L earning L ong-Term Dependencieswith Recurrent
Neural Networks

Anton Maximilian Schaefer”* Steffen Udluft
Hans-Georg Zimmermarin

aSiemens AG, Corporate Technology, Information & Commuioiog, Learning Systems
80200 Munich, Germany

bUniversity of Osnabrueck, Neuroinformatics Group, 4906®&brueck, Germany

Abstract

Recurrent neural networks (RNN) unfolded in time are in tigeble to map any open
dynamical system. Still, they are often blamed to be unabledntify long-term depen-
dencies in the data. Especially when they are trained witkgrapagation it is claimed
that RNN unfolded in time fail to learn inter-temporal infiees more than ten time steps
apart. This paper refutes this often cited statement byhgigounter-examples. We show
that basic time-delay RNN unfolded in time and formulatedtase space models are in-
deed capable of learning time lags of at least hundred tiegsstWWe point out that they
even possess a self-regularisation characteristic, wdniletpts the internal error backflow,
and analyse their optimal weight initialisation. In aduglitj we introduce the idea of in-
flation for modelling of long and short-term memory and destaate that this technique
further improves the performance of RNN.

Key words: Backpropagation, Inflation, Long Term Dependencies, MgmiRecurrent
Neural Networks, State Space Model, System Identificatfanjshing Gradient

1 Introduction

Recurrent neural networks (RNN) allow the identificationdyhamical systems
in the form of high dimensional, nonlinear state space no{#&P]. They offer
an explicit modelling of time and memory and are in principlde to model any
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open dynamical system [14]. Basic concepts like unfoldmgime of RNN and
related modifications of the backpropagation algorithm akeady be found in
[13]. Further developments are published in the books ofkiafB,4], Medsker
and Jain [10], Kolen and Kremer [9], and Soofi and Cao [15]fdbént types of
learning algorithms are summarised by Pearlmutter [12].

Nevertheless, over the |aXi years most time series problems have been approached
with feedforward neural networks. The appeal of modellimgetand memory in
recurrent neural networks is opposed to the apparentlgibetimerical tractability

of a pattern-recognition approach as represented by fegdfd neural networks.
Besides, it has been claimed by several authors that RNNrable to identify

and learn long-term dependencies of more than ten time Etgp6]. To overcome

the stated dilemma new forms of recurrent networks, e.gg khort-term mem-

ory (LSTM) networks [7], were developed. Still, these netkgodo not offer the
desirable correspondence, i.e., the mutual transfetgbiletween equations and
architectures as RNN unfolded in time do [18].

However, the analysis in the mentioned papers [1,5,6] wlrbased on basic
RNN architectures simulating closed dynamical systemschwvtdo not consider
any external inputs. Even more important, they were mad®a faostatic perspec-
tive, which means that for the presented calculations oMNRvith fixed weights
were assumed whereas the effect of learning and weight iadapts not taken
into account. In this paper we therefore refute the statémiman RNN unfolded in
time and trained with a shared weight extension of the bagauyation algorithm
[13] are in general unable to learn long-term dependendéesshow that basic
time-delay RNN and especially normalised recurrent neneavorks unfolded in
time and formulated as state space models have no diffiswitith an identifica-
tion and learning of past-time information within the datdnich is more than ten
time steps apart. In addition we point out that by using shareights training of
these networks is not a major problem. It even helps to oveecthe problem of
a vanishing gradient [1,5,6] as the networks possess aegglfarisation charac-
teristic, which adapts the internal error backflow. We ferthnalyse the effects of
weight initialisation on the error flow. Here, we show thatanishing or respec-
tively exploding gradient [1,5,6] can be avoided by inisailg the weights within
an optimal interval.

Furthermore we extend the discussion about long-term dkgrenes to the mod-
elling of long- and short-term memory as it is required forshieal-world applica-
tions. For this, we analyse the internal network structume: show that an inflation,
i.e., a combination of increasing the internal state dimm@mnand the sparsity level,
simplifies the mapping of different time scales and intemteral dependencies.

The paper starts with a recapitulation of the basic RNN w#dlin time (sec. 2). In
section 3 we further enhance the basic RNN architectureaattbnly possesses
one single (high-dimensional) transition matrix. This aéed normalised recurrent



neural network (NRNN) increases the stability of the leagnprocess. In section
4 we then demonstrate that both NRNN and RNN successfully [Emg-term
dependencies. By analysing the backpropagated error flofurteer show that the
problem of a vanishing gradient is not a major question fahbeetworks. In this
context, we also investigate the influence of the weightalsation. We extend
the analysis about learning long-term dependencies to & gemeral discussion
on modelling long and short-term memory (sec. 5). Finallg, demonstrate that
inflated networks show a better performance than the smatlérfully connected
ones. A conclusion and a brief outlook on future researclivisrgin section 6.

2 Recurrent Neural Networks Unfolded in Time

Let 7, J, and N € N denote respectively the number of input, hidden and output
neurons. For discrete time the basic time-delay recurrental network (RNN)
consists of a state transition and an output equation [3,19]

si11 = tanh(As; + Bz, + 6)  state transition
1)

vy =Csy output equation

Here, the nonlinear state transition equatipn € R’ (t =1,...,7 whereT € N
is the number of available patterns) is a nonlinear comhonaif the previous state
s, € R’ and external influences, € R’ using weight matricest € R’*’ and
B € R7*! and a biag € R”, which handles offsets in the input variablesc R’ .
Note, that at this the hyperbolic tangent is applied compbmase. The network
outputy, € R is computed from the present state € R’ employing matrix
C € RV*/ . Itis therefore a nonlinear composition applying the tfamsationsA,
B, andC. It has been shown that RNN, like feedforward neural netw¢8, are
universal approximators in the sense that they can appatiriany open dynamical
system of the form [3,19]

st = g(sf ;) state transition
(2)

yd = h(s}) output equation

whereg : R’ x R — R’, with / € N, is a measurable anfd : R/ — RY a
continuous functiong; € R’ represents the external inputg, € R’ the inner
states ang¢ € R the output of the system [14]. Note here, that the state splace
the RNNs;, € R’ (eg. 1) does not in general have the same dimension as the one
of the original open dynamical systesfi€ R’ (eq. 2), i.e., in most cases we have

J # J. It basically depends on the system’s complexity and theetkaccuracy.



Training the RNN of equation (1) is equivalent to solving agmaeter optimisation
problem, i.e., minimising the error between the networkpotit, € RY and the
observed datg? € RY with respect to an arbitrary error measure, e.g.:

T J 9
t; v — v — nin 3)

It can be solved by finite unfolding in time using shared weighatricesA, B, and
C'[3,13]. Shared weights share the same memory for storingweghts, i.e., the
weight values are the same at each time step of the unfotdind 1,...,7"} and
for every patterrt [3,13]. This guarantees that we have the same dynamicsig eve
time step. By using unfolding in time the RNN can be trainethwaishared weights
extension [13] of the standard backpropagation algorith@j.[A major advantage
of RNN written in form of a state space model (eq. 1) is the iexdorrespondence
between equations and architecture. It is easy to see thaibg unfolding in time
the set of equations (1) can be directly transferred intoaiapneural network
architecture (fig. 1) [3,13]. Here, the dotted connectiordate that the network
can be (finitely) further unfolded into past and future.

Fig. 1. RNN unfolded in time using overshooting [19].

We extend the autonomous part of the RNN into the future bgadled overshoot-
ing [19], i.e., we iterate matrices A and C in future direat{@g. 1). In doing so we
get a sequence of forecasts as outputs (fig. 1). More imgodeershooting forces
the learning to focus on modelling the autonomous dynanfitseonetwork, i.e.,
it supports the extraction of useful information from inpettors, which are more
distant to the output. Consequently overshooting is a venple remedy to the
problem that the backpropagation algorithm usually treesibdel the relationship
between an output and its most recent inputs as the fasigstaditn takes place in
the shortest path [5]. Therefore also the learning of fatsesalities is decreased.
Hence, overshooting regularises the learning and thusawesrthe model’s perfor-
mance [19]. Note, that due to shared weights no additionalpeters are used.



3 Normalised Recurrent Neural Networks

As a preparation for the development of normalised rectrrezural networks
(NRNN) [18] we first separate the state equation of the basie-delay RNN
(eq. 1) into a past and a future part. In this framewsyks always regarded as
the present time state. That means that for this pattalhstatess, with 7 < ¢
belong to the past part and those with> ¢ to the future part. The parameteiis
thereby always bounded by the length of the unfolding in ttmand the length
of the overshooting: [19], such that we have € {t — m,...,t + n} for all

t € {m,..., T —n}. The present timer(= t) is included in the past part, as these
state transitions share the same characteristics. We@#iltbwing representation
of the optimisation problem:

T<t: s;41 = tanh(As, + Bz, +0)

T>t: s;41 = tanh(As; + 0)

Yr = CST (4)

T—n t+n p
J— 2 1
> 2 My —vellF — min

t=m 7=t—m

In this model, past and future iterations are consisteneutite assumption of a
constant future environment. Still, the difficulty with $hkind of RNN is the train-
ing with backpropagation, because a sequence of differemiectors has to be
balanced, i.e., we do not have the same learning behaviothidaveight matrices
in the different time steps. In our experiments we found thest problem becomes
especially important for the training of large RNN. Even ttening itself is unsta-
ble due to the concatenated matricesB, andC'. As the training changes weights
in all of these matrices, different effects or tendenci@gneopposing ones, may
contradict or superpose. This implies that there may natlra@sclear learning di-
rection from a certain backpropagated error [18].

NRNN (eqg. 5) avoid the stability and learning problems résglfrom the concate-
nation of the three matrice$, B, andC because they incorporate besides the bias
only one connector type, a single transition mattixx R”, with J € N. Generally
the reduction to one single matrix impligs> .J, i.e., NRNN operate on a larger
state space. Besides one can show, that the universal apaitmn capability also
holds for these networks [14].



0
T<t: s, =tanh(As, 1+ |0 |z +0)

i

T>t: s, =tanh(As,_1 +6) (5)

Yr = [IN 0 O]Sq—
T—n t+n

> 2 lye = vl — min

t=m 7=t—m

The corresponding architecture is depicted in figure 2. Agtie dotted connec-
tions indicate that the network can be (finitely) furtheralded into past and future.

Fig. 2. Normalised recurrent neural network [18].

The matrices between input and hidden as well as hidden apdtdayer are fixed
and therefore not changed during the training process. €&prently matrixA does
not only code the autonomous and the externally driven pHrthe dynamics,
but also the impact of the external inputs on the internal state space and the
computation of the network outpyt. This implies that all free parameters, as they
are combined in one matrix, are now treated the same way byatlepropagation
algorithm.

At first view it seems that in the network architecture (fig.tB¢ external input
z, € R’ is directly connected to the corresponding outputc RY. This is not
the case, because we enlarge the dimension of the inteatalsst such that the
inputz, has no direct influence on the outpyt Assuming that we have a number
of (Q computational hidden neurons the dimension of the intestait would be
dim(s) = J = I + Q + N. With the non-trained matri}{ 5 0 0] we connect only
the first V neurons of the internal state to the output layey,, wherel y € RV*V



is a fixed identity matrix. Consequently, the NRNN is forcedgenerate itsV
outputs at the firstV components of the state vectar. The last state neurons are
used for the processing of the external inputs The fixed connectof0 0 I,]7,
wherel; € R, between the externals. and the internal state. is designed
such that the input, is connected to the lagtstate neurons. To further support
the internal processing and to increase the network’s coatipnal power, we add
a number of@) hidden neurons between the fist and the last/ state neurons.
This composition ensures that the input and output proogssi the network is
separated but implies that NRNN can only be designed as lageorks [18].
Note, that out of construction the output of the NRNN is baeohtb(—1, 1) by the
hyperbolic tangent activation function. Still, this is reoteal constraint as we can
simply scale the data appropriately before applying it tribtwork.

Our experiments indicate that, in comparison to RNN, NRNRNvsl more stable
training process, even if the dimension of the internalksisvery large.

4 Learning Long-Term Dependencies

We use a very simple but well-known problem to demonstrageathility of learn-
ing long-term dependencies of RNN (sec. 2) and NRNN (secth&)prediction
of periodic indicators in a time series. We therefore crédiee series ofl 0000
random values, which are uniformly distributed on an inééfv-r, r| with » € R
and0 < r < 1. Everyd-th value, withd € N is 1. Per construction these time
indicators are the only predictable values for the netw@dnsequently, for a suc-
cessful solution to the problem the network has to rementieeotcurrence of the
last1, d-time steps before in the time series data. In other wordgstto be able
to learn long-term dependencies. The higherdliee longer memory is necessary.
We used the firsi000 data points for training and left the other half for testing.

Similar problems have already been studied in [5] and [7hdth papers the perfor-
mance of the thereby considered recurrent networks tramtdbackpropagation
through time [17] has been tested to be unsatisfactory am@ulthors concluded
that RNN are not suited for the learning of long-term dep&icgss.

4.1 Model Description

We applied an RNN (sec. 2) and an NRNN (sec. 3) with one inpurtareper time
step in the past and one output neuron per time step in theefutucontrast to the
descriptions in sections 2 and 3 we did not implement anywistin the past part
of the networks, as those would not help to solve the problEms implies that
the gradient information of the error function has to be mggted back from the



future outputs to all past time steps. It also avoids a sugsstipn of the long-term
gradient information with a local error flow in the past. Téfare the omission of
outputs in the past also eases the analysis of the error backfl

The networks were both unfolded a hundred time steps intpdisé Whereas the
NRNN was unfolded twenty time steps into future directioe,avd not implement
any overshooting for the RNN. In doing so we kept the RNN agimas possi-
ble to show that even such a basic RNN is able to learn lomg-tlrpendencies.
The total unfolding therefore amounts 101 time steps for the RNN and tt20
steps for the NRNN. The dimension of the internal state matris always set to
100, which is equivalent to the amount of past unfolding. Weiatiged the weights
randomly with a uniform distribution ofi-0.2, 0.2]. In all hidden units we imple-
mented the hyperbolic tangent as activation function. Wehér used the quadratic

error function
T—n t+n

E=3% > lly— vl (6)

t=m 7=t—m
to minimise the difference between network output and tafggs. 4 and 5). The
networks were trained with a shared weight extension of tekpropagation al-
gorithm [13] in combination with pattern-by-pattern legny, a stochastic form of
simple gradient descent [11], which gives us the followirgjgit adaption rule:

Aw=mn-g (7)

Here, Aw € R represents the change of a particular weightvhich is an arbi-
trary element of the matriced, B, or C'.  denotes the learning rate apde R
the gradient calculated by the backpropagation algoritbmohe patterrt. The
learning raten was set tol0—*, which is a good trade-off between speed and ac-
curacy. Several other learning rules have been developeRNMN with the focus
to avoid a vanishing gradient, e.g. vario-eta learning1@L, Still, we restricted
the learning to this rather simple algorithm to strengthea $ignificance of our
experiments. Therefore we also abstain from a further disiom on the advan-
tages of different learning methods, algorithms and patansettings. For those
please refer to e.g. [11,12]. Besides, the used pattenpaltgrn learning rule has
also shown in practice to generate very good results, esipeiri terms of general-
isation, structure identification quality and robustnedhe solution. Nevertheless,
our results (sec. 4.2) could probably be improved by apglyanmore problem-
dependent learning rule, like partial learning [11]. Hoegthe focus of this paper
is the demonstration that RNN unfolded in time are well abléetarn long-term
dependencies even without any further adjustment.

4.2 Results

We defined an error limit, which marks the optimal achievadster for each prob-
lem plus al0% tolerance. For > 0 it is calculated by the variance of the uniform



distribution given a certain noise rangeassuming no error for the time indicators
in everyd-th time step and addint%. Forr = 0 it it set to0.0001, which gives
together:
o 0.0001 for r=0
error limit = (8)
11-41 2 for r >0

Table 1 summarises our results for different time gapad several noise ranges
It shows the mean and standard deviation (STD) of epochs RIN&NN needed
to pass the error limit (eq. 8) on the test set, i.e., the @eraimber of learning
epochs necessary to solve the problem with a maximumiéf/aerror tolerance.
Hereby, not the actual value but rather the fact that the osids\are able to learn the
given task within a limited number of epochs is of importanks already pointed
out, the former could most likely be decreased by applyingablem-dependent
learning method.

# epochs RNN # epochs NRNN
time gapd | ranger | Mean| STD | Mean| STD
40 0.0 25 23 39 14
40 0.1 40 19 35 18
40 0.2 23 4 11 3
40 0.4 113 70 22 22
60 0.0 160 90 158 134
60 0.1 100 98 94 87
60 0.2 382 312 40 28
60 0.4 544 228 207 189
100 0.0 45 8 302 276
100 0.1 58 47 162 70
100 0.2 298 346 79 53
100 0.4 121 206 283 400

Table 1

Average number (Mean) and standard deviation (STD) of legrapochs RNN and NRNN
needed to pass the error limit (eg. 8), i.e. to solve the problon the test set for different
time gaps/ and noise ranges

The results demonstrate the capability of NRNN as well asagfdRNN to learn
long-term dependencies @f= 40, 60 and everl 00, which is obviously more than
the often cited limit of ten time steps [6]. After only a smalimber of learning
epochs both networks were able to solve the problem. Stikomparison to the



RNN, the NRNN generally showed a more stable learning bela{lower STD)
and needed in most cases, besides0, fewer learning epochs to identify the data
structure.

As expected, a larger gapresulted in more learning epochs for the networks to
succeed. Also, apart from = 0, a higher noise range, i.e., a larger uniform dis-
tribution of the data, made it more challenging for the neksato identify the
time indicators. Still, even in more difficult settings, RNiINd NRNN captured the
structure of the problem very quickly.

NRNN had most problems identifying the time series with zesse range; = 0.
A zero noise range is actually more difficult than coping vatemall noise level,
because the networks have to identify a single existingdtayy path instead of
a trajectory tube [18]. One reason for the NRNN's difficudtimight be that the
applied NRNN had less free parameters than the RNN as thmattgtate dimen-
sion of both is identical but the NRNN has fixed weights betwiggput and state
and state and output neurons. In contrary, for larger nexsel$ the NRNN outper-
formed the RNN, which supported our theory about NRNN beimmgarstable.

Using smaller dimensions for the single transition mattixncreased the number
of epochs necessary to learn the problem (fig. 3). This is dubé fact that the
network needs a certain dimension to store long-term in&bion. So e.g., with a
hundred dimensional matrix the network can easily storeng wap ofd = 100
in form of a simple shift register (sec. 5). Downsizing thendinsion forces the
network to build up more complicated internal matrix stures, which take more
learning epochs to develop.

4.3 Analysis of the Backpropagated Error

To put the claim of a vanishing gradient in RNN unfolded ineiand trained with
backpropagation [6] into perspective we analysed the hagiqgated error within
our networks. We noticed that under certain conditions slainig gradients do in-
deed occur, but are only a problem if we put a static view omgtevorks like it has
been done in [5,6]. Studying the development of the error tlowng the learning
process we observed that the networks themselves have lansmg effect, i.e.,
they are able to prolong their information flow and consedjyesolve the prob-
lem of a vanishing gradient. We see two main reasons for #ifsregularisation
behaviour: shared-weights and overshooting (sec. 2). @&seshared weights con-
strain the networks to change weights (concurrently) imewafolded time step
according to several different error flows, overshootingés the networks to fo-
cus on the autonomous sub-dynamics. Especially the foriteavsathe networks
to adapt the gradient information flow.

Similar to the analysis in [5] and [6] we further confirmed tthi@e occurrence of

10
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Fig. 3. Number of epochs needed by an NRNN to solve the probl#ind = 40 and
r = 0.1 using different numbers of hidden, i.e. internal state roes. We stopped training
after 5000 epochs, which implies that the network was nat &blsolve the problem for
dim(s) < 20.

a vanishing gradient is dependent on the values of the wengiitix A. By ini-
tialising matrix A with different weight values it turned out that an initiatn
with a uniform distribution in[—0.2, 0.2] is a good choice for the tested networks
(sec. 4.4). We never experienced any vanishing gradieheiset cases. In contrary,
when initialising the networks only withip-0.1, 0.1], the gradient vanished in the
beginning of the learning procedure. Nevertheless, dutiegearning process the
networks themselves solved this problem by changing thghte@alues. Figure 4
shows an exemplary change of the gradient information flovinduhe learning
process.

4.4 Optimal Weight Initialisation

In section 4.3 we already stated that a proper weight imsadlbn is of importance
for the learning of the networks. We noticed that choosirgdistribution interval
too small can lead to a vanishing gradient in the beginnintp@fearning. In con-
trary a too large one can generate very high values in theflomckn most cases
this can be corrected during training (sec. 4.3), but it galheleads to long com-
putational times. For extremely small or large values thsvogk might even be
unable to solve the problem.

For that reason we analysed the effects on the backpropbesaite flow of different
weight initialisations in the RNN and respectively NRNN.iFltcan be done by

11
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Fig. 4. Exemplary adaptation of the gradient error flow dgrihe learning process of an
NRNN, which has been initialised small weights, i.e., withi-0.1, 0.1]: The graph shows
that for a number of learning epochs smaller than approxymato, the gradient vanishes
very quickly. After that the error information distributesore and more over the differ-
ent unfolding steps, i.e., the network prolongs its memgans Finally after about &50
epochs the error information is almost uniformly backpgguad to the last unfolded time
step100.

measuring the error values backpropagated to the lastdeddime step.

For the experiment we took the same NRNN as in section 4.2inténnal state di-
mensions oflim(s) = 40, 50, 60, 70, 80,90 and100 and calculated the error value
backpropagated to the hundredth unfolded time step foermifft weight initialisa-
tions. The problem setting was as befdre- 40 andr = 0.1. Figure 5(a) plots the
measured logarithmic error values against different rangfeuniform distributed
weight initialisations, each respectively averaged ogardifferent random initial-
isations. Note, that for this no learning, i.e., weight adap was involved, which

is equivalent to; := 0 (eq. 7). In the plot the more left the curve is the larger is its
internal state dimension.

The test confirms that for the)0-dimensional NRNN as used in our long-term ex-

12



periment (sec. 4.1) an initialisation with weights[ir0.2, 0.2] generates a stable
error backflow with neither a vanishing nor an exploding geatl For those values
areasonable errdr (0.0001 < E < 1) is propagated back to the last unfolded time
step. Interestingly also for initialisations close{te0.2, 0.2] the error flow stays on

a similar level whereas for higher or smaller values it ims®s and respectively de-
creases quickly. This saddle point exists for all testegkstemensions, respectively
for a slightly shifted interval. It is most likely due to theahsfer function used, the
hyperbolic tangent, which stays in the linear range for ¢hesues.

w
o

N
o
T

log,, (error)

10

-20 |- -20 |-

30 I I I I I 30 I I I I I
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

weight initialisation range

(a) Backpropagated error informa-
tion to the last unfolded time step in
relation to the range of the uniform
weight initialisation. From left to
right the corresponding internal state
dimension is100, 90, 80, 70, 60, 50,

normalised weight initialisation range

(b) Backpropagated error flow to the
last unfolded time step in relation to
the range of the uniform weight ini-
tialisation for the different regarded
state dimensions normalised accord-
ing to equation (9).

and40.

Fig. 5. Influence of the initial weight distribution on thedik@ropagated error flow in the
NRNN using different internal state dimensions.

Figure 5(a) also illustrates that the smaller the intertetkesdimension is the higher
the weights should be initialised. This is caused by the tlaat with a higher di-
mension the probability of larger absolute values of the smm in the transition
matrix A increases, which leads to larger factors backpropagdtimetror through
the unfolded network. Still, as the curves all run in patalleere is obviously a
connection between the optimal weight initialisation aimél internal state dimen-
sion of the network.

We developed the following useful conjecture

dim1

P2 =P (9)

diIIl2

13



where p; stands for the range of the initialisation intervalp;, p;] and dim; for
the internal state dimension of two (normalised) RNNH 1,2). It is based on
our considerations about connectivity within a matrix (S8cand can be easily
confirmed by normalising the results of our initialisatiest (fig. 5(a)). As expected
after normalisation all curves coincide (fig. 5(b)), whidiows that, for a given
problem, there is a general development of the error flowiwihormalised) RNN.
Still, according to our experience, independent of therirdkstate dimension the
optimal weight initialisation has to be determined for egrbblem setting and
network architecture individually. However, as descripinis can always be done
by measuring the backpropagated error in the last unfolidesl step.

Our results correspond to the heuristics for weight ingiion in feedforward neu-
ral networks [2]. Thereby a reported rule for an optimal weeigpitialisation is

3

P Vdim
For the tested RNN and NRNN this would resulpia= 0.3, which is slightly larger
than our empirically determined valu@,2. The deviation is probably caused by the
different network structures. In contrary to feedforwartworks for (normalised)
RNN the number of unfolded time stepshas to be taken into account. The larger
m the greater is the influence of the weight initialisation be kast unfolded time
step, because the weights factorise the error flow in eaablded time step. Note,

that for sparse networks (sec. 5) the internal state dimertsas to be replaced by
the connectivity of the network in equations (9) as well &) (1

(10)

We finally compared the sensitivity of the weight initialieen between NRNN and
RNN. Thereby both networks had an internal state dimendido@ The problem
setting was once moré = 40 andr = 0.1. We plot the curves of the RNN and
NRNN at the interesting region of the saddle point aro0r2dfig. 6). In general a
flat curve is more preferable as it indicates that the netwsol&ss sensitive against
the initial weight distribution. Figure 6 shows that the NRI¢ slightly more robust
against the weight initialisation as its curve is flattenthiae one of the RNN. This
underlines the theory about NRNN being more stable (sec. 3).

5 Learning Long and Short-Term Memory with RNN

In the following we extend the discussion about learninggiterm dependencies
with RNN to the learning of long and short-term memory for gtimal system
identification. This is mainly done by an analysis of the &inee of the autonomous
part of the network, which is mapped by the internal statesiteon matrixA. So
far matrix A has always been assumed to be fully connected. In a fullyestad
matrix the information of a state vectey is processed using the weights.into
computes,.; (egs. 1 and 5). This implies that there is generally a higippraon

14
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Fig. 6. Sensitivity of the backpropagated error values tiedint ranges of uniform weight
initialisation in the RNN (dashed) and NRNN (solid). Theegter the curve the more sen-
sitive is the network to a sub-optimal weight initialisatio

of superposition (computation) but hardly any simple covesgon of information
(memory) from one state to the next one (right panel of fig. 7).

For the identification of dynamical systems such memory @eaedsential, as infor-
mation may be needed unchanged for computation in substtiuersteps. A shift

register (left panel of fig. 7) is a simple example for the iempkentation of mem-

ory, as it only transports information within the state w&ci;,. No superposition

is performed in this transition matrix. We confirmed this iar dasic experiment
of section 4 as by setting the transition matrixo a shift register both networks
identified the structure of the simple given time series irdiately.

Still, for an optimal system identification several intertporal dependencies over
different time periods have to be learnt, i.e., the modeltbdse able to model the
system’s long-term as well as short-term memory. Theredaperposition of infor-
mation is necessary to generate or adapt changes of the dysidmcontrast, con-
servation of information causes memory effects by trartspgpinformation more
or less unmodified to a subsequent state neuron. In thisxdpnmemory can be de-
fined as the average number of state transitions necessagntmit information
from one state neuron to any other one in a subsequent stateaN¥his number of
necessary state transitions the path length of a neuronirlexperiments of section
4 the required path length has been equal to the distabeéveen two subsequent
time indicatorsl.

To overcome the apparent dilemma between superpositioc@mskervation of in-
formation the transition matrixl needs a structure, which balances different ef-
fects of memory and computation. Sparseness of the transitiatrix reduces the
number of paths and the computational effect of the netwatkabthe same time
increases the average path length, and therefore allowsriger-lasting memory.

A solution is an inflation of the (normalised) RNN, i.e., a sltaneous extension of
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Fig. 7. Learning long and short-term memory with RNN: congbiain versus memory in
the transition matrixA [18].

the internal state dimension and the sparsity level of thesition matrixA while
keeping the connectivity constant. In other words, the id¢a inflate the network
to a higher dimensionality, while maintaining the compuata&l complexity of the
former lower-dimensional and fully connected network, atdhe same time al-
lowing for memory effects. With an inflated transition matd we can optimise
both superposition and conservation of information [18]jeBparsity structure is
thereby generated randomly, which means a certain pegemfaweights is ini-
tialised, whereas the remaining ones are set to zero. Rimgethis way, we repli-
cate on average the computational effect of the fully coteteoetwork. At the
same time we increase the path lengths (memory) with thesspeass level of the
inflated transition matrix.

Note, that there is some similarity in the resulting struetw long short-term mem-
ory networks [7], where the so called memory cells storermfation over a longer
period of time. In the recurrent neural network this can blei@ecd by particular
sparsity structures of the transition matrix

5.1 Performance Gain Through Inflation

To demonstrate that the proposed inflation of the networksshe learn long-term
dependencies we repeat our experiments of section 4 witdhraalifferent inflated
networks. In particular we applied, according to our theabput inflation, RNN
and NRNN with internal state dimensions 2if0 and 141 and respective sparsity

levels of50% and70.7%. Besides we tested for comparison reasons both networks

with an internal state dimension of1 neurons and a sparsity level 55%. The
latter does not keep the connectivity constant but in conteaves the total number
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of weights unchanged. For illustration we once more giveréseilts for the fully
connected networks (tab. 1). Table 2 shows that the inflagddarks identify the
structure of the problem more reliable and generally quicke

time | range # epochs RNN / NRNN

gapd r dim 100 100% | dim 200 50% | dim 141 70.7% | dim 141 50%
40 0.0 25139 18 /37 45/ 33 181 /68
40 0.1 40/ 35 41/10 16/17 18 /15
40 0.2 23/11 61/5 86/6 98/10
40 0.4 113/22 28112 84 /19 143123
60 0.0 160/ 158 44 /50 130/50 12/135
60 0.1 100/ 94 44146 120/ 21 56 /30
60 0.2 382140 35/13 77172 129 /65
60 0.4 544 207 205 /22 53124 83157
100 0.0 45/ 302 27185 26 /108 31417176
100 0.1 58 /162 19796 20/ 68 17730
100 0.2 298 /79 30/ 30 171732 40/ 28
100 04 121/283 16/ 80 16 / 45 211/62

Table 2

Average number of learning epochs the inflated RNN and NRN#t wie respectively
given internal state dimension and sparsity level needgihs$s the error limit (eq. 8), i.e.
to solve the problem, on the test set for different time gapad noise ranges For com-
parison reasons also the results for the fully connectedarks (dim 100 100%) of section
4.2 are given. The results demonstrate the performanceoimprent through inflation as
the maximum number of required learning epochs is lowertosé networks.

6 Conclusion

In this paper we showed that RNN unfolded in time and traindth & shared
weight extension of the backpropagation algorithm are,gpasition to an often
stated opinion, well able to learn long-term dependendissng shared weights
and overshooting in combination with a reasonable learalggrithm like pattern-
by-pattern learning and a proper weight initialisation greblem of a vanishing
gradient becomes a minor issue. Our results even indicatétie to shared weights
the networks possess an internal regularisation mechambinh keeps the error
flow up and allows for an information transport over at lealtiadred time steps.
In addition, we described how the weights of RNN and NRNN caroptimally
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initialised for a fast and stable learning. For the modelioi long and short-term
memory we introduced the idea of inflation, which simplifiee tdentification of

several inter-temporal dependencies within one network s\bwed that with the
inflated networks we can improve our results in the experino@anlong-term de-

pendencies. Overall, we could confirm that both RNN and NRK&valuable in

system identification and forecasting.

Future work may address a more theoretical investigatiothefexamined self-
regularisation ability of RNN, a deeper analysis of the v¢igitialisation and the
optimal transition matrix structure as well as a possibleveogence of the weight
distribution during the learning process.
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