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ABSTRACT

Deep generative models have recently garnered significant attention across various
fields, from physics to chemistry, where sampling from unnormalized Boltzmann-
like distributions represents a fundamental challenge. In particular, autoregressive
models and normalizing flows have become prominent due to their appealing ability
to yield closed-form probability densities. Moreover, it is well-established that
incorporating prior knowledge—such as symmetries—into deep neural networks
can substantially improve training performances. In this context, recent advances
have focused on developing symmetry-equivariant generative models, achiev-
ing remarkable results. Building upon these foundations, this paper introduces
Symmetry-Enforcing Stochastic Modulation (SESaMo). Similar to equivariant
normalizing flows, SESaMo enables the incorporation of inductive biases (e.g.,
symmetries) into normalizing flows through a novel technique called stochastic
modulation. This approach enhances the flexibility of the generative model by
enforcing exact symmetries while, for the first time, enabling the model to learn bro-
ken symmetries during training. Our numerical experiments benchmark SESaMo in
different scenarios, including an 8-Gaussian mixture model and physically relevant
field theories, such as the ¢4 theory and the Hubbard model.

1 INTRODUCTION

Sampling from unnormalized Boltzmann distributions is an ubiquitous yet challenging task across
various fields, including physics (1), chemistry (2)), and economics (3). These distributions are
typically of the form p(z) = exp (— f[z])/Z, where f[] is a functional representing, for example,
the potential of a chemical compound or the action of a physical system, while Z, the normalization
constant (or partition function), is often unknown. While f[] is usually available in closed form, as it
describes the microscopic dynamics of the system under study, computing Z would require solving a
functional or high-dimensional integral, which is generally intractable. In fact, for many systems of
interest, sampling from Boltzmann distributions has been proven to be NP-hard (4)), making it highly
unlikely that a polynomial-time algorithm exists for this problem. Due to this complexity, sampling
from unnormalized Boltzmann distributions is traditionally performed using Markov Chain Monte
Carlo (MCMC) methods (3), where a randomly initialized Markov chain is guaranteed to converge
to the target distribution. Despite numerous advanced MCMC techniques, significant challenges
remain. In chemical and biological systems, for instance, sampling can be hindered by high-energy
barriers separating metastable states, posing a major obstacle for tasks such as protein folding (6)).
In physics, MCMC methods often suffer from slow convergence due to autocorrelations between
samples, necessitating longer simulations to obtain statistically independent samples and thereby
increasing computational costs (7).

Over the past decade, deep generative models (8)) have achieved remarkable success in sampling from
Boltzmann distributions within the framework of variational inference (VI) (9). In particular, Ref. (10)
introduced Boltzmann Generators (BGs), an approach in which a variational (parametrized) probabil-
ity density g¢ € Q is learned, using a generative model, to approximate the target distribution[ﬂof a
chemical system, i.e., g9 ~ p. Around the same time, concurrent studies proposed similar ideas in
the contexts of statistical physics (11;[12)) and lattice quantum field theories (13;114). A distinctive

'For notational convenience, we use the same symbol for a distribution and its density with respect to the
Lebesgue measure.
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feature of BGs is that they rely on generative models capable of providing the learned variational
density in closed form. These include autoregressive neural networks (15;/16)) and normalizing flows
(NFs) (175 118), which are particularly suited for sampling discrete and continuous degrees of freedom,
respectively. In the remainder of this work, we primarily focus on NFs, although extensions to other
generative models that allow exact likelihood computation are also possible.

Despite their potential to overcome some limitations of traditional MCMC sampling, deep generative
models present challenges of their own. In particular, to ensure reliable sampling from the target
density with suitable asymptotic guarantees (12)), these models must first be trained to a sufficiently
high standard. Deep generative models, such as NFs, are parametrized by deep neural networks
with numerous trainable parameters, which may require a substantial computational effort (training)
to converge. To accelerate training, it has been shown that incorporating inductive biases, such as
symmetry constraints, into the model architecture can lead to faster and more robust convergence.
A seminal example are convolutional neural network (CNNs), which exhibit built-in translational
equivariance (19). This concept has been generalized to arbitrary symmetry groups and manifolds (20;
21;22)). Similar ideas have been extensively leveraged in scientific applications, where chemical and
physical systems are often rich in symmetries (23} [24; 25} [26).

In this paper, we propose a general framework for embedding arbitrary symmetries into the training
protocol of NFs, which we term Symmetry-Enforcing Stochastic Modulation (SESaMo). Our
approach leverages the prior knowledge (symmetries) from the unnormalized log probability to train
a NF and uses an independent random variable to infer the correct probability mass for each mode
of the target distribution. Crucially, this approach holds promise for mitigating—and potentially
overcoming—the fundamental challenge of mode collapse in variational inference (27; 28). In
summary, the contributions of this work are threefold:

* We propose Symmetry-Enforcing Stochastic Modulation (SESaMo), a novel approach to
incorporate continuous and discrete symmetries (broken and exact) into flow-based models.

* We numerically enforce bijectivity by introducing a penalty term in the KL divergence.

* We conduct extensive numerical experiments to validate our theory on both toy problems
and real-world benchmarks for lattice quantum field theories.

The remainder of this paper is organized as follows. In Sec.[2] we introduce the necessary background
on NFs and variational inference. We also discuss how symmetries can be incorporated into flow-
based models and establish the notation used throughout the manuscript. In Sec. [3] we present our
stochastic modulation approach. Finally, in Sec. 4] we validate our approach, both on a standard
benchmark and on tasks of practical relevance, such as sampling lattice quantum field theories,
including the ¢* theory and the Hubbard model. We conclude by summarizing our findings and
discussing potential directions for future work in Sec. 3}

1.1 RELATED WORK

The field of geometric deep learning (29), which investigates the mathematical foundations of
deep learning on geometric structures—particularly group-equivariant and gauge-equivariant neural
networks—has advanced significantly in recent years. For a comprehensive review of common
methodologies, we refer to Refs. (30;31).

Kohler et al. (32) proposed a way to build NFs that are equivariant under the symmetries of the target p,
ensuring that the variational distribution gg inherently respects these symmetries, thereby improving
both accuracy and efficiency. This work laid the foundation for the development of equivariant NFs
across various applications. Satorras et al. (33) proposed a generative model equivariant to Euclidean
symmetries, integrating E(n)-Equivariant Graph Neural Networks (EGNNs) (25) within a continuous
NF framework (34)), yielding an invertible map that preserves Euclidean invariances. Bose et al. (35)
addressed the general problem of constructing equivariant diffeomorphisms with an equivariant
finite NF, specifically targeting finite symmetry groups and compact spaces. In high-energy physics,
Kanwar et al. (36) and Boyda et al. (37) adapted NFs to respect Abelian and non-Abelian gauge
symmetries, respectively. In condensed matter physics, Schuh et al. (38)) demonstrated the importance
of enforcing equivariance in NFs for symmetry-rich systems like the Hubbard model, showing that
equivariance is crucial for accurately learning the target density and overcoming ergodicity issues.
For atomistic systems (39) and atomic solids (40), Wirnsberger et al. introduced NFs equipped with
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permutation-equivariant diffeomorphisms. More recently, Midgley et al. (41) introduced NFs that
inherently respects SE(3) group symmetries—comprising translations, rotations, and reflections—as
well as permutation invariance. Furthermore, Klein et al. (42) proposed equivariant flow matching,
a training objective based on optimal transport flow matching that leverages inherent symmetries
in physical systems, enabling simulation-free training of equivariant continuous normalizing flows
(CNFs). In the context of diffusion models (43), Hoogeboom et al. (44) introduced an E(3)-equivariant
diffusion model for 3D molecular generation, which, similar to (33), enforces Euclidean invariance
under translations and rotations. Lastly, Pires et al. (45)) showed that a Variational Mixture of NFs
(VMOoNF) can model the symmetries of labelled data.

2 PRELIMINARIES

2.1 NORMALIZING FLOWS

Normalizing flows (NFs) (18)) are a class of generative models that provide an effective framework
for approximating complicated probability distributions. Commonly employed in the context of vari-
ational inference (VI) (46), NFs operate by transforming a simple, well-understood, prior distribution
(typically a Gaussian) into a target distribution through a sequence of invertible and differentiable
mappings. A key advantage of NFs is their ability to efficiently sample from approximated high-
dimensional distributions while retaining the capability to compute exact likelihoods. This exact
likelihood computation distinguishes NFs from many other generative models, making them particu-
larly well-suited for learning probability distributions in scientific applications, such as chemistry (10)
and physics (14). NFs can be categorized based on how the mappings between the prior density and
the target distribution are constructed. These categories include coupling-based NFs (47; 48} 149),
autoregressive NFs (50), and continuous NFs (34)). For the sake of simplicity, this paper primarily
focuses on coupling-based NFs, although extensions to other types of NFs are possible.

At the heart of NFs lies the concept of a bijective transformation that maps samples from a prior
distribution z ~ ¢o(z) (such as a multivariate Gaussian) to samples from a variational distribution
T ~ qg, which is meant to approximate a target p. This typically happens by means of a learnable
function

go:z~qo— T =ge(z) with x ~qo(x), )

where the transformation gg is parametrized by a neural network. To increase the flexibility of NFs,
multiple transformations (coupling blocks) can be composed, allowing for more expressive mappings
between prior and target distributions, ge(2z) = gg, ©go,_, © ... © gg,(2). A key feature of NFs
is that the transformation must be invertible, allowing the likelihood of the target distribution to be
computed exactly using the change of variables formula

1
det (WN . P
ox

For a comprehensive overview of NFs, we refer to the review papers (18;51). In this work, we focus
mainly on affine NF architectures, such as ReaINVP (48)), NICE (47), and neural spline flows (49).

6() = qo(gy ()

2.2 THE KULLBACK-LEIBLER DIVERGENCE

In the context of Variational Inference, the parameters @ of NFs are trained by minimizing the
so-called (Reverse) Kullback-Leibler (KL) divergence (52)

p(x)
qe(x)
where p(x) = exp (— f[x]) and gg () are the unnormalized target and the parametrized probability
distributions, respectively. The logarithm of the unknown partition function simply appears as an

additive term, which vanishes upon taking the gradient. For this reason, it is common to maximize the
evidence lower bound (ELBO) instead,

ELBO — Eqy, |In 2&L| @
qe(x)
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Figure 1: Visualization of the canonicalization approach making a flow-based model equivariant
with respect to a Z, symmetry.

Note that minimizing the reverse KL in Eq. (3) is equivalent to maximizing the ELBO in Eq. ();
moreover, since KL(gg || p) > 0 it follows that ELBO < In Z. It should also be noted that the KL
divergence is not symmetric, i.e., KL(gg || p) # KL(p || g9). Consequently, training using Eq.
or Eq. (@) differs from the practice of maximum likelihood training, which employs the forward
KL-divergence—a common approach in, e.g., computer vision applications (50). This distinction is
significant: In Variational Inference, access to training data is often unavailable, and models must be
trained solely using the closed-form unnormalized log probability p.

2.3 EQUIVARIANT NORMALIZING FLOWS

In previous works, several attempts have been made to incorporate prior knowledge into NFs and
make them equivariant with respect to certain symmetry groups. The main result stemming from (32)
is summarised in the following theorem:

Theorem 1 (Kohler et al., (2020)) Let’s assume H is a group acting on R™, qq is the base density
of a flow-based transformation with qg being the transformed density under the diffeomorphism
go : R" — R™. If gg is an H-equivariant diffeomorphism and qq is an H-invariant density with
respect to the same group H, then qg is also an H-invariant density on R™.

Specifically, this theorem provides a general protocol to build an equivariant NF by choosing an
appropriate invertible map gg that is H-equivariant. However, despite the generality of this result,
defining equivariant diffeomorphisms that allow for tractable inverses and Jacobians—both essential
for building an NF—remains an open challenge. Indeed, different approaches have been leveraged in
recent works to build equivariant flow-based models.

2.3.1 EQUIVARIANT NEURAL NETWORKS

In coupling-based NFs, the diffeomorphism gg is often parametrized by a neural network (NN). A
straightforward approach to enforce equivariance (or invariance) (53;154) is to design an NN that
explicitly satisfies these symmetry requirements. However, a significant limitation of this method is
that constructing such constrained architectures is neither always possible nor straightforward. One
instance where this approach is feasible is in the case of a Zo symmetry. Indeed, recent work showed
how to build manifestly sign-equivariant architectures (55)). For example, a simple strategy to achieve
sign equivariance in NN is to use equivariant activation functions, such as fanh, and omit bias terms,
ensuring that the resulting NN remains equivariant. Indeed, this approach was successfully applied
for training Z,-equivariant NFs in the context of lattice quantum field theories (145156 57).

2.3.2 CANONICALIZATION

The idea of canonicalization, largely motivated by Theorem [I] has been widely explored in the
context of flow-based sampling for lattice field theories (36). Indeed, physical systems are rich in
global (and local) symmetries, and being able to develop equivariant flows fulfilling these constraints
is a very active area of research. The key idea is to use a transformation C7 . to map a sample from
the base density to a so-called canonical cell €2, see (58). The NF then transforms the canonicalized
sample, before the inverse Cilz is applied to map the sample back to its original space. We refer to
App. [B]and Fig. [5|for more details. A parametric map gg is equivariant to a generic transformation 7’
if

g6(Tx) = Tge(x) = go(x) =T "go(Tx). )
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For example, for the sign-flipping Z transformation mentioned aboveE] the transformation reads
Tz, :x = —x. 6)
A canonical map Cr , transforms samples z € R"™, where z ~ o, to the canonical cell
Cr.:zeR"—=2.€Q with the inverse C’ilz Z.€EQ xR ()
The two manifolds € and €2 are connected by the diffeomorphism gg acting in the canonical space,
ie.,
gg:zceQ—fz“ceSN) and g(;l:'z“ceﬁazceQ. 8)

Note that Cr . depends on some specific symmetry transformation T, see Eq. (E]), which makes the
canonicalized flow gg = Cii go Cr..(z) equivariant. Focusing on the sign-flipping Z, transforma-
tion mentioned above, we have

z, if Z?:l Zi > 0
T7,z, else

Cri 2 s { ©)

where the canonical cell in this case is @ = {z € R" s.t. 3.1, z; > 0}. See Fig. [I|for a visual
intuition. This approach can be generalised for z € R™ and a set of .S symmetry transformations
{T;} such that

z, if A(z) x, if A(z)

Tz, elif Ai(z) T/ e, elif Aj(2)
Cr.:z— <. with inverse Cilz Tx ] (10)

Tsz, elif Ag(z) Ti'z, elif Ag(2)

where A(-) is a condition that allows to define the canonical cell 2 = {z € R™ s.t. A(z) = True}.
Note that the conditions A(-) depend on the input z, i.e., the information about the origin of the
sample in the base space must be stored in the transformation C . as well as its inverse. A proof
that the canonicalization approach is equivariant is given in App.

2.3.3 CONSTRAINTS ON CANONICALIZATION

In order to enforce equivariance via canonicalization, two constraints must be met: first the prior
distribution gg must be invariant under any symmetry transformation 7; (32)), i.e., go(2) = qo(T;2).
Second, g should not map samples outside of the canonical cell, i.e., 2. = go(Cr - z) € 2. While
the former constraint can be readily verified, the latter may not hold for any general NF. We enforce
this latter constraint by introducing a regularization term

Aze) = A-0(B-A20)) - O(AMZe)) (11)

where A\(Z.) is a penalty function being zero for a general input Z. at the boundary 0f) of the
canonical cell 2, negative for Z. € , and positive for Z. ¢ Q. The Heaviside step function O(-)
ensures that the penalty term is zero for Z. € €2, while the sigmoid function o(+) ensures that the
penalty function has a gradient pointing toward the canonical cell 2. The hyperparameters A, B € R
are used to scale the amplitude and the gradient of the function, respectively. This regularization term
is added to Eq. (3)) during the training of a NF. We provide further details about the penalty term in

App.[D}
3 PROPOSED METHOD: SESAMO

Crucially, certain symmetries may be difficult to incorporate through naive canonicalization strategies
and are unlikely to be effectively captured by standard flow-based generative models. A representative
case is a one-dimensional multimodal distribution with modes of unequal probability mass (see
App.[E]land App.[H). Our proposed method, Symmetry-Enforcing Stochastic Modulation (SESaMo),
introduces a novel stochastic modulation mechanism that is described in detail in Sec. 3811



Under review as a conference paper at ICLR 2026

qo e de
ge Su
B — —
z T T

Figure 2: Visualization of the stochastic modulation approach for enforcing a Z,; symmetry in a
flow-based model.

3.1 STOCHASTIC MODULATION

Stochastic modulation involves drawing samples & from a flow-based sampler with density gg ().
These samples are obtained from Z = gg(z) (center panel in Fig. , where z ~ qq are obtained from
the base density ¢ (left panel). The samples & are then transformed according to a bijective map .S,
(right panel), which is conditioned on a random variable u, resulting in a output density

go.5(x) = Zps,b(u) - qo (ggi(w)) . ’det <6gezu> -1

Here, pg (u) is the modulation probability that depends on a learnable parameter b. The diffeomor-
phic map from the base density go(z) to the final density reads

(12)

g@,u(z) = Su(ge(z)) ) (13)
such that
856 u aSu 696
det 2 = det det | =— | . 14
o (%5 ) = e (G ) e (5 o
A general stochastic modulation St ,, for a set of transformations {TZ}(T reads
Tox, ifu=0
Tix, elifu=1
St Q. with uw ~ pgy (15)

TMsc, elifu=M

where the transformations 7; map samples & ~ gg () to distinct regions in the configuration space,
potentially corresponding to different modes of the target distribution p(x). We note that Ty = I
while T; # T}, Vi # j. The transformation .S, is bijective if T; does not map the sample x to the
same region £ in configuration space, see the top row of Fig.[5]in App. B}

From Egs. (12)—(14), if u ~ ps 4 (u) is sampled and not marginalized, we can write the log probability
as

u

det 0

Jge
— In |det —
] L

Inge(gen(2)) =Inpsp(u) +1Ingo(z) —In , (16)

9e
where z = gy ! (z) and pg(u) is the probability of sampling the random variable u. To better
understand this mechanism, let us again consider a target density with Zs symmetry. In this specific
case, we define a random variable u € {0, 1} that follows a Bernoulli distribution B(e”) and
ifu=0 .
Sy :x— r 1 Y with u~ psp = B(e) and b=1n0.5. a7
—x ifu=1 ’

Unlike canonicalization, SESaMo (visualized in Fig. 2) requires shifting the prior density ¢ to align
with one mode of the target density, after which the modulation redistributes the probability mass
according to S,,. Therefore, contrarily to canonicalization, gy does not have to be invariant. For
further details and validation through extensive numerical experiments, we refer to Sec. 4]

Similarly to canonicalization, stochastic modulation requires .S,, to be bijective, which is enforced by
the penalty term introduced in Sec.[2.3.3] see Eq. (IT). Moreover, when the probability mass is not
evenly distributed among the modes of the target density (b # In 0.5), having a learnable parameter b
allows the NF to effectively capture the broken symmetry. This case is further detailed in App. [E]

2One can also verify that the map go () = tanh(a) is equivariant under 7%, .
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3.2 Loss FuNcTiION AND REINFORCE ESTIMATOR

For training, the standard reverse KL divergence is extended by the penalty term A(-)

KL(96 ||P) = EzngoBunps,, [106(J0,u(2)) + f[do.u(2)] + Alga(2))] , (18)

stemming from Sec. Since the parameter b of the stochastic modulation is only present in the
modulation probability pg; the REINFORCE Estimator (59) is used to enable gradient computation
through the random variable u

0]

% Inpgp (u)}

(19)

B 1000(G0(2)) + Fl0a()] = Eups, | (M 0(Go.u(2)) + Slioa(=)) - 57

4 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments that compare the performance of three approaches:
naive RealNVP, RealNVP with Variational Mixture of Normalizing Flows (VMoNF) (45)), ReaINVP
with canonicalization, and RealNVP with stochastic modulation (SESaMo). We benchmark these
approaches both on toy problems and on physically relevant tasks. To evaluate the effectiveness of
each approach, we use the effective sample size, ESS = 1/E,, [@?], as a performance metric. As
the inverse of the variance of the importance weights, the ESS quantifies the accuracy with which
the approximation gg matches the target probability distribution p. Bounded between zero and one,
the ESS reaches its optimal value (ESS = 1) when the approximation is exact (g9 = p). The code
used to run these experiments is based on an earlier release of (60) and is provided as a supplement.
All flow-based models were trained using the objective function defined in Eq. (I8), unless stated
otherwise.

4.1 Toy EXAMPLE: GAUSSIAN MIXTURE

We initially consider a probability distribution in two dimensions whose density is given by

-3 S0 (2L ). - o) ()

(20)

where Z = 27 Zszl exp (o? — aRV2sin(3E + T)) is the normalization, N € N is the number
of Gaussians, R € R is the radius of the circle around which they are located, and o € R breaks
the Z symmetry of this model. In this study, we use N = 8, R = 12, and o = 0 (o« = 0.05),
which results in a (broken) Zg symmetry. In Tab.|I} we report the ESS and KL divergence achieved
after convergence, and we visualize the corresponding target density in Fig.[3] Even though VMoNF
has the ability that different NFs learn different sectors of the target distribution, it collapses to the
three most likely modes in the lower left. This is not an issue of the architecture itself but the mode
collapsing behaviour of the reverse KL that is used in this work. Overall, SESaMo achieves the best
performance, outperforming the other baselines and yielding higher accuracy. For more details we
refer to App.[H|

4.2 PHYSICS EXAMPLE: LATTICE QUANTUM FIELD THEORY

Sampling using NFs has become ubiquitous across various fields of physics, yielding particularly
notable results for sampling lattice quantum chromodynamics (61)), scalar lattice quantum field
theories (14;162)), and condensed matter systems (38). We refer to (63) for a comprehensive overview.
In what follows, we primarily focus on two pertinent benchmarks: the complex ¢* theory and the
Hubbard model. We direct readers seeking further technical details regarding the physics to App.

In lattice quantum field theory, the probability distribution of a system is given by a Boltzmann-like
density p(x) = exp(—f[x])/Z, where f[z] is a functional known as the action, Z is an unknown
partition function, and & denotes the lattice fields. Note that, as discussed in Sec. @ for the following
experiments we optimize the symmetry breaking parameter b during training, which, as shown in
App. [H| perfectly agrees with the analytical prediction.
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Figure 3: Gaussian mixture target density (broken Zg symmetry). All flow-based models are trained
until convergence. From left to right we show: the ground truth, VMoNF, canonicalization, and
SESaMo (ours). We refer to App. |I|f0r more details on the experiments.

The complex ¢* scalar field theory in two dimensions The complex ¢* theory offers a simple yet
versatile framework for investigating interacting scalar fields. It plays a crucial role in understanding
spontaneous symmetry breaking (including the Higgs mechanism) and critical phenomena (64), while
providing a key testbed for the machine learning community to develop theoretical techniques and
numerical methods (6551665 67). We consider the action with quartic interactions,

fla] =

jev

2
—26 Y (jzigp) + (1 - 20)xF + Az + oRelz;] | (21)
a=1

where * = x; + ixo are the complex scalar fields, the subscript j labels the lattice sites in the
two-dimensional lattice volume V' = 8 x §, the x and X are the couplings of the theory, and /i
denotes the interactions between nearest neighbours. The term o Re(x) introduces an additional
component designed to break the U(1) symmetry of the theory, thereby increasing the complexity of
the learning taskE| We emphasize that while prior studies have often focused on real scalar fields,
physical fields are complex-valued. Therefore, we here compare SESaMo with canonicalization (58)),
naive RealNVP, and VMoNF when sampling € C™. The ESS and KL divergence obtained by each
model is detailed in Tab. for both broken (« # 0) and unbroken (o« = 0) U(1) symmetry. Across
both conditions, SESaMo achieved the highest ESS, indicating its superior ability to incorporate the
underlying physical symmetries into the flow model. Additional results, including the density plots,
are available in App.[H] Moreover, App.[H]also demonstrates how SESaMo outperforms the baselines
of RealNVP and canonicalization in the case of real scalar field theory.

The Hubbard model in two dimensions The Hubbard model is a cornerstone of condensed matter
physics, providing a fundamental description of interacting electrons on a lattice and playing a pivotal
role in studying phenomena such as magnetism, metal-insulator transitions, and high-temperature
superconductivity (69). For our numerical experiments, we adopt the setup as detailed in (38} [70),
with the action—featuring a broken Z, symmetry—given by

L

fla] = o5

Z m? —logdet M [x] — logdet M [—x],
jev

(22)

where the coupling U describes the interaction strength, M|-] is the fermion matrix describing the
interacting fermions (particles), « are auxiliary bosonic fields, and the subscript j labels the lattice
sites in the lattice volume V' = 2 x 1. We refer to Apps.[G} [H and (38) for more details about
the model. For learning the Boltzmann distribution, we again compare naive RealNVP, VMoNF,
canonicalization, and SESaMo. The resulting effective sample size (ESS) and KL divergence is
reported in Tab. [T} while Fig. @illustrates the probability density after training. As before, SESaMo
achieves the highest ESS and exhibits faster and more stable convergence compared to the other
baselines. For further results and density plots illustrating that SESaMo mitigates mode collapse (71)),
we refer the reader to App.[H] While Schuh et al. (38) first demonstrated the application of NFs to the

3This system can serve as a proxy to describe a quantum field theory with two flavors of differing masses (68).
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Figure 4: Density for the Hubbard model (broken Z, symmetry). All flow-based models are trained
until convergence. From left to right we show: the ground truth, VMoNF, canonicalization, and
SESaMo (ours). We refer to App. |I|f0r more details on the experiments.

Model Symmetry RealNVP VMoNF Canonicalization SESaMo (ours)
GMM exact Zg 0.60(11) 0.61(1) _ 0.91(8) 0.9986(2)
GMM broken Zg | 0.54(11)  0.83(11) 0.747(2) 0.9947(3)
Complex ¢* theory exact U(1) 0.19(3) 0222y - 0.9472(8)
Complex ¢* theory  broken U(1) | 0.17(3) 0.23(1) - 0.941(2)
Hubbard model broken Z, | 0.8830  0.37(12) 0.839(5) 0.996(1)
GMM exact Zg 0.72(9) 0.79(11) 0.013(2) 0.0008(1)
GMM broken Zg | 0.63(10)  1.02(14) 0.189(3) 0.0024(2)
Hubbard model broken Z4 0.34(3) 0.749)  0.112(7) 0.0013(8)

Table 1: Effective Sample Size (ESS, upper part, higher is better) and KL divergenceﬂ (lower part,
smaller is better) after convergence for different benchmarks. Best results (averages over ten different
models) are highlighted in bold. The canonicalization approach could not be applied to the complex
¢* theory case (see App. .

Hubbard model using canonicalization, SESaMo with the objective in Eq. (I8) crucially achieves a
higher ESS and perfectly learns the broken Z4 symmetry, thereby establishing a new state-of-the-art.

5 CONCLUSIONS

This paper introduces Symmetry-Enforcing Stochastic Modulation (SESaMo)—a novel and flexible
approach for constructing symmetry-enhanced NFs. Moreover, we propose an additional penalty term
to the reverse KL divergence to enforce numerical bijectivity. Our extensive numerical experiments
demonstrate that stochastic modulation outperforms naive NFs, mixture models and canonicalization
methods. We envision SESaMo as a powerful tool for incorporating inductive biases into generative
models when learning target probability densities with challenging symmetries—an essential feature
in fields like physics and chemistry. Future work will explore the broader capabilities of SESaMo
and assess its potential to achieve state-of-the-art performance not only against generative neural
samplers but also relative to established numerical techniques, such as Hamiltonian Monte Carlo.

REPRODUCIBILITY STATEMENT

We provide our source code under the MIT license at github.com/<author>/SESaMo. The
repository contains training scripts and instructions to reproduce all main experiments. We specify all
hyperparameters in Appendix[[|and provide default configuration files. Experiments were conducted

“Note that despite having a high ESS, RealNVP fails to learn the target density due to heavy mode dropping.
The reverse KL divergence can only be computed if the normalization of the probability distribution is
known.
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with PyTorch 2.7 on NVIDIA A100 GPUs, but the code runs on other CUDA-enabled GPUs as
well.
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Figure 5: Illustration of Symmetry-Enforcing Stochastic Modulation (SESaMo) (top row) and
canonicalization (bottom row), shown for an example target distribution and corresponding prior.

A LIMITATIONS

A primary limitation of SESaMo stems from the requirement that the symmetry sectors must be
known a priori to apply the stochastic modulation. Nevertheless, for applications in physics and
chemistry, this may not pose a significant problem. Indeed, the well-defined symmetries inherent
in many physical and chemical systems often allow for the prior determination of the symmetry
sectors, thereby enabling the application of stochastic modulation. Another limitation arises from the
penalty term in Eq. (IT)), which enforces bijectivity of the NF. If the target density assigns non-zero
probability at the border of the canonical cell, bijectivity can only be maintained approximately. As
a result, the ESS may decrease if only samples that strictly preserve bijectivity are accepted. For
example, in the Gaussian mixture model discussed in Sec. decreasing the radius R causes the
modes to move closer together, thereby increasing the density near the border of the canonical cell.
However, in many high-dimensional physics applications, the distance between modes typically
increases with the dimensionality of the system, thereby mitigating the impact of bijectivity violations.
Nonetheless, we emphasize that these limitations are not specific to SESaMo, but is shared with
canonicalization.

B INTUITIVE COMPARISON OF CANONICALIZATION AND STOCHASTIC
MODULATION

In the main text, two approaches for effectively incorporating symmetries into generative models
such as NFs were introduced: canonicalization in Sec.[2.3.2]and Symmetry-Enforcing Stochastic
Modulation (SESaMo) in Sec.[3.1} In this section, we summarize the differences between these
approaches on a more intuitive level. To help the reader familiarize with the underlying ideas, we
provide an illustration for both SESaMo (top row) and canonicalization (bottom row) in Fig. [5]
showing an example target distribution and corresponding prior. In Fig.[5] the goal is to sample from
a toy target density p that exhibits three modes, visually represented by the three red triangles on the
left of Fig.[5] Both approaches start from a Gaussian prior density ¢o, represented by a circle.

In the case of SESaMo (top row), a random sample z ~ qq is transformed by an NF, i.e., a parametric
map gg, such that the probability mass of the prior density is shifted and transformed to cover one of
the modes of the target density (depicted as the triangle with a solid black line), which lies within
the canonical cell 2 (dashed black line), while the other symmetric modes (triangles with a dotted
black line) remain uncovered. The transformed density is denoted as gg. At this stage, the model
has captured only one mode of the target density. Subsequently, SESaMo employs the stochastic
modulation St ,, to redistribute the probability mass towards the other modes of the target density,
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resulting in the final variational probability distribution gg. This distribution (visualized by the three
triangles) approximates the target density p.

The canonicalization approach, depicted in the bottom row of Fig.[3] also starts with a prior Gaussian
distribution go. Samples drawn from the prior distribution are transformed such that any sample
z ~ qo is mapped to the canonical cell €2 (dashed black line), resulting in the density g, (solid black
line), while the other symmetric modes (dotted black line) remain uncovered. Subsequently, an NF
ge learns a bijective map to transform these samples in the canonical space. Canonicalized samples,
denoted as ., are then drawn from the resulting distribution gg, which is illustrated in Fig. |5|as
a triangle with a solid black line. Given that the resulting parametrized distribution gg is in the
canonical space, it needs to be transformed back to the mput space. This is achieved by applying
the inverse of the initial transformation C’ , to the samples T, resulting in the final parametrized
probability distribution gg. The support of qg is visualized in the right-most plot of the bottom row
by three triangles that approximate the target density p.

C EQUIVARIANCE OF THE CANONICALIZATION METHOD

Let us consider a general symmetry transformation 7" under which some function £(+) : @ € R™ —
&(x) € Risinvariant, i.e., £(x) = £(Tx). A concrete example of such a function can be the action of

a physical system, such as Eqgs. and . Alearnable mapgp : z € Q2 — z € Qis equivariant
under T, and is thus denoted g, if it satisfies the following condition:
9o(Tz) =Tge(2). (23)

The canonicalization approach, introduced in Sec.[2.3.2] leverages a so-called canonical transforma-
tion Cr ., : R" — Q) to map samples from the input space into the canonical cell €2, thereby making
the map gg equivariant with respect to T". The equivariant map gg thus reads

go(z) = C1. go(Cr.22), (24)

where Cr . maps a sample z into the canonical cell 2, gg denotes a specific NF, and Cii maps the
canonicalized (and transformed) sample zZ = go(Cr . z) back to the original input space.

In this section, we restrict ourselves to involutory symmetry transformations, i.e., T2 = 1. Our
goal is thus to show that canonicalization fulfils the equivariant condition in Eq. (23). We define the
canonical transformation

z ifzeQ
= . 25
Cr. @ 2 {Tz, if Tz € Q, 25)
with the inverse transformation
1 x, ifzeQ
: 2
%VxH{M,EDeQ (26)

It is crucial to note that the inverse transformation C’ » still depends on the sample z to which the

canonical transformation Cr , was initially applied, i. e the information about the initial sample z is
implicitly stored in the transformation. One way to check if the map Eq. (24)) is really equivariant
under the transformation 7" is to sequentially apply the transformation 7" and then C'r, to the input z,

Tz, ifTz€Q _{T; if Tz € Q

TTz, ifTTzcQ |z, ifzeQ @7

CT,Tz Tz — {

Note that the involutory property 77" = 1 has been used hereE] It follows that the transformations
Cr 1. and Cr , are equivalent,
Crr:Tz=Cr.: 2, (28)

while the inverse transformation C', 1Tz reads

1 {a:, 1szeQ' 29)

T.Tz Tx, ifzeQ

SNote that while the subscript T', z means that the forward canonical transformation is applied to the input z,
the subscript 7', Tz means that the transformation is applied to the transformed input 7'z.
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Figure 6: Example of a penalty term with A(x) = |z| — 7. The penalty term is zero for x € [—7, 7]
and approaches A as © — Foco. The parameter B controls the scaling of the penalty gradient.

Additionally, one can compute TCilz,

Tz, ifzecQ Tz, ifzeQ
-1 ) _ )
TCrz @ {TTa:, ifTzeQ {a: if Tz € Q 30)
and verify that indeed
Crr.@=TCr . (31)

Leveraging the identities in Egs. and (B1), one can finally show that the overall map gg is
equivariant with respect to the transformation 7',

90(Tz) = Crip, 90(Cr,r= T2z) = TCr . go(Cr.. 2) = Tge(2), (32)
which proves the initial equivariance condition in Eq. (23).

An essential part of the canonicalization is that the map gg must not move the canonicalized sample
C'r .z outside the canonical cell, i.e., into R™ \ 2. This requirement arises because if the map g
maps a sample outside of the canonical cell 2—that is, if go(Cr . 2) ¢ 2— then it is possible for
two distinct inputs z; # zo with z1, zo € R™ to be mapped to the same output via canonicalization
and transformation: gg(z1) = ge(z2). This leads to a loss of injectivity and, consequently, the
transformation gy is no longer bijective. This poses a problem, as NFs require the map gg to be
bijective in order to perform density estimation via Eq. (Z)). As described in Sec.[2:3.3] this constraint
can be numerically enforced using a penalty term A : € € R™ — A(x) € R, which is zero for € Q
and greater than zero for ¢ (). Furthermore, it is essential that the gradient 0,A(ge(z)) points
towards the canonical cell 2. This ensures that if the NF pushes a sample Z = g¢(C'r,, 2) outside
of , the gradient of A acts to pull it back into the cell. Further details on the penalty term and the
enforcement of bijectivity are provided in Sec. [2.3.3]and further elaborated in App.

D PENALTY TERM FOR THE KL DIVERGENCE

In Eq. (TT) from Sec.[2.33] we introduced a penalty term that is necessary to numerically enforce the
bijectivity required for the NF to serve as a valid transport map between probability densities. In this
section, we further elaborate on this penalty term and provide an example in Fig.[6]

Crucially, the penalty term A(x) and the associated penalty function A(x) are necessary for ensuring
that the NF gg does not map samples outside of the canonical cell €. For convenience, we recall the
penalty term,

A(z) = A-o(B- Ax)) - O(A)) (33)
where the set { A, B} denotes all hyperparameters, while o(-) and O(-) refer to the sigmoid and the

Heaviside theta functions, respectively.
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Figure 7: Prior Gaussian distribution go with mean p = 2 and standard deviation ¢ = 1. The
transformation .S,,, implementing the Z, symmetry, randomly flips the sign of a sample z; ~ g
with a probability determined by the breaking parameter b. When b = In 0.5 (left), the resulting
distribution g5 (yellow) is symmetric around zero, with both modes carrying equal probability mass.
When b = In 0.25 (right), according to Eq. (38), the sign flip occurs with probability ps; = 0.25,
leading to asymmetric modes at ;. = +2 that carry 25% and 75% of the total probability mass,
respectively.

Fig. |§| shows an example for a penalty term for the canonical celﬂ Q={zxeR:|z| <7} The
function A(z) = || — 7 is chosen so that it becomes zero at the boundary |z| = 7 and positive
outside the canonical cell, i.e., for |z| > 7. Correspondingly, the penalty term A(z) is zero for all
x € [—m, 7] and smoothly approaches the value A as © — Foo. The parameter B controls the
scaling of the gradient of the penalty term.

E GENERALIZATION OF SESAMO

E.1  7Zj; STOCHASTIC MODULATION

The stochastic modulation for the Zy symmetry introduced in Sec. 3.1 can be generalized to a Z
symmetry. The transformation .S,, randomly rotates a two-dimensional vector & = (71, 72)7 € R?
about the origin by an angle of 27u/M, i.e.,

2mu s 2mu
cos =T¢  —sin =* .
Sy:x— <sin M, cos o ) T with u ~ Ugisc (0, M) | (34)
M M
where u ~ Ugisc (0, M) is a discrete uniform random variable taking values in the set {0,1,2,..., M —

1}. The modulation probability is therefore given by ps = 1/M. To ensure the bijectivity of the
transformation S,,, the penalty term A is added to the KL divergence in Eq. , where

Ale) = AD- ()] + Ay ()] (35)
and the bijectivity function is expressed as
T2
Ap(x) = —tan(n/M)x1 = .

=) D o an (e /)

The canonical cell defined by this penalty term corresponds to a sector of angular width 27 /M
centered around the x4 -axis, with boundaries at angles /M. The bijectivity function then measures
the distance of a sample to the border of the canonical cell. For more details on the penalty term, we
refer back to Sec.2.3.3]

(36)

E.2 BROKEN Zs STOCHASTIC MODULATION

In the main text, the exact Zo symmetry was considered to illustrate how canonicalization and
SESaMo transform the base density. A Zy symmetry is called exact when both modes (as shown

"Note that the example is in one-dimensional space R but can be straightforwardly generalized.
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b | psplu=0) psp(u=1)

0 0 1
In0.5 1/2 1/2
—00 1 0

Table 2: Probability pg ; of not flipping (u = 0) and flipping (u = 1) the sign of the input = for
examples of the breaking parameter b, including the even case and the edge cases.

in Fig.[T[]and Fig.[2)) carry equal probability mass. In the following, we extend this to a more general
case where the probability mass is unevenly distributed across the modes.

It is important to note that under these conditions, the canonicalization approach faces challenges.
Specifically, it is no longer sufficient to learn a single mode and evenly distribute the probability mass
among the others. In contrast, SESaMo, owing to its greater flexibility, can effectively handle this
asymmetry. To accommodate such cases, a learnable breaking parameter b € R~ is introduced to
account for the imbalance in probability mass between the modes. When b — 0, the sign of x is
always flipped, whereas in the limit b — —oo, the sign is never flipped. The transformation S,, for a
broken Zs symmetry therefore yields

Su:ac—>{ z ifu=0 with u ~ B(e) and beR™, (37)
—x ifu=1

where B(e®) denotes a Bernoulli distribution. Note that when b = In 0.5, the transformation reduces
to the symmetric Z, case, where each mode is selected with equal probability. Tab. 2] shows the
modulation probability pg ; for the even case and the edge cases of the breaking parameter b discussed
above. For an arbitrary breaking parameter b, the modulation probability pg s is given by

1—¢eb ifu=0
ps7b—{ ob ifu=1, (38)

where u ~ B(e?). The corresponding bijectivity constraint, used in the penalty term A introduced
in Eq. (TI)), reads

N
MNa)= - @, (39)
=1

where the sum is taken over of all components of the vector z € R™. The breaking parameter
b is used in the exponential to ensure numerically stable simulations, which becomes particularly
important in the limits pg; — 0 and pg;, — 1.

Fig. (left) shows a one-dimensional Gaussian distribution gq (blue), centered at x = 2 with standard
deviation o = 1. Applying the stochastic modulation .S,, corresponding to the Zo symmetry, with
the breaking parameter b = In 0.5, yields a new distribution ¢, (yellow) that is symmetric around
zero. In this case, the probability mass is equally distributed across both modes. When the breaking
parameter b # In 0.5, the stochastic modulation accounts for the imbalance between the modes,
resulting in unequal probability masses in the transformed density g,. Fig.[/|(right) shows an example
for b = In 0.25, where the mode at x < 0 carries less mass than the one at x > 0.

Numerically, a so-called breaking ratio can be estimated by counting the number of samples in each
mode of the distribution:

N, —N_

NN =1-—2eb, (40)
+ —

R=
where N and N_ denote the number of samples in the positive and negative modes of g, respectively.
As an example, the experiments for the Hubbard model presented in the main text feature a broken Z4
symmetry, composed of an exact Zs and a broken Z, symmetry. SESaMo is able to learn this broken
Z,4 symmetry by combining an exact and a broken Zs transformation, i.e., effectively modulating the
sign of one of two field components.
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F STOCHASTIC MODULATION FOR CONTINUOUS SYMMETRIES

In Sec. @ the stochastic modulation .S, was introduced for discrete symmetries, where S, has a
finite number of possible outcomes, each selected according to the modulation probability pg ;. This
approach is well-suited for discrete symmetries such as sign-flip or Zj; symmetries. However, it is
not applicable to continuous symmetries—such as rotational or translational symmetries—where the
transformation space is uncountably infinite. In these cases, a modified formulation of stochastic
modulation is required to account for the continuous nature of the symmetry group.

The continuous stochastic modulation proceeds as follows: first, draw a sample u from a distribution
¢u (1), which can be the uniform distribution 2/(0, 1). Then, apply a trainable map h;, : [0,1) — [0,1)
with parameters b to obtain hy (). This output parametrizes a continuous transformation Ry, (w)» such
as a rotation matrix where the rotation angle is determined by A, (u). The stochastic transformation is
thus given by

Sy:x — th(u)w. 41
The modulation probability, which enters the density transformation in Eq. (I6), follows from the
change-of-variable formula of the transformation 12y, (,,) and can be expressed as

OR; !
det b(u)

where ¢, (1) is the probability density of v and the determinant captures the local volume change
under the inverse transformation R,;l(u).

psp(u) = qu(u) - , (42)

F.1 BROKEN AND EXACT U(1) STOCHASTIC MODULATION

In Sec. [4.2} the complex ¢* scalar field theory is introduced, in which the action f[x] (as defined in
Eq. (21)) remains invariant under a U (1) transformation of the form

R, = ™%, (43)

where the angle ¢ lies in the interval [0, 1). If a term aRe[x] is added to the action f[x], this U(1)
symmetry is broken, meaning that the Boltzmann-like density p(x) = exp (— f[x]) /Z becomes
dependent on the angle (. This angular dependence can be captured within the stochastic modulation
framework by introducing a trainable map ¢ = hy,(u). In particular, a spline flow (72) is used for this
purpose. The modulation probability in Eq. (42)) then simplifies to

1 oh -t
p&b(u)%‘det( (,;’5“)>’ , (44)

where the chain rule is used to compute OR; ) /Ou in Eq. , as well as the fact that

hy (u

OR; ! 1
s(w) | _
det < oy >| =5 (45)

This is given because the rotation R, = e2™¢ in Eq. corresponds to a full angular cycle over the
interval [0, 1), scaling the Jacobian by the full rotation angle 27r. Meanwhile, we used ¢,, = 1 since u
is sampled from a uniform distribution on [0, 1), which has a constant density of one.

The sample o must be completely real before applying the stochastic modulation. This means that
a prior sample z = z1 + 129, Where 21, 29 € RY must satisfy zo = 0, i.e., it lies on the real axis,
and is transformed by an NF gy : R — R¥. After applying the stochastic modulation Ry, (u), the
sample @ becomes complex-valued, given by

_ 627rihb(u)

T go(z1) . (46)

Note that by omitting the spline flow &, and using A = 1, an exact U (1) symmetry can be enforced
instead of a broken one. Furthermore, this approach can similarly be used to enforce a broken or
exact rotational SO(2) symmetry.
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G TECHNICAL DETAILS OF THE PHYSICAL THEORIES

In this section, we discuss some fundamental aspects of the complex ¢* theory and the Hubbard
model that are relevant to our study.

G.1 THE COMPLEX ¢* SCALAR FIELD THEORY IN TWO DIMENSIONS

In recent years, the ¢* theory has become a popular benchmark for generative models in the machine
learning community (655 665 67). Originally developed as a physical model, it describes interacting
particles with integer spin. On a finite lattice with points j € V/, the theory is specified by the action

2 2 ( —v)? 2

ol = a Piran —Pj)  MB o G0 4

flel = Z D) Z 02 + 5 ¥ + bl 47)
JjeV a=1

where ; denotes the field value at site j. The first term inside the brackets corresponds to the kinetic

term, the second is the mass term governed by the bare mass my, and the quartic * term describes
the interaction, weighted by the bare coupling strength go. Using the more standard redefinitions
(similarly adopted by Nicoli et al. (14))

1—-2X 6
p=(20)"x, (amp)* = === — 4, =3, @
we rewrite the action in the form presented in the main text:
2
flx] = Z —2K Z(:cjwjﬂ;) +(1- 2/\)903 + /\a:? + aRe[z;]| . (49)

jev n=1
Here, A is known as the coupling parameter, while « is the hopping parameter. Additionally, we
added a term aRe[x;] to progressively break the U (1) symmetry of the ¢* theory as the parameter
increases. Such a symmetry-breaking term also arises in quantum field theories with non-degenerate
particle flavor masses, providing a physically motivated example.

G.2 THE HUBBARD MODEL IN TWO DIMENSIONS

The Hubbard model is a fundamental model in condensed matter physics that describes how electrons
interact on a fixed lattice of ions (69). By neglecting lattice vibrations and other atomic excitations, it
captures the essential physics of electrons hopping between valence orbitals and interacting through
their electric charge. This is further illustrated in Fig. [§] We describe the system in the so-called spin
basis, where the degrees of freedom correspond to spin-up and spin-down electrons. Other basis
choices exist but are not considered here.

The action of the system is given by (70)

flx] = % w?k —log det M [x] — log det M [—x], (50)
jkev

where U denotes the on-site Coulomb-like interaction strength, & are auxiliary bosonic fields, and the
subscripts 7, k label the spatial and temporal lattice sites in the lattice volume V/, respectively. Since
we do not consider a temporal extent throughout this manuscript, i.e. Ny = 1, we have dropped the
index k in Sec. for brevity. Lastly, the fermion matrix M is defined as

M [z] 040 gy, = 857 k057 1 — [€"] 7 we®* Br S oy - (1)
Here, h = Rd(;: jy is the hopping matrix, where & is the hopping amplitude and d;: ;) enforces
hopping only between nearest neighbours j’, j on the lattice, and B; is a factor implementing
periodic (anti-periodic) boundary conditions in the temporal direction for N; = 1 (N; > 1). The
action in Eq. @]) consists of two main contributions: the Gaussian term, which encodes the on-site

interaction, and the fermionic term, represented by the product of fermion matrices, which captures
the electron hopping dynamics across the lattice.

The Boltzmann-like density of the Hubbard model features widely separated modes, which can lead
to ergodicity problems and biased estimates of observables when using Monte Carlo-based sampling
methods such as Hybrid Monte Carlo (HMC) (73). NFs have demonstrated the ability to overcome
these challenges, particularly when they incorporate prior knowledge of the system’s symmetries (38)).
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Figure 8: Illustration of a lattice described by the Hubbard model. Blue and red circles represent
spin-up and spin-down electrons, respectively. The hopping term < allows electrons to move between
neighbouring lattice sites, while the on-site Coulomb interaction U penalizes the presence of two
electrons with opposite spins at the same site.

1.001 I - v 1.00 1 f
0.751 0.75 1
7 7
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0.25 1 0.25 1
SESaMo (ours) RealNVP SESaMo (ours) RealNVP
0,004 Canonicalization 0.001 Canonicalization
0 1 2 3 4 5 0 i 2 3 4 5
GPU minutes GPU minutes
(a) Gaussian mixture (b) Hubbard model

Figure 9: ESS as a function of the GPU training time (minutes) for the Gaussian mixture (left) and
the Hubbard model (right). Solid lines represent the mean and shaded areas indicate the standard
deviation across ten models trained with different seeds. The results show that SESaMo achieves a
higher ESS compared to both canonicalization and RealNVP.

H ADDITIONAL NUMERICAL EXPERIMENTS

In this section, we present additional experiments for the Gaussian mixture model, the Hubbard
model, and the ¢* theory.

H.1 GAUSSIAN MIXTURE

The Gaussian mixture model introduced in Sec. [d]exhibits a multi-modal density, where locating all
modes is poses a significant challenge for RealNVP. This issue is mitigated by applying canonical-
ization and further improved with SESaMo, which achieves higher accuracy. Fig.[9] (left) shows the
ESS as a function of GPU training time in minutes. The solid lines and shaded regions indicate the
mean and standard deviation over ten models trained with different seeds. Both canonicalization and
SESaMo lead to faster convergence compared to RealNVP, which suffers from strong fluctuations
due to frequent mode collapse.

H.2 THE HUBBARD MODEL IN TWO DIMENSIONS

In Fig. 0] (right), the ESS is shown as a function of the GPU training time for the Hubbard model.
The solid lines and shaded regions indicate the mean and standard deviation over ten models trained
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Figure 10: Left: ESS for different values of the inverse temperature 3. The blue and yellow
markers correspond to canonicalization and SESaMo, respectively. Means and standard deviations
are computed by averaging over three independently trained models (for each method) using three
different random seeds. Right: Breaking ratio R as a function of /3. The analytical curve (yellow)
is obtained by integrating the analytically derived probability weight (see Eq. (79) in Ref. (73)).
The numerical estimate from Eq. (40), computed using a trained SESaMo model, agrees with the
analytical result within error bars. The uncertainties—often too small to be visible at the scale of the
plot—are estimated by averaging over three independently trained models with different seeds.

with different seeds. SESaMo not only achieves higher accuracy than both canonicalization and
RealNVP, but also converges faster than ReaNVP. The canonicalization method fails to capture the
unequal probability masses across the modes, as illustrated in Fig.[d] while ReaINVP suffers from
mode-dropping. In contrast, SESaMo successfully identifies all four modes and accurately predicts
their relative probabilities.

The effect of the broken Zs symmetry becomes more pronounced as the inverse temperature 3
increases. To investigate this behaviour, we train SESaMo and canonicalization models for values of
B € [1,4], as shown in Fig. (left). SESaMo consistently achieves high accuracy across all values
of /3, while the canonicalization method exhibits significantly lower accuracy. This demonstrates that
SESaMo successfully learns the broken Zy symmetry.

To further verify whether the probability is predicted correctly, we compare against the ground
truth. In Fig.|10](right), the breaking ration R from Eq. is shown, where /N1 can be computed
analytically by integrating the probability distribution p(x) for a volume V' = 2 x 1, ie., x =
(w1, 2) € R2. The probability distributiorﬂ is known up to a constant factor and given by

p(x) < h()h(—w)e” 77, (52)

where

h(x) = cosh (xl_;xz) + cosh (xl;xz> cosh (&) . (53)

The theoretical prediction of the breaking ratio R matches perfectly with the expression R = 1 — 2¢®
obtained from the learned breaking parameter b.

H.3 THE REAL ¢* SCALAR FIELD THEORY IN TWO DIMENSIONS
In Sec. and we introduced the complex ¢* scalar field theory in two dimensions. In its
general form, this theory consists of complex-valued fields.

Most recent works in the context of generative models (see, e.g., (13;114)), however, have focused on
real scalar fields. Under this assumption, the ¢* theory belongs to the same universality class as the

8Note that this distribution is exact for V' = 2 x 1. For larger volumes, it becomes exact only in the
strong-coupling limit U — oo while keeping /3 fixed.
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Figure 11: Histograms of the magnetization for real ¢* scalar field theory for a broken Z, symmetry

(left, « = 0.001) and an exact Zy symmetry (right, o = 0). Samples for the histograms are drawn
from two SESaMo models trained for the corresponding values of the breaking factor a.
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Figure 12: Left: ESS for different values of the breaking factor . The blue and yellow markers
refer to canonicalization and SESaMo, respectively. Mean and standard deviations are computed by
averaging three models (for both approaches) trained with three different seeds. Right: Breaking ratio
R for different values «.. The analytical (yellow) curve is obtained by plotting Eq. (37) as a function
of a. The numerical estimate in Eq. , obtained with a trained SESaMo model, is compatible with
the analytical result within errors. The uncertainties (sometimes too small to be visible in the scale of
the plot) are estimated by averaging three models trained with three different seeds.

Ising model and serves as an instructive toy model for exploring spontaneous symmetry breaking and
the Higgs mechanism (64). Assuming real scalar fields, the action in Eq. (ZI) simplifies to

2
flel = | =26 > (zjmjen) + (1 - 2023 + Mz} + oz | (54)
jev a=1

with € R™. This form of the action corresponds to the one studied in Ref. (14} [71)), up to the
addition of a symmetry-breaking factor ax. The coefficient o introduces an exponential suppression
of the probability with respect to the field x, thereby explicitly breaking the Z, symmetry when
a > 0. In this context, the symmetry-breaking parameter b introduced in App.[E]can be learned such
that SESaMo redistributes the probability mass of the learned probability in accordance with the
asymmetry of the target distribution. We train SESaMo using the REINFORCE estimator of the KL
divergence discussed in Sec. Additional hyperparameters and experimental details are provided
in App. [[ Unless stated otherwise, all experiments in this setting are conducted on lattices of size
16 x 8, with action parameters fixed to x = 0.3 and A = 0.022.

Since the theory now consists of scalar real fields in two dimensions, it enters the so-called broken
phase for couplings {x, A} = {> 0.3,0.022}. This phase is characterized by a bimodal probability
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density with the centers of the modes located at the vacuum expectation values (VEVs) (71) of the
theory. When o = 0, both modes are identical, and the resulting distribution is symmetric. In this
case, both SESaMo and canonicalization are able to accurately learn the target distribution, achieving
high ESS without mode collapse (71). In the following, we compare the performance of SESaMo
and canonicalization in the case o > 0, where the Z, symmetry of the double-well potential is
explicitly broken. To study this scenario, we trained different models using both approaches for
increasing values of «.. The results are shown in Fig. [I2] (left), which displays the ESS obtained
from models trained for a ¢*-theory defined on a lattice of size V' = 16 x 8 for various values of a.
Yellow and blue markers indicate results from SESaMo and canonicalization, respectively. Error bars
represent standard deviations computed from three independently trained models with different seeds.
Crucially, while the performance of SESaMo and canonicalization is comparable at a = 0, the ESS
of canonicalization drops to zero as « increases, and the potential becomes increasingly asymmetric.
In contrast, SESaMo maintains a stable ESS across the entire range of «, thanks to the stochastic
modulation enabled by the learned symmetry-breaking parameter.

Interestingly, this analysis can be made fully quantitative. The distribution of the magnetization for
the ¢* theory (see Fig. yields a Gaussian distribution with two modes located at the VEVs= =+,
and is modulated by the symmetry-breaking factor a,

(z

~ _ (=2 _ (et —aVazx
flx)=Ale 22 +e 22 | -e , (55)

where V' = 16 x 8 is the volume of the lattice. The parameters {A, o, ©} can be inferred from a
numerical fit of the histogram at o = 0 (see Fig.[IIb), yielding

A =0.499(2), = 2.126(3), o = 0.629(3).

These parameters fully characterize the distribution defined in in Eq. (54). To quantify the effect of
symmetry breaking, we define N («) and N_(«) as the integrated probability mass over the right
and left modes, respectively:

0 )
N_(a)= /_ dx fo(z) and Ny(a) = /0 dx fo(z). (56)

We then define the breaking ratio R as the relative imbalance between the two modes N and N_.
Using standard Gaussian integrals, this ratio can be computed analytically, resulting in

_Ni@)=N_(a) e Ver[lser(r ()] + eV [1 + erf (74 ()]
Rfa) = Ny(a)+ N_(a) 1= 2 cosh(Vapu) 57)
where 74 («) are defined by
4 1
mi(a) = 7 (Va + P) . (58)

The analytical result from Eq. (57) can be compared to the numerical estimate from Eq. (0). Fig.[I0|
(right) shows both the analytical prediction and the numerical estimate for the ratio R(«), for breaking
factors « € [0, 0.01]. The theoretical value in Eq. and the numerical estimate in Eq. , for
different «, are represented with a solid (black) line and (blue) markers, respectively. For o = 0, the
estimated ration from the model is zero, suggesting that the fact the Z, symmetry is not broken has
been correctly learned by SESaMo. By increasing « the ratio R converges to -1, which corresponds
to a fully broken Z, symmetry i.e., that is, the probability for = > 0 is zero. Crucially, SESaMo is
able to always learn the correct breaking parameter, hence estimating the correct breaking ratio R
for a broken Zy-symmetric action.

With this simple example, we conclude that SESaMo is capable of incorporating symmetries inside
a flow-based generative model even when those are broken. One could foresee the power of this
approach in incorporating other types of broken symmetries, such as the chiral symmetry breaking in
quantum chromodynamics (QCD) (74). The QCD Lagrangian with two flavors, i.e., up and down
quarks, has a broken chiral symmetry due to the different masses of the up and down quarks. Results
for a toy model of such scenario were presented in the main text (see Tab.[T)) and we further elaborate
on them in App. below.
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Figure 13: Continuous Symmetries: Density plot for real and imaginary components of the complex-
valued fields of complex ¢* scalar field theory, as introduced in Sec. 4, and sampled from trained
generative models, i.e., ReaINVP and SESaMo. The models have been trained to sample from the
target density in Eq. for lattices of volume V' = 8 x 8 and coupling values {x, A} = {0.3, 0.022}.
The models are trained until convergence and the density plots are made by drawing 5 M samples.
The left and right plots refer to continuos U(1) symmetries in the unbroken (o = 0) and broken
(o = 0.005) case, respectively. Note that canonicalization is not shown as that approach is not
capable of handling continuos symmetries.
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Figure 14: ESS as a function of the GPU training time (minutes) for the ¢* theory experiments
(see Fig.[[3). The solid line and the shadows represent the mean and the standard deviations of ten
models trained with different seeds. The curve shows the substantially faster convergence of SESaMo
compared to naive ReaINVP. Again, canonicalization is not shown as it cannot straightforwardly
incorporate continuos symmetries into the model.

H.4 THE COMPLEX ¢* SCALAR THEORY IN TWO DIMENSIONS

In light of these considerations, in the main text (see Tab.[I)) we tested how SESaMo is capable of deal-
ing with continuous (broken and unbroken) symmetries, and we showed a remarkable outperformance
compared to a naive ReaINVP model. Furthermore, in App. [ we discussed the details of SESaMo
when dealing with continuos symmetries. In this section we complement the results from the main
text with some further insights. First, Fig.[T3|shows the density of the real and imaginary components
of the complex fields € C summed across the lattice volume, i.e., Re[Z] = ), ., Re[&;] and
Im[z] = >, Im[Z,]. Fig. shows a ring-shaped potential projected on the complex plane
stemming from the spontaneous symmetry breaking of an exact U (1) symmetry in the ¢* theory,
which leads to the emergence of Goldstone Bosons (see (75) and Fig. 1 therein). When the U (1)
symmetry itself is broken (o = 0.005), the probability density around the ring is no more evenly
distributed, as it is visualized in the density learned by SESaMo in Fig. [I3b] The reader should
note that crucially, in the setting of continuos symmetries, only naive ReaNVP and SESaMo can be
applied. Indeed, the canonicalization approach could not straightforwardly be applied.
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Experiment | No Ny Ny Activation Np LR Steps  p Var
GMM 6 4 40 ReLU(TantP) 8k 5x107* 10k 0 12d9
Complex ¢* 6 4 100 ReLU 8k 5x107* 400k 0 1
Hubbard 6 4 40 ReLU (Tanh®) 8k 5x107* 6k 0 18

Table 3: Hyperparameters for the Gaussian mixture model (GMM), the complex ¢* theory and the
Hubbard model. Shown are the number of couplings N¢, number of layers [N,, number of neurons
per layer Ny, activation function, batch size N, learning rate (LR), training steps / epochs, and the
mean £ and variance of the prior Gaussian distribution.

Fig.[13]demonstrates the greater capability of SESaMo to incorporate exact and broken continuos
symmetries to enhance the model training and convergence. Moreover, this is further confirmed by the
speed of convergence to a relatively high ESS as a function of training time, as shown in Fig.[I4] After
only seven minutes of training (one a single A100 NVIDIA GPU), the ESS achieved by SESaMo
already surpasses 60% for both o = 0 and o = 0.005. In contrast, ReaINVP, lacking the inductive
bias induced by stochastic modulation, struggles to learn meaningful of the target density. The low
ESS reflects this failure in learning the target probability density, as also shown in the RealNVP plots

from Fig.

I DETAILS OF NUMERICAL EXPERIMENTS

In this section, we present details of the numerical simulations and the hyperparameters used in the
main paper. All NFs are trained on a single 2100 NVIDIA GPU, using floating precision. For
the Hubbard model, however, double precision is used to ensure numerically stable estimation
of the fermion determinant. The Adam optimizer is employed with a learning rate of 5 x 1074,
Additionally, a learning rate scheduler is used: if the standard deviation of the loss has not changed
over the last 2000 epochs, the learning rate is multiplied by a factor of 0.92. The learning rate is
bounded from below at 1 x 1075, As discussed in Sec. the gradients are estimated with the
REINFORCE algorithm for all experiments with SESaMo. For the VMoNF method, the number
of NFs is chosen accordingly to the number of symmetry sectors, i.e. four in the Hubbard case and
eight for the Gaussian Mixture Model. For the ¢* theory we chose eight NFs as there are no clear
symmetry sectors for the U(1) symmetry. The remaining experiment-specific hyperparameters are
summarized in Tab. 3l

LARGE LANGUAGE MODEL USAGE

This work was partly supported by large language models. The usage contains polishing previously
written text, discovering related work and assisting coding.

“For VMOoNF it was used Tanh, due to numerical instabilities.
19T his variance was only used for the ReaNVP and VMoNF models to alleviate mode-dropping.
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