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Abstract

This paper addresses the critical challenge of mitigating group-based biases in vision-language
foundation models, a pressing issue for ensuring trustworthy AI deployment. We introduce
DoubleCCA, a novel and computationally efficient framework that systematically enriches
textual representations to enhance group robustness. Our key innovation is to leverage
an auxiliary large sentence embedding model to capture diverse semantic perspectives,
counteracting biased representations induced by limited training data. To this end, we
propose a two-stage Canonical Correlation Analysis (DoubleCCA) technique: first, aligning
augmented and original embeddings in a shared space; second, reconstructing invariant
features to align with visual representations, thus enhancing the model’s group robustness. We
further propose a simple sentence augmentation approach that aims to improve the robustness
of CCA-induced subspaces. Our method is simple to implement and can be easily integrated
into existing models, making it a practical solution for improving the robustness of vision-
language foundation models to group-based biases. The experiments on a variety of datasets
demonstrate that our method outperforms existing methods in terms of both performance
and robustness. Our code is available at https://github.com/sisuolv/doubleccal

1 Introduction

Recently, contrastive language-image pretraining (CLIP) and its variants (Radford et al.| [2021}; |Zhai et al.l
2023}, |[Desai et al.l |2023) are widely used vision-language models (VLMs). They usually train models on
large-scale datasets with a large number of image-text pairs, such as LAION-400M (Schuhmann et al.l 2021)).
Recent works have shown impressive zero-shot generalization on a wide range of tasks, such as medical image
classification (Wang et al. 2022), object detection (Ramaswamy et al.| 2024), and semantic segmentation
(Sun et al.| [2024; [Li et al., [2024).

However, recent works (Menon & Vondrickl |2022; Roth et al.l [2023} |An et al., [2024]) show that current VLMs
lack a systematic investigation of the prompts they use. Therefore, they propose modifying the prompts
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Figure 1: The pipeline of our DoubleCCA. We leverage extra-textual information to augment semantic
descriptions and introduce an additional sentence embedding model to complement the semantic limitations
of the original VLM text encoder. We use the classical CCA technique twice to merge different semantic
information, which helps to improve the group robustness of the CLIP model.

to improve the model’s performance, especially its domain generalization ability. Despite their remarkable
zero-shot capability, these models are still sensitive to group-based biases, which are attributes correlated with
the ground-truth labels but are not directly related to the classification task (Zhang et al.,|2024; Dehdashtian|
let al, |2024a; |Zhu & Zhang], [2025)).

A robust classifier should be invariant to spurious correlations, i.e., features that are correlated with the
ground-truth labels but are irrelevant to the task, such as group attributes. To this end, numerous debiasing
methods have been proposed to enhance group robustness (Zhang & Ré, [2022; Kumar et al., [2022} Kirichenko|
et al, 2023} [Chuang et all 2023} [Dehdashtian et all, [2024¢; [You et all, [2024} [Gao et all 2024} [Phan et al.
2024} [Yang et al., [2024). Many of these approaches involve training a lightweight adapter on top of a frozen
CLIP model, using data annotated with both target and group labels. However, despite their success, these
methods often suffer from critical limitations that we aim to address.

First, the performance of the model is highly dependent on the dataset used for training the newly added
adapter architecture, which hinders the model’s ability to generalize efficiently to other datasets. Second,
other works (Chuang et al. [2023; [Yang et al. [2024) employ prompt tuning, which often relies on externally
constructed knowledge, frequently generated using LLMs. For instance, [Yang et al.| (2024) uses an LLM to
synthesize a balanced textual dataset and then optimizes prompts via fine-tuning to improve robustness.
This reliance on LLMs to construct complex training sets makes it difficult for models to generalize quickly
to other datasets. Moreover, some prompt tuning methods may incur additional API costs, which are not
efficient. Therefore, current debiasing methods exhibit limitations in generalization and efficiency.

To address these challenges, we ask the following question: How can we improve the group robustness of
foundation models without relying on prior knowledge of the dataset? To answer this question, we introduce
DoubleCCA, a novel framework for enhancing the group robustness of vision-language foundation models
(e.g., CLIP model) against group-based biases. Our approach is motivated by the observation that CLIP’s text
encoder has a limited capacity to capture rich semantic information, which can lead to biased representations.
Thus, our key idea is to leverage an auxiliary sentence embedding model to generate semantically richer text
embeddings, thereby complementing the limitations of the original CLIP text encoder.

Specifically, for a given set of class descriptions, we generate two distinct sets of text embeddings: one
from CLIP’s text encoder and another from an auxiliary sentence embedding model. We then introduce a
two-stage Canonical Correlation Analysis (CCA) framework. The first stage aligns these two embedding
sets into a shared, semantically correlated space. The second stage merges these aligned representations and
projects the result back into CLIP’s original embedding space to ensure compatibility with the visual features.
However, a critical challenge arises when the number of classes is small, as is common in many datasets. This
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provides insufficient data for CCA to learn stable transformation matrices. To address this, we propose a
data augmentation scheme to generate a set of diverse sentence embeddings, thereby enabling a more robust
estimation of the transformations. Note that the proposed data augmentation is not intended to completely
avoid using LLMs, but rather to minimize heavy reliance on interaction with LLMs, such as LLM-based
synthesized datasets or dataset-specific prompt optimization.

The pipeline of the entire framework is shown in Figure[I] and our contributions are summarized as follows:

e We propose a novel method, called DoubleCCA, to improve the group robustness of foundation
models against group-based biases.

e We introduce an additional sentence embedding model to complement the semantic limitations of
the original CLIP text encoder through the CCA technique.

o We demonstrate the effectiveness of our method on a variety of datasets, where it outperforms existing
methods in terms of both group robustness and domain generalization.

2 Preliminaries

This section will introduce the necessary background knowledge for our method, including the CLIP foundation
model and Canonical Correlation Analysis (CCA).

CLIP model. The CLIP model (Radford et al., 2021) is a vision-language foundation model that consists of
two parts: a vision encoder and a text encoder. The vision encoder ®, : R* — R? and the text encoder
O, : R%* — R? are deep models that map the input image and text to a d-dimensional embedding space,
respectively. Given a batch of image-text pairs (I,7), the model is trained to minimize the symmetric
contrastive loss |Radford et al.| (2021]), which aligns the image-text embedding pairs in the representation
space R<.

Once the model is trained, we can directly use the image and text encoders to align images with text
descriptions. Thus, a zero-shot image classifier can be built by comparing the similarity between the image
embedding ®, () and the text embedding ®;(7"). The typical method is to combine the name of the class
k with the predefined template to obtain the text description t;. For example, the class of zebra can be
integrated into the prompt template “a photo of a (class name)” to yield the description “a photo of a zebra”.
Thus, we can compute the logits for each class by using the cosine similarity between the image embedding
and the text embedding, and the class with the highest score is the predicted class.

Group Robustness Metrics. For a model f: X — ), we define the group-specific accuracy as:

Accy¢(f) = Eznp, ,[1(f(z) = y)], (1)

where Accy 4 is the accuracy of class y that belongs to group g. The worst group accuracy, which measures
the model’s robustness to spurious correlations, is defined as:

Accyors = i A . 2
CCworst (f) (y,gr)nelgxg ccy,q(f) (2)

A model with high average accuracy but low worst-group accuracy indicates susceptibility to spurious
correlations. The robustness gap is defined as:

Gap(f) = ]E(m,y)ND[l(f(x) = y)} - Accworst(f)' (3)

Canonical Correlation Analysis (CCA). Canonical Correlation Analysis (CCA) is a statistical method
that finds the transformation that maximizes the correlation between two feature sets from different models.
Let X4 € R™ 44 and Xp € R"%5 be the data matrices, where n is the number of samples, and d4 and dp
are the dimensions of the feature vectors. CCA finds the transformation matrices W4 and Wpx that maximize
the correlation between the transformed features Z4 = X4 W4 and Zg = XgWp in a common feature space.
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Figure 2: We compare the performance of different prompts with different backbone models on the Waterbirds
dataset. “Ori” denotes the original prompt of CLIP, i.e., “a photo of a (class name)”. “Waffle-1” denotes
the combination of the original prompt and the random words, i.e., “a photo of a (class name), which has
(random word)”. “Waffle-2” also denotes the combination of the original prompt and the random words, but
with a different template, i.e., “a photo of a (class name), (random characters)”.

We further define SXX = X;{X 4 and SYY = XEX B as the covariance matrices of X4 and Xp, and
SXY = X1 Xp as the cross-covariance matrix. Therefore, the formulation of CCA can be written as follows:

WIE?{/I)EB corr(Za, Zp) = WZ;SXYWB n
st. WISXXw, =1, WESYYWgp=1,

where corr(Za, Zp) is the correlation between Z4 and Zp, and I is the identity matrix.
This formulation can be solved by the eigenvalue decomposition of the generalized eigenvalue problem:
U,S,vT = SVD((SXX)—l/Q . GXY (SYY)—l/Q)7
Wa = (SX5)"12y, Wy = (8YY)" 12y,
In practice, we center the data before applying CCA to ensure that the data has a mean of zero. And we use

regularized CCA (Corrochano et al.l [2005} [Horoi et al.| 2024) to make the computation of W4 and Wg more
stable.

Sentence Embedding Models. Sentence embedding models map variable-length sentences to fixed-
dimensional dense vectors that capture semantic meaning. Unlike CLIP’s text encoder, which is optimized for
vision-language alignment, dedicated sentence embedding models like Sentence-BERT (Reimers & Gurevych)|
[2019), HiT (He et all [2024), BART (Lewis et all [2020), L12-V2(Reimers & Gurevychl 2020a), and GTE
et al.}|2023) are trained specifically for semantic similarity tasks. These models learn embedding features where
semantically similar sentences are mapped to nearby points in the embedding space, providing complementary
information to CLIP’s vision-oriented text representations.

3 Method

3.1 Problem Analysis

One interesting approach to improving CLIP’s zero-shot classification is to augment the prompts with
additional visual concepts from external knowledge sources. Menon & Vondrick| (2022)) utilizes large language
models (LLMs) like GPT-3 to generate class-specific descriptions for each class and incorporate them into
prompts, resulting in prompts like “a photo of a hen, which has two legs.” However, this method is limited by
prior knowledge of the class name, and the GPT-3-generated descriptions exhibit a high degree of ambiguity
and limited visual relevance.

[Roth et al.| (2023) propose a method called WaflleCLIP, which substitutes GPT-3 generated descriptors with
random word or character sequences, resulting in prompts such as “a photo of a hen, which has jmhj, |J#m.”
Where “jmhj, !|J#m” is the random character sequences. Based on WaflleCLIP, we simply study the effect of
this method on the group robustness of the CLIP model. We conduct four toy experiments on the Waterbirds
dataset (Sagawa et all, [2020) with four different backbone models, i.e., ResNet-50, ViT-B/32, ViT-B/16, and
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ViT-L/14. We compare the results of vanilla CLIP with the original prompt, WaffleCLIP with random words
(shortened as Waffle-1), and WaffleCLIP with random characters (shortened as Waffle-2). See Figure

We observe that WaflleCLIP methods achieve better results in terms of average accuracy and worst-group
robustness only when using the ViT-L/14 backbone. However, for the other three backbone models, their
performance is worse than that of the vanilla CLIP. Moreover, when using ViT-B/16 or ResNet-50 as the
backbone, WaffleCLIP’s worst-group robustness drops to near zero, which is substantially lower than that of
the original prompt. In other words, WaffleCLIP exhibits inconsistent performance on debiasing tasks, which
stands in notable contrast to the empirical findings documented in its original publication.

Although WaflleCLIP enhances semantic representations by incorporating stochastic words, it exhibits
persistent deficiencies in semantic enhancement capacity — particularly evident in debiasing tasks. On the
other hand, PerceptionCLIP’s two-stage paradigm first predicts attribute-specific weighting priors before final
category determination. While its empirical results reported in show non-trivial debiasing
capabilities, substantial performance gaps persist when benchmarked against state-of-the-art alternatives.

Since WaffleCLIP and PerceptionCLIP do not modify the CLIP text encoder, we believe their suboptimal
performance is due to the text encoder’s failure to produce more semantically meaningful text embeddings.
Consequently, we investigate the use of auxiliary text embedding models from natural language processing,
which are designed to generate more informative text representations. We further perform an empirical
analysis of CLIP’s text representations to support this claim.

Figure [f] illustrates the feature distributions of vari-

ous sentence embedding models (including the CLIP ., —

text encoder, Sentence-BERT, BART, and L12-V2) | o e
visualized using t-SNE (van der Maaten & Hinton, = uav2
on the Waterbirds dataset, which is widely

used for evaluating group robustness. The CLIP
text encoder exhibits long arrows between centroids,
indicating significant within-class shifts due to spuri-
ous background correlations. Conversely, models like
BERT and L12-V2 display markedly shorter arrows,
demonstrating more invariant representations. Waterbirds

Moreover, we show the quantitative results on Wa- Figure 3: Quantitative comparison of attribute bias
terbirds in Figure The CLIP text encoder ex- across text encoders on Waterbirds datasets. Attribute
hibits a noticeable attribute bias of 0.36, while BERT bias measures the average L2 distance between class-
significantly reduces this bias to 0.12. A similar conditional attribute centroids in the embedding space
trend is observed for the other sentence embedding (see Appendix [B] for details). Lower values indicate
models tested, and preliminary results suggest that more invariant representations.

this trend also holds for other benchmarks, such as

CelebA (see Appendix for details). These results

support our claim that auxiliary sentence embedding models are beneficial for extracting more invariant
representations. A detailed theoretical motivation for this claim is provided in the Appendix. Therefore, we
introduce DoubleCCA, a method that leverages an auxiliary model to effectively enhance the foundation
model’s performance and group robustness. We will detail our method in the following section.

3.2 DoubleCCA

Based on the previous analysis, our main idea is to utilize these sentence embedding models to enrich the
text embeddings of the CLIP model. However, there are two major challenges in this process. First, the
dimensionality of the text embeddings generated by the sentence embedding model may not be the same as
that generated by the CLIP text encoder. Second, it is difficult to merge these newly generated sentence
embeddings into the CLIP model. To address these challenges, we propose a novel method called DoubleCCA,
which utilizes the canonical correlation analysis (CCA) technique twice. The first CCA is used to align the
representations of different embeddings into a common space. The second CCA is used to merge the aligned
representations and then recover to the original embedding space.
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Figure 4: Group-bias visualization of text embeddings across text encoders on the Waterbirds dataset. Each
panel shows 2D t-SNE projections of text embeddings from different encoders: (a) CLIP, (b) BART, (c)
BERT, (d) L12-V2. Points represent individual text embeddings, with colors indicating class-background
combinations. Arrows connect centroids of the same class across different backgrounds (e.g., Landbird on
land — Landbird on water). Shorter arrows indicate smaller spurious attribute shifts, demonstrating that
auxiliary text encoders (BART, BERT, L12-V2) produce more invariant representations compared to CLIP.

3.2.1 Step 1: The First CCA

We first generate sentence embeddings using the sentence embedding model @, and the CLIP text encoder
®,. Let X € R"*% and X,, € R"*%e be the data matrices, where n is the number of classes in the dataset, d
and dg. are the dimensions of the text embeddings generated by the CLIP text encoder and the sentence
embedding model, respectively. We then apply CCA (w.r.t. Eq@ to learn the transformation matrices W,
and W, that embed two features into a common space:

Zw = XW:va Zse = XseWse7 (5)

where Z € R"*%ce and Z,, € R"*%ce are the aligned representations of the sentence embeddings and the
CLIP text embeddings, respectively.

3.2.2 Step 2: The Second CCA.

In zero-shot classification, CLIP computes the similarity between image and text embeddings: S(I,y) = fI f.,
where f, = ®,(I) and f; = ®,(T}) for class y. After the First CCA, we achieved two different scores:

So(l,y) = 2 W WT fy, See(l,y) = 2@ WoWT £, (6)

where (%) and xg‘lé) are the text embeddings of the class y w.r.t. the original prompts.

Optimal Merging Strategy. To combine these complementary scores effectively, we formulate the merging
as an optimization problem. Let W, = X WQCWQCT and W, = X seI/VseWg represent the projected text
embeddings.

Intuition: The optimal linear combination that maximizes robustness to group shifts while preserving
classification accuracy can be achieved through a second CCA that aligns the two predictor spaces.

Following (Horoi et al. [2024), we apply CCA to merge these predictors. First, we construct proxy features:

Xa=W,X, Xp=W.X, (7)
where we use the original text embeddings X as a proxy for image features. We then solve:

max tr(PYSapPp) s.t. PYSiaPs=1, PLSppPp=1, (8)
A, I'B

where SAA = XZ;XA, SBB = XgXB, and SAB = XZ{XB.
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Algorithm 1 DoubleCCA

Require: Sentence embedding model fs., CLIP model (f,, f;), number of augmented sentences K
Ensure: Merged text embeddings W

: Generate K augmented sentences for each class
Extract sentence embeddings Fi.. using P,

Extract CLIP text embeddings F, using &

Apply CCA to X and Y to obtain W, and Wy,
Compute W, = XW,WT, Wyo = X W WT
Generate augmented sentence embedding features F).
Compute X 4 = VAVJCFT7 Xp = W,.F,

Apply CCA to X4 and Xp to obtain P4 and Pp
Compute M = (Pg - P;1)T

Merge text embeddings: W = %(VAVQc + M - Wse)

: return W

— =
= O

The merged text embeddings are:
1 . R
W= (We+ M-We), M= (Pg-PHT. (9)

This merging preserves semantic coherence from both sources while reducing sensitivity to spurious correlations.

Then, we can apply CCA to learn the transformation matrices P4 and Pp by maximizing the correlation
between X4 and Xpg as follows:

max  corr(Xa, Xp) = PYSABPy st. PYSAAp, =1, PLSBBPg =1,
P4, P (10)
SAA = XTx,, SPB=XxLXxp S =XxTXpg.

3.2.3 Data Augmentation for Stable CCA

We note that the number of class labels is usually much smaller. For example, there are only two classes in
the Waterbirds dataset. This means that only two sentences are used for the CCA to learn the transformation
matrices W, and Wy.. We think this is not enough to learn stable transformation matrices. (The next
section will show the experimental verifications.) To address this issue, we propose using data augmentation
to generate more sentence embeddings. First, we combine the original prompt and the random character
sequences, i.e., “a photo of a (class name), (random sequences)”. We call this random sentence. Then, we use
a large language model (like Qwen) to infer more complementary information that is similar to the original
prompt. Third, we concatenate two types of sentences with the original sentences to form a new sentence set,
which has a size of K. Finally, we use the sentence embedding model and the CLIP text encoder to extract
the corresponding sentence embedding features, i.e., Fi,, and F. respectively. We replace X, with F¢. and
X with F,. to apply CCA to learn the transformation matrices W, and We.

3.2.4 Inference

After DoubleCCA, we can achieve the merged text embedding matrix W € R™*¢. We can directly use these
merged text embeddings to predict the class label of the input image, which can be formulated as follows:

= argmg)}}(S(I,y), where S(I,y) = W, ®,(I), (11)
y

where W, € R'*4 is the y-th row of the merged embedding matrix W, which is the embedding feature of y.

The overall process of DoubleCCA is summarized in Algorithm I DoubleCCA is designed as a plug-and-play
module, allowing it to be combined with various existing methods such as PerceptionCLIP (PCLIP) (An et al.)
2024) and Oth-Cal (Chuang et al., |2023)). The specific combination schemes are detailed in the Appendix.
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The overall time complexity of our DoubleCCA is: O(K (d? + d2,) + d?), where the time complexity of the
First CCA is O(Kd? + Kd?, + min(d, ds.)?) and the time complexity of the Second CCA is O(Kd? + d?). In
a typical experimental setting (e.g.K ~ 500, d = 512 for ViT-B), DoubleCCA introduces negligible overhead
to standard CLIP inference. Since the optimization is convex, it can be solved with eigenvalue decomposition
to get a closed-form solution; it’s guaranteed to find the best solution and converge reliably.

Table 1: Average accuracy and worst-group robustness on the Waterbirds and CelebA datasets. We compare
our method with original CLIP and recent PerceptionCLIP, and we select four backbones: ResNet-50,
ViT-B/32, ViT-B/16, and ViT-L/14.

RN50 ViT-B/32 ViT-B/16 ViT-L/14
avg. T worst!  gapl ‘ avg.T worst?  gapl ‘ avg.T worst?  gapl ‘ avg.T worst?  gapl
< CLIP 90.47 16.07 7440 | 87.34  47.28  40.06 | 87.34 26.79  60.55 | 90.55  44.64 4591
;§ +background 90.62 39.29 51.33 | 7858 61.96 16.62 | 86.01 44.34  44.73 | 87.72 5998 27.74
£ Ours 91.76 44.64 47.30 | 89.34 57.60 31.74 | 86.53  28.58  57.95 | 92.14 51.78  40.36
g + background 91.03 48.21 42.82 | 85.44 62.50 2294 | 86.43 46.43 40.00 | 89.55 62.50 27.05
CLIP 81.05  73.87 7.18 80.73  75.82 4.91 75.16  62.01 13.15 | 86.98 77.36 9.62
+gender 85.97  81.58 4.39 80.18 76.18 4.00 | 75.92  66.71 7.99 80.30  74.31 5.99
« +gender,age 87.74  84.94 2.80 82.34 7721 5.13 75.22  64.61 10.61 | 82.26  79.06 3.21
< +gender,age,race | 85.91  82.57 3.34 81.99  75.67 6.32 76.37  67.93 8.44 82.77  80.00 2.77
< Ours 85.35  83.05 230 | 84.19 78.75 544 79.21  68.54 10.67 | 85.79  81.18 4.61
© +gender 87.53  85.56 1.97 82.67  76.87 580 | 78.55 73.84 4.71 | 8144 76.14 5.30
+gender,age 88.70 86.35 2.35 82.16  76.90 5.44 78.09  70.54 7.55 83.78  80.87 2.91
+gender,age,race | 85.93  84.18 1.75 | 82.63  75.92 6.71 7717 69.18 7.99 85.35 83.00 2.35

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate the group robustness of our method. We conduct experiments on two widely used
datasets: Waterbirds (Sagawa et all 2020) and CelebA (Liu et all|2015). For these two datasets, each image
has an associated group attribute, such as the background of the image in the Waterbirds dataset and the
gender/age of the person in the CelebA dataset. All these attributes are correlated with the ground truth
labels, but they are not directly related to the classification task. Following previous work (Zhang & Ré|
2022)), we consider these attributes as group attributes and report the average accuracy and the worst-group
robustness on these datasets. In Appendix [G] we also compare our method with the original CLIP on the
other five benchmark datasets, including CMNIST (LeCun et al 2002)), FairFace (Karkkainen & Joo| 2021)),
CounterAnimal (Wang et al.| [2024)), ImageNet-A (Hendrycks et al., [2021]), and COCO-FP (Liu et al.| [2024)).

Implementation Details. We utilize CLIP (Radford et al.,[2021) as the foundation model and evaluate the
performance of our method on various tasks and datasets. All experiments use PyTorch (Paszke et al. 2019)
and are performed on a single NVIDIA A100 GPU. We follow the same experimental settings as previous
work (An et al.||2024). We use Resnet-50 (He et al., |2016), ViT-B/32, ViT-B/16, and ViT-L/14 (Dosovitskiy
et al., [2021) as the backbone models for the evaluation of group robustness. For the evaluation of domain
generalization, we use ViT-B/16 as the backbone model.

For the sentence embedding model, we use the Hierarchy Transformer encoder (HiT) (He et al. [2024) as the
default sentence embedding modelB Since the output of the HiT lies in the hyperbolic space, we use the
logarithmic map function to transform the output to the Euclidean space (Yang et al., |2023)). We set the
dimension of the common space in the first CCA to 64, and the dimension of the second CCA is set to the
dimension of the original image embeddings. Moreover, we set the number of augmented sentences K to 500,
which can achieve good results empirically.

n our experiments, we use “HiT-MiniLLM-L12-WordNetNoun” released on HuggingFace as the sentence embedding model.



Published in Transactions on Machine Learning Research (12/2025)

Table 2: Comparison with various state-of-the-art methods on the Waterbirds and CelebA datasets. The
backbone model is ViT-L/14.

Waterbird CelebA
Method avg. worst gap [ avg. worst gap
CLIP 90.55 44.64 45.64 | 86.98  77.36 9.62
WaffleCLIP 91.57 57.14  34.43 | 84.50 79.35 5.15
Oth-Cal 84.71 67.13 17.58 | 86.19 76.11  10.08
FairerCLIP 88.87 77.57 11.30 82.57 78.49 4.11
PCLIP 87.72 59.98  27.74 | 82.77 80.00 2.77
Ours 92.14 51.78  40.36 | 85.79 81.18 4.61
Ours+PCLIP 89.55 62.50 27.05 | 85.35 83.00 2.35
Ours+Oth-cal | 84.04 80.53 3.51 85.90 84.51 1.39

4.2 Results on Group Robustness

We first evaluate the group robustness of our method on the Waterbirds and CelebA datasets. The results
are reported in Table We mainly evaluate four different backbone models (RN50, ViT-B/32, ViT-B/16,
and ViT-L/14). The results are compared between the baseline CLIP model and our proposed method.

First, we show the results when the text prompts only describe the class and ignore the contextual attributes.
First, we observe that our method achieves better average accuracy and worst-group robustness than the
baseline CLIP model on both datasets. Although the average accuracy of our method is slightly lower than
that of the baseline CLIP model, when the backbone is ViT-B/16 on Waterbirds and the backbone is ViT-L/14
on CelebA, the worst-group robustness is significantly improved. We think this is a trade-off between average
accuracy and worst-group robustness, which has also been observed in recent work (Dehdashtian et al.,
2024b)). For example, when the backbone is ViT-L/14 on CelebA, the worst-group robustness of our method
is 81.18%, which is higher than that of the baseline CLIP model (77.36%). However, the average accuracy
has a slight decrease (from 86.98% to 85.79%) compared to the baseline CLIP model.

Following PerceptionCLIP (An et al., 2024), we include contextual attributes such as conditional information,
background information in the Waterbirds dataset, and gender information (i.e., female and male) in the
CelebA dataset. Here, we only substitute the original prompt embedding with the merged text embeddings
W in the CLIP model and then use the same inference process as in (An et al., 2024)).

We report the results on Waterbirds by considering the background as the contextual attributes, such as
in a forest, in the sky, on a street, on grass, on a tree, with flowers, on a beach, with humans, on a branch,
etc. First, the same phenomena are observed in our reproduced results, where group robustness can be
improved by incorporating these attributes, which also help reduce the accuracy gap and achieve a fairer
zero-shot classifier. Second, we observe that by using our method, worst-group robustness can be further
improved, and the accuracy gap can be further reduced in most cases. More interestingly, considering the
background information, the worst-group robustness shows consistent improvement across different backbone
models, while the average accuracy has experienced a slight decrease. In this case, a trade-off between average
accuracy and worst-group robustness is also observed. However, we believe this will be beneficial in achieving
a fairer zero-shot classifier.

Then, we also report the results on CelebA by considering contextual attributes such as gender (female and
male), age (young and old), race (white skin, dark skin, Asian, and others), etc. We observe that our method
can achieve an overall better average accuracy and worst-group robustness than the baseline CLIP model on
the CelebA dataset. For instance, when the backbone is ViT-B/16, the accuracy gap of our method is 4.71%,
which is lower than that of the baseline CLIP model (7.99%), considering the contextual attribute of gender.
Furthermore, compared to the results shown in FairerCLIP, our method achieves better results when the
backbone is ResNet-50, where the best worst-group robustness of our method is 86.35%, which is higher than
that of FairerCLIP (81.50%). For the backbone of ViT-L/14, our method also achieves a competitive result

2Note that in this table, “+background” on the Waterbirds and “+4gender, 4+gender, age, +gender, age, race” on CelebA
refer to the recent PerceptionCLIP method. Our method can be integrated with the PerceptionCLIP method, where we simply
replace the original text embeddings with the merged text embeddings, as shown in Eq. E
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Figure 5: Combination of Contrastive Adapter (CA) and DoubleCCA. We report the average accuracy and
worst-group robustness on the Waterbirds dataset. The backbone model is ViT-L/14 and ResNet-50.

compared to FairerCLIP, where the best worst-group robustness of our method is 83.00%, which is slightly
lower than that of FairerCLIP (85.20%). It is worth noting that FairerCLIP utilizes the target label and
attributes to learn a kernel map function in a supervised way, which is more complex than our method.

Third, we compare our method with various state-of-the-art methods, including WaffleCLIP (Roth et al.|
2023), PerceptionCLIP (PCLIP) 2024)), FairerCLIP 2024), and Oth-Cal (Chuang
et al.L . Moreover, since our method can be easily integrated into existing models, we also combine
our method with PCLIP and Oth-Cal to further improve the group robustness of the CLIP model. The
results are shown in Table Bl We observe that our method can achieve the overall best results on both
datasets. Note that although our method does not achieve the best average accuracy on the CelebA dataset,
it and its combination variants achieve higher worst-group robustness. On the other hand, the results on
these two benchmarks show that our method indeed helps reduce the gap between the average accuracy and
the worst-group robustness. This means that using auxiliary information can help achieve a good trade-off
(Dehdashtian et al. |2024b)).

Finally, we also combine our method with the contrastive adapter (CA) (Zhang & Ré| [2022)) to further
improve the group robustness of the CLIP model. In detail, we first use DoubleCCA to generate the merged
text embeddings, and then substitute the original text embeddings with the merged text embeddings in the
CLIP model. Finally, we use the CA algorithm to learn the adapter. The results are shown in Figure 5] We
observe that using the merged text embeddings helps improve the worst-group accuracy, but the average
accuracy has decreased slightly. Thus, the trade-off between the average accuracy and the worst-group
robustness is also observed.

Overall, the results show that DoubleCCA effectively enhances the group robustness of foundation models,
providing better performance and fairness across different datasets and backbone models. In different scenarios,
trade-off phenomena are also observed, which is consistent with previous work (Dehdashtian et al., 2024b)).

4.3 Effect of Sentence Embeddings

Since DoubleCCA leverages auxiliary sentence embeddings, we conduct an ablation study to analyze the
effect of sentence embeddings on the group robustness of the CLIP model.

In previous experiments, we used the HiT model to generate sentence embeddings. To
further study the effect of sentence embeddings, we replace the HiT model with other sentence embedding
models. To ensure a comprehensive comparison, we select popular models from the HuggingFace Hul:ﬂ as
alternatives to the default HiT model, such as the classical Sentence-BERT model (BERT) (Reimers &
Gurevychl [2020b)), gte-base-en-v1.5 model (GTE) 2023), and bart-base model (BART) (Lewis
et all, 2020). We directly use the pre-trained models released by the HuggingFace Hub to generate sentence
embeddings for the Waterbirds dataset. The results are shown in Figure [6]

Compared with the original CLIP model, we observe that different sentence embedding methods in DoubleCCA
either improve the model’s performance or maintain it at a comparable level. Notably, HiT demonstrates the

Shttps://huggingface.co/
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most significant performance improvements. Both Sentence-BERT and gte-base-en-v1.5 also have a positive
impact on the model’s performance.
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Figure 6: The impact of different sentence embedding models. We conduct experiments on the Waterbirds
and report the average accuracy (Avg) and worst-group robustness (WG).

First, HiT is a state-of-the-art sentence embedding model that aims to learn the hierarchical semantic structure
in language models. HiT is trained on WordNet, which can provide unseen subsumptions and hypernyms for
the words in the sentence. Second, Sentence-BERT and gte-base models are also popular sentence embedding
models that have been verified to be effective in unsupervised text retrieval tasks. However, BART shows
little improvement in model performance. We believe this is because BART targets dialog understanding,
question answering, and summarization tasks, which may face the same problems as mentioned before, where
it will introduce semantic ambiguity to text embeddings (Menon & Vondrick, 2022).

Overall, the results demonstrate that the choice of the sentence embedding model can significantly affect the
performance of the foundation model. We recommend using HiT as the default sentence embedding model
in DoubleCCA, as it achieves the best performance in our experiments. Moreover, it is more interesting to
explore the effect of different sentence embedding models on the group robustness of the foundation model,
which is left for future work.

4.4 Ablation Study
4.4.1 Effect of the Hyperparameters.

Number of Sentences. We conduct an ablation study to analyze the effect of the number of augmented
sentences on group robustness. We employ the backbone model for ResNet-50 and fix the dimension of the
CCA at 64. Then, we vary the number of sentences from 1 to 2000. The results are shown in Figure Iﬂ (a).
The results indicate that varying the number of sentences has minimal impact on the average accuracy but
demonstrates a substantial influence on worst-group robustness. When the number of sentences is less than
500, the worst-group robustness exhibits high variability. In particular, when the number of sentences drops
to 100, the performance deteriorates below that of the original CLIP model. We attribute this instability to
the inherent randomness of the part of random sentences. However, as the number of sentences increases, the
model’s performance gradually stabilizes, suggesting that sufficient sentences enable the model to capture
meaningful pragmatic information.

100
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Figure 7: Ablation study results on the Waterbirds dataset.
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Figure 8: Accuracy of ViT-L/14 on CelebA with five different data augmentation methods (more details can
be seen in Sec. |4.4.3). We report the average accuracy (Avg) and worst-group robustness (WG).

Dimension of CCA. We further study the effect of the dimension of the CCA on the group robustness of
the CLIP model. We employ the ResNet-50 backbone model and fix the number of sentences to 500. Then,
we vary the dimension of the CCA from 1 to 384@ The results are shown in Figure m (b). The results indicate
that the dimension of the common space significantly impacts performance. Both low and high dimensions
adversely affect the results; low dimensions lead to insufficient feature representation, while high dimensions
introduce feature vectors corresponding to small singular values. We recommend setting the dimension of the
CCA to 64, as it achieves the best performance in our experiments. Moreover, as discussed in
, the dimension of this subspace is a natural measure of the model complexity; thus, some automatic
dimension selection methods can be used to determine the optimal dimension of the CCA. We leave this for
future work.

4.4.2 Effect of the First CCA

Finally, we analyze the effect of the first CCA on the group robustness of the CLIP model. We employ the
backbone model of ResNet-50 and fix the number of sentences to 500. Then, we remove the second CCA
from the DoubleCCA method and directly use Eq[f] as the score function for the zero-shot classification. The
results are shown in Figure[7| (¢). The results indicate that only the first CCA has a positive impact on the
group robustness of the CLIP model. But the second CCA step is essential for further improving the group
robustness of the CLIP model.

4.4.3 Effect of the Data Augmentation

We further study the effect of data augmentation on the group robustness of the CLIP-ViT-L/14 on CelebA.
Then, we consider four different scenarios: (a) only using the original prompt (S1); (b) using the original
prompt and random character sequences (S2); (c) using the original prompt and its variants that contain the
attribute information (S3); (d) using the original prompt and LLM-generated sentences (S4); (e) using the
original prompt, random sentences, and LLM-generated sentences (S5); The results are shown in Figure 8] We
can observe that different data augmentation methods affect performance. If we only use the original prompts,
the results are worse. This verifies our assumption that the original prompt is not enough to learn stable
transformation matrices. Moreover, although random sentences contribute to performance improvements,
their average is the lowest. Thus, when we combine them with LLM-generated sentences, the performance can
be further improved, achieving a good trade-off between average accuracy and group robustness. It’s worth
noting that we employ an LLM only once per class to generate a small set of auxiliary sentences that serve as
a form of data augmentation. And we do not invoke the LLM during inference, so that the inference of our
method is efficient on par with the original CLIP (see Section . Furthermore, different from previous
work [Yang et al.| (2024)), our approach does not require complex, meticulously designed processes. It only
utilizes LLMs to assist in generating a small number of sentences, thereby enhancing textual diversity and
stabilizing CCA optimization.

4The dimension of the HiT feature is 384.
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Table 3: Performance comparison across proxy types.

Proxy Type Waterbirds Avg Waterbirds Worst CelebA Avg CelebA Worst
Text Embedding (ours) 89.55 62.50 85.35 83.00
Real Image Features 91.93 64.29 88.68 84.35

Table 4: The results of computational cost on Waterbirds and CelebA. We compare our method with the
original CLIP, and we select two backbones: ResNet-50 and ViT-L/14.

Model Method ‘Waterbirds CelebA
Time(s) CPU(MB) GPU(MB) FLOPs(G) Time(s) CPU(MB) GPUMB) FLOPs(G)
RN50 Origin 40.67 3,355 1,699 4.1 251.67 7,282 1,695 4.1
Ours 41.10 3,359 1,733 4.51 252.82 7,315 1,733 4.51
ViT-L/14  Origin 50.63 5,565 3,209 81.1 577.62 8,123 3,209 81.1
Ours 51.13 5,622 3,243 89.21 579.27 8,165 3,243 89.21

4.4.4 Effect of Using Text as an Image Proxy

In the second step, we use the original text embeddings X as a proxy for image features. This is because we
focus on zero-shot inference, so we do not access any training or validation images from the target dataset
and cannot directly leverage image features from the target domain. Therefore, to validate this design, we
conduct a new ablation study in a setting where labeled target-domain image data are available, replacing the
class-level text embeddings with real image features. The results are reported in Table [3] We observe that
using features extracted from real images indeed yields better performance, improving worst-group accuracy
by 1-2% on average compared to the text-based proxy. This result empirically validates that class-level text
embeddings serve as a reasonable proxy for target-domain image features under a zero-shot setting.

Then, we analyze the rationality of this design from a theoretical perspective. In our work, we focus on
zero-shot inference; therefore, we do not access any training or validation images from the target dataset and
cannot directly leverage image features from the target domain. To mitigate this limitation, we exploit CLIP’s
inherent text—visual alignment: for semantically aligned text—image pairs (T, I), the expected class-conditional
text and image embeddings are approximately equal, i.e., E[®4(T)|y] =~ E[®,(])|y] as formalized in Proposition
1 (Appendix D). Consequently, under the constraint of no access to target-domain images, class-level text
embeddings serve as our best available proxy for the image feature distribution of each class.

4.5 The Analysis of Efficiency

Finally, we evaluate the efficiency of DoubleCCA on the full test sets of Waterbirds and CelebA. We provide
quantitative results, including total inference time, CPU/GPU memory consumption, and FLOPs. Here,
we report the results for CLIP-RN50 and CLIP-ViT-L/14 in Table 4] and more results can be found in the
Appendix First, we observe that the FLOPs increase by approximately 10% compared to the original
CLIP model. Second, wall-clock inference time only increases by approximately 0.3-1.6%, and GPU/CPU
memory increases by approximately 1-3%. These results show that DoubleCCA incurs negligible additional
computational overhead during inference, with inference speed remaining virtually unchanged. This aligns
with our complexity analysis and empirically validates the claim that DoubleCCA is computationally efficient.

5 Related Work

We briefly review related work on group robustness. Group robustness is a critical issue in machine learning,
especially in the context of fairness and bias. Many works focus on improving the group robustness of
foundation models. Existing methods can be divided into three categories: prompt tuning, adapter-based
methods, and fine-tuning methods. The first category includes methods that modify the input prompts
given to a pre-trained model to better align with the desired output. Representative works include (Chuang
et al., 2023} [Phan et all [2024; |[Yang et al.l |2024). The second category includes methods that add additional
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modules to the pre-trained model to adapt it to the target task. Representative works include (Zhang & Ré|
2022; |Gao et al., |2024; |Dehdashtian et all 2024c)). The third category includes methods that fine-tune the
pre-trained model on the target task. The representative works include (Kumar et al., 2022). In addition to
these methods, An etal.(An et al., |2024) proposes a perception-aware method (called PerceptionCLIP) to
enhance the group robustness of the CLIP model, which provides CLIP with contextual attributes. This is
similar to our method, which also enriches the text embeddings of the CLIP model with additional semantic
information. Both methods aim to improve the group robustness of the zero-shot classifier. According to the
experiments, our method outperforms PerceptionCLIP in terms of both average accuracy and worst-group
robustness. Since our method is simple and easy to implement, it can be easily integrated into existing
models, such as the contrastive adapter (Zhang & Ré, [2022), providing a practical solution to improve the
robustness of the foundation models.

Finally, we clarify how our approach differs from prior CCA-based methods (a summary can refer to Table
in the Appendix). The first CCA step in our framework resembles classical multi-view CCA approaches
Dhillon et al.| (2011)), which align CLIP text embeddings with auxiliary sentence-level representations in a
shared low-rank subspace. However, unlike these works, we introduce a second CCA step that explicitly
projects the fused embedding back into the original CLIP vision-compatible feature space. This design
ensures compatibility with frozen CLIP inference while preserving semantic richness. In contrast to Horoi
et al. [Horoi et al.| (2024)), which requires extracting and fusing multi-layer internal features from trained
vision-language models (and often involves fine-tuning or architectural modifications), our method operates
entirely on class-level text embeddings using closed-form CCA transformations. Crucially, it does not require
access to training images, modifies neither the vision nor the language backbone, and avoids any fine-tuning.
As a result, our approach is a lightweight, plug-and-play module that can be seamlessly integrated with
existing group-robustness frameworks such as PerceptionCLIP and Contrastive Adapter.

6 Conclusion

We proposed DoubleCCA, a novel method to improve the robustness of foundation models to group-based
biases. By employing CCA twice, our method effectively aligns and merges different text representations.
We demonstrated the effectiveness of DoubleCCA on various datasets, showing that it outperforms existing
methods in terms of both group robustness and domain generalization. Our approach is simple to implement
and can be easily integrated into existing models, providing a practical solution to improve the robustness
of foundation models. Future work could explore the theoretical foundations of this approach and further
design a black-box optimization scheme (Song et al.l 2024) to enhance robustness. On the other hand, we
also plan to explore the effectiveness of our approach in more complex, non-object-centric settings, such as
scene understanding, multi-label classification, or context-dependent recognition tasks.
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A Visualization results on CelebA

Figure [J] shows similar patterns on the CelebA dataset, where arrows connect same-class centroids across
gender attributes (Male — Female). CLIP’s representations exhibit large gender-induced shifts, as indicated
by long arrows. In contrast, auxiliary encoders keep within-class clusters compact and are less sensitive to
spurious gender attributes. Complementing these visualizations, Figure [I0] provides a quantitative summary
of the centroid shifts by reporting the mean ¢y distance between male and female centroids within each class
(lower is better) and confirms that auxiliary encoders consistently yield smaller cross-gender distances than
CLIP, consistent with the t-SNE trends.
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Figure 9: Group-bias visualization of text embeddings across text encoders on the CelebA dataset. Each
panel shows 2D t-SNE projections from: (a) CLIP, (b) BART, (¢) BERT, (d) L12-V2. Points represent
text embeddings colored by class-gender combinations. Arrows connect same-class centroids across gender
attributes (Male — Female). The substantially shorter arrows in BART, BERT, and L12-V2 compared
to CLIP indicate these auxiliary encoders learn representations that are more robust to spurious gender
correlations.

CLIP
BART
BERT
L12-v2

CelebA

Figure 10: Quantitative comparison of attribute bias across text encoders on CelebA datasets. Attribute bias
measures the average L2 distance between class-conditional attribute centroids in the embedding space (see
Appendix [B| for details). Lower values indicate more invariant representations.

B Attribute Bias Score Computation

The Attribute Bias Score (ABS) used in Figure [3| and Figure [10] quantifies how much text representations
shift due to spurious attributes within each class. Given a text encoder ®, we compute:
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o Class-attribute centroids: For each class ¢ € C and attribute a € A, we compute the centroid of
all text embeddings:
1
He,a = m Z (I)(tz) (12)

1Y =cC,a;=a
where N, , is the number of text samples with class ¢ and attribute a, and t; represents the i-th text
prompt.

e« Within-class attribute shift: For each class ¢, we measure the L, distance between centroids
across different attributes:

dc = ||/J’c,0 - Hc,l”Z (13)
¢ Overall Attribute Bias Score:
1
ABS(®) = I > d, (14)
ceC

where |C| is the number of classes.

For the Waterbirds dataset, this metric captures how text representations of “landbird” and “waterbird” shift
between land and water backgrounds. For CelebA, it measures shifts between male and female attributes
for hair color classes. A lower ABS indicates that the encoder produces more invariant representations that
are robust to spurious correlations.

C Integration with Existing Methods
DoubleCCA can be easily integrated with other robustness methods:

e With PerceptionCLIP: Replace their text embeddings with our merged embeddings W
e With Contrastive Adapters: Use W as input to the adapter module

e« With prompt engineering methods: Apply DoubleCCA to any engineered prompts

The modular nature of our approach allows it to enhance existing methods without architectural changes.

D Theoretical Motivation

Semantic Structure. Let 7 be the space of text descriptions. The semantic structure is characterized by a

similarity function
s:T xT —10,1]

that captures linguistic relationships between texts.

Structure Preservation. An encoder ® : T — & preserves semantic structure if, for some small € > 0, it
holds that
th,tg eT: ’S(tl,fg) — COS(‘I)(h),‘I)(tQ))‘ < €.

Proposition 1. The CLIP text encoder ®; : T — EcLip, being optimized for vision—language alignment,
induces a bias towards visual discriminability that can distort purely linguistic semantic structure—particularly
when classes exhibit spurious visual correlations.

Proof. Consider the CLIP training objective

- exp(®, (1), ®(T)) /7
Four = TR 08 S b (D). 0T 7|
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Taking the gradient with respect to the text embedding yields a term that pushes ®;(7T") toward its paired
visual feature ®,(I) and away from others. If two semantically similar texts t1,t2 (e.g. “waterbird” vs.
“seabird”) happen to co-occur with very different visual contexts Iy, I, then to satisfy

(@1(t1), o (1)) > (Pe(t), Pu(l2)) and  (@y(ta), Pu(l2)) > (Pi(ta), Pu(l1)),

one must force || ®,(t1) — ®,(t2)| large, contradicting their high linguistic similarity. Hence, the encoder
trades off semantic preservation for visual discriminability when spurious cues are strong.

Corollary 1. For datasets with strong spurious correlations (strength p) between visual features and class
labels, the expected distortion in the text-embedding space grows proportionally to p.

Proof Sketch. One can show
E[[|@:(t1) — u(t2)[]] Z cp||E[®@(1)] - E[@,(12)]]],

for some constant ¢ > 0 depending on 7 and |D|.

Lemma (Information Decomposition). For any text T' € T, its total information H(T') decomposes as
H(T)=1I(T;V) + I(T;L|V) + H(T |V, L),

where V denotes visual concepts and £ denotes pure linguistic structure.

Proposition (Complementary Encoders). Let ®; be CLIP’s text encoder and ®,. a sentence-only
encoder. Then

I(@y(T); V) > I(Pee(T); V), I(@se(T)L|V) > I(R(T); L] V).

Proof Sketch. CLIP’s objective maximizes alignment with visual features (hence upper-bounds I(®.(T);V)),
whereas sentence encoders optimize for textual mutual information across related sentences (preserving
linguistic structure).

E Additional Ablation Studies on Data Augmentation

To further investigate the contribution of each component in our data augmentation strategy, we conducted
detailed ablation experiments on the CelebA dataset using ViT-L/14. We systematically evaluated four
different configurations:

o S-(1): Baseline using only the original CLIP prompt template “a photo of a {class}”
e S-(2): Original prompt augmented with random character sequences
e S-(3): Original prompt augmented with LLM-generated contextual descriptions

o S-(4): Full augmentation combining original prompt, random sequences, and LLM-generated
descriptions

Table 5: Ablation study of data augmentation strategies on CelebA (ViT-L/14). S-(1): original prompt only;
S-(2): original + random sequences; S-(3): original + LLM descriptions; S-(4): all combined.

S-(1) S-(2) S-(3) S-(4)

Worst  51.44  38.93  67.73  88.24
Avg 52.84 3947  68.82 88.35

The results in Table [5| reveal several key insights:
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Random sequences alone are detrimental (S-2): Using only random character augmentation significantly
degrades performance (38.93% worst-group accuracy vs. 51.44% baseline), confirming that meaningful
semantic augmentation is crucial.

LLM-generated descriptions provide improvements (S-3): Augmenting with semantically meaningful
LLM-generated sentences improves the worst-group accuracy to 67.73%, demonstrating the value of coherent
linguistic variations.

Combining all augmentation strategies is optimal (S-4): The full augmentation strategy achieves
the best performance (88.24% worst-group accuracy), suggesting that the diversity from both random
perturbations and semantic variations helps CCA learn more robust transformation matrices.

These findings validate our design choice of using combined augmentation (S-4) in the main experiments, as
it provides sufficient data diversity for stable CCA estimation while maintaining semantic coherence.

F Details of Inference Protocol

In this supplementary section, we provide a detailed description of the inference protocol employed in Tables
1 and 2. Such clarification is crucial for understanding the evaluation pipeline and for enabling reliable
reproduction of our findings.

F.1 Inference Protocol Based on PerceptionCLIP

In fact, we strictly adhered to PerceptionCLIP’s experimental setup to ensure a fair comparison. In Tables
1-2, we adopt its two-stage inference pipeline with attribute combinations such as “+background,” “+gender,”
“+gender, age,” and “+4gender, age, race,” without incorporating any additional information beyond what is
specified in PerceptionCLIP. Here, we first introduce the details of the two-stage inference pipeline.

Stage 1: Attribute Inference. Given a test image, we follow PerceptionCLIP’s implementation: CLIP
computes similarity scores between the image and a set of predefined attribute templates—e.g., “on grass,” “in
the water,” “in a forest,” “with sky,” “on a beach,” ... for Waterbirds, and “male”/“female,” “young”/“old,”
“light skin”/“dark skin”/“Asian”/“other” for CelebA. These scores yield an approximate posterior distribution
p(z | I), where *z* denotes contextual attributes such as background, gender, age, or race. Critically, all such
attributes are predicted by the model at inference time and do not rely on any ground-truth annotations

from the dataset.

*., %k

Stage 2: Conditional Classification and Aggregation For each candidate contextual attribute *z
(e.g., background for Waterbirds; gender and age for CelebA), we construct class-conditional prompts that
incorporate context:

o Waterbirds: “a photo of a {class} on {background}”

o CelebA: “a photo of a {gender} {age} person with {hair color}”

We then use CLIP (or CLIP + DoubleCCA) to compute the conditional class probability p(y | I, z). Following
PerceptionCLIP, we perform a weighted aggregation to approximate marginalization over z, which uses the
estimated posterior p(z | I) to obtain the final prediction p(y | I) = >, p(y | I, 2)p(z | I). Crucially, this
entire process is unsupervised at inference time: no ground-truth attributes are used—only model-generated
estimates. As noted in Section 4.2 of the original manuscript: “We only replace the original prompt embedding
with the merged text embedding W and adopt the same inference process as PerceptionCLIP.”

F.2 Inference Protocols Across Experimental Settings

First, we provide a row-by-row breakdown of the inference protocol for the main entries in Tables 1-2, explicitly
indicating whether ground-truth group labels are used. In all cases, no ground-truth group information is
used at any stage of inference. The details are described in Table [6]

Second, we present the details of the inference protocol for the Waterbirds dataset.
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Table 6: Inference protocol for each row in Tables 1, 2. All methods use predicted attributes at test time;
ground-truth group labels are never used in prompts or model inputs.

Setting Inference Protocol Summary Uses
GT
Group
Label?

CLIP Standard zero-shot: uses template “a photo of a {class}”, No

predicts § = arg max, cos(®.(Ty), D, (I)).

Ours (DoubleCCA) Same zero-shot inference pipeline as CLIP, except all ®,(7},) are replaced ~No

with our merged embeddings Wy:
9 = arg max, cos(W,, ®,(I)).

+background Follows exactly the two-stage pipeline of PerceptionCLIP: No
+gender (1) First uses CLIP to predict the context distribution p(z | I);
+gender,age (2) Then performs conditional classification under each candidate con-
+gender,age,race text and aggregates.

(PerceptionCLIP)

Ours + background Based on the above PerceptionCLIP pipeline, only replacing all text No
Ours + gender embeddings ®;(-) with our pre-computed merged embeddings W;

Ours + gender,age attributes are still automatically predicted and marginalized by the

Ours + gender,age,race model.

CLIP and Ours: Use only class-name prompts (e.g., “a photo of a {class}”) without incorporating
any background information.

e +background: The background attribute is first predicted by CLIP using a set of background-specific

77 Wy

attribute templates (e.g., “on grass,” “in the water”). The top predicted background is then injected
into the class prompt (e.g., “a photo of a [class] on grass”) to perform conditional classification. This
two-stage inference pipeline exactly follows the original PerceptionCLIP protocol.

Ours + background: We replace all text embeddings in the above PerceptionCLIP pipeline with
the merged embedding W produced by DoubleCCA. All other steps—including background prediction
and prompt composition—remain unchanged.

Third, we present the details of the inference protocol for the CelebA dataset.

o CLIP and Ours: Use only hair-color class-name prompts (e.g., “a photo of a person with blond

hair”), without incorporating gender, age, or race.

o +gender/+gender,age/+gender,age,race: These settings treat gender, gender+age, and gen-

der+age—+race as contextual factors z. At test time, all such attributes are predicted by the model
from the input image using CLIP-based attribute templates and dynamically inserted into the prompt
(e.g., “a photo of a young female person with blond hair”). No ground-truth attributes are used during
inference; they are employed only during evaluation to define groups for computing worst-group and
average metrics.

Ours + ...: For each of the above configurations, we adopt the same attribute vocabulary, prompt
templates, and inference protocol as the corresponding PerceptionCLIP variant. The only difference
lies in the text representation: we replace CLIP’s original text embeddings with the merged embedding
W produced by DoubleCCA.

Consequently, across all rows involving contextual attributes, our method maintains alignment with Per-
ceptionCLIP’s inference pipeline. The sole modification is the underlying text embedding—ensuring that
performance differences stem solely from representational quality, not protocol discrepancies. This guarantees
a fair and controlled comparison.
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G Experiments on Out-of-Distribution and Complex Real-world Scenarios

G.1 Experimental Setting

To further validate the effectiveness of our method, we evaluate it on five diverse robustness benchmarks:

o CMNIST (LeCun et al., 2002): A synthetic variant of MNIST with controlled color-digit spurious
correlations.

o FairFace (Karkkainen & Joo, 2021): A real-world facial dataset widely used for evaluating fairness
across age, gender, and race attributes.

o CounterAnimal (Wang et al., 2024): A benchmark featuring animal classification under spurious
correlations and domain shifts.

o ImageNet-A (Hendrycks et all|2021)): A challenging out-of-distribution (OOD) benchmark composed
of natural adversarial examples that fool standard models.

e COCO-FP (Liu et al., [2024): A multi-object scene dataset derived from COCO, designed to test
robustness in the presence of distractor objects and complex backgrounds.

On all five datasets, we compare our approach against the original CLIP using the same five robustness
metrics, whose details are shown as follows:

e Average Acc: Mean accuracy across all samples.
e Worst Acc: Accuracy of the worst-performing spurious attribute group.

e Class-wise Robust: For each class, compute the worst-group accuracy among its subgroups; then
average these values across all classes.

o Worst-10 Groups: Mean accuracy of the 10 worst-performing groups (by accuracy).

o Robust@95%: The 95th percentile robust accuracy—obtained by sorting all groups by accuracy,
discarding the bottom 5%, and reporting the minimum accuracy among the remaining 95%.

G.2 Experimental Results

The results are reported in Table[7] On FairFace and CounterAnimal, DoubleCCA significantly improves
robustness metrics such as worst-group/Robust@95% while maintaining similar or slightly improved average
accuracy (e.g., Robust@95% improves from 50.00% to 57.14% on CounterAnimal; from 42.60% to 47.00%
on FairFace); On datasets such as CMNIST, DoubleCCA improves multiple robustness metrics, with small
average accuracy trade-offs in some scenarios, consistent with the fairness-accuracy trade-off observed on
Waterbirds/CelebA; On the more challenging ImageNet-A /COCO-FP, although the worst-group accuracy is
limited by dataset characteristics, DoubleCCA shows slight improvements or maintains parity on more stable
metrics such as Class-wise Robust (e.g., Class-wise Robust improves from 65.92% to 67.36% on COCO-FP),
at least not worse than the original CLIP. These results demonstrate that the benefits of DoubleCCA are not
limited to Waterbirds/CelebA, but can generalize to more realistic and challenging tasks.

Moreover, we explain why the worst group accuracy is 0% on ImageNet-A and COCO-FP. On both datasets,
both DoubleCCA and the original CLIP achieve 0% worst-group accuracy. This is not indicative of a
methodological failure, but rather stems from the inherent characteristics of these benchmarks—mnotably,
extreme label imbalance and the presence of groups with very few (or zero) test samples from certain classes.
Consequently, we caution against interpreting worst-group accuracy in isolation on such highly imbalanced
and long-tailed benchmarks.

Therefore, given the inherent difficulty of benchmarks like ImageNet-A and COCO-FP, relying solely on worst-
group accuracy yields unstable and overly evaluations: performance is dominated by a handful of groups with
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Table 7: Results of ViT-L/14 backbone on five different benchmark datasets.

Dataset Method Average Acc Worst Acc Class-wise Robust Worst-10 Groups Robust@95%
CMNIST Origin 73.76 44.74 64.47 58.15 52.01
Ours 71.15 46.78 67.22 60.33 52.81
Fairface Origin 67.63 41.00 65.93 62.57 42.60
Ours 68.76 43.50 66.84 63.10 47.00
CounterAnimal  Origin 90.00 10.26 86.30 43.08 50.00
Ours 90.61 12.82 86.69 47.46 57.14
Imagenet-A Origin 67.68 0.00 55.98 7.43 20.00
Ours 67.07 0.00 56.13 7.43 20.00
CoCo-FP Origin 52.11 0.00 65.92 7.16 8.33
Ours 50.64 0.00 67.36 5.84 8.33

only a few samples, where outcomes are highly sensitive to statistical noise. To enable a more comprehensive
and stable assessment of group robustness, we complement worst-group accuracy with three additional metrics:
Class-wise Robust Accuracy, Worst-10 Groups Average, and Robust@95%. These evaluation metrics can
provide complementary perspectives that better reflect model behavior under long-tailed group distributions.

H Additional Results of Efficiency

Table 8: Computational cost on Waterbirds and CelebA.

Model Method Waterbirds CelebA
Time(s) CPU(MB) GPU(MB) FLOPs(G) Time(s) CPUMB) GPU(MB) FLOPs(G)
RN50 Origin 40.67 3,355 1,699 4.1 251.67 7,282 1,695 4.1
Ours 41.10 3,359 1,733 4.51 252.82 7,315 1,733 4.51
ViT-B/32  Origin 42.01 3,650 1,135 4.4 248.78 5,626 1,135 4.4
Ours 42.69 3,712 1,173 4.84 250.25 5,635 1,173 4.84
ViT-B/16  Origin 51.97 3,589 1,865 17.6 246.49 5,672 1,865 17.6
Ours 52.80 3,594 1,903 19.36 248.05 5,696 1,903 19.36
ViT-L/14  Origin 50.63 5,565 3,209 81.1 577.62 8,123 3,209 81.1
Ours 51.13 5,622 3,243 89.21 579.27 8,165 3,243 89.21

To further validate the effectiveness of our proposed method, we report supplementary results on two additional
backbone models in the appendix. Specifically, we evaluate our approach on CLIP ViT-B/16 and CLIP
ViT-B/32 using the same experimental settings and evaluation metrics as in the main text. The results are
summarized in Table |8] Consistent with the findings in the main paper, our method achieves improved group
robustness and maintains competitive average accuracy across both additional models. These supplementary
results confirm that our proposed DoubleCCA framework consistently enhances model robustness to spurious
correlations, regardless of the choice of backbone.

I Clarification on the Use of Race Attributes in CelebA

Since the CelebA dataset does not include race annotations by default, we clarify the origin and usage of
these attributes in the appendix.

First, we would like to clarify that the race attributes mentioned in our manuscript, such as “White”, “Black”,
and “Asian”, are neither manual annotations we produced nor labels generated by an external classifier.
It should be noted that the race attributes are used here for the purpose of conducting a strict and fair
comparison with PerceptionCLIP |An et al.[(2024), and thus we fully adhere to the list of contextual attributes
defined in the open-source code of this paper (as shown in Table E[)
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Table 9: Contextual attributes and their descriptions for Waterbirds and CelebA datasets, adopted from
PerceptionCLIP |An et al.| (2024).

Dataset Domain Template Attributes Values

background on land, on water
background®™ 4+ in forest, in sky, on street, on grass, on tree,
with flowers, on beach, with human, on a branch

Waterbirds “a photo of a {y}”

gender female, male
CelebA “a photo of a celebrity with {y}” age young, old
race white skin, dark skin, asian

Second, in our experimental setup (corresponding to the “+race” rows in Table 1), the race-related terms
(e.g., “White”, “Black”, and “Asian”) are used exclusively as prompt candidates during text embedding
construction and do not serve as ground-truth labels for evaluation. Specifically, the model computes the
similarity between the input image and a set of attribute-specific text descriptions during inference. It then
dynamically infers the most likely attribute (e.g., race or gender) by treating the CLIP model itself as a soft
classifier. This inferred attribute is subsequently injected as contextual information into the text encoder to
aid the primary classification task (e.g., hair color prediction).

Third, it’s worth noting that the "Worst-group Accuracy" reported in Table 1 is still computed based on the
attributes officially provided by CelebA, not based on race. Race information is used only as auxiliary input
context and does not participate in evaluation grouping.

Therefore, our method does not require CelebA to include race labels, nor have we performed any additional
race annotation on the dataset. We will explicitly clarify this point in the revised manuscript.

Table 10: Comparison of DoubleCCA with existing CCA-based methods.

Method Primary Goal Computational Characteristics Typical Application Scenario
Traditional CCA Feature alignment Closed-form, efficient Multi-view representation learning, dimensionality reduction
Horoi et al., 2024 Model fusion Requires access to multi-layer features Merging trained networks with identical architectures

DoubleCCA (ours) Debiasing / improving group robustness Closed-form, negligible inference overhead =~ CLIP zero-shot classification + text-side debiasing
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