

000 SESAMo: SYMMETRY-ENFORCING STOCHASTIC MOD- 001 002 ULATION FOR NORMALIZING FLOWS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Deep generative models have recently garnered significant attention across various
012 fields, from physics to chemistry, where sampling from unnormalized Boltzmann-
013 like distributions represents a fundamental challenge. In particular, autoregressive
014 models and normalizing flows have become prominent due to their appealing ability
015 to yield closed-form probability densities. Moreover, it is well-established that
016 incorporating prior knowledge—such as symmetries—into deep neural networks
017 can substantially improve training performances. In this context, recent advances
018 have focused on developing symmetry-equivariant generative models, achiev-
019 ing remarkable results. Building upon these foundations, this paper introduces
020 Symmetry-Enforcing Stochastic Modulation (SESaMo). Similar to equivariant
021 normalizing flows, SESaMo enables the incorporation of inductive biases (e.g.,
022 symmetries) into normalizing flows through a novel technique called *stochastic*
023 *modulation*. This approach enhances the flexibility of the generative model by
024 enforcing exact symmetries while, for the first time, enabling the model to learn bro-
025 ken symmetries during training. Our numerical experiments benchmark SESaMo in
026 different scenarios, including an 8-Gaussian mixture model and physically relevant
027 field theories, such as the ϕ^4 theory and the Hubbard model.

028 1 INTRODUCTION

030 Sampling from unnormalized Boltzmann distributions is an ubiquitous yet challenging task across
031 various fields, including physics (1), chemistry (2), and economics (3). These distributions are
032 typically of the form $p(\mathbf{x}) = \exp(-f[\mathbf{x}])/Z$, where $f[\cdot]$ is a functional representing, for example,
033 the potential of a chemical compound or the action of a physical system, while Z , the normalization
034 constant (or partition function), is often unknown. While $f[\cdot]$ is usually available in closed form, as it
035 describes the microscopic dynamics of the system under study, computing Z would require solving a
036 functional or high-dimensional integral, which is generally intractable. In fact, for many systems of
037 interest, sampling from Boltzmann distributions has been proven to be NP-hard (4), making it highly
038 unlikely that a polynomial-time algorithm exists for this problem. Due to this complexity, sampling
039 from unnormalized Boltzmann distributions is traditionally performed using Markov Chain Monte
040 Carlo (MCMC) methods (5), where a randomly initialized Markov chain is guaranteed to converge
041 to the target distribution. Despite numerous advanced MCMC techniques, significant challenges
042 remain. In chemical and biological systems, for instance, sampling can be hindered by high-energy
043 barriers separating metastable states, posing a major obstacle for tasks such as protein folding (6).
044 In physics, MCMC methods often suffer from slow convergence due to autocorrelations between
045 samples, necessitating longer simulations to obtain statistically independent samples and thereby
046 increasing computational costs (7).

047 Over the past decade, deep generative models (8) have achieved remarkable success in sampling from
048 Boltzmann distributions within the framework of variational inference (VI) (9). In particular, Ref. (10)
049 introduced Boltzmann Generators (BGs), an approach in which a variational (parametrized) probabil-
050 ity density $q_\theta \in \mathcal{Q}$ is learned, using a generative model, to approximate the target distribution ¹ of a
051 chemical system, i.e., $q_\theta \approx p$. Around the same time, concurrent studies proposed similar ideas in
052 the contexts of statistical physics (11; 12) and lattice quantum field theories (13; 14). A distinctive

053 ¹For notational convenience, we use the same symbol for a distribution and its density with respect to the
Lebesgue measure.

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 80100
 80101
 80102
 80103
 80104
 80105
 80106
 80107
 80108
 80109
 80110
 80111
 80112
 80113
 80114
 80115
 80116
 80117
 80118
 80119
 80120
 80121
 80122
 80123
 80124
 80125
 80126
 80127
 80128
 80129
 80130
 80131
 80132
 80133
 80134
 80135
 80136
 80137
 80138
 80139
 80140
 80141
 80142
 80143
 80144
 80145
 80146
 80147
 80148
 80149
 80150
 80151
 80152
 80153
 80154
 80155
 80156
 80157
 80158
 80159
 80160
 80161
 80162
 80163
 80164
 80165
 80166
 80167
 80168
 80169
 80170
 80171
 80172
 80173
 80174
 80175
 80176
 80177
 80178
 80179
 80180
 80181
 80182
 80183
 80184
 80185
 80186
 80187
 80188
 80189
 80190
 80191
 80192
 80193
 80194
 80195
 80196
 80197
 80198
 80199
 80200
 80201
 80202
 80203
 80204
 80205
 80206
 80207
 80208
 80209
 80210
 80211
 80212
 80213
 80214
 80215
 80216
 80217
 80218
 80219
 80220
 80221
 80222
 80223
 80224
 80225
 80226
 80227
 80228
 80229
 80230
 80231
 80232
 80233
 80234
 80235
 80236
 80237
 80238
 80239
 80240
 80241
 80242
 80243
 80244
 80245
 80246
 80247
 80248
 80249
 80250
 80251
 80252
 80253
 80254
 80255
 80256
 80257
 80258
 80259
 80260
 80261
 80262
 80263
 80264
 80265
 80266
 80267
 80268
 80269
 80270
 80271
 80272
 80273
 80274
 80275
 80276
 80277
 80278
 80279
 80280
 80281
 80282
 80283
 80284
 80285
 80286
 80287
 80288
 80289
 80290
 80291
 80292
 80293
 80294
 80295
 80296
 80297
 80298
 80299
 80300
 80301
 80302
 80303
 80304
 80305
 80306
 80307
 80308
 80309
 80310
 80311
 80312
 80313
 80314
 80315
 80316
 80317
 80318
 80319
 80320
 80321
 80322
 80323
 80324
 80325
 80326
 80327
 80328
 80329
 80330
 80331
 80332
 80333
 80334
 80335
 80336
 80337
 80338
 80339
 80340
 80341
 80342
 80343
 80344
 80345
 80346
 80347
 80348
 80349
 80350
 80351
 80352
 80353
 80354
 80355
 80356
 80357
 80358
 80359
 80360
 80361
 80362
 80363
 80364
 80365
 80366
 80367
 80368
 80369
 80370
 80371
 80372
 80373
 80374
 80375
 80376
 80377
 80378
 80379
 80380
 80381
 80382
 80383
 80384
 80385
 80386
 80387
 80388
 80389
 80390
 80391
 80392
 80393
 80394
 80395
 80396
 80397
 80398
 80399
 80400
 80401
 80402
 80403
 80404
 80405
 80406
 80407
 80408
 80409
 80410
 80411
 80412
 80413
 80414
 80415
 80416
 80417
 80418
 80419
 80420
 80421
 80422
 80423
 80424
 80425
 80426
 80427
 80428
 80429
 80430
 80431
 80432
 80433
 80434
 80435
 80436
 80437
 80438
 80439
 80440
 80441
 80442
 80443
 80444
 80445
 80446
 80447
 80448
 80449
 80450
 80451
 80452
 80453
 80454
 80455
 80456
 80457
 80458
 80459
 80460
 80461
 80462
 80463
 80464
 80465
 80466
 80467
 80468
 80469
 80470
 80471
 80472
 80473
 80474
 80475
 80476
 80477
 80478
 80479
 80480
 80481
 80482
 80483
 80484
 80485
 80486
 80487
 80488
 80489
 80490
 80491
 80492
 80493
 80494
 80495
 80496
 80497
 80498
 80499
 80500
 80501
 80502
 80503
 80504
 80505
 80506
 80507
 80508
 80509
 80510
 80511
 80512
 80513
 80514
 80515
 80516
 80517
 80518
 80519
 80520
 80521
 80522
 80523
 80524
 80525
 80526
 80527
 80528
 80529
 80530
 80531
 80532
 80533
 80534
 80535
 80536
 80537
 80538
 80539
 80540
 80541
 80542
 80543
 80544
 80545
 80546
 80547
 80548
 80549
 80550
 80551
 80552
 80553
 80554
 80555
 80556
 80557
 80558
 80559
 80560
 80561
 80562
 80563
 80564
 80565
 80566
 80567
 80568
 80569
 80570
 80571
 80572
 80573
 80574
 80575
 80576
 80577
 80578
 80579
 80580
 80581
 80582
 80583
 80584
 80585
 80586
 80587
 80588
 80589
 80590
 80591
 80592
 80593
 80594
 80595
 80596
 80597
 80598
 80599
 80600
 80601
 80602
 80603
 80604
 80605
 80606
 80607
 80608
 80609
 80610
 80611
 80612
 80613
 80614
 80615
 80616
 80617
 80618
 80619
 80620
 80621
 80622
 80623
 80624
 80625
 80626
 80627
 80628
 80629
 80630
 80631
 80632
 80633
 80634
 80635
 80636
 80637
 80638
 80639
 80640
 80641
 80642
 80643
 80644
 80645
 80646
 80647
 80648
 80649
 80650
 80651
 80652
 80653
 80654
 80655
 80656
 80657
 80658
 80659
 80660
 80661
 80662
 80663
 80664
 80665
 80666
 80667
 80668
 80669
 80670
 80671
 80672
 80673
 80674
 80675
 80676
 80677
 80678
 80679
 80680
 80681
 80682
 80683
 80684
 80685
 80686
 80687
 80688
 80689

108 permutation-equivariant diffeomorphisms. More recently, Midgley et al. (41) introduced NFs that
 109 inherently respects $SE(3)$ group symmetries—comprising translations, rotations, and reflections—as
 110 well as permutation invariance. Furthermore, Klein et al. (42) proposed equivariant flow matching,
 111 a training objective based on optimal transport flow matching that leverages inherent symmetries
 112 in physical systems, enabling simulation-free training of equivariant continuous normalizing flows
 113 (CNFs). In the context of diffusion models (43), Hoogeboom et al. (44) introduced an $E(3)$ -equivariant
 114 diffusion model for 3D molecular generation, which, similar to (33), enforces Euclidean invariance
 115 under translations and rotations. Lastly, Pires et al. (45) showed that a Variational Mixture of NFs
 116 (VMoNF) can model the symmetries of labelled data.

2 PRELIMINARIES

2.1 NORMALIZING FLOWS

122 Normalizing flows (NFs) (18) are a class of generative models that provide an effective framework
 123 for approximating complicated probability distributions. Commonly employed in the context of variational
 124 inference (VI) (46), NFs operate by transforming a simple, well-understood, prior distribution
 125 (typically a Gaussian) into a target distribution through a sequence of invertible and differentiable
 126 mappings. A key advantage of NFs is their ability to efficiently sample from approximated high-
 127 dimensional distributions while retaining the capability to compute exact likelihoods. This exact
 128 likelihood computation distinguishes NFs from many other generative models, making them particu-
 129 larly well-suited for learning probability distributions in scientific applications, such as chemistry (10)
 130 and physics (14). NFs can be categorized based on how the mappings between the prior density and
 131 the target distribution are constructed. These categories include coupling-based NFs (47; 48; 49),
 132 autoregressive NFs (50), and continuous NFs (34). For the sake of simplicity, this paper primarily
 133 focuses on coupling-based NFs, although extensions to other types of NFs are possible.

134 At the heart of NFs lies the concept of a *bijective transformation* that maps samples from a prior
 135 distribution $\mathbf{z} \sim q_0(\mathbf{z})$ (such as a multivariate Gaussian) to samples from a variational distribution
 136 $\mathbf{x} \sim q_{\theta}$, which is meant to approximate a target p . This typically happens by means of a learnable
 137 function

$$g_{\theta} : \mathbf{z} \sim q_0 \rightarrow \mathbf{x} = g_{\theta}(\mathbf{z}) \quad \text{with} \quad \mathbf{x} \sim q_{\theta}(\mathbf{x}), \quad (1)$$

138 where the transformation g_{θ} is parametrized by a neural network. To increase the flexibility of NFs,
 139 multiple transformations (coupling blocks) can be composed, allowing for more expressive mappings
 140 between prior and target distributions, $g_{\theta}(\mathbf{z}) = g_{\theta_T} \circ g_{\theta_{T-1}} \circ \dots \circ g_{\theta_1}(\mathbf{z})$. A key feature of NFs
 141 is that the transformation must be *invertible*, allowing the likelihood of the target distribution to be
 142 computed exactly using the change of variables formula

$$q_{\theta}(\mathbf{x}) = q_0(g_{\theta}^{-1}(\mathbf{x})) \left| \det \left(\frac{\partial g_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|. \quad (2)$$

143 For a comprehensive overview of NFs, we refer to the review papers (18; 51). In this work, we focus
 144 mainly on affine NF architectures, such as RealNVP (48), NICE (47), and neural spline flows (49).

2.2 THE KULLBACK-LEIBLER DIVERGENCE

151 In the context of Variational Inference, the parameters θ of NFs are trained by minimizing the
 152 so-called (Reverse) Kullback-Leibler (KL) divergence (52)

$$KL(q_{\theta} \parallel p) = -\mathbb{E}_{\mathbf{x} \sim q_{\theta}} \left[\ln \frac{\tilde{p}(\mathbf{x})}{q_{\theta}(\mathbf{x})} \right] + \ln Z, \quad (3)$$

153 where $\tilde{p}(\mathbf{x}) = \exp(-f[\mathbf{x}])$ and $q_{\theta}(\mathbf{x})$ are the unnormalized target and the parametrized probability
 154 distributions, respectively. The logarithm of the unknown partition function simply appears as an
 155 additive term, which vanishes upon taking the gradient. For this reason, it is common to *maximize* the
 156 evidence lower bound (ELBO) instead,

$$ELBO = \mathbb{E}_{\mathbf{x} \sim q_{\theta}} \left[\ln \frac{\tilde{p}(\mathbf{x})}{q_{\theta}(\mathbf{x})} \right]. \quad (4)$$

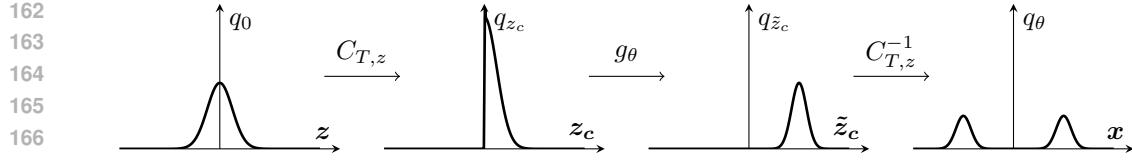


Figure 1: Visualization of the *canonicalization* approach making a flow-based model equivariant with respect to a \mathbb{Z}_2 symmetry.

Note that minimizing the reverse KL in Eq. (3) is equivalent to maximizing the ELBO in Eq. (4); moreover, since $\text{KL}(q_\theta \parallel p) \geq 0$ it follows that $\text{ELBO} \leq \ln Z$. It should also be noted that the KL divergence is not symmetric, i.e., $\text{KL}(q_\theta \parallel p) \neq \text{KL}(p \parallel q_\theta)$. Consequently, training using Eq. (3) or Eq. (4) differs from the practice of maximum likelihood training, which employs the *forward* KL-divergence—a common approach in, e.g., computer vision applications (50). This distinction is significant: In Variational Inference, access to training data is often unavailable, and models must be trained solely using the closed-form unnormalized log probability \tilde{p} .

2.3 EQUIVARIANT NORMALIZING FLOWS

In previous works, several attempts have been made to incorporate prior knowledge into NFs and make them equivariant with respect to certain symmetry groups. The main result stemming from (32) is summarised in the following theorem:

Theorem 1 (Köhler et al., (2020)) *Let's assume H is a group acting on \mathbb{R}^n , q_0 is the base density of a flow-based transformation with q_θ being the transformed density under the diffeomorphism $g_\theta : \mathbb{R}^n \rightarrow \mathbb{R}^n$. If g_θ is an H -equivariant diffeomorphism and q_0 is an H -invariant density with respect to the same group H , then q_θ is also an H -invariant density on \mathbb{R}^n .*

Specifically, this theorem provides a general protocol to build an *equivariant* NF by choosing an appropriate invertible map g_θ that is H -equivariant. However, despite the generality of this result, defining equivariant diffeomorphisms that allow for tractable inverses and Jacobians—both essential for building an NF—remains an open challenge. Indeed, different approaches have been leveraged in recent works to build equivariant flow-based models.

2.3.1 EQUIVARIANT NEURAL NETWORKS

In coupling-based NFs, the diffeomorphism g_θ is often parametrized by a neural network (NN). A straightforward approach to enforce equivariance (or invariance) (53; 54) is to design an NN that explicitly satisfies these symmetry requirements. However, a significant limitation of this method is that constructing such constrained architectures is neither always possible nor straightforward. One instance where this approach is feasible is in the case of a \mathbb{Z}_2 symmetry. Indeed, recent work showed how to build manifestly sign-equivariant architectures (55). For example, a simple strategy to achieve sign equivariance in NNs is to use equivariant activation functions, such as \tanh , and omit bias terms, ensuring that the resulting NN remains equivariant. Indeed, this approach was successfully applied for training \mathbb{Z}_2 -equivariant NFs in the context of lattice quantum field theories (14; 56; 57).

2.3.2 CANONICALIZATION

The idea of *canonicalization*, largely motivated by Theorem 1, has been widely explored in the context of flow-based sampling for lattice field theories (36). Indeed, physical systems are rich in global (and local) symmetries, and being able to develop equivariant flows fulfilling these constraints is a very active area of research. The key idea is to use a transformation $C_{T,z}$ to map a sample from the base density to a so-called canonical cell Ω , see (58). The NF then transforms the canonicalized sample, before the inverse $C_{T,z}^{-1}$ is applied to map the sample back to its original space. We refer to App. 3.1 and Fig. 3 for more details. A parametric map g_θ is equivariant to a generic transformation T if

$$g_\theta(T\mathbf{x}) = Tg_\theta(\mathbf{x}) \implies g_\theta(\mathbf{x}) = T^{-1}g_\theta(T\mathbf{x}). \quad (5)$$

216 For example, for the sign-flipping \mathbb{Z}_2 transformation mentioned above,² the transformation reads
 217

$$218 \quad T_{\mathbb{Z}_2} : \mathbf{x} \rightarrow -\mathbf{x}. \quad (6)$$

219 A canonical map $C_{T,z}$ transforms samples $\mathbf{z} \in \mathbb{R}^n$, where $\mathbf{z} \sim q_0$, to the canonical cell
 220

$$221 \quad C_{T,z} : \mathbf{z} \in \mathbb{R}^n \rightarrow \mathbf{z}_c \in \Omega \quad \text{with the inverse} \quad C_{T,z}^{-1} : \tilde{\mathbf{z}}_c \in \tilde{\Omega} \rightarrow \mathbf{x} \in \mathbb{R}^n. \quad (7)$$

223 The two manifolds Ω and $\tilde{\Omega}$ are connected by the diffeomorphism g_θ acting in the *canonical space*,
 224 i.e.,

$$225 \quad g_\theta : \mathbf{z}_c \in \Omega \rightarrow \tilde{\mathbf{z}}_c \in \tilde{\Omega} \quad \text{and} \quad g_\theta^{-1} : \tilde{\mathbf{z}}_c \in \tilde{\Omega} \rightarrow \mathbf{z}_c \in \Omega. \quad (8)$$

227 Note that $C_{T,z}$ depends on some *specific* symmetry transformation T , see Eq. (5), which makes
 228 the *canonicalized flow* $\tilde{g}_\theta(\mathbf{z}) = C_{T,z}^{-1} g_\theta C_{T,z}(\mathbf{z})$ equivariant. Focusing on the sign-flipping \mathbb{Z}_2
 229 transformation mentioned above, we have

$$231 \quad C_{T,z} : \mathbf{z} \mapsto \begin{cases} \mathbf{z}, & \text{if } \sum_{i=1}^n z_i \geq 0 \\ T_{\mathbb{Z}_2} \mathbf{z}, & \text{else} \end{cases} \quad (9)$$

234 where the canonical cell in this case is $\Omega = \{\mathbf{z} \in \mathbb{R}^n \text{ s.t. } \sum_{i=1}^n z_i \geq 0\}$. See Fig. 1 for a visual
 235 intuition. This approach can be generalised for $\mathbf{z} \in \mathbb{R}^n$ and a set of S symmetry transformations
 236 $\{T_i\}$ such that

$$237 \quad C_{\mathbf{T},z} : \mathbf{z} \mapsto \begin{cases} \mathbf{z}, & \text{if } A(\mathbf{z}) \\ T_1 \mathbf{z}, & \text{elif } A_1(\mathbf{z}) \\ \vdots \\ T_S \mathbf{z}, & \text{elif } A_S(\mathbf{z}) \end{cases} \quad \text{with inverse} \quad C_{\mathbf{T},z}^{-1} : \mathbf{x} \mapsto \begin{cases} \mathbf{x}, & \text{if } A(\mathbf{z}) \\ T_1^{-1} \mathbf{x}, & \text{elif } A_1(\mathbf{z}) \\ \vdots \\ T_S^{-1} \mathbf{x}, & \text{elif } A_S(\mathbf{z}) \end{cases} \quad (10)$$

243 where $A(\cdot)$ is a condition that allows to define the canonical cell $\Omega = \{\mathbf{z} \in \mathbb{R}^n \text{ s.t. } A(\mathbf{z}) = \text{True}\}$.
 244 Note that the conditions $A(\cdot)$ depend on the input \mathbf{z} , i.e., the information about the origin of the
 245 sample in the base space must be stored in the transformation $C_{\mathbf{T},z}$ as well as its inverse. A proof
 246 that the canonicalization approach is equivariant is given in App. C.

247 2.3.3 CONSTRAINTS ON CANONICALIZATION

249 In order to enforce equivariance via canonicalization, two constraints must be met: first the prior
 250 distribution q_0 must be *invariant* under any symmetry transformation T_i (32), i.e., $q_0(\mathbf{z}) = q_0(T_i \mathbf{z})$.
 251 Second, g_θ should not map samples *outside* of the canonical cell, i.e., $\tilde{\mathbf{z}}_c = g_\theta(C_{\mathbf{T},z} \mathbf{z}) \notin \Omega$. While
 252 the former constraint can be readily verified, the latter may not hold for any general NF. We enforce
 253 this latter constraint by introducing a regularization term

$$254 \quad \Lambda(\tilde{\mathbf{z}}_c) = A \cdot \sigma(B \cdot \lambda(\tilde{\mathbf{z}}_c)) \cdot \Theta(\lambda(\tilde{\mathbf{z}}_c)), \quad (11)$$

256 where $\lambda(\tilde{\mathbf{z}}_c)$ is a *penalty function* being zero for a general input $\tilde{\mathbf{z}}_c$ at the boundary $\partial\Omega$ of the
 257 canonical cell Ω , negative for $\tilde{\mathbf{z}}_c \in \Omega$, and positive for $\tilde{\mathbf{z}}_c \notin \Omega$. The Heaviside step function $\Theta(\cdot)$
 258 ensures that the penalty term is zero for $\tilde{\mathbf{z}}_c \in \Omega$, while the sigmoid function $\sigma(\cdot)$ ensures that the
 259 penalty function has a gradient pointing toward the canonical cell Ω . The hyperparameters $A, B \in \mathbb{R}$
 260 are used to scale the amplitude and the gradient of the function, respectively. This regularization term
 261 is added to Eq. (3) during the training of a NF. We provide further details about the penalty term in
 262 App. D.

263 3 PROPOSED METHOD: SESAMO

266 Crucially, certain symmetries may be difficult to incorporate through naive canonicalization strategies
 267 and are unlikely to be effectively captured by standard flow-based generative models. A representative
 268 case is a one-dimensional multimodal distribution with modes of unequal probability mass (see
 269 App. E and App. H). Our proposed method, Symmetry-Enforcing Stochastic Modulation (SESaMo),
 introduces a novel stochastic modulation mechanism that is described in detail in Sec. 3.1.

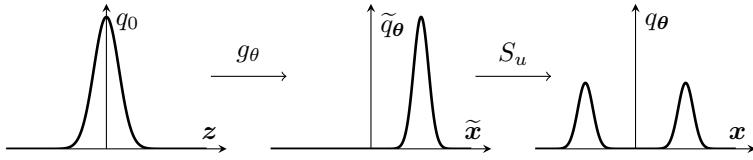


Figure 2: Visualization of the *stochastic modulation* approach for enforcing a \mathbb{Z}_2 symmetry in a flow-based model.

3.1 STOCHASTIC MODULATION

Stochastic modulation involves drawing samples \tilde{x} from a flow-based sampler with density $\tilde{q}_\theta(\tilde{x})$. These samples are obtained from $\tilde{x} = g_\theta(z)$ (center panel in Fig. 2), where $z \sim q_0$ are obtained from the base density q_0 (left panel). The samples \tilde{x} are then transformed according to a bijective map S_u (right panel), which is conditioned on a random variable u , resulting in an output density

$$q_{\theta,b}(x) = \sum_u p_{S,b}(u) \cdot q_0 \left(\tilde{g}_{\theta,u}^{-1}(x) \right) \cdot \left| \det \left(\frac{\partial \tilde{g}_{\theta,u}}{\partial z} \right) \right|^{-1}. \quad (12)$$

Here, $p_{S,b}(u)$ is the modulation probability that depends on learnable parameters b , where the number of parameters is solely determined by the kind of symmetry. The diffeomorphic map from the base density $q_0(z)$ to the final density reads

$$\tilde{g}_{\theta,u}(z) = S_u(g_\theta(z)), \quad (13)$$

such that

$$\det \left(\frac{\partial \tilde{g}_{\theta,u}}{\partial z} \right) = \det \left(\frac{\partial S_u}{\partial g_\theta} \right) \det \left(\frac{\partial g_\theta}{\partial z} \right). \quad (14)$$

A general stochastic modulation $S_{T,u}$ for a set of transformations $\{T_i\}_0^T$ reads

$$S_{T,u} : x \mapsto \begin{cases} T_0 x, & \text{if } u = 0 \\ T_1 x, & \text{elif } u = 1 \\ \vdots \\ T_M x, & \text{elif } u = M \end{cases} \quad \text{with } u \sim p_{S,b} \quad (15)$$

where the transformations T_i map samples $x \sim q_\theta(x)$ to distinct regions in the configuration space, potentially corresponding to different modes of the target distribution $p(x)$. We note that $T_0 = \mathbb{I}$ while $T_i \neq T_j$, $\forall i \neq j$. The transformation S_u is bijective if T_i does not map the sample x to the same region Ω in configuration space, see the top row of Fig. 3 in App. 3.1.

From Eqs. (12)–(14), if $u \sim p_{S,b}(u)$ is sampled and not marginalized, we can write the log probability as

$$\ln q_\theta(\tilde{g}_{\theta,u}(z)) = \ln p_{S,b}(u) + \ln q_0(z) - \ln \left| \det \frac{\partial S_u}{\partial g_\theta} \right| - \ln \left| \det \frac{\partial g_\theta}{\partial z} \right|, \quad (16)$$

where $z = \tilde{g}_{\theta,u}^{-1}(x)$ and $p_{S,b}(u)$ is the probability of sampling the random variable u . To better understand this mechanism, let us again consider a target density with \mathbb{Z}_2 symmetry. In this specific case, we define a random variable $u \in \{0, 1\}$ that follows a Bernoulli distribution $\mathcal{B}(e^b)$ and

$$S_u : x \rightarrow \begin{cases} x & \text{if } u = 0 \\ -x & \text{if } u = 1 \end{cases} \quad \text{with } u \sim p_{S,b} = \mathcal{B}(e^b) \quad \text{and } b = \ln 0.5. \quad (17)$$

For a broken \mathbb{Z}_2 symmetry on the other hand, the modulation probability is given by

$$p_{S,b} = \begin{cases} 1 - e^b & \text{if } u = 0 \\ e^b & \text{if } u = 1, \end{cases} \quad (18)$$

²One can also verify that the map $g_\theta(x) = \tanh(x)$ is equivariant under $T_{\mathbb{Z}_2}$.

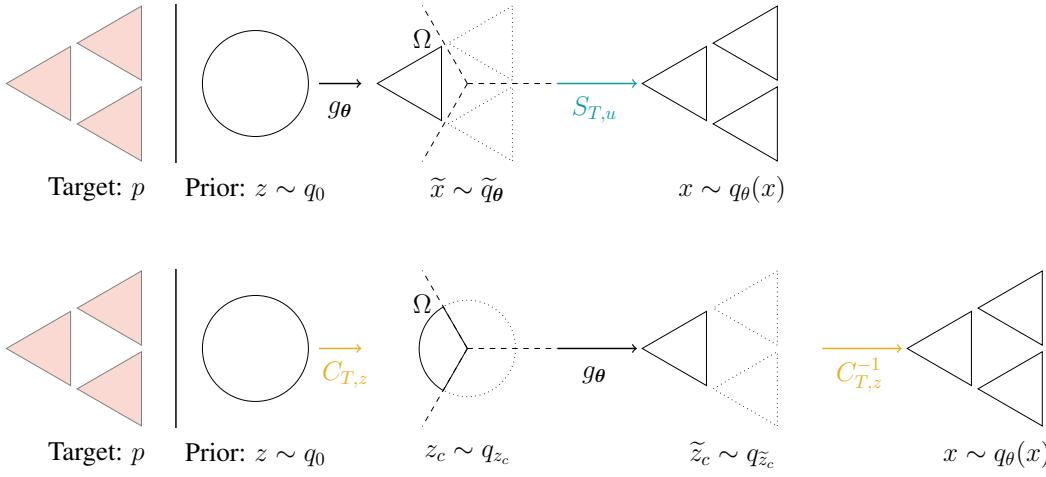


Figure 3: **Illustration of Symmetry-Enforcing Stochastic Modulation (SESaMo) (top row) and canonicalization (bottom row), shown for an example target distribution and corresponding prior.**

where $b \in \mathbb{R}^-$ is a learnable parameter. Unlike canonicalization, SESaMo (visualized in Fig. 2) requires shifting the prior density q_0 to align with one mode of the target density, after which the modulation redistributes the probability mass according to S_u . Therefore, contrarily to canonicalization, q_0 does not have to be invariant. We refer to Fig. 3.1 for a visualization of the SESaMo and canonicalization approaches and to App. B for an extensive discussion. For further details and validation through extensive numerical experiments, we refer to Sec. 4.

Similarly to canonicalization, stochastic modulation requires S_u to be bijective, which is enforced by the penalty term introduced in Sec. 2.3.3, see Eq. (11). Moreover, when the probability mass is not evenly distributed among the modes of the target density ($b \neq \ln 0.5$), having a learnable parameter b allows the NF to effectively capture the broken symmetry. This case is further detailed in App. E. We also stress that SESaMo extends beyond discrete symmetries. Appendix F develops a formulation for (broken) continuous symmetries, where u is modeled as a continuous variable instead of a discrete one.

3.2 LOSS FUNCTION AND REINFORCE ESTIMATOR

For training, the standard reverse KL divergence is extended by the penalty term $\Lambda(\cdot)$

$$\widetilde{\text{KL}}(q_\theta || p) = \mathbb{E}_{z \sim q_0} \mathbb{E}_{u \sim p_{S,b}} [\ln q_\theta(\tilde{g}_{\theta,u}(z)) + f[\tilde{g}_{\theta,u}(z)] + \Lambda(g_\theta(z))] , \quad (19)$$

stemming from Sec. 2.3.3. Since the parameter b of the stochastic modulation is only present in the modulation probability $p_{S,b}$ the REINFORCE Estimator (59) is used to enable gradient computation through the random variable u

$$\frac{\partial}{\partial b} \mathbb{E}_{u \sim p_{S,b}} [\ln q_\theta(\tilde{g}_{\theta,u}(z)) + f[\tilde{g}_{\theta,u}(z)]] = \mathbb{E}_{u \sim p_{S,b}} \left[(\ln q_\theta(\tilde{g}_{\theta,u}(z)) + f[\tilde{g}_{\theta,u}(z)]) \cdot \frac{\partial}{\partial b} \ln p_{S,b}(u) \right] . \quad (20)$$

4 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments that compare the performance of four approaches: **Flow Annealed Importance Sampling Bootstrap (FAB)** (60), RealNVP with Variational Mixture of Normalizing Flows (VMoNF) (45), RealNVP with canonicalization, and RealNVP with stochastic modulation (SESaMo). We benchmark these approaches both on toy problems and on physically relevant tasks. To evaluate the effectiveness of each approach, we use the effective sample size, $\text{ESS} = 1/\mathbb{E}_{q_\theta}[\hat{w}^2]$, as a performance metric. As the inverse of the variance of the importance weights, the ESS quantifies the accuracy with which the approximation q_θ matches the target probability distribution p . Bounded between zero and one, the ESS reaches its optimal value (ESS = 1) when the

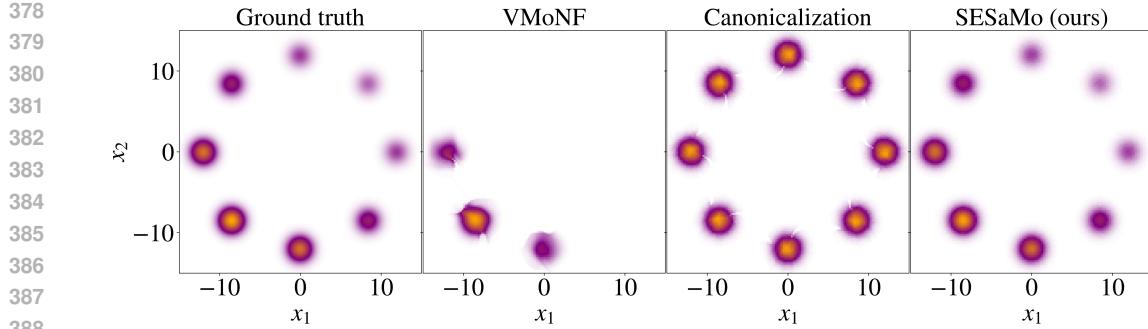


Figure 4: Gaussian mixture target density (broken \mathbb{Z}_8 symmetry). All flow-based models are trained until convergence. From left to right we show: the ground truth, VMoNF, canonicalization, and SESaMo (ours). We refer to App. I for more details on the experiments.

approximation is exact ($q_\theta = p$). The code used to run these experiments is based on an earlier release of (61) and is provided as a supplement. All flow-based models were trained using the objective function defined in Eq. (19), unless stated otherwise.

4.1 TOY EXAMPLE: GAUSSIAN MIXTURE

We initially consider a probability distribution in two dimensions whose density is given by

$$p(\mathbf{x}) = \frac{1}{Z} \sum_{k=1}^N \exp \left(\frac{-(\mathbf{x} - \boldsymbol{\mu}_k)^2}{2} - \alpha(x_1 + x_2) \right), \quad \boldsymbol{\mu}_k = R \cdot \left(\cos \left(\frac{2\pi k}{N} \right), \sin \left(\frac{2\pi k}{N} \right) \right)^T, \quad (21)$$

where $Z = 2\pi \sum_{k=1}^N \exp \left(\alpha^2 - \alpha R \sqrt{2} \sin \left(\frac{2\pi k}{N} + \frac{\pi}{4} \right) \right)$ is the normalization, $N \in \mathbb{N}^+$ is the number of Gaussians, $R \in \mathbb{R}^+$ is the radius of the circle around which they are located, and $\alpha \in \mathbb{R}$ breaks the \mathbb{Z}_N symmetry of this model. In this study, we use $N = 8$, $R = 12$, and $\alpha = 0$ ($\alpha = 0.05$), which results in a (broken) \mathbb{Z}_8 symmetry. In Tab. 1, we report the ESS and KL divergence achieved after convergence, and we visualize the corresponding target density in Fig. 4. Even though VMoNF has the ability that different NFs learn different sectors of the target distribution, it collapses to the three most likely modes in the lower left. This is not an issue of the architecture itself but the mode collapsing behaviour of the reverse KL that is used in this work. Overall, SESaMo achieves the best performance, outperforming the other baselines and yielding higher accuracy. For more details we refer to App. H.

4.2 PHYSICS EXAMPLE: LATTICE QUANTUM FIELD THEORY

Sampling using NFs has become ubiquitous across various fields of physics, yielding particularly notable results for sampling lattice quantum chromodynamics (62), scalar lattice quantum field theories (14; 63), and condensed matter systems (38). We refer to (64) for a comprehensive overview. In what follows, we primarily focus on two pertinent benchmarks: the complex ϕ^4 theory and the Hubbard model. We direct readers seeking further technical details regarding the physics to App. G.

In lattice quantum field theory, the probability distribution of a system is given by a Boltzmann-like density $p(\mathbf{x}) = \exp(-f[\mathbf{x}])/Z$, where $f[\mathbf{x}]$ is a functional known as the *action*, Z is an unknown partition function, and \mathbf{x} denotes the lattice fields. Note that, as discussed in Sec. 3, for the following experiments we optimize the symmetry breaking parameter b during training, which, as shown in App. H, perfectly agrees with the analytical prediction.

The complex ϕ^4 scalar field theory in two dimensions The complex ϕ^4 theory offers a simple yet versatile framework for investigating interacting scalar fields. It plays a crucial role in understanding spontaneous symmetry breaking (including the Higgs mechanism) and critical phenomena (65), while providing a key testbed for the machine learning community to develop theoretical techniques and

432 numerical methods (66; 67; 68). We consider the action with quartic interactions,
 433

$$434 \quad 435 \quad 436 \quad f[\mathbf{x}] = \sum_{j \in V} \left[-2\kappa \sum_{\hat{\mu}=1}^2 (\mathbf{x}_j \mathbf{x}_{j+\hat{\mu}}) + (1 - 2\lambda) \mathbf{x}_j^2 + \lambda \mathbf{x}_j^4 + \alpha \text{Re}[\mathbf{x}_j] \right], \quad (22)$$

437 where $\mathbf{x} = \mathbf{x}_1 + i\mathbf{x}_2$ are the complex scalar fields, the subscript j labels the lattice sites in the two-
 438 dimensional lattice volume $V = N_x \times N_t = 8 \times 8$, the κ and λ are the couplings of the theory, and
 439 $\hat{\mu}$ denotes the interactions between nearest neighbours. The term $\alpha \text{Re}(\mathbf{x})$ introduces an additional
 440 component designed to break the $U(1)$ symmetry of the theory, thereby increasing the complexity of
 441 the learning task.³ We emphasize that while prior studies have often focused on *real* scalar fields,
 442 physical fields are complex-valued. Therefore, we here compare SESaMo with canonicalization (58),
 443 FAB, and VMoNF when sampling $\mathbf{x} \in \mathbb{C}^n$. The ESS and KL divergence obtained by each model
 444 is detailed in Tab. 1 for both broken ($\alpha \neq 0$) and unbroken ($\alpha = 0$) $U(1)$ symmetry. Across both
 445 conditions, SESaMo achieved the highest ESS, indicating its superior ability to incorporate the
 446 underlying physical symmetries into the flow model. Additional results, including the density plots,
 447 are available in App. H. Moreover, App. H also demonstrates how SESaMo outperforms the baselines
 448 of RealNVP and canonicalization in the case of *real* scalar field theory.
 449

450 **The Hubbard model in two dimensions** The Hubbard model is a cornerstone of condensed matter
 451 physics, providing a fundamental description of interacting electrons on a lattice and playing a pivotal
 452 role in studying phenomena such as magnetism, metal-insulator transitions, and high-temperature
 453 superconductivity (70). For our numerical experiments, we adopt the setup as detailed in (38; 71),
 454 with the action—featuring a broken \mathbb{Z}_4 symmetry—given by
 455

$$455 \quad 456 \quad f[\mathbf{x}] = \frac{1}{2\tilde{U}} \sum_{j \in V} \mathbf{x}_j^2 - \log \det M[\mathbf{x}] - \log \det M[-\mathbf{x}], \quad (23)$$

457 where the coupling \tilde{U} describes the interaction strength, $M[\cdot]$ is the *fermion matrix* describing the
 458 interacting fermions (particles), \mathbf{x} are auxiliary bosonic fields, and the subscript j labels the lattice
 459 sites in the lattice volume $V = N_x \times N_t$. While for the GMM and the complex ϕ^4 theory we
 460 focused on small lattice volumes as a proof-of-principle demonstration, here we include both a small
 461 volume of $V = 2 \times 1$ to compare with analytical solutions and a large volume of $V = 18 \times 100$
 462 to demonstrate the scalability of our approach. We refer to Apps. E, G, H, and (38) for more
 463 details about the model. For learning the Boltzmann distribution, we again compare FAB, VMoNF,
 464 canonicalization, and SESaMo. For the smaller volume $V = 2 \times 1$, the ESS and KL divergence
 465 are reported in Tab. 1, and the resulting probability density after training is shown in Fig. 5. For the
 466 larger volume $V = 18 \times 100$, the ESS is also listed in Tab. 1, whereas the KL divergence cannot be
 467 reported due to the unknown normalization of the target distribution. As before, SESaMo achieves
 468 the highest ESS and exhibits faster and more stable convergence compared to the other baselines. For
 469 further results and density plots illustrating that SESaMo mitigates mode collapse (72), we refer the
 470 reader to App. H. While Schuh et al. (38) first demonstrated the application of NFs to the Hubbard
 471 model using canonicalization and small lattice volumes of $V = 2 \times 2$, SESaMo with the objective
 472 in Eq. (19) crucially achieves a higher ESS, perfectly learns the broken \mathbb{Z}_4 symmetry, and scales to
 473 lattice volumes of up to $V = 18 \times 100$, thereby establishing a new state-of-the-art.
 474

475 5 LIMITATIONS

477 A primary limitation of SESaMo stems from the requirement that the symmetry sectors must be
 478 known a priori to apply the stochastic modulation. Nevertheless, for applications in physics and
 479 chemistry, this may not pose a significant problem. Indeed, the well-defined symmetries inherent
 480 in many physical and chemical systems often allow for the prior determination of the symmetry
 481 sectors, thereby enabling the application of stochastic modulation. Another limitation arises from the
 482 penalty term in Eq. (11), which enforces bijectivity of the NF. If the target density assigns non-zero
 483 probability at the border of the canonical cell, bijectivity can only be maintained approximately. As

484 ³This system can serve as a proxy to describe a quantum field theory with two flavors of differing masses (69).
 485 ⁴The reverse KL divergence can only be computed if the normalization of the probability distribution is
 known, which is the case for the GMM and the Hubbard model with $V = 2 \times 1$.

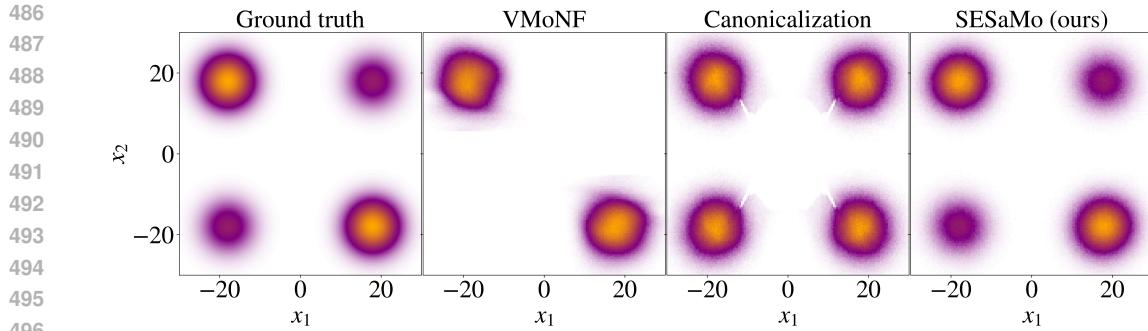


Figure 5: Density for the Hubbard model (broken \mathbb{Z}_4 symmetry) for $V = N_x \times N_t = 2 \times 1$. All flow-based models are trained until convergence. From left to right we show: the ground truth, VMoNF, canonicalization, and SESaMo (ours). We refer to App. I for more details on the experiments.

Model	Volume	Symmetry	FAB	VMoNF	Canonicaliz.	SESaMo (ours)
GMM	2×1	exact \mathbb{Z}_8	0.81	0.61(1)	0.91(8)	0.9986(2)
GMM	2×1	broken \mathbb{Z}_8	0.79	0.83(11)	0.747(2)	0.9947(3)
ϕ^4 theory	8×8	exact $U(1)$	0.063	0.22(2)	-	0.9472(8)
ϕ^4 theory	8×8	broken $U(1)$	0.055	0.23(1)	-	0.941(2)
Hubbard	2×1	broken \mathbb{Z}_4	0.97	0.37(12)	0.839(5)	0.996(1)
Hubbard	18×100	broken $(\mathbb{Z}_2)^{18}$	-	-	0.024(1)	0.74(1)
GMM	2×1	exact \mathbb{Z}_8	0.86	0.79(11)	0.013(2)	0.0008(1)
GMM	2×1	broken \mathbb{Z}_8	0.86	1.02(14)	0.189(3)	0.0024(2)
Hubbard	2×1	broken \mathbb{Z}_4	0.25	0.74(9)	0.112(7)	0.0013(8)

Table 1: Effective Sample Size (ESS, upper part, higher is better) and KL divergence⁴ (lower part, smaller is better) after convergence for different benchmarks. Best results (averages over ten different models) are highlighted in bold. The canonicalization approach could not be applied to the complex ϕ^4 theory case (see App. H).

a result, the ESS may decrease if only samples that strictly preserve bijectivity are accepted. For example, in the Gaussian mixture model discussed in Sec. 4.1, decreasing the radius R causes the modes to move closer together, thereby increasing the density near the border of the canonical cell. However, in many high-dimensional physics applications, the distance between modes typically increases with the dimensionality of the system, thereby mitigating the impact of bijectivity violations. Nonetheless, we emphasize that these limitations are not specific to SESaMo, but is shared with canonicalization.

6 CONCLUSIONS

This paper introduces Symmetry-Enforcing Stochastic Modulation (SESaMo)—a novel and flexible approach for constructing symmetry-enhanced NFs. Moreover, we propose an additional penalty term to the reverse KL divergence to enforce numerical bijectivity. Our extensive numerical experiments demonstrate that stochastic modulation outperforms naïve NFs, mixture models and canonicalization methods. We envision SESaMo as a powerful tool for incorporating inductive biases into generative models when learning target probability densities with challenging symmetries—an essential feature in fields like physics and chemistry. Future work will explore the broader capabilities of SESaMo and assess its potential to achieve state-of-the-art performance not only against generative neural samplers but also relative to established numerical techniques, such as Hamiltonian Monte Carlo.

REPRODUCIBILITY STATEMENT

We provide our source code under the MIT license at github.com/<author>/SESaMo. The repository contains training scripts and instructions to reproduce all main experiments. We specify all

540 hyperparameters in Appendix I and provide default configuration files. Experiments were conducted
 541 with PyTorch 2.7 on NVIDIA A100 GPUs, but the code runs on other CUDA-enabled GPUs as
 542 well.
 543

544 **REFERENCES**
 545

[1] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. Equation of state calculations by fast computing machines. *The Journal of Chemical Physics*, 21(6):1087–1092, 06 1953.

[2] Linus Görilitz, Zhenglei Gao, and Walter Schmitt. Statistical analysis of chemical transformation kinetics using markov-chain monte carlo methods. *Environmental Science & Technology*, 45(10):4429–4437, 05 2011.

[3] A. Dragulescu and V. M. Yakovenko. Statistical mechanics of money. *The European Physical Journal B - Condensed Matter and Complex Systems*, 17(4):723–729, 2000.

[4] F. Barahona. On the computational complexity of ising spin glass models. *Journal of Physics A: Mathematical and General*, 15(10):3241, oct 1982.

[5] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan. An introduction to mcmc for machine learning. *Machine Learning*, 50(1):5–43, 2003.

[6] Alan R. Fersht and Valerie Daggett. Protein folding and unfolding at atomic resolution. *Cell*, 108(4):573–582, 2002.

[7] Ulli Wolff. Critical slowing down. *Nuclear Physics B - Proceedings Supplements*, 17:93–102, 1990.

[8] Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G. Willcocks. Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(11):7327–7347, 2022.

[9] Denis Blessing, Xiaogang Jia, Johannes Esslinger, Francisco Vargas, and Gerhard Neumann. Beyond ELBOs: A large-scale evaluation of variational methods for sampling. In *Forty-first International Conference on Machine Learning*, 2024.

[10] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning. *Science*, 365(6457):eaaw1147, 2019.

[11] Dian Wu, Lei Wang, and Pan Zhang. Solving statistical mechanics using variational autoregressive networks. *Phys. Rev. Lett.*, 122:080602, 2019.

[12] Kim A. Nicoli, Shinichi Nakajima, Nils Strothoff, Wojciech Samek, et al. Asymptotically unbiased estimation of physical observables with neural samplers. *Phys. Rev. E*, 101:023304, 2020.

[13] M. S. Albergo, G. Kanwar, and P. E. Shanahan. Flow-based generative models for Markov chain Monte Carlo in lattice field theory. *Phys. Rev. D*, 100:034515, aug 2019.

[14] Kim A. Nicoli, Christopher J. Anders, Lena Funcke, Tobias Hartung, et al. Estimation of thermodynamic observables in lattice field theories with deep generative models. *Phys. Rev. Lett.*, 126:032001, 2021.

[15] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, koray kavukcuoglu, et al. Conditional image generation with pixelcnn decoders. In *Advances in Neural Information Processing Systems*, volume 29, page 4797–4805, 2016.

[16] Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In *Proceedings of The 33rd International Conference on Machine Learning*, volume 48 of *Proceedings of Machine Learning Research*, pages 1747–1756, 2016.

[17] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *Proceedings of the 32nd International Conference on Machine Learning*, volume 37, pages 1530–1538, 2015.

[18] Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and review of current methods. *IEEE transactions on pattern analysis and machine intelligence*, 43(11):3964–3979, 2020.

[19] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, et al. Backpropagation applied to handwritten zip code recognition. *Neural Computation*, 1(4):541–551, 1989.

[20] Taco Cohen and Max Welling. Group equivariant convolutional networks. In *Proceedings of The 33rd International Conference on Machine Learning*, volume 48 of *Proceedings of Machine Learning Research*, pages 2990–2999. PMLR, 20–22 Jun 2016.

[21] Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical CNNs. In *International Conference on Learning Representations*, 2018.

[22] Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant convolutional networks and the icosahedral CNN. In *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pages 1321–1330. PMLR, 09–15 Jun 2019.

[23] Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction of tensorial properties and molecular spectra. In *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pages 9377–9388. PMLR, 18–24 Jul 2021.

[24] Alexander Bogatskiy, Brandon Anderson, Jan Offermann, Marwah Roussi, David Miller, et al. Lorentz group equivariant neural network for particle physics. In *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pages 992–1002. PMLR, 13–18 Jul 2020.

[25] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. $E(n)$ equivariant graph neural networks. In *ICML*, pages 9323–9332, 2021.

[26] Di Luo, Giuseppe Carleo, Bryan K. Clark, and James Stokes. Gauge equivariant neural networks for quantum lattice gauge theories. *Phys. Rev. Lett.*, 127:276402, dec 2021.

[27] Roman Soletskyi, Marylou Gabrié, and Bruno Loureiro. A theoretical perspective on mode collapse in variational inference. *arXiv preprint arXiv:2410.13300*, 2024.

[28] Kim A. Nicoli, Christopher J. Anders, Tobias Hartung, Karl Jansen, Pan Kessel, et al. Detecting and mitigating mode-collapse for flow-based sampling of lattice field theories. *Phys. Rev. D*, 108:114501, dec 2023.

[29] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep learning: Going beyond euclidean data. *IEEE Signal Processing Magazine*, 34(4):18–42, 2017.

[30] Jan E. Gerken, Jimmy Aronsson, Oscar Carlsson, Hampus Linander, Fredrik Ohlsson, et al. Geometric deep learning and equivariant neural networks. *Artificial Intelligence Review*, 56(12):14605–14662, 2023.

[31] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. *arXiv preprint arXiv:2104.13478*, 2021.

[32] Jonas Köhler, Leon Klein, and Frank Noe. Equivariant flows: Exact likelihood generative learning for symmetric densities. In *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pages 5361–5370. PMLR, 13–18 Jul 2020.

648 [33] Victor Garcia Satorras, Emiel Hoogeboom, Fabian Bernd Fuchs, Ingmar Posner, and Max
 649 Welling. $E(n)$ equivariant normalizing flows. In *Advances in Neural Information Processing
 650 Systems*, 2021.

651 [34] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
 652 differential equations. In *Advances in Neural Information Processing Systems*, volume 31.
 653 Curran Associates, Inc., 2018.

654 [35] Avishek Joey Bose, Marcus Brubaker, and Ivan Kobyzev. Equivariant finite normalizing flows.
 655 *arXiv preprint arXiv:2110.08649*, 2021.

656 [36] Gurtej Kanwar, Michael S. Albergo, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, et al.
 657 Equivariant flow-based sampling for lattice gauge theory. *Phys. Rev. Lett.*, 125:121601, sep
 658 2020.

659 [37] Denis Boyda, Gurtej Kanwar, Sébastien Racanière, Danilo Jimenez Rezende, Michael S.
 660 Albergo, Kyle Cranmer, Daniel C. Hackett, and Phiala E. Shanahan. Sampling using $SU(N)$
 661 gauge equivariant flows. *Phys. Rev. D*, 103(7):074504, 2021.

662 [38] Dominic Schuh, Janik Kreit, Evan Berkowitz, Lena Funcke, Thomas Luu, Kim A Nicoli,
 663 and Marcel Rodekamp. Simulating the hubbard model with equivariant normalizing flows.
 664 *arXiv:2501.07371*, 2025.

665 [39] Peter Wirsberger, Andrew J. Ballard, George Papamakarios, Stuart Abercrombie, Sébastien
 666 Racanière, et al. Targeted free energy estimation via learned mappings. *The Journal of Chemical
 667 Physics*, 153(14):144112, oct 2020.

668 [40] Peter Wirsberger, George Papamakarios, Borja Ibarz, Sébastien Racanière, Andrew J Ballard,
 669 et al. Normalizing flows for atomic solids. *Machine Learning: Science and Technology*,
 670 3(2):025009, may 2022.

671 [41] Laurence Illing Midgley, Vincent Stimper, Javier Antoran, Emile Mathieu, Bernhard Schölkopf,
 672 et al. $SE(3)$ equivariant augmented coupling flows. In *Thirty-seventh Conference on Neural
 673 Information Processing Systems*, 2023.

674 [42] Leon Klein, Andreas Krämer, and Frank Noe. Equivariant flow matching. In *Thirty-seventh
 675 Conference on Neural Information Processing Systems*, 2023.

676 [43] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, et al. Diffusion models:
 677 A comprehensive survey of methods and applications. *ACM Comput. Surv.*, 56(4), 2023.

678 [44] Emiel Hoogeboom, Víctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
 679 diffusion for molecule generation in 3D. In *Proceedings of the 39th International Conference
 680 on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pages
 681 8867–8887. PMLR, 17–23 Jul 2022.

682 [45] Guilherme G. P. Freitas Pires and Mário A. T. Figueiredo. Variational mixture of normalizing
 683 flows. *European Symposium on Artificial Neural Networks*, 2020.

684 [46] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
 685 statisticians. *Journal of the American statistical Association*, 112(518):859–877, 2017.

686 [47] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: non-linear independent components
 687 estimation. In *3rd International Conference on Learning Representations, ICLR 2015, Workshop
 688 Track Proceedings*, 2015.

689 [48] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In
 690 *International Conference on Learning Representations*, 2017.

691 [49] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. In
 692 *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019.

693 [50] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
 694 In *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc.,
 695 2018.

[51] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. *J. Mach. Learn. Res.*, 22(1), jan 2021.

[52] S. Kullback and R. A. Leibler. On information and sufficiency. *The Annals of Mathematical Statistics*, 22(1):79 – 86, 1951.

[53] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph networks. In *International Conference on Learning Representations*, 2019.

[54] Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant networks. In *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pages 4363–4371. PMLR, 09–15 Jun 2019.

[55] Derek Lim, Joshua Robinson, Stefanie Jegelka, Yaron Lipman, and Haggai Maron. Expressive sign equivariant networks for spectral geometric learning. In *ICLR 2023 Workshop on Physics for Machine Learning*, 2023.

[56] Michele Caselle, Elia Cellini, Alessandro Nada, and Marco Panero. Stochastic normalizing flows as non-equilibrium transformations. *JHEP*, 07:015, 2022.

[57] Mathis Gerdes, Pim de Haan, Corrado Rainone, Roberto Bondesan, and Miranda C. N. Cheng. Learning lattice quantum field theories with equivariant continuous flows. *SciPost Phys.*, 15:238, 2023.

[58] Denis Boyda, Gurtej Kanwar, Sébastien Racanière, Danilo Jimenez Rezende, Michael S. Albergo, et al. Sampling using $SU(n)$ gauge equivariant flows. *Phys. Rev. D*, 103:074504, apr 2021.

[59] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation using stochastic computation graphs. *Advances in Neural Information Processing Systems* 28, abs/1506.05254, 2015.

[60] Laurence Illing Midgley, Vincent Stimper, Gregor N. C. Simm, Bernhard Schölkopf, and José Miguel Hernández-Lobato. Flow annealed importance sampling bootstrap, 2023.

[61] Kim A. Nicoli, Christopher J. Anders, Lena Funcke, Karl Jansen, Shinichi Nakajima, et al. NeuLat: a toolbox for neural samplers in lattice field theories. *PoS*, LATTICE2023:286, 2024.

[62] Ryan Abbott, Denis Boyda, Daniel C Hackett, Gurtej Kanwar, Fernando Romero-López, Phiala E Shanahan, and Julian M Urban. Progress in normalizing flows for 4d gauge theories. *arXiv preprint arXiv:2502.00263*, 2025.

[63] Andrea Bulgarelli, Elia Cellini, Karl Jansen, Stefan Kühn, Alessandro Nada, Shinichi Nakajima, Kim A. Nicoli, and Marco Panero. Flow-based sampling for entanglement entropy and the machine learning of defects. *Phys. Rev. Lett.*, 134:151601, Apr 2025.

[64] Miranda CN Cheng and Niki Stratikopoulou. Lecture notes on normalizing flows for lattice quantum field theories. *arXiv preprint arXiv:2504.18126*, 2025.

[65] Hagen Kleinert and Verena Schulte-Frohlinde. *Critical Properties of Phi4-Theories*. WORLD SCIENTIFIC, 2001.

[66] Lorenz Vaitl, Kim Andrea Nicoli, Shinichi Nakajima, and Pan Kessel. Path-gradient estimators for continuous normalizing flows. In *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pages 21945–21959. PMLR, 17–23 Jul 2022.

[67] Alex Matthews, Michael Arbel, Danilo Jimenez Rezende, and Arnaud Doucet. Continual repeated annealed flow transport Monte Carlo. In *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pages 15196–15219. PMLR, 17–23 Jul 2022.

756 [68] Lorenz Vaitl, Ludwig Winkler, Lorenz Richter, and Pan Kessel. Fast and unified path gradi-
757 ent estimators for normalizing flows. In *The Twelfth International Conference on Learning*
758 *Representations*, 2024.

759 [69] Edward Witten. Phases of $n = 2$ theories in two dimensions. *Nuclear Physics B*, 403(1):159–222,
760 1993.

762 [70] Daniel P. Arovas, Erez Berg, Steven A. Kivelson, and Srinivas Raghu. The hubbard model.
763 *Annual Review of Condensed Matter Physics*, 13(1):239–274, March 2022.

765 [71] Thomas Luu and Timo A. Lähde. Quantum monte carlo calculations for carbon nanotubes.
766 *Phys. Rev. B*, 93:155106, Apr 2016.

767 [72] Kim A. Nicoli, Christopher J. Anders, Tobias Hartung, Karl Jansen, Pan Kessel, et al. Detecting
768 and mitigating mode-collapse for flow-based sampling of lattice field theories. *Phys. Rev. D*,
769 108:114501, dec 2023.

770 [73] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows.
771 *Advances in neural information processing systems*, 32, 2019.

772 [74] Jan-Lukas Wynen, Evan Berkowitz, Christopher Körber, Timo A. Lähde, and Thomas Luu.
773 Avoiding ergodicity problems in lattice discretizations of the hubbard model. *Phys. Rev. B*,
774 100:075141, Aug 2019.

775 [75] Michael E. Peskin and Daniel V. Schroeder. An introduction to quantum field theory. *Frontiers*
776 *in Physics*, 1995.

777 [76] Daniel Naegels. An introduction to goldstone boson physics and to the coset construction. *arXiv*
778 *preprint arXiv:2110.14504*, 2021.

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A PSEUDOCODE
811812 To offer an intuitive overview of our proposed method, we include a pseudocode example in Alg. 1.
813814
815 **Algorithm 1** Training loop of SESaMo
816

```

817 1: Initialize flow  $g_\theta$  with parameters  $\theta$ 
818 2: Initialize stochastic modulation  $S_u$  with parameters  $b$ 
819 3: for iteration = 1 to  $N$  do
820 4:   Sample  $z^{(1:B)}$  from  $q_0$  and evaluate  $\ln q_0(z^{(1:B)})$ 
821 5:   Obtain  $\tilde{x}^{(1:B)}$  and  $\ln \left| \det \frac{\partial g_\theta}{\partial z} \right|$  from flow  $(z^{(1:B)})$ 
822 6:   Compute regularization  $\Lambda(\tilde{x})$ 
823 7:   Sample  $u^{(1:B)}$  from  $p_{S,b}$  and evaluate  $\ln p_{S,b}(u^{(1:B)})$ 
824 8:   Obtain  $x^{(1:B)}$  and  $\ln \left| \det \frac{\partial S_u}{\partial g_\theta} \right|$  from stochastic modulation  $S_u^{(1:B)}$  ( $x^{(1:B)}$ )
825 9:   Compute unnormalized target probability  $f(x^{(1:B)})$ 
826 10:  Compute log probability  $\ln q_\theta(x^{(1:B)})$ 
827 11:  Compute loss  $\widetilde{KL}(q_\theta || p)(x^{(1:B)})$ 
828 12:  Update parameters  $\theta, b$  according to the REINFORCE estimator
829 13: end for

```

830
831
832
833
834 B INTUITIVE COMPARISON OF CANONICALIZATION AND STOCHASTIC
835 MODULATION
836

837 In the main text, two approaches for effectively incorporating symmetries into generative models
838 such as NFs were introduced: canonicalization in Sec. 2.3.2 and Symmetry-Enforcing Stochastic
839 Modulation (SESaMo) in Sec. 3.1. In this section, we summarize the differences between these
840 approaches on a more intuitive level. To help the reader familiarize with the underlying ideas, we
841 provide an illustration for both SESaMo (top row) and canonicalization (bottom row) in Fig. 3,
842 showing an example target distribution and corresponding prior. In Fig. 3, the goal is to sample from
843 a toy target density p that exhibits three modes, visually represented by the three red triangles on the
844 left of Fig. 3. Both approaches start from a Gaussian prior density q_0 , represented by a circle.
845

846 In the case of SESaMo (top row), a random sample $z \sim q_0$ is transformed by an NF, i.e., a parametric
847 map g_θ , such that the probability mass of the prior density is shifted and transformed to cover one of
848 the modes of the target density (depicted as the triangle with a solid black line), which lies within
849 the canonical cell Ω (dashed black line), while the other symmetric modes (triangles with a dotted
850 black line) remain uncovered. The transformed density is denoted as \tilde{q}_θ . At this stage, the model
851 has captured only one mode of the target density. Subsequently, SESaMo employs the *stochastic*
852 *modulation* $S_{T,u}$ to redistribute the probability mass towards the other modes of the target density,
853 resulting in the final variational probability distribution q_θ . This distribution (visualized by the three
854 triangles) approximates the target density p .

854 The canonicalization approach, depicted in the bottom row of Fig. 3, also starts with a prior Gaussian
855 distribution q_0 . Samples drawn from the prior distribution are transformed such that any sample
856 $z \sim q_0$ is mapped to the canonical cell Ω (dashed black line), resulting in the density q_{z_c} (solid black
857 line), while the other symmetric modes (dotted black line) remain uncovered. Subsequently, an NF
858 g_θ learns a bijective map to transform these samples in the canonical space. Canonicalized samples,
859 denoted as \tilde{x}_c , are then drawn from the resulting distribution \tilde{q}_θ , which is illustrated in Fig. 3 as
860 a triangle with a solid black line. Given that the resulting parametrized distribution \tilde{q}_θ is in the
861 canonical space, it needs to be transformed back to the input space. This is achieved by applying
862 the inverse of the initial transformation $C_{T,z}^{-1}$ to the samples \tilde{x}_c , resulting in the final parametrized
863 probability distribution q_θ . The support of q_θ is visualized in the right-most plot of the bottom row
864 by three triangles that approximate the target density p .

864 C EQUIVARIANCE OF THE CANONICALIZATION METHOD 865

866 Let us consider a general symmetry transformation T under which some function $\xi(\cdot) : \mathbf{x} \in \mathbb{R}^n \rightarrow$
867 $\xi(\mathbf{x}) \in \mathbb{R}$ is invariant, i.e., $\xi(\mathbf{x}) = \xi(T\mathbf{x})$. A concrete example of such a function can be the action of
868 a physical system, such as Eqs. (22) and (23). A learnable map $g_\theta : \mathbf{z} \in \Omega \rightarrow \tilde{\mathbf{z}} \in \tilde{\Omega}$ is *equivariant*
869 *under T* , and is thus denoted \tilde{g}_θ , if it satisfies the following condition:
870

$$871 \quad \tilde{g}_\theta(T\mathbf{z}) = T\tilde{g}_\theta(\mathbf{z}). \quad (24)$$

872 The canonicalization approach, introduced in Sec. 2.3.2, leverages a so-called *canonical transformation*
873 $C_{T,z} : \mathbb{R}^n \rightarrow \Omega$ to map samples from the input space into the canonical cell Ω , thereby making
874 the map \tilde{g}_θ equivariant with respect to T . The equivariant map \tilde{g}_θ thus reads
875

$$876 \quad \tilde{g}_\theta(\mathbf{z}) = C_{T,z}^{-1} g_\theta(C_{T,z}\mathbf{z}), \quad (25)$$

877 where $C_{T,z}$ maps a sample \mathbf{z} into the canonical cell Ω , g_θ denotes a specific NF, and $C_{T,z}^{-1}$ maps the
878 canonicalized (and transformed) sample $\tilde{\mathbf{z}} = g_\theta(C_{T,z}\mathbf{z})$ back to the original input space.
879

880 In this section, we restrict ourselves to involutory symmetry transformations, i.e., $T^2 = \mathbb{1}$. Our
881 goal is thus to show that canonicalization fulfills the equivariant condition in Eq. (24). We define the
882 canonical transformation

$$883 \quad C_{T,z} : \mathbf{z} \mapsto \begin{cases} \mathbf{z}, & \text{if } \mathbf{z} \in \Omega \\ T\mathbf{z}, & \text{if } T\mathbf{z} \in \Omega, \end{cases} \quad (26)$$

885 with the inverse transformation

$$886 \quad C_{T,z}^{-1} : \mathbf{x} \mapsto \begin{cases} \mathbf{x}, & \text{if } \mathbf{x} \in \Omega \\ Tx, & \text{if } Tx \in \Omega. \end{cases} \quad (27)$$

889 It is crucial to note that the inverse transformation $C_{T,z}^{-1}$ still depends on the sample \mathbf{z} to which the
890 canonical transformation $C_{T,z}$ was initially applied, i.e., the information about the initial sample \mathbf{z} is
891 implicitly stored in the transformation. One way to check if the map Eq. (25) is *really* equivariant
892 under the transformation T is to sequentially apply the transformation T and then $C_{T,z}$ to the input \mathbf{z} ,
893

$$894 \quad C_{T,Tz} : T\mathbf{z} \mapsto \begin{cases} T\mathbf{z}, & \text{if } T\mathbf{z} \in \Omega \\ TT\mathbf{z}, & \text{if } TT\mathbf{z} \in \Omega \end{cases} = \begin{cases} T\mathbf{z}, & \text{if } T\mathbf{z} \in \Omega \\ \mathbf{z}, & \text{if } \mathbf{z} \in \Omega \end{cases}. \quad (28)$$

896 Note that the involutory property $TT = \mathbb{1}$ has been used here.⁵ It follows that the transformations
897 $C_{T,Tz}$ and $C_{T,z}$ are equivalent,
898

$$899 \quad C_{T,Tz} T\mathbf{z} = C_{T,z} \mathbf{z}, \quad (29)$$

900 while the inverse transformation $C_{T,Tz}^{-1}$ reads
901

$$902 \quad C_{T,Tz}^{-1} : \mathbf{x} \mapsto \begin{cases} \mathbf{x}, & \text{if } T\mathbf{z} \in \Omega \\ Tx, & \text{if } \mathbf{z} \in \Omega \end{cases}. \quad (30)$$

904 Additionally, one can compute $TC_{T,z}^{-1}$,
905

$$906 \quad TC_{T,z}^{-1} : \mathbf{x} \mapsto \begin{cases} Tx, & \text{if } \mathbf{z} \in \Omega \\ TTx, & \text{if } T\mathbf{z} \in \Omega \end{cases} = \begin{cases} Tx, & \text{if } \mathbf{z} \in \Omega \\ \mathbf{x}, & \text{if } T\mathbf{z} \in \Omega \end{cases} \quad (31)$$

909 and verify that indeed

$$910 \quad C_{T,Tz}^{-1} \mathbf{x} = TC_{T,z}^{-1} \mathbf{x}. \quad (32)$$

911 Leveraging the identities in Eqs. (29) and (32), one can finally show that the overall map \tilde{g}_θ is
912 equivariant with respect to the transformation T ,
913

$$914 \quad \tilde{g}_\theta(T\mathbf{z}) = C_{T,Tz}^{-1} g_\theta(C_{T,Tz} T\mathbf{z}) = TC_{T,z}^{-1} g_\theta(C_{T,z} \mathbf{z}) = Tg_\theta(\mathbf{z}), \quad (33)$$

915 which proves the initial equivariance condition in Eq. (24).
916

917 ⁵Note that while the subscript T,z means that the forward canonical transformation is applied to the input \mathbf{z} ,
918 the subscript T,Tz means that the transformation is applied to the transformed input $T\mathbf{z}$.

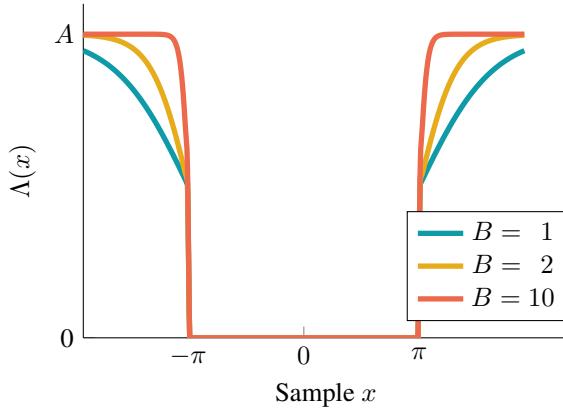


Figure 6: Example of a penalty term with $\lambda(x) = |x| - \pi$. The penalty term is zero for $x \in [-\pi, \pi]$ and approaches A as $x \rightarrow \pm\infty$. The parameter B controls the scaling of the penalty gradient.

An essential part of the canonicalization is that the map g_θ *must not* move the canonicalized sample $C_{T,z}z$ *outside* the canonical cell, i.e., into $\mathbb{R}^n \setminus \Omega$. This requirement arises because if the map g_θ maps a sample outside of the canonical cell Ω —that is, if $g_\theta(C_{T,z}z) \notin \Omega$ —then it is possible for two distinct inputs $z_1 \neq z_2$ with $z_1, z_2 \in \mathbb{R}^n$ to be mapped to the same output via canonicalization and transformation: $g_\theta(z_1) = g_\theta(z_2)$. This leads to a loss of *injectivity* and, consequently, the transformation g_θ is no longer *bijective*. This poses a problem, as NFs require the map g_θ to be bijective in order to perform density estimation via Eq. (2). As described in Sec. 2.3.3, this constraint can be numerically enforced using a penalty term $\Lambda : \mathbf{x} \in \mathbb{R}^n \rightarrow \Lambda(\mathbf{x}) \in \mathbb{R}$, which is zero for $\mathbf{x} \in \Omega$ and greater than zero for $\mathbf{x} \notin \Omega$. Furthermore, it is essential that the gradient $\partial_z \Lambda(g_\theta(z))$ points towards the canonical cell Ω . This ensures that if the NF pushes a sample $\tilde{z} = g_\theta(C_{T,z}z)$ outside of Ω , the gradient of Λ acts to pull it back into the cell. Further details on the penalty term and the enforcement of bijectivity are provided in Sec. 2.3.3 and further elaborated in App. D.

D PENALTY TERM FOR THE KL DIVERGENCE

In Eq. (11) from Sec. 2.3.3, we introduced a penalty term that is necessary to numerically enforce the bijectivity required for the NF to serve as a valid transport map between probability densities. In this section, we further elaborate on this penalty term and provide an example in Fig. 6.

Crucially, the penalty term $\Lambda(\mathbf{x})$ and the associated penalty function $\lambda(\mathbf{x})$ are necessary for ensuring that the NF g_θ does not map samples outside of the canonical cell Ω . For convenience, we recall the penalty term,

$$\Lambda(\mathbf{x}) = A \cdot \sigma(B \cdot \lambda(\mathbf{x})) \cdot \Theta(\lambda(\mathbf{x})), \quad (34)$$

where the set $\{A, B\}$ denotes all hyperparameters, while $\sigma(\cdot)$ and $\Theta(\cdot)$ refer to the sigmoid and the Heaviside theta functions, respectively.

Fig. 6 shows an example for a penalty term for the canonical cell⁶ $\Omega = \{x \in \mathbb{R} : |x| \leq \pi\}$. The function $\lambda(x) = |x| - \pi$ is chosen so that it becomes zero at the boundary $|x| = \pi$ and positive outside the canonical cell, i.e., for $|x| > \pi$. Correspondingly, the penalty term $\Lambda(x)$ is zero for all $x \in [-\pi, \pi]$ and smoothly approaches the value A as $x \rightarrow \pm\infty$. The parameter B controls the scaling of the gradient of the penalty term.

E GENERALIZATION OF SESAMO

E.1 \mathbb{Z}_M STOCHASTIC MODULATION

The stochastic modulation for the \mathbb{Z}_2 symmetry introduced in Sec. 3.1 can be generalized to a \mathbb{Z}_M symmetry. The transformation S_u randomly rotates a two-dimensional vector $\mathbf{x} \equiv (x_1, x_2)^T \in \mathbb{R}^2$

⁶Note that the example is in one-dimensional space \mathbb{R} but can be straightforwardly generalized.

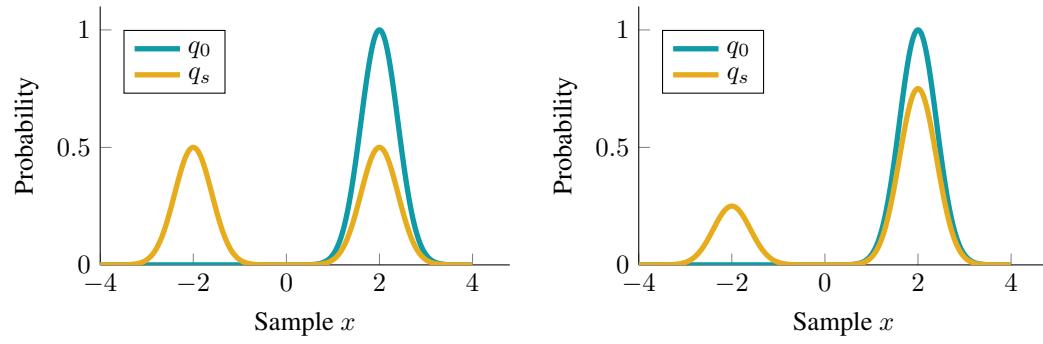


Figure 7: Prior Gaussian distribution q_0 with mean $\mu = 2$ and standard deviation $\sigma = 1$. The transformation S_u , implementing the \mathbb{Z}_2 symmetry, randomly flips the sign of a sample $x_i \sim q_0$ with a probability determined by the breaking parameter b . When $b = \ln 0.5$ (left), the resulting distribution q_s (yellow) is symmetric around zero, with both modes carrying equal probability mass. When $b = \ln 0.25$ (right), according to Eq. (39), the sign flip occurs with probability $p_{S,b} = 0.25$, leading to asymmetric modes at $\mu = \pm 2$ that carry 25% and 75% of the total probability mass, respectively.

b	$p_{S,b}(u = 0)$	$p_{S,b}(u = 1)$
0	0	1
$\ln 0.5$	$1/2$	$1/2$
$-\infty$	1	0

Table 2: Probability $p_{S,b}$ of *not* flipping ($u = 0$) and flipping ($u = 1$) the sign of the input x for examples of the breaking parameter b , including the even case and the edge cases.

about the origin by an angle of $2\pi u/M$, i.e.,

$$S_u : \mathbf{x} \rightarrow \begin{pmatrix} \cos \frac{2\pi u}{M} & -\sin \frac{2\pi u}{M} \\ \sin \frac{2\pi u}{M} & \cos \frac{2\pi u}{M} \end{pmatrix} \mathbf{x} \quad \text{with} \quad u \sim \mathcal{U}_{\text{disc}}(0, M), \quad (35)$$

where $u \sim \mathcal{U}_{\text{disc}}(0, M)$ is a discrete uniform random variable taking values in the set $\{0, 1, 2, \dots, M-1\}$. The modulation probability is therefore given by $p_S = 1/M$. To ensure the bijectivity of the transformation S_u , the penalty term $\tilde{\Lambda}$ is added to the KL divergence in Eq. (11), where

$$\tilde{\Lambda}(\mathbf{x}) = \Lambda[\lambda_-(\mathbf{x})] + \Lambda[\lambda_+(\mathbf{x})], \quad (36)$$

and the bijectivity function is expressed as

$$\lambda_{\pm}(\mathbf{x}) = -\tan(\pi/M) x_1 \pm \frac{x_2}{(1 + \tan(\pi/M))^2}. \quad (37)$$

The canonical cell defined by this penalty term corresponds to a sector of angular width $2\pi/M$ centered around the x_1 -axis, with boundaries at angles $\pm\pi/M$. The bijectivity function then measures the distance of a sample to the border of the canonical cell. For more details on the penalty term, we refer back to Sec. 2.3.3.

E.2 BROKEN \mathbb{Z}_2 STOCHASTIC MODULATION

In the main text, the *exact* \mathbb{Z}_2 symmetry was considered to illustrate how canonicalization and SESaMo transform the base density. A \mathbb{Z}_2 symmetry is called *exact* when both modes (as shown in Fig. 1 and Fig. 2) carry equal probability mass. In the following, we extend this to a more general case where the probability mass is unevenly distributed across the modes.

It is important to note that under these conditions, the canonicalization approach faces challenges. Specifically, it is no longer sufficient to learn a single mode and evenly distribute the probability mass

among the others. In contrast, SESaMo, owing to its greater flexibility, can effectively handle this asymmetry. To accommodate such cases, a learnable *breaking parameter* $b \in \mathbb{R}^-$ is introduced to account for the imbalance in probability mass between the modes. When $b \rightarrow 0$, the sign of \mathbf{x} is always flipped, whereas in the limit $b \rightarrow -\infty$, the sign is never flipped. The transformation S_u for a broken \mathbb{Z}_2 symmetry therefore yields

$$S_u : \mathbf{x} \rightarrow \begin{cases} \mathbf{x} & \text{if } u = 0 \\ -\mathbf{x} & \text{if } u = 1 \end{cases} \quad \text{with} \quad u \sim \mathcal{B}(e^b) \quad \text{and} \quad b \in \mathbb{R}^-, \quad (38)$$

where $\mathcal{B}(e^b)$ denotes a Bernoulli distribution. Note that when $b = \ln 0.5$, the transformation reduces to the symmetric \mathbb{Z}_2 case, where each mode is selected with equal probability. Tab. 2 shows the modulation probability $p_{S,b}$ for the even case and the edge cases of the breaking parameter b discussed above. For an arbitrary breaking parameter b , the modulation probability $p_{S,b}$ is given by

$$p_{S,b} = \begin{cases} 1 - e^b & \text{if } u = 0 \\ e^b & \text{if } u = 1, \end{cases} \quad (39)$$

where $u \sim \mathcal{B}(e^b)$. The corresponding bijectivity constraint, used in the penalty term Λ introduced in Eq. (11), reads

$$\lambda(\mathbf{x}) = - \sum_{i=1}^N x_i, \quad (40)$$

where the sum is taken over of all components of the vector $\mathbf{x} \in \mathbb{R}^N$. The breaking parameter b is used in the exponential to ensure numerically stable simulations, which becomes particularly important in the limits $p_{S,b} \rightarrow 0$ and $p_{S,b} \rightarrow 1$.

Fig. 7 (left) shows a one-dimensional Gaussian distribution q_0 (blue), centered at $x = 2$ with standard deviation $\sigma = 1$. Applying the stochastic modulation S_u corresponding to the \mathbb{Z}_2 symmetry, with the breaking parameter $b = \ln 0.5$, yields a new distribution q_s (yellow) that is symmetric around zero. In this case, the probability mass is equally distributed across both modes. When the breaking parameter $b \neq \ln 0.5$, the stochastic modulation accounts for the imbalance between the modes, resulting in unequal probability masses in the transformed density q_s . Fig. 7 (right) shows an example for $b = \ln 0.25$, where the mode at $x < 0$ carries less mass than the one at $x > 0$.

Numerically, a so-called *breaking ratio* can be estimated by counting the number of samples in each mode of the distribution:

$$\hat{R} = \frac{N_+ - N_-}{N_+ + N_-} = 1 - 2e^b, \quad (41)$$

where N_+ and N_- denote the number of samples in the positive and negative modes of q_s , respectively. As an example, the experiments for the Hubbard model presented in the main text feature a broken \mathbb{Z}_4 symmetry, composed of an exact \mathbb{Z}_2 and a broken \mathbb{Z}_2 symmetry. SESaMo is able to learn this broken \mathbb{Z}_4 symmetry by combining an exact and a broken \mathbb{Z}_2 transformation, i.e., effectively modulating the sign of one of two field components.

E.3 BROKEN $(\mathbb{Z}_2)^{N_x}$ STOCHASTIC MODULATION

In the main text, we presented results for the Hubbard model for both small and large spatial lattice extents, i.e., $N_x = 2$ and $N_x = 18$. The Hubbard models exhibits a combination of N_x distinct \mathbb{Z}_2 symmetries, forming a $(\mathbb{Z}_2)^{N_x}$ symmetry. In terms of the stochastic modulation, we introduce breaking parameters $b \in \mathbb{R}^n$ with $n \equiv 2^{N_x}$. The stochastic variable u is drawn from a categorical distribution $\text{Cat}(b)$ with log-odds b and $u = 0, 1, \dots, 2^{N_x} - 1$. The canonical cell is defined as $\Omega = \{\mathbf{x} \in \mathbb{R}^{N_x \times N_t} \mid \sum_t x_{it} > 0 \ \forall i = 0, 1, \dots, N_x - 1\}$ and the stochastic modulation is given by

$$S_u : \mathbf{x} \rightarrow \begin{cases} (1, \dots, 1, 1)^T \odot \mathbf{x} & \text{if } u = 0 \\ (1, \dots, 1, 1, -1)^T \odot \mathbf{x} & \text{if } u = 1 \\ (1, \dots, 1, -1, 1)^T \odot \mathbf{x} & \text{if } u = 2 \\ (1, \dots, 1, -1, -1)^T \odot \mathbf{x} & \text{if } u = 3 \\ \vdots \\ (-1, \dots, -1, -1, -1)^T \odot \mathbf{x} & \text{if } u = 2^{N_x} - 1, \end{cases} \quad \text{with} \quad u \sim \text{Cat}(b), \quad (42)$$

1080 where \odot denotes component-wise multiplication. This formulation ensures that \mathbf{x} can be transformed
 1081 to one of the 2^{N_x} orthans.
 1082

1083 We can combine this broken symmetry with the exact \mathbb{Z}_2 symmetry present in the system, resulting
 1084 in an effective broken $(\mathbb{Z}_2)^{N_x-1} \otimes$ exact \mathbb{Z}_2 symmetry. For $N_x = 2$, this reduces to a broken \mathbb{Z}_4
 1085 symmetry.

1086 F STOCHASTIC MODULATION FOR CONTINUOUS SYMMETRIES

1089 In Sec. 3.1, the stochastic modulation S_u was introduced for discrete symmetries, where S_u has a
 1090 finite number of possible outcomes, each selected according to the modulation probability $p_{S,b}$. This
 1091 approach is well-suited for discrete symmetries such as sign-flip or \mathbb{Z}_M symmetries. However, it is
 1092 not applicable to continuous symmetries—such as rotational or translational symmetries—where the
 1093 transformation space is uncountably infinite. In these cases, a modified formulation of stochastic
 1094 modulation is required to account for the continuous nature of the symmetry group.

1095 The continuous stochastic modulation proceeds as follows: first, draw a sample u from a distribution
 1096 $q_u(u)$, which can be the uniform distribution $\mathcal{U}(0, 1)$. Then, apply a trainable map $h_b : [0, 1] \rightarrow [0, 1]$
 1097 with parameters b to obtain $h_b(u)$. This output parametrizes a continuous transformation $R_{h_b(u)}$, such
 1098 as a rotation matrix where the rotation angle is determined by $h_b(u)$. The stochastic transformation is
 1099 thus given by

$$1100 S_u : \mathbf{x} \rightarrow R_{h_b(u)} \mathbf{x}. \quad (43)$$

1101 The modulation probability, which enters the density transformation in Eq. (16), follows from the
 1102 change-of-variable formula of the transformation $R_{h_b(u)}$ and can be expressed as

$$1104 1105 p_{S,b}(u) = q_u(u) \cdot \left| \det \left(\frac{\partial R_{h_b(u)}^{-1}}{\partial u} \right) \right|, \quad (44)$$

1107 where $q_u(u)$ is the probability density of u and the determinant captures the local volume change
 1108 under the inverse transformation $R_{h_b(u)}^{-1}$.

1110 F.1 BROKEN AND EXACT $U(1)$ STOCHASTIC MODULATION

1112 In Sec. 4.2, the complex ϕ^4 scalar field theory is introduced, in which the action $f[\mathbf{x}]$ (as defined in
 1113 Eq. (22)) remains invariant under a $U(1)$ transformation of the form

$$1114 1115 R_\varphi = e^{2\pi i \varphi}, \quad (45)$$

1116 where the angle φ lies in the interval $[0, 1]$. If a term $\alpha \text{Re}[\mathbf{x}]$ is added to the action $f[\mathbf{x}]$, this $U(1)$
 1117 symmetry is broken, meaning that the Boltzmann-like density $p(\mathbf{x}) = \exp(-f[\mathbf{x}])/Z$ becomes
 1118 dependent on the angle φ . This angular dependence can be captured within the stochastic modulation
 1119 framework by introducing a trainable map $\varphi \equiv h_b(u)$. In particular, a spline flow (73) is used for this
 1120 purpose. The modulation probability in Eq. (44) then simplifies to

$$1122 1123 p_{S,b}(u) = \frac{1}{2\pi} \left| \det \left(\frac{\partial h_b(u)}{\partial u} \right) \right|^{-1}, \quad (46)$$

1124 where the chain rule is used to compute $\partial R_{h_b(u)}^{-1} / \partial u$ in Eq. (44), as well as the fact that

$$1126 1127 \left| \det \left(\frac{\partial R_{h_b(u)}^{-1}}{\partial h_b} \right) \right| = \frac{1}{2\pi}. \quad (47)$$

1129 This is given because the rotation $R_\varphi = e^{2\pi i \varphi}$ in Eq. (45) corresponds to a full angular cycle over the
 1130 interval $[0, 1]$, scaling the Jacobian by the full rotation angle 2π . Meanwhile, we used $q_u = 1$ since u
 1131 is sampled from a uniform distribution on $[0, 1]$, which has a constant density of one.

1133 The sample \mathbf{x} must be completely real before applying the stochastic modulation. This means that a prior sample $\mathbf{z} = \mathbf{z}_1 + i\mathbf{z}_2$, where $\mathbf{z}_1, \mathbf{z}_2 \in \mathbb{R}^N$, must satisfy $\mathbf{z}_2 = 0$, i.e., it lies on the real axis,

and is transformed by an NF $g_\theta : \mathbb{R}^N \rightarrow \mathbb{R}^N$. After applying the stochastic modulation $R_{h_b(u)}$, the sample \mathbf{x} becomes complex-valued, given by

$$\mathbf{x} = e^{2\pi i h_b(u)} g_\theta(\mathbf{z}_1). \quad (48)$$

Note that by omitting the spline flow h_b and using $h \equiv 1$, an exact $U(1)$ symmetry can be enforced instead of a broken one. Furthermore, this approach can similarly be used to enforce a broken or exact rotational $SO(2)$ symmetry.

G TECHNICAL DETAILS OF THE PHYSICAL THEORIES

In this section, we discuss some fundamental aspects of the complex ϕ^4 theory and the Hubbard model that are relevant to our study.

G.1 THE COMPLEX ϕ^4 SCALAR FIELD THEORY IN TWO DIMENSIONS

In recent years, the ϕ^4 theory has become a popular benchmark for generative models in the machine learning community (66; 67; 68). Originally developed as a physical model, it describes interacting particles with integer spin. On a finite lattice with points $j \in V$, the theory is specified by the action

$$\tilde{f}[\varphi] = \sum_{j \in V} \left[\frac{a^2}{2} \sum_{\hat{\mu}=1}^2 \frac{(\varphi_{j+a\hat{\mu}} - \varphi_j)^2}{a^2} + \frac{m_0^2}{2} \varphi_j^2 + \frac{g_0}{4!} \varphi_j^4 \right], \quad (49)$$

where φ_j denotes the field value at site j . The first term inside the brackets corresponds to the kinetic term, the second is the mass term governed by the bare mass m_0 , and the quartic φ^4 term describes the interaction, weighted by the bare coupling strength g_0 . Using the more standard redefinitions (similarly adopted by Nicoli et al. (14))

$$\varphi = (2\kappa)^{1/2} \mathbf{x}, \quad (am_0)^2 = \frac{1-2\lambda}{\kappa} - 4, \quad a^2 g_0 = \frac{6\lambda}{\kappa^2}, \quad (50)$$

we rewrite the action in the form presented in the main text:

$$f[\mathbf{x}] = \sum_{j \in V} \left[-2\kappa \sum_{\hat{\mu}=1}^2 (\mathbf{x}_j \mathbf{x}_{j+\hat{\mu}}) + (1-2\lambda) \mathbf{x}_j^2 + \lambda \mathbf{x}_j^4 + \alpha \text{Re}[\mathbf{x}_j] \right]. \quad (51)$$

Here, λ is known as the coupling parameter, while κ is the hopping parameter. Additionally, we added a term $\alpha \text{Re}[\mathbf{x}_j]$ to progressively break the $U(1)$ symmetry of the ϕ^4 theory as the parameter α increases. Such a symmetry-breaking term also arises in quantum field theories with non-degenerate particle flavor masses, providing a physically motivated example.

G.2 THE HUBBARD MODEL IN TWO DIMENSIONS

The Hubbard model is a fundamental model in condensed matter physics that describes how electrons interact on a fixed lattice of ions (70). By neglecting lattice vibrations and other atomic excitations, it captures the essential physics of electrons hopping between valence orbitals and interacting through their electric charge. This is further illustrated in Fig. 8. We describe the system in the so-called *spin basis*, where the degrees of freedom correspond to spin-up and spin-down electrons. Other basis choices exist but are not considered here.

The action of the system is given by (71)

$$f[\mathbf{x}] = \frac{1}{2\tilde{U}} \sum_{j,k \in V} \mathbf{x}_{jk}^2 - \log \det M[\mathbf{x}] - \log \det M[-\mathbf{x}], \quad (52)$$

where \tilde{U} denotes the on-site Coulomb-like interaction strength, \mathbf{x} are auxiliary bosonic fields, and the subscripts j, k label the spatial and temporal lattice sites in the lattice volume V , respectively. Since we do not consider a temporal extent throughout this manuscript, i.e. $N_t = 1$, we have dropped the index k in Sec. 4.2 for brevity. Lastly, the fermion matrix M is defined as

$$M[\mathbf{x}]_{j'k',jk} = \delta_{j',k} \delta_{j',k} - [e^h]_{j',k} e^{\phi_{jk}} \mathcal{B}_{k'} \delta_{k',k+1}. \quad (53)$$

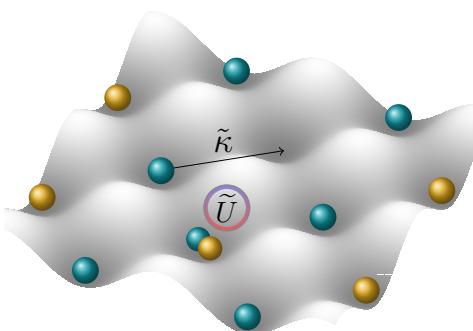


Figure 8: Illustration of a lattice described by the Hubbard model. Blue and red circles represent spin-up and spin-down electrons, respectively. The hopping term $\tilde{\kappa}$ allows electrons to move between neighbouring lattice sites, while the on-site Coulomb interaction \tilde{U} penalizes the presence of two electrons with opposite spins at the same site.

Here, $h = \tilde{\kappa} \delta_{\langle j', j \rangle}$ is the hopping matrix, where $\tilde{\kappa}$ is the hopping amplitude and $\delta_{\langle j', j \rangle}$ enforces hopping only between nearest neighbours j', j on the lattice, and \mathcal{B}_t is a factor implementing periodic (anti-periodic) boundary conditions in the temporal direction for $N_t = 1$ ($N_t > 1$). The action in Eq. (52) consists of two main contributions: the Gaussian term, which encodes the on-site interaction, and the fermionic term, represented by the product of fermion matrices, which captures the electron hopping dynamics across the lattice.

The Boltzmann-like density of the Hubbard model features widely separated modes, which can lead to ergodicity problems and biased estimates of observables when using Monte Carlo-based sampling methods such as Hybrid Monte Carlo (HMC) (74). NFs have demonstrated the ability to overcome these challenges, particularly when they incorporate prior knowledge of the system’s symmetries (38).

H ADDITIONAL NUMERICAL EXPERIMENTS

In this section, we present additional experiments for the Gaussian mixture model, the Hubbard model, and the ϕ^4 theory.

H.1 GAUSSIAN MIXTURE

The Gaussian mixture model introduced in Sec. 4 exhibits a multi-modal density, where locating all modes is poses a significant challenge for RealNVP. This issue is mitigated by applying canonicalization and further improved with SESaMo, which achieves higher accuracy. Fig. 9 (left) shows the ESS as a function of GPU training time in minutes. The solid lines and shaded regions indicate the mean and standard deviation over ten models trained with different seeds. Both canonicalization and SESaMo lead to faster convergence compared to RealNVP, which suffers from strong fluctuations due to frequent mode collapse.

H.2 THE HUBBARD MODEL IN TWO DIMENSIONS

In Fig. 9 (right), the ESS is shown as a function of the GPU training time for the Hubbard model. The solid lines and shaded regions indicate the mean and standard deviation over ten models trained with different seeds. SESaMo not only achieves higher accuracy than both canonicalization and RealNVP, but also converges faster than RealNVP. The canonicalization method fails to capture the unequal probability masses across the modes, as illustrated in Fig. 5, while RealNVP suffers from mode-dropping. In contrast, SESaMo successfully identifies all four modes and accurately predicts their relative probabilities.

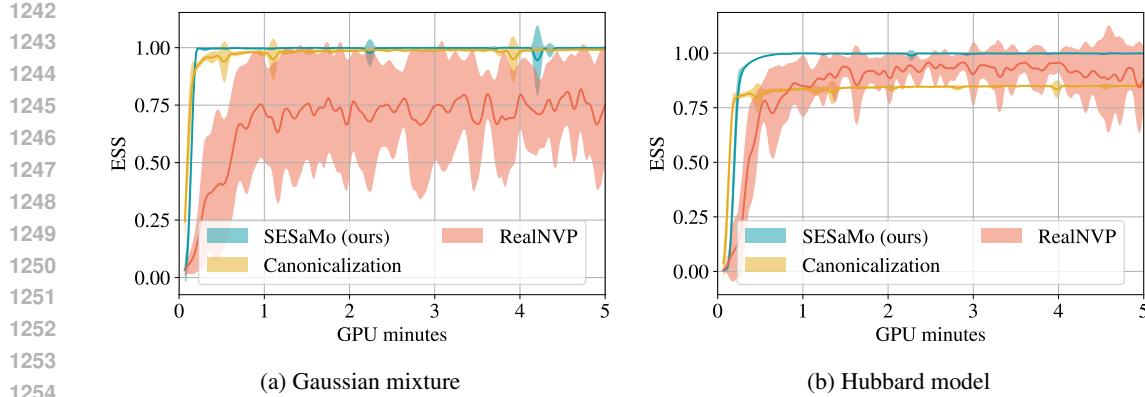


Figure 9: ESS as a function of the GPU training time (minutes) for the Gaussian mixture (left) and the Hubbard model (right). Solid lines represent the mean and shaded areas indicate the standard deviation across ten models trained with different seeds. The results show that SESaMo achieves a higher ESS compared to both canonicalization and RealNVP.

The effect of the broken \mathbb{Z}_2 symmetry becomes more pronounced as the inverse temperature β increases. To investigate this behaviour, we train SESaMo and canonicalization models for values of $\beta \in [1, 4]$, as shown in Fig. 10 (left). SESaMo consistently achieves high accuracy across all values of β , while the canonicalization method exhibits significantly lower accuracy. This demonstrates that SESaMo successfully learns the broken \mathbb{Z}_2 symmetry.

To further verify whether the probability is predicted correctly, we compare against the ground truth. In Fig. 10 (right), the breaking ratio R from Eq. (41) is shown, where N_{\pm} can be computed analytically by integrating the probability distribution $p(\mathbf{x})$ for a volume $V = 2 \times 1$, i.e., $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$. The probability distribution⁷ is known up to a constant factor and given by

$$p(\mathbf{x}) \propto h(\mathbf{x})h(-\mathbf{x})e^{-\frac{x_1^2+x_2^2}{U\beta}}, \quad (54)$$

where

$$h(\mathbf{x}) = \cosh\left(\frac{x_1+x_2}{2}\right) + \cosh\left(\frac{x_1-x_2}{2}\right) \cosh(\tilde{\kappa}). \quad (55)$$

The theoretical prediction of the breaking ratio R matches perfectly with the expression $R = 1 - 2e^b$ obtained from the learned breaking parameter b .

H.3 THE REAL ϕ^4 SCALAR FIELD THEORY IN TWO DIMENSIONS

In Sec. 4.2 and G.1, we introduced the *complex* ϕ^4 scalar field theory in two dimensions. In its general form, this theory consists of complex-valued fields.

Most recent works in the context of generative models (see, e.g., (13; 14)), however, have focused on *real* scalar fields. Under this assumption, the ϕ^4 theory belongs to the same universality class as the Ising model and serves as an instructive toy model for exploring spontaneous symmetry breaking and the Higgs mechanism (65). Assuming *real* scalar fields, the action in Eq. (22) simplifies to

$$f[\mathbf{x}] = \sum_{j \in V} \left[-2\kappa \sum_{\hat{\mu}=1}^2 (\mathbf{x}_j \mathbf{x}_{j+\hat{\mu}}) + (1 - 2\lambda) \mathbf{x}_j^2 + \lambda \mathbf{x}_j^4 + \alpha \mathbf{x}_j \right], \quad (56)$$

with $\mathbf{x} \in \mathbb{R}^n$. This form of the action corresponds to the one studied in Ref. (14; 72), up to the addition of a symmetry-breaking factor $\alpha \mathbf{x}$. The coefficient α introduces an exponential suppression of the probability with respect to the field \mathbf{x} , thereby explicitly breaking the \mathbb{Z}_2 symmetry when $\alpha > 0$. In this context, the symmetry-breaking parameter b introduced in App. E can be learned such

⁷Note that this distribution is exact for $V = 2 \times 1$. For larger volumes, it becomes exact only in the strong-coupling limit $U \rightarrow \infty$ while keeping β fixed.

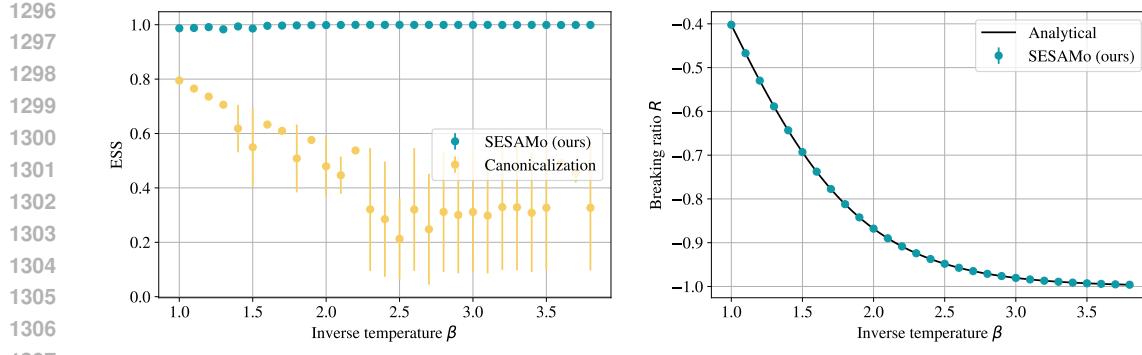
(a) ESS as a function of the inverse temperature β . (b) R as a function of the inverse temperature β .

Figure 10: **Left:** ESS for different values of the inverse temperature β . The blue and yellow markers correspond to canonicalization and SESaMo, respectively. Means and standard deviations are computed by averaging over three independently trained models (for each method) using three different random seeds. **Right:** Breaking ratio R as a function of β . The analytical curve (yellow) is obtained by integrating the analytically derived probability weight (see Eq. (79) in Ref. (74)). The numerical estimate from Eq. (41), computed using a trained SESaMo model, agrees with the analytical result within error bars. The uncertainties—often too small to be visible at the scale of the plot—are estimated by averaging over three independently trained models with different seeds.

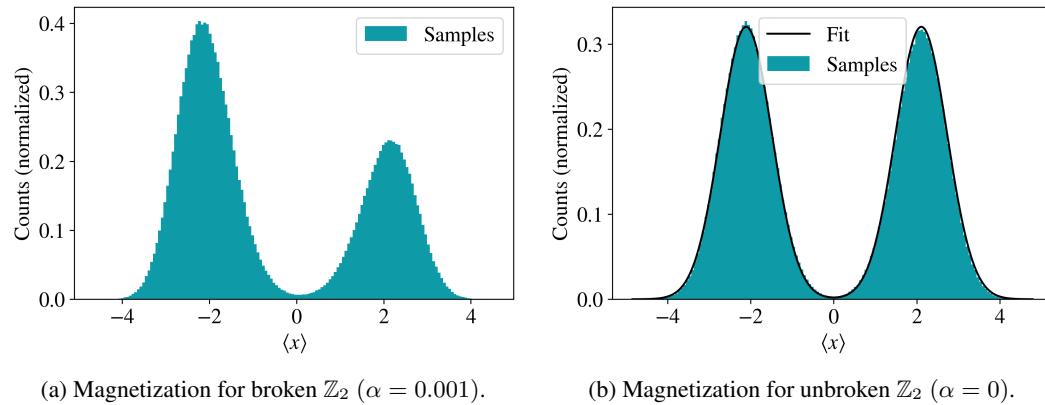


Figure 11: Histograms of the magnetization for real ϕ^4 scalar field theory for a broken \mathbb{Z}_2 symmetry (left, $\alpha = 0.001$) and an exact \mathbb{Z}_2 symmetry (right, $\alpha = 0$). Samples for the histograms are drawn from two SESaMo models trained for the corresponding values of the breaking factor α .

that SESaMo redistributes the probability mass of the learned probability in accordance with the asymmetry of the target distribution. We train SESaMo using the REINFORCE estimator of the KL divergence discussed in Sec. 3.2. Additional hyperparameters and experimental details are provided in App. I. Unless stated otherwise, all experiments in this setting are conducted on lattices of size 16×8 , with action parameters fixed to $\kappa = 0.3$ and $\lambda = 0.022$.

Since the theory now consists of scalar real fields in two dimensions, it enters the so-called broken phase for couplings $\{\kappa, \lambda\} = \{\geq 0.3, 0.022\}$. This phase is characterized by a bimodal probability density with the centers of the modes located at the vacuum expectation values (VEVs) (72) of the theory. When $\alpha = 0$, both modes are identical, and the resulting distribution is symmetric. In this case, both SESaMo and canonicalization are able to accurately learn the target distribution, achieving high ESS without mode collapse (72). In the following, we compare the performance of SESaMo and canonicalization in the case $\alpha > 0$, where the \mathbb{Z}_2 symmetry of the double-well potential is explicitly broken. To study this scenario, we trained different models using both approaches for increasing values of α . The results are shown in Fig. 12 (left), which displays the ESS obtained from models trained for a ϕ^4 -theory defined on a lattice of size $V = 16 \times 8$ for various values of α .

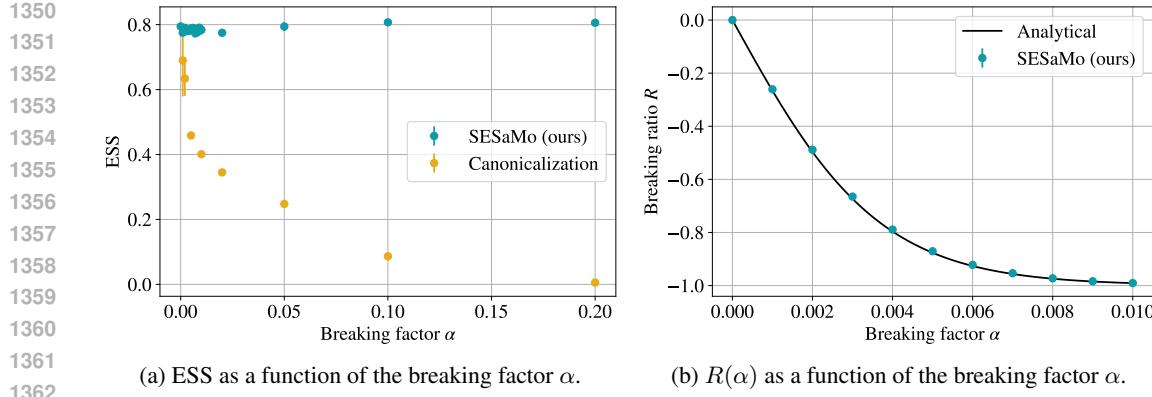


Figure 12: **Left:** ESS for different values of the breaking factor α . The blue and yellow markers refer to canonicalization and SESaMo, respectively. Mean and standard deviations are computed by averaging three models (for both approaches) trained with three different seeds. **Right:** Breaking ratio R for different values α . The analytical (yellow) curve is obtained by plotting Eq. (59) as a function of α . The numerical estimate in Eq. (41), obtained with a trained SESaMo model, is compatible with the analytical result within errors. The uncertainties (sometimes too small to be visible in the scale of the plot) are estimated by averaging three models trained with three different seeds.

Yellow and blue markers indicate results from SESaMo and canonicalization, respectively. Error bars represent standard deviations computed from three independently trained models with different seeds. Crucially, while the performance of SESaMo and canonicalization is comparable at $\alpha = 0$, the ESS of canonicalization drops to zero as α increases, and the potential becomes increasingly asymmetric. In contrast, SESaMo maintains a stable ESS across the entire range of α , thanks to the stochastic modulation enabled by the learned symmetry-breaking parameter.

Interestingly, this analysis can be made fully quantitative. The distribution of the magnetization for the ϕ^4 theory (see Fig. 11) yields a Gaussian distribution with two modes located at the VEVs $= \pm\mu$, and is modulated by the symmetry-breaking factor α ,

$$\tilde{f}(x) = A \left(e^{-\frac{(x-\mu)^2}{2\sigma^2}} + e^{-\frac{(x+\mu)^2}{2\sigma^2}} \right) \cdot e^{-\alpha V x}, \quad (57)$$

where $V = 16 \times 8$ is the volume of the lattice. The parameters $\{A, \sigma, \mu\}$ can be inferred from a numerical fit of the histogram at $\alpha = 0$ (see Fig. 11b), yielding

$$A = 0.499(2), \quad \mu = 2.126(3), \quad \sigma = 0.629(3).$$

These parameters fully characterize the distribution defined in Eq. (56). To quantify the effect of symmetry breaking, we define $N_+(\alpha)$ and $N_-(\alpha)$ as the integrated probability mass over the right and left modes, respectively:

$$N_-(\alpha) = \int_{-\infty}^0 dx \tilde{f}_\alpha(x) \quad \text{and} \quad N_+(\alpha) = \int_0^\infty dx \tilde{f}_\alpha(x). \quad (58)$$

We then define the breaking ratio R as the relative imbalance between the two modes N_+ and N_- . Using standard Gaussian integrals, this ratio can be computed analytically, resulting in

$$R(\alpha) \equiv \frac{N_+(\alpha) - N_-(\alpha)}{N_+(\alpha) + N_-(\alpha)} = 1 - \frac{e^{-V\alpha\mu} [1 + \text{erf}(\tau_-(\alpha))] + e^{V\alpha\mu} [1 + \text{erf}(\tau_+(\alpha))]}{2 \cosh(V\alpha\mu)} \quad (59)$$

where $\tau_\pm(\alpha)$ are defined by

$$\tau_\pm(\alpha) = \frac{\sigma}{\sqrt{2}} \left(V\alpha \pm \frac{\mu}{\sigma^2} \right). \quad (60)$$

The analytical result from Eq. (59) can be compared to the numerical estimate from Eq. (41). Fig. 10 (right) shows both the analytical prediction and the numerical estimate for the ratio $R(\alpha)$, for breaking factors $\alpha \in [0, 0.01]$. The theoretical value in Eq. (59) and the numerical estimate in Eq. (41), for different α , are represented with a solid (black) line and (blue) markers, respectively. For $\alpha = 0$, the

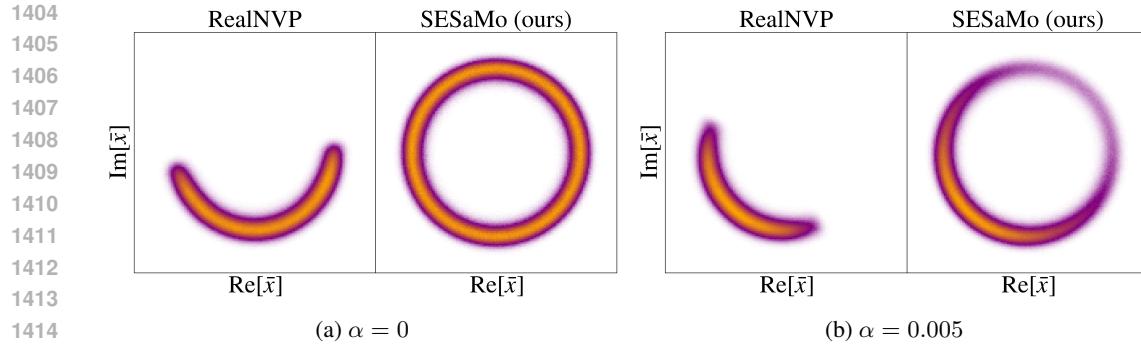


Figure 13: **Continuous Symmetries:** Density plot for real and imaginary components of the complex-valued fields of complex ϕ^4 scalar field theory, as introduced in Sec. 4, and sampled from trained generative models, i.e., RealNVP and SESaMo. The models have been trained to sample from the target density in Eq. (22) for lattices of volume $V = 8 \times 8$ and coupling values $\{\kappa, \lambda\} = \{0.3, 0.022\}$. The models are trained until convergence and the density plots are made by drawing 5 M samples. The left and right plots refer to continuous $U(1)$ symmetries in the unbroken ($\alpha = 0$) and broken ($\alpha = 0.005$) case, respectively. Note that canonicalization is not shown as that approach is not capable of handling continuous symmetries.

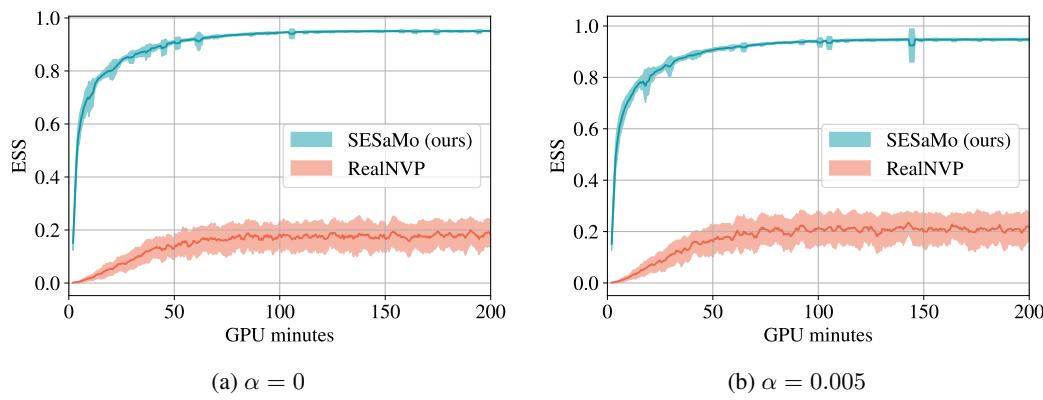


Figure 14: ESS as a function of the GPU training time (minutes) for the ϕ^4 theory experiments (see Fig. 13). The solid line and the shadows represent the mean and the standard deviations of ten models trained with different seeds. The curve shows the substantially faster convergence of SESaMo compared to naive RealNVP. Again, canonicalization is not shown as it cannot straightforwardly incorporate continuous symmetries into the model.

estimated ratio from the model is zero, suggesting that the fact the \mathbb{Z}_2 symmetry is not broken has been correctly learned by SESaMo. By increasing α the ratio R converges to -1, which corresponds to a fully broken \mathbb{Z}_2 symmetry i.e., that is, the probability for $x > 0$ is zero. Crucially, SESaMo is able to always learn the correct *breaking parameter*, hence estimating the correct *breaking ratio* R for a broken \mathbb{Z}_2 -symmetric action.

With this simple example, we conclude that SESaMo is capable of incorporating symmetries inside a flow-based generative model even when those are *broken*. One could foresee the power of this approach in incorporating other types of broken symmetries, such as the chiral symmetry breaking in quantum chromodynamics (QCD) (75). The QCD Lagrangian with two flavors, i.e., up and down quarks, has a broken chiral symmetry due to the different masses of the up and down quarks. Results for a toy model of such scenario were presented in the main text (see Tab. 1) and we further elaborate on them in App. H.4 below.

1458	Experiment	N_C	N_L	N_N	Activation	N_B	LR	Steps	μ	Var
1459	GMM	6	4	40	ReLU (Tanh ⁸)	8 k	5×10^{-4}	10 k	0	1 (20 ⁹)
1460	Complex ϕ^4	6	4	100	ReLU	8 k	5×10^{-4}	400 k	0	1
1461	Hubbard 2 \times 1	6	4	40	ReLU (Tanh ⁸)	8 k	5×10^{-4}	6 k	0	18
1462	Hubbard 18 \times 100	10	4	100	ReLU (Tanh ⁸)	8 k	5×10^{-4}	20 k	0	18

Table 3: Hyperparameters for the Gaussian mixture model (GMM), the complex ϕ^4 theory and the Hubbard model. Shown are the number of couplings N_C , number of layers N_L , number of neurons per layer N_N , activation function, batch size N_B , learning rate (LR), training steps / epochs, and the mean μ and variance of the prior Gaussian distribution.

H.4 THE COMPLEX ϕ^4 SCALAR THEORY IN TWO DIMENSIONS

In light of these considerations, in the main text (see Tab. 1) we tested how SESaMo is capable of dealing with continuous (broken and unbroken) symmetries, and we showed a remarkable outperformance compared to a naive RealNVP model. Furthermore, in App. F we discussed the details of SESaMo when dealing with continuous symmetries. In this section we complement the results from the main text with some further insights. First, Fig. 13 shows the density of the real and imaginary components of the complex fields $\mathbf{x} \in \mathbb{C}$ summed across the lattice volume, i.e., $\text{Re}[\tilde{\mathbf{x}}] = \sum_{i \in V} \text{Re}[\tilde{\mathbf{x}}_i]$ and $\text{Im}[\tilde{\mathbf{x}}] = \sum_{i \in V} \text{Im}[\tilde{\mathbf{x}}_i]$. Fig. 13a shows a ring-shaped potential projected on the complex plane stemming from the spontaneous symmetry breaking of an exact $U(1)$ symmetry in the ϕ^4 theory, which leads to the emergence of Goldstone Bosons (see (76) and Fig. 1 therein). When the $U(1)$ symmetry itself is broken ($\alpha = 0.005$), the probability density around the ring is no more evenly distributed, as it is visualized in the density learned by SESaMo in Fig. 13b. The reader should note that crucially, in the setting of continuous symmetries, only naive RealNVP and SESaMo can be applied. Indeed, the canonicalization approach could not straightforwardly be applied.

Fig. 13 demonstrates the greater capability of SESaMo to incorporate exact and broken continuous symmetries to enhance the model training and convergence. Moreover, this is further confirmed by the speed of convergence to a relatively high ESS as a function of training time, as shown in Fig. 14. After only seven minutes of training (one a single A100 NVIDIA GPU), the ESS achieved by SESaMo already surpasses 60% for both $\alpha = 0$ and $\alpha = 0.005$. In contrast, RealNVP, lacking the inductive bias induced by stochastic modulation, struggles to learn meaningful of the target density. The low ESS reflects this failure in learning the target probability density, as also shown in the RealNVP plots from Fig. 13.

I DETAILS OF NUMERICAL EXPERIMENTS

In this section, we present details of the numerical simulations and the hyperparameters used in the main paper. All NFs are trained on a single A100 NVIDIA GPU, using floating precision. For the Hubbard model, however, double precision is used to ensure numerically stable estimation of the fermion determinant. The Adam optimizer is employed with a learning rate of 5×10^{-4} . Additionally, a learning rate scheduler is used: if the standard deviation of the loss has not changed over the last 2000 epochs, the learning rate is multiplied by a factor of 0.92. The learning rate is bounded from below at 1×10^{-6} . As discussed in Sec. 3.2, the gradients are estimated with the REINFORCE algorithm for all experiments with SESaMo. For the VMoNF method, the number of NFs is chosen accordingly to the number of symmetry sectors, i.e. four in the Hubbard case and eight for the Gaussian Mixture Model. For the ϕ^4 theory we chose eight NFs as there are no clear symmetry sectors for the $U(1)$ symmetry. The remaining experiment-specific hyperparameters are summarized in Tab. 3.

⁸For VMoNF it was used Tanh, due to numerical instabilities.

⁹This variance was only used for the RealNVP and VMoNF models to alleviate mode-dropping.

1512 **LARGE LANGUAGE MODEL USAGE**
1513

1514 This work was partly supported by large language models. The usage contains polishing previously
1515 written text, discovering related work and assisting coding.
1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565