E.33)

For the second term in (E.33), we can calculate it as

−
(
V π
h,P⋆,Φ(sh)−Rh(sh, πh(sh))

)2
= −

(
V π
h,P⋆,Φ

)2
(sh) + 2 · V π

h,P⋆,Φ(sh) ·Rh(sh, πh(sh))−R2
h(sh, πh(sh))

≤ −
(
V π
h,P⋆,Φ

)2
(sh) + 2H, (E.34)

where the last inequality utilizes the facts that 0 ≤ Rh(sh, πh(sh)) ≤ 1, R2
h(sh, πh(sh)) ≥ 0, and

(E.22) that V π
h,P⋆,Φ(sh) ≤ H . Combining (E.33) and (E.34), we have that

VT̃h(·|sh,πh(sh))

[
V π
h+1,P⋆,Φ

]
≤ ET̃h(·|sh,πh(sh))

[(
V π
h+1,P⋆,Φ

)2]− (V π
h,P⋆,Φ

)2
(sh) + 2H,
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which further implies that

E(sh,ah)∼(T̃ ,π)

[
VT̃h(·|sh,ah)

[
V π
h+1,P⋆,Φ

]]
= Esh∼(T̃ ,π)

[
VT̃h(·|sh,πh(sh))

[
V π
h+1,P⋆,Φ

]]
≤ Esh∼(T̃ ,π)

[
ET̃h(·|sh,πh(sh))

[(
V π
h+1,P⋆,Φ

)2]− (V π
h,P⋆,Φ

)2
+ 2H

]
= Esh+1∼(T̃ ,π)

[(
V π
h+1,P⋆,Φ

)2]− Esh∼(T̃ ,π)

[(
V π
h,P⋆,Φ

)2]
+ 2H.

Taking summation over h ∈ [H] gives that

E(sh,ah)∼(T̃ ,π),h∈[H]

[
H∑

h=1

VT̃h(·|sh,ah)

[
V π
h+1,P⋆,Φ

]]
≤ 2H ·H = 2H ·min

{
H, ρ−1

}
,

which concludes the proof of Lemma E.6.

E.8 Other Technical Lemmas

Before presenting all lemmas, we recall that the typical event E is defined as

E =


∣∣∣∣ (EP⋆

h (·|s,a) − EP̂k
h (·|s,a)

) [(
η − V ⋆

h+1,P⋆,Φ

)
+

]∣∣∣∣
≤

√√√√VP̂k
h (·|s,a)

[(
η − V ⋆

h+1,P⋆,Φ

)
+

]
· c1ι

Nk
h (s, a) ∨ 1

+
c2Hι

Nk
h (s, a) ∨ 1

,

∣∣∣P ⋆
h (s

′|s, a)− P̂h(s
′|s, a)

∣∣∣ ≤
√√√√min

{
P ⋆
h (s

′|s, a), P̂ k
h (s

′|s, a)
}
· c1ι

Nk
h (s, a) ∨ 1

+
c2ι

Nk
h (s, a) ∨ 1

,

∀(s, a, s′, h, k) ∈ S ×A× S × [H]× [K], ∀η ∈ N1/(S
√
K)

(
[0, H]

), (E.35)

where ι = log(S3AH2K3/2/δ), c1, c2 > 0 are two absolute constants, N1/S
√
K([0, H]) denotes an

1/S
√
K-cover of the interval [0, H]. where c1, c2 > 0 are two absolute constants, N1/S

√
K([0, H])

denotes an 1/S
√
K-cover of the interval [0, H].

E.8.1 Concentration Inequalities

Lemma E.7 (Bernstein bound for TV robust sets and the optimal robust value function). Under event
E in (E.35), it holds that∣∣∣∣EPρ(s,a;P̂k

h )

[
V ⋆
h+1,P⋆,Φ

]
− EPρ(s,a;P⋆

h )

[
V ⋆
h+1,P⋆,Φ

]∣∣∣∣
≤

√√√√VP̂k
h (·|s,a)

[
V ⋆
h+1,P⋆,Φ

]
· c1ι

Nk
h (s, a) ∨ 1

+
c2Hι

Nk
h (s, a) ∨ 1

+
1√
K
,

where ι = log(S3AH2K3/2/δ).

Proof of Lemma E.7. By our definition of the operator EPρ(s,a;P̂k
h )[V

⋆
h+1,P⋆,Φ] in (4.1), we can arrive

that ∣∣∣∣EPρ(s,a;P̂k
h )

[
V ⋆
h+1,P⋆,Φ

]
− EPρ(s,a;P⋆

h )

[
V ⋆
h+1,P⋆,Φ

]∣∣∣∣
39



=

∣∣∣∣∣ sup
η∈[0,H]

{
− EP̂k

h (·|s,a)

[(
η − V ⋆

h+1,P⋆,Φ

)
+

]
+
(
1− ρ

2

)
· η
}

− sup
η∈[0,H]

{
− EP⋆

h (·|s,a)

[(
η − V ⋆

h+1,P⋆,Φ

)
+

]
+
(
1− ρ

2

)
· η
}∣∣∣∣∣

≤ sup
η∈[0,H]

{∣∣∣∣ (EP̂k
h (·|s,a) − EP⋆

h (·|s,a)

) [(
η − V ⋆

h+1,P⋆,Φ

)
+

]∣∣∣∣
}
, (E.36)

Now according to the first inequality of event E , we have that∣∣∣∣ (EP⋆
h (·|s,a) − EP̂k

h (·|s,a)

) [(
η − V ⋆

h+1,P⋆,Φ

)
+

]∣∣∣∣
≤

√√√√VP̂k
h (·|s,a)

[(
η − V ⋆

h+1,P⋆,Φ

)
+

]
· c1ι

Nk
h (s, a) ∨ 1

+
c2Hι

Nk
h (s, a) ∨ 1

≤

√√√√VP̂k
h (·|s,a)

[
V ⋆
h+1,P⋆,Φ

]
· c1ι

Nk
h (s, a) ∨ 1

+
c2Hι

Nk
h (s, a) ∨ 1

,

for any η ∈ N1/(S
√
K)([0, H]). Here the second inequality is because Var[(a −X)+] ≤ Var[X].

Therefore, by a covering argument, for any η ∈ [0, H], it holds that∣∣∣∣ (EP⋆
h (·|s,a) − EP̂k

h (·|s,a)

) [(
η − V ⋆

h+1,P⋆,Φ

)
+

]∣∣∣∣
≤

√√√√VP̂k
h (·|s,a)

[
V ⋆
h+1,P⋆,Φ

]
· c1ι

Nk
h (s, a) ∨ 1

+
c2Hι

Nk
h (s, a) ∨ 1

+
1√
K
.

This finishes the proof of Lemma E.7.

Lemma E.8 (Bernstein bound for TV robust sets and the robust value function of πk). Under event
E in (E.35), suppose that the optimism and pessimism (E.14) holds at (h+ 1, k), then it holds that∣∣∣∣EPρ(s,a;P̂k

h )

[
V πk

h+1,P⋆,Φ

]
− EPρ(s,a;P⋆

h )

[
V πk

h+1,P⋆,Φ

]∣∣∣∣
≤

√√√√VP̂k
h (·|s,a)

[
V ⋆
h+1,P⋆,Φ

]
· c1ι

Nk
h (s, a) ∨ 1

+
EP̂k

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
H

+
c′2H

2Sι

Nk
h (s, a) ∨ 1

+
1√
K
,

where ι = log(S3AH2K3/2/δ) and c1, c′2 are absolute constants.

Proof of Lemma E.8. By our definition of the operator EPρ(s,a;P )[V
πk

h+1,P⋆,Φ] in (4.1), we can arrive
that,∣∣∣∣EPρ(s,a;P̂k

h )

[
V πk

h+1,P⋆,Φ

]
− EPρ(s,a;P⋆

h )

[
V πk

h+1,P⋆,Φ

]∣∣∣∣
=

∣∣∣∣∣ sup
η∈[0,H]

{
− EP̂k

h (·|s,a)

[(
η − V πk

h+1,P⋆,Φ

)
+

]
+
(
1− ρ

2

)
· η
}

− sup
η∈[0,H]

{
− EP⋆

h (·|s,a)

[(
η − V πk

h+1,P⋆,Φ

)
+

]
+
(
1− ρ

2

)
· η
}∣∣∣∣∣

≤ sup
η∈[0,H]

{∣∣∣∣ (EP̂k
h (·|s,a) − EP⋆

h (·|s,a)

) [(
η − V πk

h+1,P⋆,Φ

)
+

]∣∣∣∣
}
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≤ sup
η∈[0,H]

{∣∣∣∣ (EP̂k
h (·|s,a) − EP⋆

h (·|s,a)

) [(
η − V ⋆

h+1,P⋆,Φ

)
+

]∣∣∣∣
}

︸ ︷︷ ︸
Term (i)

+ sup
η∈[0,H]

{∣∣∣∣ (EP̂k
h (·|s,a) − EP⋆

h (·|s,a)

) [(
η − V πk

h+1,P⋆,Φ

)
+
−
(
η − V ⋆

h+1,P⋆,Φ

)
+

]∣∣∣∣
}

︸ ︷︷ ︸
Term (ii)

.

We deal with Term (i) and Term (ii) respectively. For Term (i), this is exactly the same as the right
hand side of (E.36). Therefore, applying the same argument as Lemma E.7 gives the following upper
bound,

Term (i) ≤

√√√√VP̂k
h (·|s,a)

[
V ⋆
h+1,P⋆,Φ

]
· c1ι

Nk
h (s, a) ∨ 1

+
c2Hι

Nk
h (s, a) ∨ 1

+
1√
K
. (E.37)

For Term (ii), we first apply the second inequality of event E to obtain that,
Term (ii) (E.38)

≤ sup
η∈[0,H]

{∑
s′∈S

(√
P̂ k
h (s

′|s, a) · c1ι
Nk

h (s, a) ∨ 1
+

c2ι

Nk
h (s, a) ∨ 1

)

·
∣∣∣(η − V πk

h+1,P⋆,Φ(s
′)
)
+
−
(
η − V ⋆

h+1,P⋆,Φ(s
′)
)
+

∣∣∣}.
By the assumption that (E.14) holds at (h+ 1, k), we can upper bound the absolute value above by∣∣∣(η − V πk

h+1,P⋆,Φ(s
′)
)
+
−
(
η − V ⋆

h+1,P⋆,Φ(s
′)
)
+

∣∣∣ ≤ ∣∣∣V πk

h+1,P⋆,Φ(s
′)− V ⋆

h+1,P⋆,Φ(s
′)
∣∣∣

≤ V
k

h+1(s
′)− V k

h+1(s
′). (E.39)

where the first inequality is due to the 1-Lipschitz continuity of ψη(x) = (η − x)+, and the second
inequality is due to (E.14). Thus combining (E.38) and (E.39), we know that

Term (ii) ≤
∑
s′∈S

√ P̂ k
h (s

′|s, a) · c1ι
Nk

h (s, a) ∨ 1
+

c2ι

Nk
h (s, a) ∨ 1

 ·
(
V

k

h+1(s
′)− V k

h+1(s
′)
)
. (E.40)

Now following the argument first identified by Azar et al. (2017), we proceed to upper bound (E.40)
as

Term (ii) ≤
∑
s′∈S

(
P̂ k
h (s

′|s, a)
H

+
c1Hι

Nk
h (s, a) ∨ 1

+
c2ι

Nk
h (s, a) ∨ 1

)
·
(
V

k

h+1(s
′)− V k

h+1(s
′)
)

≤
EP̂k

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
H

+
c′2H

2Sι

Nk
h (s, a) ∨ 1

, (E.41)

where c′2 > 0 is another absolute constant. The first inequality is by
√
ab ≤ a + b and the

second inequality is due to V
k

h+1, V
k
h+1 ∈ [0, H]. Finally, combining (E.37) and (E.41), we prove

Lemma E.8.

Lemma E.9 (Bernstein bounds for TV robust sets and optimistic and pessimistic robust value
estimators). Under event E in (E.35), suppose that the optimism and pessimism (E.14) holds at
(h+ 1, k), it holds that

max

{ ∣∣∣EPρ(s,a;P̂k
h )

[
V

k

h+1

]
− EPρ(s,a;P⋆

h )

[
V

k

h+1

]∣∣∣ , ∣∣∣EPρ(s,a;P̂k
h )

[
V k

h+1

]
− EPρ(s,a;P⋆

h )

[
V k

h+1

]∣∣∣ }

≤

√√√√VP̂k
h (·|s,a)

[
V ⋆
h+1,P⋆,Φ

]
· c1ι

Nk
h (s, a) ∨ 1

+
EP̂k

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
H

+
c′2H

2Sι

Nk
h (s, a) ∨ 1

+
1√
K
,
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where ι = log(S3AH2K3/2/δ) and c1, c′2 are absolute constants.

Proof of Lemma E.9. This follows from the same proof as Lemma E.8 and is thus omitted.

Lemma E.10 (Non-robust concentration). Under event E in (E.35), suppose that the optimism and
pessimism (E.14) holds at (h+ 1, k), then it holds that∣∣∣∣ (EP̂k

h (·|s,a) − EP⋆
h (·|s,a)

) [
V

k

h+1 − V k
h+1

]∣∣∣∣ ≤ 1

H
· EP⋆

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
+

c′2H
2Sι

Nk
h (s, a) ∨ 1

.

where ι = log(S2AH2K3/2/δ) and c′2 is an absolute constant.

Proof of Lemma E.10. According to the second inequality of event E , we have that∣∣∣∣ (EP̂k
h (·|s,a) − EP⋆

h (·|s,a)

) [
V

k

h+1 − V k
h+1

]∣∣∣∣
≤
∑
s′∈S

(√
P ⋆
h (s

′|s, a) · c1ι
Nk

h (s, a) ∨ 1
+

c2ι

Nk
h (s, a) ∨ 1

)
·
(
V

k

h+1(s
′)− V k

h+1(s
′)
)
,

where we also apply (E.14) that V
k

h+1(s
′) ≥ V k

h+1(s
′). Now using the same argument as (E.41) in

the proof of Lemma E.8, we can arrive at∣∣∣∣ (EP̂k
h (·|s,a) − EP⋆

h (·|s,a)

) [
V

k

h+1 − V k
h+1

]∣∣∣∣
≤

EP⋆
h (·|s,a)

[
V

k

h+1(s
′)− V k

h+1(s
′)
]

H
+

c′2H
2Sι

Nk
h (s, a) ∨ 1

,

which finishes the proof of Lemma E.10.

E.8.2 Variance Analysis

Lemma E.11 (Variance analysis 1). Suppose that the optimism and pessimism (E.14) holds at
(h+ 1, k), then the following inequality holds,∣∣∣∣VP̂k

h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
− VP̂k

h (·|s,a)

[
V ⋆
h+1,P⋆,Φ

]∣∣∣∣ ≤ 4H · EP̂k
h (·|s,a)

[
V

k

h+1 − V k
h+1

]
.

Proof of Lemma E.11. Directly consider that the left hand side can be upper bounded by the follow-
ing, ∣∣∣∣VP̂k

h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
− VP̂k

h (·|s,a)

[
V ⋆
h+1,P⋆,Φ

]∣∣∣∣
≤

∣∣∣∣∣EP̂k
h (·|s,a)

[(
V

k

h+1 + V k
h+1

)2
/4

]
− EP̂k

h (·|s,a)

[(
V ⋆
h+1,P⋆,Φ

)2]∣∣∣∣∣
+

∣∣∣∣ (EP̂k
h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
])2

−
(
EP̂k

h (·|s,a)

[
V ⋆
h+1,P⋆,Φ

])2 ∣∣∣∣. (E.42)

Since all of V
k

h+1, V
k
h+1, V

⋆
h+1,P⋆,Φ ∈ [0, H] (by the correctness of (E.14) and the definitions of

V
k

h+1, V
k
h+1), we can further upper bound the right hand side of (E.42) as∣∣∣∣VP̂k

h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
− VP̂k

h (·|s,a)

[
V ⋆
h+1,P⋆,Φ

]∣∣∣∣
≤ 4H · EP̂k

h (·|s,a)

[∣∣∣(V k

h+1 + V k
h+1

)
/2− V ⋆

h+1,P⋆,Φ

∣∣∣]
≤ 4H · EP̂k

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
,

where the last inequality is due to the correctness of (E.14) at (h+1, k). This proves Lemma E.11.
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Lemma E.12 (Variance analysis 2). Under event E in (E.35), suppose that optimism and pessimism
(E.14) holds at (h+ 1, k), then it holds that∣∣∣∣VP̂k

h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
− VP⋆

h (·|s,a)

[
V πk

h+1,P⋆,Φ

]∣∣∣∣
≤ 4H · EP⋆

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
+
c′2H

4Sι

Nk
h (s, a)

+ 1.

Proof of Lemma E.12. We first relate the variance on P̂ k
h to the variance on P ⋆

h . Specifically, we have∣∣∣∣VP̂k
h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
− VP⋆

h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]∣∣∣∣

=

∣∣∣∣∣∣EP̂k
h (·|s,a)

[((
V

k

h+1 + V k
h+1

)
/2− EP̂k

h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
])2

] ∣∣∣∣∣∣
+

∣∣∣∣∣∣EP⋆
h (·|s,a)

[((
V

k

h+1 + V k
h+1

)
/2− EP⋆

h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
])2

] ∣∣∣∣∣∣.(E.43)

Since (V
k

h+1 + V k
h+1)/2 ∈ [0, H], we can further upper bound (E.43) by∣∣∣∣VP̂k
h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
− VP⋆

h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]∣∣∣∣

≤ H2 ·
∑
s′∈S

∣∣∣P ⋆
h (s

′|s, a)− P̂h(s
′|s, a)

∣∣∣
≤ H2 ·

∑
s′∈S

(√
P ⋆
h (·|s, a) · c1ι
Nk

h (s, a) ∨ 1
+

c2ι

Nk
h (s, a) ∨ 1

)

≤ H2 ·

(√
c1Sι

Nk
h (s, a) ∨ 1

+
c2Sι

Nk
h (s, a) ∨ 1

)

≤ 1 +
c′2H

4Sι

Nk
h (s, a) ∨ 1

, (E.44)

where the second inequality is by the second inequality in event E , the third inequality is by Cauchy-
Schwartz inequality and the probability distribution sums up to 1, and the last inequality is from√
ab ≤ a+ b. Thus by (E.44), we can bound our target as∣∣∣∣VP̂k

h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
− VP⋆

h (·|s,a)

[
V πk

h+1,P⋆,Φ

]∣∣∣∣
≤
∣∣∣∣VP⋆

h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
− VP⋆

h (·|s,a)

[
V πk

h+1,P⋆,Φ

]∣∣∣∣
+

c′2H
4Sι

Nk
h (s, a) ∨ 1

+ 1. (E.45)

Now by the same proof of Lemma E.11, using the correctness of (E.14) at (h+ 1, k), we can show
that ∣∣∣∣VP⋆

h (·|s,a)

[(
V

k

h+1 + V k
h+1

)
/2
]
− VP⋆

h (·|s,a)

[
V πk

h+1,P⋆,Φ

]∣∣∣∣
≤ 4H · EP⋆

h (·|s,a)

[
V

k

h+1 − V k
h+1

]
. (E.46)

Combining (E.45) and (E.46), we can finish the proof of Lemma E.12.
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E.8.3 Other Auxiliary Lemmas

Lemma E.13 (Lemma 7.5 in Agarwal et al. (2019)). For the sequences of {skh, akh}
H,K
h,k=1, it holds

that
K∑

k=1

H∑
h=1

1

Nk
h (s

k
h, a

k
h) ∨ 1

≤ c ·HSA log(K).

where c > 0 is an absolute constant.

Proof of Lemma E.13. See Lemma 7.5 in Agarwal et al. (2019) for a detailed proof.

F Proofs for Extensions in Section B.4.3

In this section, we prove the theoretical results in Section B.4.3.

F.1 Proof of Corollary B.5

Proof of Corollary B.5. We consider applying Algorithm 1 on the auxiliary S×A-rectangular RMDP
with a TV robust set M̃ (see Section B.4.3) which satisfies the vanishing minimal value assumption
(Assumption 4.1). Suppose the algorithm outputs π̃1, · · · , π̃K for the K episodes. Then Theorem 4.3
shows that by a proper choice of the hyperparameters, with probability at least 1− δ

RegretΦ̃(K) =

K∑
k=1

max
π̃

V π̃
1,P̃⋆,Φ̃

(s1)− V π̃k

1,P̃⋆,Φ̃
(s1)

≤ O
(√

min
{
H, ρ−1

}
H2(S + 1)AKι′

)
, . (F.1)

where ι′ = log2(SAHK/δ) and ρ = 2 − 2ρ′ ∈ [0, 1). In the sequel, we prove that for any policy
π̃ of M̃ and its induced policy π̃S of Mγ , their robust value functions coincide at the initial state
s1 ∈ S, that is,

V π̃
1,P̃⋆,Φ̃

(s1) = V π̃S
1,P⋆,Φ′(s1),

where V π̃
1,P̃⋆,Φ̃

is the robust value function of π̃ in M̃ = (S̃,A, H, P̃ ⋆, R̃, Φ̃), and V π̃S
1,P⋆,Φ′ is the

robust value function of π̃S in Mγ = (S,A, H, P ⋆, Rγ ,Φ
′). To this end, we actually prove a

stronger result that for any step h ∈ [H], it holds that

(ρ′)h−1 · V π̃
h,P̃⋆,Φ̃

(s) = V π̃S
h,P⋆,Φ′(s), ∀s ∈ S. (F.2)

We prove (F.2) by induction. For step H , by robust Bellman equation, we have that, for any
(s, a) ∈ S ×A,

(ρ′)H−1 ·Qπ̃
H,P̃⋆,Φ̃

(s, a) = (ρ′)H−1 ·
(
γ

ρ′

)H−1

·RH(s, a) = Rγ,H(s, a) = Qπ̃S
H,P⋆,Φ′(s, a),

and thus for any s ∈ S,

(ρ′)H−1 · V π̃
h,P̃⋆,Φ̃

(s) = Eπ̃(·|s)

[
(ρ′)H−1 ·Qπ̃

H,P̃⋆,Φ̃
(s, ·)

]
= Eπ̃S(·|s)

[
Qπ̃S

H,P⋆,Φ(s, ·)
]

= V π̃S
H,P⋆,Φ′(s).

This proves (F.2) for step H . Suppose that (F.2) holds at some step h+ 1, that is,

(ρ′)h · V π̃
h+1,P̃⋆,Φ̃

(s) = V π̃S
h+1,P⋆,Φ′(s), ∀s ∈ S. (F.3)

44



Then for step h, by robust Bellman equation and Proposition 4.2, we have that

(ρ′)h−1 ·Qπ̃
h,P̃⋆,Φ̃

(s, a) = (ρ′)h−1 ·
(
γ

ρ′

)H−1

·Rh(s, a) + (ρ′)h−1 · EP̃ρ(s,a;P̃⋆
h )

[
V π̃
h+1,P̃⋆,Φ̃

]
= Rγ,h(s, a) + (ρ′)h−1 · ρ′ · EB̃ρ(s,a;P̃⋆

h )

[
V π̃
h+1,P̃⋆,Φ̃

]
, (F.4)

where the last equality utilizes Proposition 4.2 since mins∈S̃ V
π̃
h+1,P̃⋆,Φ̃

(s) = 0, and we adopt the
notation

B̃ρ(s, a; P̃
⋆
h ) =

{
P̃ (·) ∈ ∆(S̃) : sup

s′∈S̃

P̃ (s′)

P̃ ⋆
h (s

′|s, a)
≤ 1

ρ′

}
.

Notice that by the definition (B.3), we know for (s, a) ∈ S ×A it holds that P̃ ⋆
h (·|s, a) = P ⋆

h (·|s, a)
which is supported on S. Therefore, we can equivalently write

B̃ρ(s, a; P̃
⋆
h ) =

{
P̃ (·) ∈ ∆(S̃) : sup

s′∈S

P̃ (s′)

P̃ ⋆
h (s

′|s, a)
≤ 1

ρ′

}

=

{
P̃ (·) ∈ ∆(S) : sup

s′∈S

P̃ (s′)

P ⋆
h (s

′|s, a)
≤ 1

ρ′

}
= Bρ(s, a;P

⋆
h ). (F.5)

Thus by (F.4) and (F.5) and the induction hypothesis (F.3), we obtain that for any (s, a) ∈ S ×A,

(ρ′)h−1 ·Qπ̃
h,P̃⋆,Φ̃

(s, a) = Rγ,h(s, a) + (ρ′)h · EBρ(s,a;P⋆
h )

[
V π̃
h+1,P̃⋆,Φ̃

]
= Rγ,h(s, a) + EBρ(s,a;P⋆

h )

[
V π̃S
h+1,P⋆,Φ

]
= Qπ̃S

h,P⋆,Φ(s, a),

where the second equality applies (F.3) and the last equality is from robust Bellman equation.
Consequently, for any s ∈ S, we have that

(ρ′)h−1 · V π̃
h,P̃⋆,Φ̃

(s) = Eπ̃(·|s)

[
(ρ′)h−1 ·Qπ̃

h,P̃⋆,Φ̃
(s, ·)

]
= Eπ̃S(·|s)

[
Qπ̃S

h,P⋆,Φ(s, ·)
]

= V π̃S
h,P⋆,Φ′(s),

which finishes the induction argument, proving our claim (F.2). By taking h = 1, we can derive that
for any initial state s1 ∈ S, it holds that for any policy π̃ of M̃ and its induced policy π̃S of Mγ ,

V π̃
1,P̃⋆,Φ̃

(s1) = V π̃S
1,P⋆,Φ′(s1).

This indicates two facts: the first is that
max
π̃

V π̃
1,P̃⋆,Φ̃

(s1) = max
π

V π
1,P⋆,Φ′(s1), (F.6)

where on the right hand side the maximization is with respect to all the policies for Mγ ; the second
is that

V π̃k

1,P̃⋆,Φ̃
(s1) = V

π̃k
S

1,P⋆,Φ′(s1), (F.7)

for each k ∈ [K], where recall that π̃k is the policy output by Algorithm 1 for episode k. As a result,
the k policies {π̃k

S}Kk=1 of Mγ during interactive data collection satisfies with probability at least
1− δ,

RegretΦ′(K) =

K∑
k=1

max
π

V π
1,P⋆,Φ′(s1)− V

π̃k
S

1,P⋆,Φ′(s1)

=

K∑
k=1

max
π̃

V π̃
1,P̃⋆,Φ̃

(s1)− V π̃k

1,P̃⋆,Φ̃
(s1)

≤ O
(√

min
{
H, (2− 2ρ′)−1

}
H2SAKι′

)
,

where in the second equality we apply the facts (F.6) and (F.7), and the last inequality follows from
(F.1) and that ρ = 2− 2ρ′. This completes the proof of Corollary B.5.
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