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Abstract

Recurrent neural networks (RNN) unfolded in time are in theory able to map any open
dynamical system. Still, they are often blamed to be unable to identify long-term depen-
dencies in the data. Especially when they are trained with backpropagation it is claimed
that RNN unfolded in time fail to learn inter-temporal influences more than ten time steps
apart. This paper refutes this often cited statement by giving counter-examples. We show
that basic time-delay RNN unfolded in time and formulated asstate space models are in-
deed capable of learning time lags of at least hundred time steps. We point out that they
even possess a self-regularisation characteristic, whichadapts the internal error backflow,
and analyse their optimal weight initialisation. In addition, we introduce the idea of in-
flation for modelling of long and short-term memory and demonstrate that this technique
further improves the performance of RNN.

Key words: Backpropagation, Inflation, Long Term Dependencies, Memory, Recurrent
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1 Introduction

Recurrent neural networks (RNN) allow the identification ofdynamical systems
in the form of high dimensional, nonlinear state space models [3,9]. They offer
an explicit modelling of time and memory and are in principleable to model any
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open dynamical system [14]. Basic concepts like unfolding in time of RNN and
related modifications of the backpropagation algorithm canalready be found in
[13]. Further developments are published in the books of Haykin [3,4], Medsker
and Jain [10], Kolen and Kremer [9], and Soofi and Cao [15]. Different types of
learning algorithms are summarised by Pearlmutter [12].

Nevertheless, over the last20 years most time series problems have been approached
with feedforward neural networks. The appeal of modelling time and memory in
recurrent neural networks is opposed to the apparently better numerical tractability
of a pattern-recognition approach as represented by feedforward neural networks.
Besides, it has been claimed by several authors that RNN are unable to identify
and learn long-term dependencies of more than ten time steps[1,5,6]. To overcome
the stated dilemma new forms of recurrent networks, e.g., long short-term mem-
ory (LSTM) networks [7], were developed. Still, these networks do not offer the
desirable correspondence, i.e., the mutual transferability, between equations and
architectures as RNN unfolded in time do [18].

However, the analysis in the mentioned papers [1,5,6] were all based on basic
RNN architectures simulating closed dynamical systems, which do not consider
any external inputs. Even more important, they were made from a static perspec-
tive, which means that for the presented calculations only RNN with fixed weights
were assumed whereas the effect of learning and weight adaption was not taken
into account. In this paper we therefore refute the statement that RNN unfolded in
time and trained with a shared weight extension of the backpropagation algorithm
[13] are in general unable to learn long-term dependencies.We show that basic
time-delay RNN and especially normalised recurrent neuralnetworks unfolded in
time and formulated as state space models have no difficulties with an identifica-
tion and learning of past-time information within the data,which is more than ten
time steps apart. In addition we point out that by using shared weights training of
these networks is not a major problem. It even helps to overcome the problem of
a vanishing gradient [1,5,6] as the networks possess a self-regularisation charac-
teristic, which adapts the internal error backflow. We further analyse the effects of
weight initialisation on the error flow. Here, we show that a vanishing or respec-
tively exploding gradient [1,5,6] can be avoided by initialising the weights within
an optimal interval.

Furthermore we extend the discussion about long-term dependencies to the mod-
elling of long- and short-term memory as it is required for most real-world applica-
tions. For this, we analyse the internal network structure and show that an inflation,
i.e., a combination of increasing the internal state dimension and the sparsity level,
simplifies the mapping of different time scales and inter-temporal dependencies.

The paper starts with a recapitulation of the basic RNN unfolded in time (sec. 2). In
section 3 we further enhance the basic RNN architecture so that it only possesses
one single (high-dimensional) transition matrix. This so called normalised recurrent
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neural network (NRNN) increases the stability of the learning process. In section
4 we then demonstrate that both NRNN and RNN successfully learn long-term
dependencies. By analysing the backpropagated error flow wefurther show that the
problem of a vanishing gradient is not a major question for both networks. In this
context, we also investigate the influence of the weight initialisation. We extend
the analysis about learning long-term dependencies to a more general discussion
on modelling long and short-term memory (sec. 5). Finally, we demonstrate that
inflated networks show a better performance than the smallerand fully connected
ones. A conclusion and a brief outlook on future research is given in section 6.

2 Recurrent Neural Networks Unfolded in Time

Let I, J , andN ∈ N denote respectively the number of input, hidden and output
neurons. For discrete time the basic time-delay recurrent neural network (RNN)
consists of a state transition and an output equation [3,19]:

st+1 = tanh(Ast + Bxt + θ) state transition

yt = Cst output equation
(1)

Here, the nonlinear state transition equationst+1 ∈ R
J (t = 1, . . . , T whereT ∈ N

is the number of available patterns) is a nonlinear combination of the previous state
st ∈ R

J and external influencesxt ∈ R
I using weight matricesA ∈ R

J×J and
B ∈ R

J×I , and a biasθ ∈ R
J , which handles offsets in the input variablesxt ∈ R

I .
Note, that at this the hyperbolic tangent is applied component-wise. The network
outputyt ∈ R

N is computed from the present statest ∈ R
J employing matrix

C ∈ R
N×J . It is therefore a nonlinear composition applying the transformationsA,

B, andC. It has been shown that RNN, like feedforward neural networks [8], are
universal approximators in the sense that they can approximate any open dynamical
system of the form [3,19]

sd
t+1 = g(sd

t , xt) state transition

yd
t = h(sd

t ) output equation
(2)

whereg : R
J̃ × R

I → R
J̃ , with J̃ ∈ N, is a measurable andh : R

J̃ → R
N a

continuous function,xt ∈ R
I represents the external inputs,sd

t ∈ R
J̃ the inner

states andyd
t ∈ R

N the output of the system [14]. Note here, that the state spaceof
the RNNst ∈ R

J (eq. 1) does not in general have the same dimension as the one
of the original open dynamical systemsd

t ∈ R
J̃ (eq. 2), i.e., in most cases we have

J 6= J̃ . It basically depends on the system’s complexity and the desired accuracy.
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Training the RNN of equation (1) is equivalent to solving a parameter optimisation
problem, i.e., minimising the error between the network output yt ∈ R

N and the
observed datayd

t ∈ R
N with respect to an arbitrary error measure, e.g.:

T
∑

t=1

∥

∥

∥yt − yd
t

∥

∥

∥

2 → min
A,B,C,θ

(3)

It can be solved by finite unfolding in time using shared weight matricesA, B, and
C [3,13]. Shared weights share the same memory for storing their weights, i.e., the
weight values are the same at each time step of the unfoldingτ ∈ {1, . . . , T} and
for every patternt [3,13]. This guarantees that we have the same dynamics in every
time step. By using unfolding in time the RNN can be trained with a shared weights
extension [13] of the standard backpropagation algorithm [16]. A major advantage
of RNN written in form of a state space model (eq. 1) is the explicit correspondence
between equations and architecture. It is easy to see that byusing unfolding in time
the set of equations (1) can be directly transferred into a spatial neural network
architecture (fig. 1) [3,13]. Here, the dotted connections indicate that the network
can be (finitely) further unfolded into past and future.
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Fig. 1. RNN unfolded in time using overshooting [19].

We extend the autonomous part of the RNN into the future by so-called overshoot-
ing [19], i.e., we iterate matrices A and C in future direction (fig. 1). In doing so we
get a sequence of forecasts as outputs (fig. 1). More important, overshooting forces
the learning to focus on modelling the autonomous dynamics of the network, i.e.,
it supports the extraction of useful information from inputvectors, which are more
distant to the output. Consequently overshooting is a very simple remedy to the
problem that the backpropagation algorithm usually tries to model the relationship
between an output and its most recent inputs as the fastest adaptation takes place in
the shortest path [5]. Therefore also the learning of false causalities is decreased.
Hence, overshooting regularises the learning and thus improves the model’s perfor-
mance [19]. Note, that due to shared weights no additional parameters are used.
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3 Normalised Recurrent Neural Networks

As a preparation for the development of normalised recurrent neural networks
(NRNN) [18] we first separate the state equation of the basic time-delay RNN
(eq. 1) into a past and a future part. In this frameworkst is always regarded as
the present time state. That means that for this patternt all statessτ with τ ≤ t

belong to the past part and those withτ > t to the future part. The parameterτ is
thereby always bounded by the length of the unfolding in timem and the length
of the overshootingn [19], such that we haveτ ∈ {t − m, . . . , t + n} for all
t ∈ {m, . . . , T − n}. The present time (τ = t) is included in the past part, as these
state transitions share the same characteristics. We get the following representation
of the optimisation problem:

τ ≤ t : sτ+1 = tanh(Asτ + Bxτ + θ)

τ > t : sτ+1 = tanh(Asτ + θ)

yτ = Csτ

T−n
∑

t=m

t+n
∑

τ=t−m

‖yτ − yd
τ‖2 → min

A,B,C,θ

(4)

In this model, past and future iterations are consistent under the assumption of a
constant future environment. Still, the difficulty with this kind of RNN is the train-
ing with backpropagation, because a sequence of different connectors has to be
balanced, i.e., we do not have the same learning behaviour for the weight matrices
in the different time steps. In our experiments we found thatthis problem becomes
especially important for the training of large RNN. Even thetraining itself is unsta-
ble due to the concatenated matricesA, B, andC. As the training changes weights
in all of these matrices, different effects or tendencies, even opposing ones, may
contradict or superpose. This implies that there may not result a clear learning di-
rection from a certain backpropagated error [18].

NRNN (eq. 5) avoid the stability and learning problems resulting from the concate-
nation of the three matricesA, B, andC because they incorporate besides the biasθ

only one connector type, a single transition matrixA ∈ R
J̄ , with J̄ ∈ N. Generally

the reduction to one single matrix implies̄J > J , i.e., NRNN operate on a larger
state space. Besides one can show, that the universal approximation capability also
holds for these networks [14].
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τ ≤ t : sτ = tanh(Asτ−1 +
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τ > t : sτ = tanh(Asτ−1 + θ)

yτ = [IN 0 0]sτ

T−n
∑

t=m

t+n
∑

τ=t−m

‖yτ − yd
τ‖2 → min

A,θ

(5)

The corresponding architecture is depicted in figure 2. Again, the dotted connec-
tions indicate that the network can be (finitely) further unfolded into past and future.
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Fig. 2. Normalised recurrent neural network [18].

The matrices between input and hidden as well as hidden and output layer are fixed
and therefore not changed during the training process. Consequently matrixA does
not only code the autonomous and the externally driven partsof the dynamics,
but also the impact of the external inputsxτ on the internal state space and the
computation of the network outputyτ . This implies that all free parameters, as they
are combined in one matrix, are now treated the same way by thebackpropagation
algorithm.

At first view it seems that in the network architecture (fig. 2)the external input
xτ ∈ R

I is directly connected to the corresponding outputyτ ∈ R
N . This is not

the case, because we enlarge the dimension of the internal statesτ , such that the
inputxτ has no direct influence on the outputyτ . Assuming that we have a number
of Q computational hidden neurons the dimension of the internalstate would be
dim(s) = J̄ = I + Q + N . With the non-trained matrix[IN 0 0] we connect only
the firstN neurons of the internal statesτ to the output layeryτ , whereIN ∈ R

N×N
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is a fixed identity matrix. Consequently, the NRNN is forced to generate itsN
outputs at the firstN components of the state vectorsτ . The last state neurons are
used for the processing of the external inputsxτ . The fixed connector[0 0 II ]

T ,
whereII ∈ R

I×I , between the externalsxτ and the internal statesτ is designed
such that the inputxτ is connected to the lastI state neurons. To further support
the internal processing and to increase the network’s computational power, we add
a number ofQ hidden neurons between the firstN and the lastI state neurons.
This composition ensures that the input and output processing of the network is
separated but implies that NRNN can only be designed as largenetworks [18].
Note, that out of construction the output of the NRNN is bounded to(−1, 1) by the
hyperbolic tangent activation function. Still, this is nota real constraint as we can
simply scale the data appropriately before applying it to the network.

Our experiments indicate that, in comparison to RNN, NRNN show a more stable
training process, even if the dimension of the internal state is very large.

4 Learning Long-Term Dependencies

We use a very simple but well-known problem to demonstrate the ability of learn-
ing long-term dependencies of RNN (sec. 2) and NRNN (sec. 3):the prediction
of periodic indicators in a time series. We therefore created time series of10000
random values, which are uniformly distributed on an interval [−r, r] with r ∈ R

and0 ≤ r < 1. Everyd-th value, withd ∈ N is 1. Per construction these time
indicators are the only predictable values for the network.Consequently, for a suc-
cessful solution to the problem the network has to remember the occurrence of the
last1, d-time steps before in the time series data. In other words, ithas to be able
to learn long-term dependencies. The higher thed the longer memory is necessary.
We used the first5000 data points for training and left the other half for testing.

Similar problems have already been studied in [5] and [7]. Inboth papers the perfor-
mance of the thereby considered recurrent networks trainedwith backpropagation
through time [17] has been tested to be unsatisfactory and the authors concluded
that RNN are not suited for the learning of long-term dependencies.

4.1 Model Description

We applied an RNN (sec. 2) and an NRNN (sec. 3) with one input neuron per time
step in the past and one output neuron per time step in the future. In contrast to the
descriptions in sections 2 and 3 we did not implement any outputs in the past part
of the networks, as those would not help to solve the problem.This implies that
the gradient information of the error function has to be propagated back from the
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future outputs to all past time steps. It also avoids a superposition of the long-term
gradient information with a local error flow in the past. Therefore the omission of
outputs in the past also eases the analysis of the error backflow.

The networks were both unfolded a hundred time steps into thepast. Whereas the
NRNN was unfolded twenty time steps into future direction, we did not implement
any overshooting for the RNN. In doing so we kept the RNN as simple as possi-
ble to show that even such a basic RNN is able to learn long-term dependencies.
The total unfolding therefore amounts to101 time steps for the RNN and to120
steps for the NRNN. The dimension of the internal state matrix A is always set to
100, which is equivalent to the amount of past unfolding. We initialised the weights
randomly with a uniform distribution on[−0.2, 0.2]. In all hidden units we imple-
mented the hyperbolic tangent as activation function. We further used the quadratic
error function

E :=
T−n
∑

t=m

t+n
∑

τ=t−m

‖yτ − yd
τ‖2 (6)

to minimise the difference between network output and target (eqs. 4 and 5). The
networks were trained with a shared weight extension of the backpropagation al-
gorithm [13] in combination with pattern-by-pattern learning, a stochastic form of
simple gradient descent [11], which gives us the following weight adaption rule:

∆w = η · gt (7)

Here,∆w ∈ R represents the change of a particular weightw, which is an arbi-
trary element of the matricesA, B, or C. η denotes the learning rate andgt ∈ R

the gradient calculated by the backpropagation algorithm for one patternt. The
learning rateη was set to10−4, which is a good trade-off between speed and ac-
curacy. Several other learning rules have been developed for RNN with the focus
to avoid a vanishing gradient, e.g. vario-eta learning [11,19]. Still, we restricted
the learning to this rather simple algorithm to strengthen the significance of our
experiments. Therefore we also abstain from a further discussion on the advan-
tages of different learning methods, algorithms and parameter settings. For those
please refer to e.g. [11,12]. Besides, the used pattern-by-pattern learning rule has
also shown in practice to generate very good results, especially in terms of general-
isation, structure identification quality and robustness of the solution. Nevertheless,
our results (sec. 4.2) could probably be improved by applying a more problem-
dependent learning rule, like partial learning [11]. However, the focus of this paper
is the demonstration that RNN unfolded in time are well able to learn long-term
dependencies even without any further adjustment.

4.2 Results

We defined an error limit, which marks the optimal achievableerror for each prob-
lem plus a10% tolerance. Forr > 0 it is calculated by the variance of the uniform
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distribution given a certain noise ranger, assuming no error for the time indicators
in everyd-th time step and adding10%. For r = 0 it it set to0.0001, which gives
together:

error limit =











0.0001 for r = 0

1.1 · d−1

d
· r2

3
for r > 0

(8)

Table 1 summarises our results for different time gapsd and several noise rangesr.
It shows the mean and standard deviation (STD) of epochs RNN and NRNN needed
to pass the error limit (eq. 8) on the test set, i.e., the average number of learning
epochs necessary to solve the problem with a maximum of a10% error tolerance.
Hereby, not the actual value but rather the fact that the networks are able to learn the
given task within a limited number of epochs is of importance. As already pointed
out, the former could most likely be decreased by applying a problem-dependent
learning method.

# epochs RNN # epochs NRNN

time gapd ranger Mean STD Mean STD

40 0.0 25 23 39 14

40 0.1 40 19 35 18

40 0.2 23 4 11 3

40 0.4 113 70 22 22

60 0.0 160 90 158 134

60 0.1 100 98 94 87

60 0.2 382 312 40 28

60 0.4 544 228 207 189

100 0.0 45 8 302 276

100 0.1 58 47 162 70

100 0.2 298 346 79 53

100 0.4 121 206 283 400

Table 1
Average number (Mean) and standard deviation (STD) of learning epochs RNN and NRNN
needed to pass the error limit (eq. 8), i.e. to solve the problem, on the test set for different
time gapsd and noise rangesr.

The results demonstrate the capability of NRNN as well as of basic RNN to learn
long-term dependencies ofd = 40, 60 and even100, which is obviously more than
the often cited limit of ten time steps [6]. After only a smallnumber of learning
epochs both networks were able to solve the problem. Still, in comparison to the
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RNN, the NRNN generally showed a more stable learning behaviour (lower STD)
and needed in most cases, besidesr = 0, fewer learning epochs to identify the data
structure.

As expected, a larger gapd resulted in more learning epochs for the networks to
succeed. Also, apart fromr = 0, a higher noise range, i.e., a larger uniform dis-
tribution of the data, made it more challenging for the networks to identify the
time indicators. Still, even in more difficult settings, RNNand NRNN captured the
structure of the problem very quickly.

NRNN had most problems identifying the time series with zeronoise range,r = 0.
A zero noise range is actually more difficult than coping witha small noise level,
because the networks have to identify a single existing trajectory path instead of
a trajectory tube [18]. One reason for the NRNN’s difficulties might be that the
applied NRNN had less free parameters than the RNN as the internal state dimen-
sion of both is identical but the NRNN has fixed weights between input and state
and state and output neurons. In contrary, for larger noise levels the NRNN outper-
formed the RNN, which supported our theory about NRNN being more stable.

Using smaller dimensions for the single transition matrixA increased the number
of epochs necessary to learn the problem (fig. 3). This is due to the fact that the
network needs a certain dimension to store long-term information. So e.g., with a
hundred dimensional matrix the network can easily store a time gap ofd = 100
in form of a simple shift register (sec. 5). Downsizing the dimension forces the
network to build up more complicated internal matrix structures, which take more
learning epochs to develop.

4.3 Analysis of the Backpropagated Error

To put the claim of a vanishing gradient in RNN unfolded in time and trained with
backpropagation [6] into perspective we analysed the backpropagated error within
our networks. We noticed that under certain conditions vanishing gradients do in-
deed occur, but are only a problem if we put a static view on thenetworks like it has
been done in [5,6]. Studying the development of the error flowduring the learning
process we observed that the networks themselves have a regularising effect, i.e.,
they are able to prolong their information flow and consequently solve the prob-
lem of a vanishing gradient. We see two main reasons for this self-regularisation
behaviour: shared-weights and overshooting (sec. 2). Whereas shared weights con-
strain the networks to change weights (concurrently) in every unfolded time step
according to several different error flows, overshooting forces the networks to fo-
cus on the autonomous sub-dynamics. Especially the former allows the networks
to adapt the gradient information flow.

Similar to the analysis in [5] and [6] we further confirmed that the occurrence of
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Fig. 3. Number of epochs needed by an NRNN to solve the problemwith d = 40 and
r = 0.1 using different numbers of hidden, i.e. internal state, neurons. We stopped training
after 5000 epochs, which implies that the network was not able to solve the problem for
dim(s) ≤ 20.

a vanishing gradient is dependent on the values of the weightmatrix A. By ini-
tialising matrixA with different weight values it turned out that an initialisation
with a uniform distribution in[−0.2, 0.2] is a good choice for the tested networks
(sec. 4.4). We never experienced any vanishing gradient in these cases. In contrary,
when initialising the networks only within[−0.1, 0.1], the gradient vanished in the
beginning of the learning procedure. Nevertheless, duringthe learning process the
networks themselves solved this problem by changing the weight values. Figure 4
shows an exemplary change of the gradient information flow during the learning
process.

4.4 Optimal Weight Initialisation

In section 4.3 we already stated that a proper weight initialisation is of importance
for the learning of the networks. We noticed that choosing the distribution interval
too small can lead to a vanishing gradient in the beginning ofthe learning. In con-
trary a too large one can generate very high values in the backflow. In most cases
this can be corrected during training (sec. 4.3), but it generally leads to long com-
putational times. For extremely small or large values the network might even be
unable to solve the problem.

For that reason we analysed the effects on the backpropagated error flow of different
weight initialisations in the RNN and respectively NRNN. This can be done by
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Fig. 4. Exemplary adaptation of the gradient error flow during the learning process of an
NRNN, which has been initialised small weights, i.e., within [−0.1, 0.1]: The graph shows
that for a number of learning epochs smaller than approximately 100, the gradient vanishes
very quickly. After that the error information distributesmore and more over the differ-
ent unfolding steps, i.e., the network prolongs its memory span. Finally after about a150
epochs the error information is almost uniformly backpropagated to the last unfolded time
step100.

measuring the error values backpropagated to the last unfolded time step.

For the experiment we took the same NRNN as in section 4.2 withinternal state di-
mensions ofdim(s) = 40, 50, 60, 70, 80, 90 and100 and calculated the error value
backpropagated to the hundredth unfolded time step for different weight initialisa-
tions. The problem setting was as befored = 40 andr = 0.1. Figure 5(a) plots the
measured logarithmic error values against different ranges of uniform distributed
weight initialisations, each respectively averaged over ten different random initial-
isations. Note, that for this no learning, i.e., weight adaption, was involved, which
is equivalent toη := 0 (eq. 7). In the plot the more left the curve is the larger is its
internal state dimension.

The test confirms that for the100-dimensional NRNN as used in our long-term ex-
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periment (sec. 4.1) an initialisation with weights in[−0.2, 0.2] generates a stable
error backflow with neither a vanishing nor an exploding gradient. For those values
a reasonable errorE (0.0001 < E < 1) is propagated back to the last unfolded time
step. Interestingly also for initialisations close to[−0.2, 0.2] the error flow stays on
a similar level whereas for higher or smaller values it increases and respectively de-
creases quickly. This saddle point exists for all tested state dimensions, respectively
for a slightly shifted interval. It is most likely due to the transfer function used, the
hyperbolic tangent, which stays in the linear range for those values.

weight initialisation range
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(a) Backpropagated error informa-
tion to the last unfolded time step in
relation to the range of the uniform
weight initialisation. From left to
right the corresponding internal state
dimension is100, 90, 80, 70, 60, 50,
and40.
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(b) Backpropagated error flow to the
last unfolded time step in relation to
the range of the uniform weight ini-
tialisation for the different regarded
state dimensions normalised accord-
ing to equation (9).

Fig. 5. Influence of the initial weight distribution on the backpropagated error flow in the
NRNN using different internal state dimensions.

Figure 5(a) also illustrates that the smaller the internal state dimension is the higher
the weights should be initialised. This is caused by the factthat with a higher di-
mension the probability of larger absolute values of the rowsum in the transition
matrixA increases, which leads to larger factors backpropagating the error through
the unfolded network. Still, as the curves all run in parallel, there is obviously a
connection between the optimal weight initialisation and the internal state dimen-
sion of the network.

We developed the following useful conjecture

ρ2 = ρ1

√

dim1

dim2

(9)
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whereρi stands for the range of the initialisation interval[−ρi, ρi] anddimi for
the internal state dimension of two (normalised) RNN (i = 1, 2). It is based on
our considerations about connectivity within a matrix (sec. 5) and can be easily
confirmed by normalising the results of our initialisation test (fig. 5(a)). As expected
after normalisation all curves coincide (fig. 5(b)), which shows that, for a given
problem, there is a general development of the error flow within (normalised) RNN.
Still, according to our experience, independent of the internal state dimension the
optimal weight initialisation has to be determined for eachproblem setting and
network architecture individually. However, as described, this can always be done
by measuring the backpropagated error in the last unfolded time step.

Our results correspond to the heuristics for weight initialisation in feedforward neu-
ral networks [2]. Thereby a reported rule for an optimal weight initialisation is

ρ =
3√
dim

. (10)

For the tested RNN and NRNN this would result inρ = 0.3, which is slightly larger
than our empirically determined value,0.2. The deviation is probably caused by the
different network structures. In contrary to feedforward networks for (normalised)
RNN the number of unfolded time stepsm has to be taken into account. The larger
m the greater is the influence of the weight initialisation on the last unfolded time
step, because the weights factorise the error flow in each unfolded time step. Note,
that for sparse networks (sec. 5) the internal state dimension has to be replaced by
the connectivity of the network in equations (9) as well as (10).

We finally compared the sensitivity of the weight initialisation between NRNN and
RNN. Thereby both networks had an internal state dimension of 100. The problem
setting was once mored = 40 andr = 0.1. We plot the curves of the RNN and
NRNN at the interesting region of the saddle point around0.2 (fig. 6). In general a
flat curve is more preferable as it indicates that the networkis less sensitive against
the initial weight distribution. Figure 6 shows that the NRNN is slightly more robust
against the weight initialisation as its curve is flatter than the one of the RNN. This
underlines the theory about NRNN being more stable (sec. 3).

5 Learning Long and Short-Term Memory with RNN

In the following we extend the discussion about learning long-term dependencies
with RNN to the learning of long and short-term memory for an optimal system
identification. This is mainly done by an analysis of the structure of the autonomous
part of the network, which is mapped by the internal state transition matrixA. So
far matrixA has always been assumed to be fully connected. In a fully connected
matrix the information of a state vectorst is processed using the weights inA to
computest+1 (eqs. 1 and 5). This implies that there is generally a high proportion
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Fig. 6. Sensitivity of the backpropagated error values to different ranges of uniform weight
initialisation in the RNN (dashed) and NRNN (solid). The steeper the curve the more sen-
sitive is the network to a sub-optimal weight initialisation.

of superposition (computation) but hardly any simple conservation of information
(memory) from one state to the next one (right panel of fig. 7).

For the identification of dynamical systems such memory can be essential, as infor-
mation may be needed unchanged for computation in subsequent time steps. A shift
register (left panel of fig. 7) is a simple example for the implementation of mem-
ory, as it only transports information within the state vector st. No superposition
is performed in this transition matrix. We confirmed this in our basic experiment
of section 4 as by setting the transition matrixA to a shift register both networks
identified the structure of the simple given time series immediately.

Still, for an optimal system identification several inter-temporal dependencies over
different time periods have to be learnt, i.e., the model hasto be able to model the
system’s long-term as well as short-term memory. Thereforesuperposition of infor-
mation is necessary to generate or adapt changes of the dynamics. In contrast, con-
servation of information causes memory effects by transporting information more
or less unmodified to a subsequent state neuron. In this context, memory can be de-
fined as the average number of state transitions necessary totransmit information
from one state neuron to any other one in a subsequent state. We call this number of
necessary state transitions the path length of a neuron. In our experiments of section
4 the required path length has been equal to the distanced between two subsequent
time indicators1.

To overcome the apparent dilemma between superposition andconservation of in-
formation the transition matrixA needs a structure, which balances different ef-
fects of memory and computation. Sparseness of the transition matrix reduces the
number of paths and the computational effect of the network but at the same time
increases the average path length, and therefore allows forlonger-lasting memory.
A solution is an inflation of the (normalised) RNN, i.e., a simultaneous extension of
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Fig. 7. Learning long and short-term memory with RNN: computation versus memory in
the transition matrixA [18].

the internal state dimension and the sparsity level of the transition matrixA while
keeping the connectivity constant. In other words, the ideais to inflate the network
to a higher dimensionality, while maintaining the computational complexity of the
former lower-dimensional and fully connected network, andat the same time al-
lowing for memory effects. With an inflated transition matrix A we can optimise
both superposition and conservation of information [18]. The sparsity structure is
thereby generated randomly, which means a certain percentage of weights is ini-
tialised, whereas the remaining ones are set to zero. Proceeding this way, we repli-
cate on average the computational effect of the fully connected network. At the
same time we increase the path lengths (memory) with the sparseness level of the
inflated transition matrix.

Note, that there is some similarity in the resulting structure to long short-term mem-
ory networks [7], where the so called memory cells store information over a longer
period of time. In the recurrent neural network this can be achieved by particular
sparsity structures of the transition matrixA.

5.1 Performance Gain Through Inflation

To demonstrate that the proposed inflation of the networks helps to learn long-term
dependencies we repeat our experiments of section 4 with several different inflated
networks. In particular we applied, according to our theoryabout inflation, RNN
and NRNN with internal state dimensions of200 and141 and respective sparsity
levels of50% and70.7%. Besides we tested for comparison reasons both networks
with an internal state dimension of141 neurons and a sparsity level of50%. The
latter does not keep the connectivity constant but in contrary leaves the total number
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of weights unchanged. For illustration we once more give theresults for the fully
connected networks (tab. 1). Table 2 shows that the inflated networks identify the
structure of the problem more reliable and generally quicker.

time range # epochs RNN / NRNN

gapd r dim 100 100% dim200 50% dim141 70.7% dim 141 50%

40 0.0 25 / 39 18 / 37 45 / 33 181 / 68

40 0.1 40 / 35 41 / 10 16 / 17 18 / 15

40 0.2 23 / 11 61 / 5 86 / 6 98 / 10

40 0.4 113 / 22 28 / 12 84 / 19 143 / 23

60 0.0 160 / 158 44 / 50 130 / 50 12 / 135

60 0.1 100 / 94 44 / 46 120 / 21 56 / 30

60 0.2 382 / 40 35 / 13 77 / 72 129 / 65

60 0.4 544 / 207 205 / 22 53 / 24 83 / 57

100 0.0 45 / 302 27 / 85 26 / 108 314 / 176

100 0.1 58 / 162 19 / 96 20 / 68 17 / 30

100 0.2 298 / 79 30 / 30 17 / 32 40 / 28

100 0.4 121 / 283 16 / 80 16 / 45 21 / 62

Table 2
Average number of learning epochs the inflated RNN and NRNN with the respectively
given internal state dimension and sparsity level needed topass the error limit (eq. 8), i.e.
to solve the problem, on the test set for different time gapsd and noise rangesr. For com-
parison reasons also the results for the fully connected networks (dim 100 100%) of section
4.2 are given. The results demonstrate the performance improvement through inflation as
the maximum number of required learning epochs is lower for those networks.

6 Conclusion

In this paper we showed that RNN unfolded in time and trained with a shared
weight extension of the backpropagation algorithm are, in opposition to an often
stated opinion, well able to learn long-term dependencies.Using shared weights
and overshooting in combination with a reasonable learningalgorithm like pattern-
by-pattern learning and a proper weight initialisation theproblem of a vanishing
gradient becomes a minor issue. Our results even indicate that due to shared weights
the networks possess an internal regularisation mechanism, which keeps the error
flow up and allows for an information transport over at least ahundred time steps.
In addition, we described how the weights of RNN and NRNN can be optimally
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initialised for a fast and stable learning. For the modelling of long and short-term
memory we introduced the idea of inflation, which simplifies the identification of
several inter-temporal dependencies within one network. We showed that with the
inflated networks we can improve our results in the experiment on long-term de-
pendencies. Overall, we could confirm that both RNN and NRNN are valuable in
system identification and forecasting.

Future work may address a more theoretical investigation ofthe examined self-
regularisation ability of RNN, a deeper analysis of the weight initialisation and the
optimal transition matrix structure as well as a possible convergence of the weight
distribution during the learning process.
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