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ABSTRACT
Exponential growth of unlabeled web-scale datasets, and class hi-
erarchies to represent them, has given rise to new challenges for
hierarchical classification. It is costly and time consuming to cre-
ate a complete ontology of classes to represent entities on the Web.
Hence, there is a need for techniques that can do hierarchical clas-
sification of entities into incomplete ontologies. In this paper we
present Hierarchical Exploratory EM algorithm (an extension of
the Exploratory EM algorithm [7]) that takes a seed class hierarchy
and seed class instances as input. Our method classifies relevant
entities into some of the classes from the seed hierarchy and on its
way adds newly discovered classes into the hierarchy. Experiments
with subsets of the NELL ontology and text datasets derived from
the ClueWeb09 corpus show that our Hierarchical Exploratory EM
approach improves seed class F1 by up to 21% when compared to
its semi-supervised counterpart.

1. INTRODUCTION
With the exponential growth in world wide web there is a need

for organizing this information in a manner that is easier to under-
stand and browse through. The Open Directory Project and the Ya-
hoo! Directory are examples of hierarchies developed to organize
pages on the Web. Wordnet, NELL and Freebase are examples of
large knowledge bases that organize entities into these hierarchies.

The availability of large unlabeled datasets and hierarchical class
structures present new challenges. Manually created static hierar-
chies are no longer sufficient to classify ever increasing and contin-
uously changing web data, as manually creating ontologies (along
with labeled examples) and keeping them up-to-date is extremely
costly. Hence there is a need for techniques that can work with
incomplete ontologies, use the available seed examples to popu-
late known classes with better precision, and discover new entity
classes that can be added to the ontology to extend the set of classes
further. Knowledge Base Population (KBP) task [12] is targeting
similar problems.

There have been numerous research studies in the area of super-
vised hierarchical classification. Instead of focusing on individual
classes in isolation, hierarchical classification addresses joint train-
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ing and inference based on the hierarchical dependencies among
classes. There are variety of techniques [4, 5, 9, 14] developed
to do hierarchical classification given an ontology and sufficient
training data as input. There has also been some work on extend-
ing existing ontologies [11, 13]. However, they are limited to only
discovering new relations or attributes of existing classes. There
has also been some work in topic modeling [2, 3] on creating on-
tologies in a completely unsupervised way. In this paper we focus
on the problem of populating and extending existing knowledge
base using few seed examples and a large unlabeled dataset with
the focus being on improving precision/recall of seed classes. This
problem is at the intersection of “semi-supervised hierarchical clas-
sification” and “unsupervised ontology discovery”.

Contributions:
Our proposed technique, called “Hierarchical Exploratory Learn-
ing” deals with hierarchical semi-supervised classification with in-
complete class hierarchies. It enriches existing knowledge base in
two ways: first, by adding new instances to the existing classes;
and second, by discovering new classes and adding them at appro-
priate places in the ontology. To achieve this we extend the Ex-
ploratory EM algorithm [7] to work with a class hierarchy. Our
method improves the F1 score for seed classes when compared to a
semi-supervised learning method that works with original seed hi-
erarchy. In these experiments we assume that classes are arranged
in a tree structure and classes at any level of hierarchy are mutually
exclusive. We also discuss simple extensions by which our method
can be applied in the presence of complex class constraints.

Outline:
Rest of the paper is organized as follows: In Section 2, we de-
fine the problem formally and then present our proposed technique
“Hierarchical Exploratory EM”. Experimental results along with
dataset descriptions are covered in Section 3. Then we discuss the
related work in Section 4, and conclude in Section 5.

2. HIERARCHICAL EXPLORATORY EM
Our method is derived from the Exploratory EM algorithm pro-

posed by Dalvi et al. [7]. Exploratory learning takes the same
inputs as traditional Semi-Supervised Learning(SSL) methods, i.e.
a set of classes C1, C2, . . . Ck, a few labeled datapoints Xl and a
large number of unlabeled datapoints Xu. Xl contains a (usually
small) set of “seed” examples of each class, the task is to learn a
model from Xl and use it to label datapoints in Xu. Every example
x may be predicted to be in either a known class Ci ∈ C1 . . . Ck,
or a newly discovered class Ci ∈ Ck+1 . . . Cm.

There are two main differences between the Exploratory EM al-
gorithm and standard classification-EM approaches to SSL. First,



in the E step, each of the unlabeled datapoint x is either assigned
to one of the existing classes, or to a newly-created class. A new
class is introduced when the probabilities of x belonging to exist-
ing classes are close to uniform. This suggests that x is not a good
fit to any of the existing classes, and that adding x to any exist-
ing class will lower the total data likelihood substantially. Second,
in the M-step of iteration t, we choose either the model proposed
by Exploratory EM method which might have more classes than
the previous iteration t− 1, or the baseline model with same num-
ber of classes as iteration t − 1. This choice is based on whether
exploratory model satisfies a model selection criterion in terms of
increased data likelihood and model complexity. This intuition is
derived from the Structural EM approach [8].

As per the experimental results presented in [7], the Exploratory
EM method is comparable or better than “Gibbs sampling with
Chinese Restaurant Process(CRP) approach” and does not involve
tuning the concentration parameter for CRP. However, Exploratory
EM is limited to flat class hierarchies. In this paper we propose
the Hierarchical Exploratory EM algorithm which can work with
incomplete class hierarchies and small amount of seed labels.

2.1 Problem Definition
Given a set of class constraints Zk, a small set of labeled data

points Xl, their labels Y l, and a large set of unlabeled data points
Xu; the task is to label data points from Xu, adding m new classes
if needed and extending the class constraints to Zk+m. Here, each
point from Xl can have multiple labels at different levels of the
hierarchy satisfying constraints Zk, and Zk+m defines the class
constraints on k seed and m newly added classes, Zk ⊆ Zk+m and
the labels Y u of Xu satisfy Zk+m.

2.2 Proposed Method
One simple way to use Exploratory EM algorithm for our pur-

pose will be to run it as it is at each level of hierarchy. Hence-
forth, we refer to this approach as FLAT-ExploreEM and consider
it as a baseline for our proposed Hierarchical Exploratory EM ap-
proach. At each level, it selects one of the existing classes or creates
a new class in case the datapoint doesn’t clearly belong to one of the
known classes. This algorithm does not make explicit use of class
constraints while making class assignments at each step. Hence the
assignments done by this algorithm might not be consistent, since
assignments at level 3 are not influenced by assignment at level 2.

Next, we define a generic Hierarchical exploratory algorithm that
can take a set of class constraints in terms of subclass or mutual
exclusion relationships. This algorithm, in each iteration assigns
a bit vector to each data point (number of bits equals number of
classes), each bit indicating whether the data point belongs to the
class. Class constraints decide whether a bit vector is consistent or
not. E.g. if class constraints include “Car is a of type Machine”,
then for consistency, when the bit for “Car” is set, the bit for “Ma-
chine” should also be set. Further new classes can be added during
each iteration, hence the length of these bit vectors changes dynam-
ically and the algorithm maintains class constraints containing old
as well as newly added classes. The generic algorithm is described
in Algorithm 1. There can be multiple ways to implement functions
“ConsistentAssignment” and “UpdateConstraints”.

One simple instantiation of Algorithm 1 can be done by using
Divide-and-Conquer(DAC) strategy. Here we assume that classes
are arranged in a tree hierarchy, and classes at any one level are mu-
tually exclusive. To do class assignments for any non-seed point,
we will first start with root. Every data point belongs to the root
node. Then at level 2 use exploreEM to either assign this point to
one of the existing clusters or create a new one. Recurse the same

procedure for child tree of the node selected at level 2. Algorithm
2 describes the “ConsistentAssignment” and “UpdateConstraints”
functions for this approach, named DAC-ExploreEM.

Algorithm 1 Generic Hierarchical Exploratory EM algorithm
1: function Hierarchical-ExploreEM (Xl, Y l, Xu, Zk): Zk+m, Y u

2: Input: Xl labeled data points; Y l labels of Xl; Xu unlabeled data
points; Z0 manually input constraints on k seed classes (subclass-
superclass or mutual-exclusion kind); Pnew probability of creating a
new class

3: Output: Zk+m Extended set of class constraints on k seed and m
newly added classes; Y u labels for Xu

4: h = height of ontology that is part of Zk

5: Initialize classifiers θj for each class Cj using seeds provided for Cj

6: for t = 1 to maxIter do
7: for i=1 to |X| do

{E step: Classify each point at each level}
8: Find P (Cj |Xi) for all classes Cj

9: Zt = UpdateConstraints({Xl ∪Xu}, {Yl ∪ Yu}, Zt)
10: Y t

i = ConsistentAssignment(P (Cj |Xi), h, ZC )
11: end for

{M step: Recompute model parameters}
12: Compute cluster centroids based on class assignments Y t in E step
13: Zt+1 = Zt

14: end for
15: end function

2.3 Modeling Class Constraints
There are different kinds of class constraints imposed by ontolo-

gies. Two example constraints are as follows:
(1) The “Subclass-Superclass” constraint between “Mammals” and
“Animals” categories suggests that if a datapoint is classified as
“Mammals”, then it should also be classified as “Animals”.
(2) The “Mutual Exclusion” constraint between “Animals” and “Elec-
tronic Devices” says if a datapoint is member of “Animals”, then it
should not be member of “Electronic Devices”, and vice versa.

Note that the example ontologies we are using (refer Figure 1)
has a tree structure. In practice, class constraints can be more com-
plicated e.g. existence of overlapping classes. Note that DAC-
ExploreEM algorithm assumes tree structure and mutual exclu-
sion of classes at any level of hierarchy. However, Algorithm 1
is generic enough to work with more complicated class constraints.

In ongoing work in this direction we are exploring the use of
Markov Random Fields(MRF). Here, MRF is built for each data-
point using class probabilities modeled as node potentials and the
class constraints modeled as edge potentials. Belief propagation (or
loopy belief propagation) is then used to infer class assignments for
each data point satisfying the given class constraints. This method
can easily support any kind of class constraints, hence not restricted
to the tree structured ontologies.

3. EXPERIMENTAL EVALUATION
In this section we present the experimental results of our Hier-

archical Exploratory EM approach. For this task we work with
subsets of NELL’s ontology at two different points in NELL’s de-
velopment. Figure 1 shows the two ontologies we used for the
experiments presented in this paper.

Datasets
For experimental evaluation we wanted to create datasets that have
ground truth labels for all entities in them. For this purpose, we de-
rived two datasets using the ontologies in Figure 1 and text pattern
dataset (used by Carlson et al. [5]) extracted from the ClueWeb09
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Figure 1: Ontologies used for hierarchical classification.

corpus. For each entity we have the text patterns as features and
feature weights are TFIDF weighted occurrence counts of each pat-
tern with the entity. To create a dataset from an ontology, we took
all entities that are labeled with at least one of the classes under
consideration, and retrieved their feature representation in terms of
occurrences with text patterns. The first ontology (Figure 1 (left))
has 3 levels and 11 classes. The dataset created using this ontol-
ogy is referred to as DS-1. The second ontology (Figure 1 (right))
has 4 levels and 39 classes. Dataset created using this ontology is
referred to as DS-2. Table 1 shows the statistics for DS-1 and DS-2.

Results
Next, we compare FLAT-ExploreEM algorithm with DAC-ExploreEM.
The evaluation metric used for comparison is “macro-averaged seed
class F1” (computed by macro averaging F1 values of seed classes
only). This metric is further averaged for 10 runs of both algo-
rithms. Each run’s input consists of different seed ontologies and
randomly sampled 10% of relevant datapoints as seed examples.
The same set of inputs is given to both SemisupEM and Exploratory
EM algorithms for both FLAT and DAC classification.

For DS-1, we generated 10 sets of seed examples, for the same
seed ontology. The chosen seed ontology is bold-faced in Figure 1
(left). Here seed ontology always contains 7 out of 11 classes. For
DS-2, seed ontology also varies across runs. In each run, we ran-
domly chose 10 leaf nodes according to their class frequency (i.e.
popular class is more likely to be chosen in each run). After sam-
pling 10 leaf nodes (sampling without replacement), we included
all their ancestors to create the seed ontology for that run. 10%
of the datapoints from these classes are them randomly sampled as
training data for the run. The average ontology size generated us-
ing this method was 16.7. Table 2 column 2 shows avg. number of
nodes at each level.

From Table 2 we can see that, Exploratory EM version of each
algorithm improves seed class F1 when compared to SemisupEM.
The statistical significance of results is computed by doing a pair-
wise t-test on 10 runs of both algorithms. N (and M) indicates that
improvements w.r.t. SemisupEM are statistically significant with
0.05 (and 0.1) significance level. Here we used seeded K-Means al-

gorithm for clustering and MinMax criterion [7] for new class cre-
ation 1. The best performance in each row is bold-faced. We can
clearly see that DAC approach of hierarchical classification beats
flat classification in 4 out of 5 cases. The results are encouraging in
the sense, they show that hierarchical classification is more effec-
tive than flat classification as it is making use of class constraints
while doing inference for each datapoint. Further exploratory ap-
proach gives comparable or better results when compared to its
semi-supervised counterpart.

4. RELATED WORK
There has been a lot of research done in the area of supervised

hierarchical classification. Instead of focusing on individual classes
in isolation, hierarchical classification addresses joint training and
inference based on the hierarchical dependencies among the classes.
Cai and Hofmann [4] proposed a SVM based hierarchical clas-
sification method that is based on discriminant functions that are
structured in a way that mirrors the class hierarchy. Gopal et al.
[9] propose Bayesian methods to model hierarchical dependencies
among class labels using multivariate logistic regression. Zhou et
al. [14] propose an SVM based classifier that operates with a tree
structured class hierarchy and classifies the examples recursively
from the root to the leaves. Their technique encourages the classi-
fiers at each node of the tree to be different from the classifiers at
its ancestors. All these methods assume that the class hierarchy is
complete and there is enough training data to learn classifiers for
each node in the class hierarchy. On the other hand we consid-
ered the situation where only part of the ontology is known upfront
with very few seed examples for each of the seed class. Further our
method can be easily extended to cases where class constraints are
more complicated than the examples considered in this paper, e.g.
overlapping classes and mutual exclusion constraints.

Another related research area is constructing web-scale knowl-
edge bases by doing information extraction from various data-sources
e.g. NELL [10], Freebase [1] etc. NELL internally uses Coupled
1MinMax criterion introduces a new class for a data point and pos-
terior distribution of classes given the data point, if the maximum
to minimum probability ratio is less than 2.



Dataset #classes #Levels #Classes per level # NELL entities # contexts # entity, context pairs # NELL entity-label pairs
DS-1 11 3 1, 3, 7 2.5K 3.4M 8.8M 6.7K
DS-2 39 4 1, 4, 24, 10 12.9K 6.7M 25.8M 42.2K

Table 1: Dataset statistics

Dataset #seed/#Ideal Level Macro-avg. Seed Class F1
classes FLAT DAC

SemisupEM Exploratory EM SemisupEM Exploratory EM
DS-1 2/3 2 43.2 78.7 N 69.5 77.2 M

4/7 3 34.4 42.6 N 31.3 44.4 N
DS-2 3.9/4 2 64.3 53.4 H 65.4 68.9 N

9.4/24 3 31.3 33.7 N 34.9 41.7 N
2.4/10 4 27.5 38.9 N 43.2 42.4

Table 2: Comparison of Exploratory EM w.r.t. SemisupEM in terms of macro avg. F1 for seed classes. N (and M) indicates that
Exploratory EM results are statistically significant w.r.t SemisupEM with 0.05 (and 0.1) significance level.

Algorithm 2 Divide-And-Conquer Hierarchical Exploratory EM
1: function ConsistentAssignment-DAC (P (Cj |Xi), Zk}): assgnx,
Zk+m

2: Input: P (Cj |x) probability distribution of classes given a datapoint x;
Zk class constraints on k seed classes.

3: Output: Yx assignment of x to classes satisfying Zk;
Zk′ extended set of class constraints on k′ resultant classes.

4: for l = 1 to h do
5: if Xi has seed label at level l then
6: label(Xi, levell) = seed label;
7: else
8: candidateClasses = children(label(Xi, levell−1))
9: if candidateClasses is not empty then

10: Let Pcand = probability distribution over candidate classes
11: if Pcand is nearly uniform then
12: Create a new class Cnew at level l
13: Assign Xi to Cnew

14: Set parent(Cnew) = class choice at level l − 1
15: else
16: Assign Xi to argmaxCi

Pcand

17: end if
18: end if
19: end if
20: end for
21: end function

22: function UpdateConstraints-DAC (X , Y , Zold): Znew

23: Input: X: Dataset; Y : Class assignments for each point in X;
Zold: Old constraints on the existing set of classes.

24: Output: Znew: Updated set of class constraints,
25: Each newly created class is assigned a single parent at the time of cre-

ation
26: Add each parent, child relationship as a constraint in Zk′

27: end function

semi-supervised learning [5] that takes into account subclass and
mutual exclusion constraints among classes to filter extraction pat-
terns and instances at the end of each bootstrapping iteration. The
ontology (class hierarchy) is not explicitly used in the prediction
process. I.e. it does flat classification with class constraints applied
as post-processing in between two iterations of bootstrapping. Our
approach on the other hand does collective inference i.e. hierarchi-
cal classification.

There has also been some work to extend existing ontologies.
Mohamed et al. [11] propose a co-clustering based two step ap-
proach to discover new relations between two already existing classes
in the knowledge base. These new relations are named using cen-
troid features of the intermediate clusters. This method is focused
on relation discovery between known classes. Reisinger and Paşca
[13] addressed the same problem as ours, working with the Word-

net hierarchy. Their fixed-structure and sense selective approaches
use the Wordnet hierarchy directly and annotate existing concepts
with generic property fields (attributes). On the other hand, Nested
Chinese Restaurant Process (nCRP) approach is hierarchical exten-
sion of LDA to infer arbitrary fixed-depth tree structures from data.
nCRP generates its own annotated hierarchy whose concept nodes
do not necessarily correspond to Wordnet concepts. Our method
is in the middle of these two approaches, as it uses the existing
class hierarchy with small amount of training data and extends it
dynamically as new clusters of datapoints are discovered.

There has also been some work on completely unsupervised in-
formation extraction and ontology discovery [2, 3, 13, 6]. Though
very effective, these approaches are not making use of the valuable
information hidden in the existing knowledge bases. Our approach
is relatively novel in the sense that it is in between semi-supervised
and unsupervised learning, where some part of ontology is known,
and this knowledge is used to discover the missing parts of the on-
tology along with populating it with new data instances.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we propose the Hierarchical Exploratory EM ap-

proach that can take an incomplete seed ontology as input, along
with a few examples of each seed class, to populate new instances
of seed classes and extend the ontology with newly discovered
classes. Preliminary experiments show encouraging results. Hi-
erarchical classification performs better than flat classification at
deeper levels of hierarchy. The relative improvements in seed class
F1 increases as we go further down the hierarchy.

Another observation is that exploratory learning gives compara-
ble or better performance when compared to their semi-supervised
counterpart for both flat and hierarchical classification. Continuing
further in this direction, we are trying to incorporate arbitrary class
constraints while doing hierarchical classification. For this purpose
we are exploring the use of Markov Random Fields.
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