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Abstract

Discrete diffusion models have gained increasing attention for their ability to
model complex distributions with tractable sampling and inference. However,
the error analysis for discrete diffusion models remains less well-understood. In
this work, we propose a comprehensive framework for the error analysis of dis-
crete diffusion models based on Lévy-type stochastic integrals. By generalizing
the Poisson random measure to that with a time-independent and state-dependent
intensity, we rigorously establish a stochastic integral formulation of discrete dif-
fusion models and provide the corresponding change of measure theorems that
are intriguingly analogous to Itô integrals and Girsanov’s theorem for their con-
tinuous counterparts. Our framework unifies and strengthens the current theoret-
ical results on discrete diffusion models and obtains the first error bound for the
τ -leaping scheme in KL divergence. With error sources clearly identified, our
analysis gives new insight into the mathematical properties of discrete diffusion
models and offers guidance for the design of efficient and accurate algorithms for
real-world discrete diffusion model applications.

1 Introduction

Diffusion and flow-based models designed for discrete distributions have gained significant attention
in recent years due to their versatility and wide applicability across various domains. These models
have been proposed and refined in several key works [1, 2, 3, 4, 5, 6, 7, 8, 9]. Starting from molecule,
protein, and DNA sequence design [10, 11, 12, 13, 14, 15], discrete diffusion models have also
proven effective in many other applications, including text, image, sound, motion [16, 17, 18, 19],
and have synergized with other methodologies, e.g. tensor networks [20]. These developments
highlight the growing importance of discrete modeling in advancing both theoretical understanding
and efficient implementations. We refer to Appendix A for a more detailed review of related works.

Partly due to the absence of a discrete equivalent to Girsanov’s theorem, the error analysis for dis-
crete diffusion models remains underdeveloped compared to their continuous counterparts. [21]
conducts a Markov chain-based error analysis for τ -leaping in total variation distance, with further
advancements for the particular state space X = {0, 1}d by [22]. In this work, our goal is to establish
a comprehensive framework for discrete diffusion models through a stochastic analysis perspective,
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completely different from previous works. Drawing on tools from Lévy processes and methodolo-
gies for analyzing chemical reaction simulations [23, 24], we extend Poisson random measures to
those with evolving intensities, i.e. both time-inhomogeneous and state-dependent intensities [25],
introduce Lévy-type stochastic integrals [26], and articulate corresponding change of measure theo-
rems, which are analogous to the Itô integrals and Girsanov’s theorem in continuous settings.

We further demonstrate that discrete diffusion models, both the τ -leaping and uniformization
schemes, can be formulated as stochastic integrals w.r.t. Poisson random measures with evolving
intensity, which allows for a unified error analysis framework. This new framework, marking a first
for discrete diffusion models, is especially convenient and straightforward for decomposing infer-
ence error, drawing satisfying parallels with state-of-the-art theories for continuous diffusion model
theories [27, 28]. Our approach thus provides intuitive explanations for the loss design and unifies
the error analysis across both schemes. Notably, we achieve stronger convergence results in KL
divergence, relaxing some of the stringent assumptions previously required, thereby paving the way
for the analysis of a broader class of discrete diffusion models of interest and providing valuable
insights and tools for designing efficient and accurate algorithms tailored to the practical demands
of discrete diffusion models in real-world applications.

1.1 Contributions

Our main contributions are summarized as follows:

• We develop a rigorous framework for discrete diffusion models using Lévy-type stochastic inte-
grals based on the Poisson random measure with evolving intensity, including formulating dis-
crete diffusion models into stochastic integrals and establishing change of measure theorems that
facilitate explicit log-likelihood ratio calculations;

• Our framework extends to a comprehensive, continuous-time analysis for error decomposition
in discrete diffusion models, drawing clear parallels with the methodologies used in continuous
models and enabling more effective adaptations of techniques across different model types;

• We unify and fortify existing research on discrete diffusion models by deriving the first error
bound for τ -leaping in terms of KL divergence, provide a comparative study of τ -leaping and uni-
formization implementations, and shed light on establishing convergence guarantees for a broader
spectrum of discrete diffusion models.

2 Preliminaries

In this section, we introduce the basic concepts of discrete diffusion models. A brief review of
continuous diffusion models and their error decomposition and analysis is provided in Appendix B
for comparison.

In discrete diffusion models, instead of an Itô process, one considers a continuous-time Markov
chain (xt)0≤t≤T in a space X of finite cardinality as the forward process. We denote the probability
distribution of xt by a vector pt ∈ ∆|X|, where ∆|X| denotes the probability simplex in R|X|. Given
the target distribution p0, the Markov chain satisfies the following master equation:

dpt

dt
= Qtpt, where Qt = (Qt(y, x))x,y∈X ∈ R|X|×|X| (2.1)

is the rate matrix at time t. The rate matrix Qt satisfies the following two conditions: (i) Qt(x, x) =
−
∑

y ̸=xQt(y, x), ∀x ∈ X; (ii) Qt(x, y) ≥ 0, ∀x ̸= y ∈ X.

In the following, we will use a shorthand notation Q̃t to denote the matrix Qt with the diagonal
elements set to zero. It can be shown that the corresponding backward process is of the same form
but with a different rate matrix [29]:

d ⃗ps

ds
= Qs ⃗ps, where Qs(y, x) =

{
⃗ps(y)
⃗ps(x)

⃗Qs(x, y), ∀x ̸= y ∈ X,
−
∑

y′ ̸=xQs(y
′, x), ∀x = y ∈ X.

(2.2)

The rate matrix Qt is often chosen to possess certain sparse structures such that the forward process
converges to a simple distribution that is easy to sample from. Several popular choices include the
uniform and absorbing transitions [30].
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The common practice is to define the score function (or rather the score vector) as st(x) =
(st(x, y))y∈X := pt

pt(x)
, ∀x ∈ X, and estimate it by a neural network ŝθt (x), where the neural

network θ is trained by minimizing the score entropy [31, 30]:

θ = argmin
θ

∫ T

0

ψtExt∼pt

[∑
y ̸=x

(
− log

ŝθt (x,y)
st(x,y)

− 1 +
ŝθt (x,y)
st(x,y)

)
st(x, y)Qt(x, y)

]
dt. (2.3)

Similar to the continuous case, the backward process is approximated by the continuous-time
Markov chain with the following master equation with q0 = p∞ and rate matrix Q̂

θ

s:

dqs
ds

= Q̂
θ

sqs, where Q̂
θ

s(y, x) =
⃗ŝθs(x, y)

⃗Qs(x, y), ∀x ̸= y ∈ X. (2.4)

and sampling is accomplished by first sampling from the distribution p∞ and then evolving the
Markov chain accordingly.

3 Stochastic Integral Formulation of Discrete Diffusion Models

In this section, we introduce the stochastic integral formulation of discrete diffusion models. The
goal is to establish a path evolution equation analogous to Itô integral (or equivalently, SDEs), with
the master equation (2.1) and (2.2) analogous to the Fokker-Planck equation, in the continuous case.

3.1 Poisson Random Measure with Evolving Intensity

In the following, the Poisson distribution with expectation λ is denoted by P(λ).
Definition 3.1 (Poisson Random Measure with Evolving Intensity). Let (Ω,F ,P) be a probability
space and (X,B, ν) be a measure space and λt(y) is a non-negative predictable process on R+ ×
X×Ω satisfying for any T > 0,

∫ T

0

∫
X 1∨ |y| ∨ |y|2λt(y)ν(dy)dt <∞, a.s.. The random measure

N [λ](dt, dy) on R+ × X is called a Poisson random measure with evolving intensity λt(y) if

(i) For any B ∈ B and 0 ≤ s < t, N [λ]((s, t]×B) ∼ P
(∫ t

s

∫
B
λτ (y)ν(dy)dτ

)
;

(ii) For any t ≥ 0 and disjoint sets {Bi}i∈[n] ⊂ B, {Nt[λ](Bi) := N [λ]((0, t]×Bi)}i∈[n] are
independent stochastic processes.

The well-definedness of this definition is non-trivial, with further details provided in Appendix C.1.
The Poisson random measure defined admits Lévy-type stochastic integral (cf. Figure 1), Itô isome-
try, Itô’s formula (Theorem C.9), and Lévy’s characterization theorem (Theorem C.8), for which we
refer readers to Appendix C.2 for details.

Now we turn to the setting of discrete diffusion models, where the state space X is finite endowed
with the natural σ-algebra B = 2X and the counting measure ν =

∑
y∈X δy .

Proposition 3.2 (Stochastic Integral Formulation of Discrete Diffusion Models). The forward pro-
cess in discrete diffusion models (2.1) can be represented by the following stochastic integral:

xt = x0 +

∫ t

0

∫
X
(y − xt−)N [λ](dt, dy), with λt(y) = Q̃t(y, xt−), (3.1)

and the backward process in discrete diffusion models (2.2) can be represented by the following
stochastic integral:

⃗xs = ⃗x0 +

∫ s

0

∫
X
(y − ⃗xs−)N [µ](ds, dy), with µs(y) = ⃗ss( ⃗xs− , y)Q̃s( ⃗xs− , y), (3.2)

where Xt− denotes the left limit of a càdlàg process Xt at time t.

The proof of Proposition 3.2 is provided in Appendix C.4. We would like to remark that the stochas-
tic integral formulation in Proposition 3.2 is tantalizingly close to the Itô integral in continuous
diffusion models in the form of SDEs (cf. (B.1) and (B.2)). Recalling that in the continuous case,
Girsanov’s theorem is applied for deriving the score-matching loss (B.4) and the error analysis, one
may wonder if similar techniques can be applied to discrete diffusion models. The following section
provides an affirmative answer to it.
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3.2 Change of Measure

The following theorem provides a change-of-measure argument for stochastic integrals w.r.t. Pois-
son random measures with evolving intensity, analogous to Girsanov’s theorem for Itô integrals w.r.t.
Brownian motions.
Theorem 3.3 (Change of Measure for Poisson Random Measure with Evolving Density). Let
N [λ](dt, dy) be a Poisson random measure with evolving intensity λt(y) in the probability space
(Ω,F ,P), and ht(y) be a positive predictable process on R+ × X × Ω. Suppose the following
exponential process is a local Ft-martingale:

Zt[h] := exp

(∫ t

0

∫
X
log ht(y)N [λ](dt× dy)−

∫ t

0

∫
X
(ht(y)− 1)λt(y)ν(dy)

)
, (3.3)

and Q is another probability measure on (Ω,F) such that Q ≪ P with Radon-Nikodym derivative
dQ/dP|Ft

= Zt[h]. Then the Poisson random measure N [λ](dt, dy) under the measure Q is a
Poisson random measure with evolving intensity λt(y)ht(y).

Then it is straightforward to derive Corollary C.11, which was derived in [31] with a different tech-
nique with Feller processes and adopted in [30, 22] in the design of loss functions. Proofs will
be provided in Appendix C.3. One should recall that in the continuous case with Itô integrals, the
proximity of two paths in KL divergence only requires a small difference between the drift terms
by Girsanov’s theorem, and therefore, the score function can be trained with the mean squared er-
ror loss (B.4) [32], while in the discrete case, it requires the likelihood ratio to be close to one,
accounting for a more complicated score entropy design in the loss (2.3) [31, 30].

4 Error Analysis of Discrete Diffusion Models

In this section, we first introduce two different implementations of the discrete diffusion models,
namely τ -leaping [33] and uniformization [34], derive their stochastic integral formulations as in
Proposition 3.2, and provide our main results for their error analysis.

4.1 Algorithms

A straightforward algorithm for simulating the backward process is to discretize the integral in (3.2)
with an Euler-Maruyama scheme; this leads to the τ -leaping algorithm summarized in Algorithm 1.
As shown in the following proposition, τ -leaping can be formulated as a stochastic integral.
Proposition 4.1 (Stochastic Integral Formulation of τ -Leaping). The τ -leaping algorithm (Algo-
rithm 1) is equivalent to solving the following stochastic integral equation:

ŷs = ŷ0 +

∫ s

0

∫
X
(y − ŷ⌊s⌋−)N [µ̂θ

⌊·⌋](ds, dy), (4.1)

where the evolving intensity µ̂θ
s(y) is given by µ̂θ

⌊s⌋(y) =
⃗ŝθ⌊s⌋(ŷ⌊s⌋− , y)Q̃⌊s⌋(ŷ⌊s⌋− , y) = µ̂θ

sn(y), in
which we used the symbol ⌊s⌋ = sn for s ∈ [sn, sn+1). We will call the process ŷs the interpolating
process of the τ -leaping algorithm and denote the distribution of ŷs by q̂s.

Another algorithm considered for simulating the backward process in discrete diffusion models is
uniformization. The algorithm is summarized in Algorithm 2, Appendix C.4. The uniformization
algorithm also admits a stochastic integral formulation, as shown in the following proposition.
Proposition 4.2 (Stochastic Integral Formulation of Uniformization). Under the block discretization
scheme (sb)b∈[0,B] with s0 = 0 and sB = T − δ, and for any s ∈ (sb, sb+1], we define λs =

sups∈(sb,sb+1]

∫
X µ̂

θ
s(y)ν(dy). Then the uniformization algorithm (Algorithm 2) is equivalent to

solving the following stochastic integral equation in the augmented measure space (X× [0, λ],B ⊗
B([0, λ]), ν ⊗m):

ys = y0 +

∫ s

0

∫
X

∫
R
(y − ys−)10≤ξ≤

∫
X µ̂θ

s(y)ν(dy)
N [µ̂θ](ds, dy, dξ), (4.2)

where the evolving intensity µ̂θ
s(y) is given by µ̂θ

s(y) =
⃗ŝθs(ŷs− , y)Q̃s(ŷs− , y).
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Based on Proposition 4.2, one can show that the uniformization algorithm simulates the backward
process in discrete diffusion models accurately (cf. Theorem C.12), and the proofs of the claims
above will be provided in Appendix C.4.

4.2 Assumptions

For simplicity, we assume the rate matrix Qt is time-homogeneous and symmetric, i.e. Qt = Q for
any t ≥ 0.

Assumption 4.3 (Regularity of the Rate Matrix). The rate matrix Q satisfies the following condi-
tions:

(i) For any x, y ∈ X, Q(x, y) ≤ C and D ≤ −Q(x, x) ≤ D for some constants C,D,D > 0;

(ii) The modified log-Sobolev constant ρ(Q) of the rate matrix Q (cf. Definition D.5) is lower
bounded by ρ > 0.

Assumption 4.4 (Bounded Score). The true score function satisfies st(x, y) ≲ 1 ∨ t−1, while the
learned score function satisfies ŝθs(x, y) ∈ (0,M ], for any x, y ∈ X.

Assumption 4.5 (Continuity of Score Function). For any t > 0 and y ∈ X such that Q(xt− , y) > 0,

we have
∣∣∣µt+ (y)

µt(y)

∣∣∣ := ∣∣∣pt(xt− )Q(xt,y)

pt(xt)Q(xt− ,y) − 1
∣∣∣ ≲ 1 ∨ t−γ , for some exponent γ ∈ [0, 1].

Assumption 4.6 (ϵ-accurate Score Estimation). The score function st(xt) is estimated by the neural
network ŝθt (xt) with ϵ-accuracy, i.e.

N−1∑
n=0

(sn+1 − sn)E
[∫

X
K

(
⃗ŝθsn ( ⃗x

s
−
n
,y)

⃗ssn ( ⃗x
s
−
n
,y)

)
⃗ssn( ⃗xs−n , y)Q̃( ⃗xs−n , y)ν(dy)

]
≤ ϵ.

We refer to Appendix E.1 for discussions on these assumptions.

4.3 Error Analysis

4.3.1 τ -Leaping

Theorem 4.7 (Error Analysis of τ -Leaping). Suppose the time discretization scheme (si)i∈[0,N ]

with s0 = 0 and sN = T − δ satisfies for k ∈ [0 : N − 1], sk+1 − sk ≤ κ
(
1 ∨ (T − sk+1)

1+γ−η
)
,

where the exponent η satisfies γ < η ≲ 1 − T−1 when γ < 1, and η = 1 when γ = 1. Under
Assumptions E.1, E.2, E.3, and E.4, we have the following error bound

DKL(pδ∥q̂T−δ) ≲ exp(−ρT ) log |X|+ ϵ+D
2
κT,

and under the following choice of the order of parameters:

T = O
(

log(ϵ−1 log |X|)
ρ

)
, κ = O

(
ϵρ

D
2
log(ϵ−1 log |X|)

)
, δ =

{
0, γ < 1,

Ω(e−
√
T ), γ = 1,

(4.3)

where the mixing time tmix is defined in Definition D.11, we have DKL(pδ∥q̂T−δ) ≲ ϵ with N =

κ−1T = O
(

D
2
ρ2 log2(ϵ−1 log |X|)

ϵ

)
total steps.

The derivation (as provided in Appendix E.4) and conclusions are analogous to the error bound for
continuous diffusion models (cf. Theorem B.1). We would like to point out the main differences
between the continuous and discrete diffusion models:
• Truncation Error: While the Ornstein-Uhlenbeck process converges exponentially fast in the

continuous diffusion models, the exponential convergence of the forward process in discrete dif-
fusion models is non-trivial for general graphs G(Q). In practice, Assumption E.1 should be
verified for the specific problem at hand;

• Discretization Error: In continuous diffusion models, the analysis of the discretization error is
based on the Itô integral and Girsanov’s theorem, while in the discrete case, the Poisson random
measure with evolving intensity (cf. Definition 3.1) and change of measure (cf. Theorem 3.3) that
we developed above are employed instead. Early stopping schemes are discussed in Remark E.11.
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In Theorem 4.7, the coefficient D roughly translates to the dimension d when the discrete diffusion
model is applied to X = [S]d, where S is the number of states along each dimension. Plugging
D = log |X| = O(d) into the results, we obtain that the total number of steps N = Õ(d2). This
recovers the dependency described in [21, Theorem 1] for τ -leaping with a completely different
set of techniques, and importantly, our results do not rely on strong assumptions such as a uniform
bound on the true score. We also reduce assumption stringency by relating our assumption on the
estimation error (Assumption E.4) more closely to the training loss rather than requiring an L∞-
accurate score estimation error. Most notably, we provide the first convergence guarantees for τ -
leaping in KL divergence, strengthened from total variation distance, for discrete diffusion models.

4.3.2 Uniformization

The error analysis of the uniformization algorithm requires the following modified assumption on
the accuracy of the learned score function ŝθt (xt):

Assumption 4.6’ (ϵ-accurate Learned Score). The score function st(xt) is estimated by the neural
network ŝθt (xt) with ϵ-accuracy, i.e.

E

[∫ T−δ

0

∫
X
K

(
⃗ŝθs( ⃗xs− ,y)

⃗ss( ⃗xs− ,y)

)
⃗ss( ⃗xs− , y)Q̃( ⃗xs− , y)ν(dy)

]
ds ≤ ϵ.

Theorem 4.8 (Error Analysis of Uniformization). Suppose the block discretization scheme
(sb)b∈[0,N ] with s0 = 0 and sN = T − δ satisfies for k ∈ [0 : N − 1], sk+1 − sk ≤
κ (1 ∨ (T − sk+1)) . Under Assumptions E.1, E.2, E.3, and 4.6’, we have the following error bound

DKL(pδ∥qT−δ) ≲ exp(−ρT ) log |X|+ ϵ,

where the mixing time tmix is defined in Definition D.11. Then with T = O
(

log(ϵ−1 log |X|)
ρ

)
and

δ = Ω(e−T ), we have DKL(pδ∥qT−δ) ≲ ϵ with E[N ] = O
(

D log(ϵ−1 log |X|)
ρ

)
steps.

The proof of Theorem 4.8 is deferred to Appendix E.4. Following a similar argument for Theo-
rem 4.7, the dimensionality dependency of the uniformization scheme is Õ(d), confirming the result
for the special case X = {0, 1}d in [22]. Theorem 4.7 and 4.8 offer a direct comparison of the
efficiency of the τ -leaping and uniformization implementations for discrete diffusion models. Our
proof reveals that the less favorable quadratic dependency in the τ -leaping scheme arises from the
truncation error, which is not present in the uniformization scheme, illustrating a possible advantage
of the latter in reducing computational complexity.

Recalling the current result for continuous diffusion models (Theorem B.1) is Õ(d), we conjecture
that Õ(d) is also the optimal rate in the discrete case. In the continuous case, the linear dependency
is shown to be achievable with Euler-Maruyama schemes via an intricate stochastic localization
argument [28]. The corresponding argument for the τ -leaping scheme of discrete diffusion models
would be a possible refinement on Proposition E.6, which we believe is of independent interest and
will be explored in future work.

5 Conclusion

In this paper, we have developed a comprehensive framework for the error analysis of discrete dif-
fusion models. We rigorously introduced the Poisson random measure with evolving intensity and
established the Lévy-type stochastic integral alongside change of measure arguments. These ad-
vancements not only hold mathematical significance but also facilitate a clear-cut analysis of dis-
crete diffusion models. Moreover, we demonstrated that the inference process can be formulated
as a stochastic integral using the Poisson random measure with evolving intensity, allowing the er-
ror to be systematically decomposed and optimized by algorithmic design, mirroring the theoretical
framework for continuous diffusion models.

Our framework unifies the error analysis of discrete diffusion models and provides the first error
bounds for the τ -leaping scheme in KL divergence. Our results lay a theoretical groundwork for the
analysis of discrete diffusion models, adaptable to broader contexts, such as time-inhomogeneous
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and non-symmetric rate matrices. We also hope our work will inspire further research on the practi-
cal aspects of discrete diffusion models and their applications in various fields.

Acknowledgments

Lexing Ying acknowledges the support of the National Science Foundation under Award No. DMS-
2208163.

References
[1] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep un-

supervised learning using nonequilibrium thermodynamics. In International Conference on
Machine Learning, pages 2256–2265. PMLR, 2015.

[2] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg.
Structured denoising diffusion models in discrete state-spaces. Advances in Neural Informa-
tion Processing Systems, 34:17981–17993, 2021.

[3] Griffin Floto, Thorsteinn Jonsson, Mihai Nica, Scott Sanner, and Eric Zhengyu Zhu. Diffusion
on the probability simplex. arXiv preprint arXiv:2309.02530, 2023.

[4] Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg,
and Tim Salimans. Autoregressive diffusion models. arXiv preprint arXiv:2110.02037, 2021.

[5] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax
flows and multinomial diffusion: Learning categorical distributions. Advances in Neural
Information Processing Systems, 34:12454–12465, 2021.

[6] Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching:
Generalized score matching for discrete data. Advances in Neural Information Processing
Systems, 35:34532–34545, 2022.

[7] Pierre H Richemond, Sander Dieleman, and Arnaud Doucet. Categorical sdes with simplex
diffusion. arXiv preprint arXiv:2210.14784, 2022.

[8] Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-
time discrete diffusion models. arXiv preprint arXiv:2211.16750, 2022.

[9] Javier E Santos, Zachary R Fox, Nicholas Lubbers, and Yen Ting Lin. Blackout diffusion:
generative diffusion models in discrete-state spaces. In International Conference on Machine
Learning, pages 9034–9059. PMLR, 2023.

[10] Ari Seff, Wenda Zhou, Farhan Damani, Abigail Doyle, and Ryan P Adams. Discrete object
generation with reversible inductive construction. Advances in neural information processing
systems, 32, 2019.

[11] Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Alex X Lu, Nicolo Fusi, Ava P Amini,
and Kevin K Yang. Protein generation with evolutionary diffusion: sequence is all you need.
BioRxiv, pages 2023–09, 2023.

[12] Patrick Emami, Aidan Perreault, Jeffrey Law, David Biagioni, and Peter St John. Plug &
play directed evolution of proteins with gradient-based discrete mcmc. Machine Learning:
Science and Technology, 4(2):025014, 2023.

[13] John J Yang, Jason Yim, Regina Barzilay, and Tommi Jaakkola. Fast non-autoregressive
inverse folding with discrete diffusion. arXiv preprint arXiv:2312.02447, 2023.

[14] Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Gener-
ative flows on discrete state-spaces: Enabling multimodal flows with applications to protein
co-design. arXiv preprint arXiv:2402.04997, 2024.

7



[15] Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay,
and Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design. arXiv
preprint arXiv:2402.05841, 2024.

[16] Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and
generalized masked diffusion for discrete data. arXiv preprint arXiv:2406.04329, 2024.

[17] Ye Zhu, Yu Wu, Kyle Olszewski, Jian Ren, Sergey Tulyakov, and Yan Yan. Dis-
crete contrastive diffusion for cross-modal music and image generation. arXiv preprint
arXiv:2206.07771, 2022.

[18] Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and Dong
Yu. Diffsound: Discrete diffusion model for text-to-sound generation. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, 31:1720–1733, 2023.

[19] Seunggeun Chi, Hyung-gun Chi, Hengbo Ma, Nakul Agarwal, Faizan Siddiqui, Karthik Ra-
mani, and Kwonjoon Lee. M2d2m: Multi-motion generation from text with discrete diffusion
models. arXiv preprint arXiv:2407.14502, 2024.

[20] Luke Causer, Grant M Rotskoff, and Juan P Garrahan. Discrete generative diffusion mod-
els without stochastic differential equations: a tensor network approach. arXiv preprint
arXiv:2407.11133, 2024.

[21] Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis,
and Arnaud Doucet. A continuous time framework for discrete denoising models. Advances
in Neural Information Processing Systems, 35:28266–28279, 2022.

[22] Hongrui Chen and Lexing Ying. Convergence analysis of discrete diffusion model: Exact
implementation through uniformization. arXiv preprint arXiv:2402.08095, 2024.

[23] Tiejun Li. Analysis of explicit tau-leaping schemes for simulating chemically reacting sys-
tems. Multiscale Modeling & Simulation, 6(2):417–436, 2007.

[24] David F Anderson, Arnab Ganguly, and Thomas G Kurtz. Error analysis of tau-leap simula-
tion methods. 2011.

[25] Philip Protter. Point process differentials with evolving intensities. In Nonlinear stochastic
problems, pages 467–472. Springer, 1983.

[26] David Applebaum. Lévy processes and stochastic calculus. Cambridge university press,
2009.

[27] Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative
modeling: User-friendly bounds under minimal smoothness assumptions. In International
Conference on Machine Learning, pages 4735–4763. PMLR, 2023.

[28] Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Linear
convergence bounds for diffusion models via stochastic localization. arXiv preprint
arXiv:2308.03686, 2023.

[29] Frank P Kelly. Reversibility and stochastic networks. Cambridge University Press, 2011.

[30] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the
ratios of the data distribution. In Forty-first International Conference on Machine Learning,
2024.

[31] Joe Benton, Yuyang Shi, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet.
From denoising diffusions to denoising markov models. arXiv preprint arXiv:2211.03595,
2022.

[32] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations.
arXiv preprint arXiv:2011.13456, 2020.

8



[33] Daniel T Gillespie. Approximate accelerated stochastic simulation of chemically reacting
systems. The Journal of chemical physics, 115(4):1716–1733, 2001.

[34] Nico M Van Dijk. Uniformization for nonhomogeneous markov chains. Operations research
letters, 12(5):283–291, 1992.

[35] Pavel Avdeyev, Chenlai Shi, Yuhao Tan, Kseniia Dudnyk, and Jian Zhou. Dirichlet diffusion
score model for biological sequence generation. In International Conference on Machine
Learning, pages 1276–1301. PMLR, 2023.

[36] Nathan C Frey, Daniel Berenberg, Karina Zadorozhny, Joseph Kleinhenz, Julien Lafrance-
Vanasse, Isidro Hotzel, Yan Wu, Stephen Ra, Richard Bonneau, Kyunghyun Cho, et al. Pro-
tein discovery with discrete walk-jump sampling. arXiv preprint arXiv:2306.12360, 2023.

[37] Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E
Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo de-
sign of protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

[38] Thomas J Kerby and Kevin R Moon. Training-free guidance for discrete diffusion models for
molecular generation. arXiv preprint arXiv:2409.07359, 2024.

[39] Kai Yi, Bingxin Zhou, Yiqing Shen, Pietro Liò, and Yuguang Wang. Graph denoising dif-
fusion for inverse protein folding. Advances in Neural Information Processing Systems, 36,
2024.

[40] Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training
to gradient search in testing for combinatorial optimization. Advances in Neural Information
Processing Systems, 36, 2024.

[41] Ilia Igashov, Arne Schneuing, Marwin Segler, Michael Bronstein, and Bruno Correia. Retro-
bridge: Modeling retrosynthesis with markov bridges. arXiv preprint arXiv:2308.16212,
2023.

[42] Jose Lezama, Tim Salimans, Lu Jiang, Huiwen Chang, Jonathan Ho, and Irfan Essa. Dis-
crete predictor-corrector diffusion models for image synthesis. In The Eleventh International
Conference on Learning Representations, 2022.

[43] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proceedings of
the IEEE/CVF conference on Computer Vision and Pattern Recognition, pages 10696–10706,
2022.

[44] Do Huu Dat, Do Duc Anh, Anh Tuan Luu, and Wray Buntine. Discrete diffusion language
model for long text summarization. arXiv preprint arXiv:2407.10998, 2024.

[45] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon.
Permutation invariant graph generation via score-based generative modeling. In International
Conference on Artificial Intelligence and Statistics, pages 4474–4484. PMLR, 2020.

[46] Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang.
Graphaf: a flow-based autoregressive model for molecular graph generation. arXiv preprint
arXiv:2001.09382, 2020.

[47] Yiming Qin, Clement Vignac, and Pascal Frossard. Sparse training of discrete diffusion
models for graph generation. arXiv preprint arXiv:2311.02142, 2023.

[48] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv preprint
arXiv:2209.14734, 2022.

[49] Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. Lay-
outdm: Discrete diffusion model for controllable layout generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10167–10176,
2023.

9



[50] Junyi Zhang, Jiaqi Guo, Shizhao Sun, Jian-Guang Lou, and Dongmei Zhang. Layoutdiffu-
sion: Improving graphic layout generation by discrete diffusion probabilistic models. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pages 7226–7236,
2023.

[51] Yunhong Lou, Linchao Zhu, Yaxiong Wang, Xiaohan Wang, and Yi Yang. Diversemo-
tion: Towards diverse human motion generation via discrete diffusion. arXiv preprint
arXiv:2309.01372, 2023.

[52] Minghui Hu, Yujie Wang, Tat-Jen Cham, Jianfei Yang, and Ponnuthurai N Suganthan. Global
context with discrete diffusion in vector quantised modelling for image generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11502–11511, 2022.

[53] Zhichao Wu, Qiulin Li, Sixing Liu, and Qun Yang. Dctts: Discrete diffusion model with con-
trastive learning for text-to-speech generation. In ICASSP 2024-2024 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages 11336–11340. IEEE,
2024.

[54] Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffusion-
bert: Improving generative masked language models with diffusion models. arXiv preprint
arXiv:2211.15029, 2022.

[55] Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun Gong, Jian Jiao, Juntao Li, Jian
Guo, Nan Duan, Weizhu Chen, et al. Ar-diffusion: Auto-regressive diffusion model for text
generation. Advances in Neural Information Processing Systems, 36:39957–39974, 2023.

[56] Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq-v2:
Bridging discrete and continuous text spaces for accelerated seq2seq diffusion models. arXiv
preprint arXiv:2310.05793, 2023.

[57] Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion
model for text generation. arXiv preprint arXiv:2302.05737, 2023.

[58] Kun Zhou, Yifan Li, Wayne Xin Zhao, and Ji-Rong Wen. Diffusion-nat: Self-prompting
discrete diffusion for non-autoregressive text generation. arXiv preprint arXiv:2305.04044,
2023.

[59] Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin,
Justin T Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked
diffusion language models. arXiv preprint arXiv:2406.07524, 2024.

[60] Nate Gruver, Samuel Stanton, Nathan Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-
Vanasse, Arvind Rajpal, Kyunghyun Cho, and Andrew G Wilson. Protein design with guided
discrete diffusion. Advances in neural information processing systems, 36, 2024.

[61] Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking
guidance for discrete state-space diffusion and flow models. arXiv preprint arXiv:2406.01572,
2024.

[62] Xiner Li, Yulai Zhao, Chenyu Wang, Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tommaso
Biancalani, Aviv Regev, Sergey Levine, and Masatoshi Uehara. Derivative-free guidance
in continuous and discrete diffusion models with soft value-based decoding. arXiv preprint
arXiv:2408.08252, 2024.

[63] Severi Rissanen, Markus Heinonen, and Arno Solin. Improving discrete diffusion models via
structured preferential generation. arXiv preprint arXiv:2405.17889, 2024.

[64] Oscar Davis, Samuel Kessler, Mircea Petrache, Avishek Joey Bose, et al. Fisher flow match-
ing for generative modeling over discrete data. arXiv preprint arXiv:2405.14664, 2024.

[65] Linfeng Zhang, Weinan E, and Lei Wang. Monge-ampère flow for generative modeling. arXiv
preprint arXiv:1809.10188, 2018.

10



[66] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[67] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Ad-
vances in neural information processing systems, 33:6840–6851, 2020.

[68] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training
of score-based diffusion models. Advances in neural information processing systems, 34:
1415–1428, 2021.

[69] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[70] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

[71] Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. arXiv preprint arXiv:2209.15571, 2022.

[72] Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A
unifying framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

[73] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geod-
iff: A geometric diffusion model for molecular conformation generation. arXiv preprint
arXiv:2203.02923, 2022.

[74] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao
Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of meth-
ods and applications. ACM Computing Surveys, 56(4):1–39, 2023.

[75] Stanley H Chan. Tutorial on diffusion models for imaging and vision. arXiv preprint
arXiv:2403.18103, 2024.

[76] Lingxiao Wang, Gert Aarts, and Kai Zhou. Generative diffusion models for lattice field theory.
arXiv preprint arXiv:2311.03578, 2023.

[77] Amira Alakhdar, Barnabas Poczos, and Newell Washburn. Diffusion models in de novo drug
design. Journal of Chemical Information and Modeling, 2024.

[78] Minshuo Chen, Song Mei, Jianqing Fan, and Mengdi Wang. An overview of diffusion
models: Applications, guided generation, statistical rates and optimization. arXiv preprint
arXiv:2404.07771, 2024.

[79] Jiahao Fan, Ziyao Li, Eric Alcaide, Guolin Ke, Huaqing Huang, and E Weinan. Accurate
conformation sampling via protein structural diffusion. bioRxiv, pages 2024–05, 2024.

[80] Zhiye Guo, Jian Liu, Yanli Wang, Mengrui Chen, Duolin Wang, Dong Xu, and Jianlin Cheng.
Diffusion models in bioinformatics and computational biology. Nature reviews bioengineer-
ing, 2(2):136–154, 2024.

[81] Eric A Riesel, Tsach Mackey, Hamed Nilforoshan, Minkai Xu, Catherine K Badding, Ali-
son B Altman, Jure Leskovec, and Danna E Freedman. Crystal structure determination from
powder diffraction patterns with generative machine learning. Journal of the American Chem-
ical Society, 2024.

[82] Yuchen Zhu, Tianrong Chen, Evangelos A Theodorou, Xie Chen, and Molei Tao. Quantum
state generation with structure-preserving diffusion model. arXiv preprint arXiv:2404.06336,
2024.

[83] Belinda Tzen and Maxim Raginsky. Theoretical guarantees for sampling and inference in
generative models with latent diffusions. In Conference on Learning Theory, pages 3084–
3114. PMLR, 2019.

[84] Adam Block, Youssef Mroueh, and Alexander Rakhlin. Generative modeling with denoising
auto-encoders and langevin sampling. arXiv preprint arXiv:2002.00107, 2020.

11



[85] Joe Benton, George Deligiannidis, and Arnaud Doucet. Error bounds for flow matching
methods. arXiv preprint arXiv:2305.16860, 2023.

[86] Sitan Chen, Giannis Daras, and Alex Dimakis. Restoration-degradation beyond linear diffu-
sions: A non-asymptotic analysis for ddim-type samplers. In International Conference on
Machine Learning, pages 4462–4484. PMLR, 2023.

[87] Sokhna Diarra Mbacke and Omar Rivasplata. A note on the convergence of denoising diffu-
sion probabilistic models. arXiv preprint arXiv:2312.05989, 2023.

[88] Yuchen Liang, Peizhong Ju, Yingbin Liang, and Ness Shroff. Non-asymptotic conver-
gence of discrete-time diffusion models: New approach and improved rate. arXiv preprint
arXiv:2402.13901, 2024.

[89] Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling
with polynomial complexity. Advances in Neural Information Processing Systems, 35:22870–
22882, 2022.

[90] Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling
is as easy as learning the score: theory for diffusion models with minimal data assumptions.
arXiv preprint arXiv:2209.11215, 2022.

[91] Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling
for general data distributions. In International Conference on Algorithmic Learning Theory,
pages 946–985. PMLR, 2023.

[92] Francesco Pedrotti, Jan Maas, and Marco Mondelli. Improved convergence of score-based
diffusion models via prediction-correction. arXiv preprint arXiv:2305.14164, 2023.

[93] Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Towards faster non-asymptotic convergence
for diffusion-based generative models. arXiv preprint arXiv:2306.09251, 2023.

[94] Gen Li, Yu Huang, Timofey Efimov, Yuting Wei, Yuejie Chi, and Yuxin Chen. Accelerating
convergence of score-based diffusion models, provably. arXiv preprint arXiv:2403.03852,
2024.

[95] Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Towards non-asymptotic convergence for
diffusion-based generative models. In The Twelfth International Conference on Learning
Representations, 2024.

[96] Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The prob-
ability flow ode is provably fast. Advances in Neural Information Processing Systems, 36,
2024.

[97] Xuefeng Gao and Lingjiong Zhu. Convergence analysis for general probability flow odes of
diffusion models in wasserstein distances. arXiv preprint arXiv:2401.17958, 2024.

[98] Daniel Zhengyu Huang, Jiaoyang Huang, and Zhengjiang Lin. Convergence analysis of prob-
ability flow ode for score-based generative models. arXiv preprint arXiv:2404.09730, 2024.

[99] Gen Li, Yuting Wei, Yuejie Chi, and Yuxin Chen. A sharp convergence theory for the proba-
bility flow odes of diffusion models. arXiv preprint arXiv:2408.02320, 2024.

[100] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

[101] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential
integrator. arXiv preprint arXiv:2204.13902, 2022.

[102] Jean Jacod and Albert Shiryaev. Limit theorems for stochastic processes, volume 288.
Springer Science & Business Media, 2013.

[103] David R Cox. Some statistical methods connected with series of events. Journal of the Royal
Statistical Society: Series B (Methodological), 17(2):129–157, 1955.

12



[104] Günter Last and Mathew Penrose. Lectures on the Poisson process, volume 7. Cambridge
University Press, 2017.

[105] Bernt Øksendal. Stochastic differential equations. Springer, 2003.

[106] Andreas Eberle. Stochastic analysis. http: // www. mi. unikoeln. de/ stochana/
ws1617/ Eberle/ StochasticAnalysis2015. pdf , 2015.

[107] Andreas Eberle. Markov processes. Lecture Notes at University of Bonn, 2009.

[108] Steven P Lalley. Continuous time markov chains. Lecture Notes, University of Chicago,
page 34, 2012.

[109] Sergey G Bobkov and Prasad Tetali. Modified logarithmic sobolev inequalities in discrete
settings. Journal of Theoretical Probability, 19:289–336, 2006.

[110] Leonard Gross. Logarithmic sobolev inequalities. American Journal of Mathematics, 97(4):
1061–1083, 1975.

[111] Persi Diaconis and Laurent Saloff-Coste. Logarithmic sobolev inequalities for finite markov
chains. The Annals of Applied Probability, 6(3):695–750, 1996.

[112] Daniel W Stroock. Logarithmic sobolev inequalities for gibbs states. In Dirichlet forms.
1993.

[113] Laurent Saloff-Coste. Lectures on finite markov chains. lectures on probability theory and
statistics (saint-flour, 1996), 301–413. Lecture Notes in Math, 1665, 1997.

[114] Sergey G Bobkov and Michel Ledoux. On modified logarithmic sobolev inequalities for
bernoulli and poisson measures. Journal of functional analysis, 156(2):347–365, 1998.

[115] Tzong-Yow Lee and Horng-Tzer Yau. Logarithmic sobolev inequality for some models of
random walks. The Annals of Probability, 26(4):1855–1873, 1998.

[116] Sharad Goel. Modified logarithmic sobolev inequalities for some models of random walk.
Stochastic processes and their applications, 114(1):51–79, 2004.

[117] Michel Ledoux. Concentration of measure and logarithmic sobolev inequalities. In Seminaire
de probabilites XXXIII, pages 120–216. Springer, 2006.

13

http://www.mi.unikoeln.de/stochana/ws1617/Eberle/StochasticAnalysis2015.pdf
http://www.mi.unikoeln.de/stochana/ws1617/Eberle/StochasticAnalysis2015.pdf


A Related Works

Discrete Diffusion Models. The appeal of such models stems from their potential to address chal-
lenging problems in fields like computational biology, where they have shown promise in tasks
such as molecule, protein, and DNA sequence design [10, 11, 35, 12, 36, 37, 13, 14, 15, 38, 39].
Additionally, these approaches have proven effective in combinatorial optimization [40], modeling
retrosynthesis [41], image synthesis [42, 43], text summarization [44] along with the generation of
graph [45, 46, 47, 48], layout [49, 50], motion [19, 51], sound [18], image [52, 17], speech [53]
and text [54, 55, 56, 57, 58, 16, 59]. Discrete diffusion models also synergize with other method-
ologies, including tensor networks [20], enhanced guidance mechanisms [60, 61, 62], structured
preferential generation [63], and alternative metrics, e.g. the Fisher information metric [64]. These
developments highlight the growing importance of discrete modeling in advancing both theoretical
understanding and efficient implementations.

Continuous Diffusion Models. Continuous diffusion models have been one of the most active
research areas in generative modeling. Earlier work on continuous diffusion models and probability
flow-based models include [1, 65, 66, 67, 32, 68, 69, 70, 71, 72]. It has shown state-of-the-art
performance in various fields of science and engineering. For some recent work and comprehensive
review articles, one may refer to [73, 74, 75, 76, 77, 78, 79, 80, 81, 82].

Theory of Continuous Diffusion Models. In addition to the huge success achieved by diffu-
sion models in empirical studies, many works have also tried to establish sampling guarantees
for diffusion and probability flow-based models, such as [83, 84, 85, 86, 87, 88]. Regarding
the theoretical analysis of continuous diffusion models, [89] provided the first sampling guaran-
tee under the smoothness and isoperimetry assumptions. Follow-up work removed such assump-
tions [90, 27, 91] and obtained better convergence results [28, 92, 93, 94, 95]. For the probability
flow-based implementation, sampling guarantee was also established and further refined in many
recent work [96, 97, 98, 99]

B Review of Continuous Diffusion Models

In this section, we provide a brief review of continuous diffusion models and their error analysis.

B.1 Continuous Diffusion Models

In diffusion models, the forward process is designed as an Itô process (xt)0≤t≤T in Rd satisfying
the following stochastic differential equation (SDE):

dxt = bt(xt)dt+ gtdwt, with x0 ∼ p0, (B.1)

where (wt)t≥0 is a standard Brownian motion. The probability distribution of xt is denoted by
pt, and the distribution p0 at time t = 0 is the target distribution for sampling. The time-reversal
( ⃗xs)0≤s≤T of (B.1) satisfies the backward process:

d ⃗xs =
[
− ⃗bs( ⃗xs) + ⃗gs ⃗g⊤

s ∇ log ⃗ps( ⃗xs)
]
ds+ ⃗gsdws, (B.2)

where ⃗∗s denotes ∗T−s, with ⃗p0 = pT and ⃗pT = p0.

One of the common choices for the drift bt and the diffusion coefficient g is bt(x) = − 1
2βtxt and

g = σ
√
βtI , under which (B.1) is an Ornstein-Uhlenbeck (OU) process converging exponentially,

i.e. pT ≈ p∞ := N (0, σ2I), and the forward process (B.1) and the backward process (B.2) reduce
to the following form:

dxt = −
1

2
βtxtdt+ σ

√
βtdwt, and d ⃗xs = ⃗βs

[
1

2
⃗xs + σ2∇ log ⃗ps( ⃗xs)

]
ds+ σ

√
⃗βsdws. (B.3)

In pratice, the score function st(xt) := ∇ log pt(xt) is often estimated by a neural network ŝθt (xt),
where θ denotes the parameters, and trained via denoising score-matching [100]:

θ = argmin
θ

∫ T

0

ψtExt∼pt

[∥∥∇ log pt(xt)− ŝθt (xt)
∥∥2] dt (B.4)
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where pt|0(xt|x0) is the transition distribution from x0 to xt under (B.3) with an explicit form as

N (µt, σ
2
t I), where µt = x0e

− 1
2

∫ t
0
βtdt and σ2

t = σ2
(
1− e−

∫ t
0
βtdt
)
, (B.5)

and ψt is a weighting function for the loss at time t. After obtaining the NN-based score function
ŝθt (xs), the backward process in (B.3) is approximated as:

dys =

[
1

2
ys + ŝθs(ys)

]
ds+ dws, with y0 ∼ q0 = N (0, σ2I). (B.6)

B.2 Error Analysis of Continuous Diffusion Models

For continuous diffusion models, the error analysis is often conducted by considering the following
three error terms:

• Truncation Error: The error caused by approximating pT by p∞, which is often of the order
O(d exp(−T )) due to exponential ergodicity;

• Approximation Error: The error caused by approximating the score function ∇ log pt(xt) by a
neural network ŝθt (xt), which is often assumed to be of order O(ϵ), where ϵ is a small threshold,
given a thorough training process;

• Discretization Error: The error caused by numerically solving the SDE (B.6) with Euler-
Maruyama scheme or other schemes, e.g. exponential integrator [101].

Then, the total error is obtained from these three error terms with proper choices of the order of the
time horizon T and the design of the numerical scheme. We extract the following theorem from the
state-to-the-art theoretical result [28] for later comparison:
Theorem B.1 (Error Analysis of Continuous Diffusion Models). Suppose the time discretization
scheme (si)i∈[0,N ] with s0 = 0 and sN = T−δ satisfies sk+1−sk ≤ κ(T−sk+1) for k ∈ [0 : N−1].
Assume cov(p0) = I , and the score function∇ log pt(xt) is estimated by the neural network ŝθt (xt)
with ϵ-accuracy, i.e.

N−1∑
k=0

(sk+1 − sk)E ⃗xsk
∼ ⃗psk

[∥∥∥∇ log ⃗psk( ⃗xsk)− ⃗ŝθsk(xsk)
∥∥∥2] ≤ ϵ.

Then, under the following choice of the order of parameters

T = O(log(dϵ−1)), κ = O(d−1ϵ2 log−1(dϵ−1)), N = O(dϵ−1 log(dϵ−1)),

then we have DKL(pδ∥q̂tN ) ≤ ϵ, where q̂tN is the distribution of the approximate backward pro-
cess (B.6) implemented with exponential integrator after N steps.

C Mathematical Framework of Poisson Random Measure

In this section, we provide a mathematical framework for Poisson random measure with evolving
intensity, which is crucial for the error analysis of discrete diffusion models in the main text.

C.1 Preliminaries

We first provide the definition of the ordinary Poisson random measure.
Definition C.1 (Poisson Random Measure). Let (Ω,F ,P) be a probability space and (X,B, ν) be
a measure space satisfying that ∫

X
1 ∨ |y| ∨ |y|2ν(dy) <∞,

The random measure N(dt, dy) on R+ × X is called a Poisson random measure w.r.t. measure ν if
it is a random counting measure satisfying the following properties:

(i) For any B ∈ B and 0 ≤ s < t, N((s, t]×B) ∼ P (ν(B)(t− s));
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Figure 1: Example trajectories of stochastic integrals (3.1) w.r.t. Poisson random measure with
different evolving intensities. The intensity is chosen as λt(y) = 50ft if |y− xt− | = 1 or otherwise
0, as shown in dashed lines. Intuitively, λt controls the rate of jumps at time t and location y.

(ii) For any t ≥ 0 and pairwise disjoint sets {Bi}i∈[n] ⊂ B, {Nt(Bi) := N((0, t]×Bi)}i∈[n] are
independent stochastic processes.

The following definition of predictability will be frequently used for the well-definedness of stochas-
tic integrals w.r.t. Poisson random measure, and thus the extension from ordinary Poisson random
measure to Poisson random measure with evolving intensity.
Definition C.2 (Predictability). The predictable σ-algebra on R+ × X is defined as the σ-algebra
generated by all sets of the form (s, t] × B for 0 ≤ s < t and B ∈ B. A process Xt is called
predictable if and only if Xt is predictable w.r.t. the predictable σ-algebra above.

In the following, we will define the Poisson random measure with evolving intensity, which is a
special case of random measures [102, Definition 1.3].
Definition C.3 (Poisson Random Measure with Evolving Intensity). Let (Ω,F ,P) be a probability
space and (X,B, ν) be a measure space. Suppose λt(y) is a non-negative predictable process on
R+ × X× Ω satisfying that for any 0 ≤ T < T ,∫ T

0

∫
X
1 ∨ |y| ∨ |y|2λt(y)ν(dy)dt <∞, a.s..

The random measure N [λ](dt, dy) on R+×X is called a Poisson random measure with evolving in-
tensity λt(y) w.r.t. measure ν if it is a random counting measure satisfying the following properties:

(i) For any B ∈ B and 0 ≤ s < t, N [λ]((s, t]×B) ∼ P
(∫ t

s

∫
B
λτ (y)ν(dy)dτ

)
;

(ii) For any t ≥ 0 and pairwise disjoint sets {Bi}i∈[n] ⊂ B,

{Nt[λ](Bi) := N [λ]((0, t]×Bi)}i∈[n]

are independent stochastic processes.

Theorem C.4 (Well-definedness of Poisson Random Measure with Evolving Intensity). The Poisson
random measure N [λ](dt, dy) with evolving intensity λt(y) is well-defined under the conditions in
the definition above.

Proof. We first augment the (X,B, ν) measure space to a product space (X×R,B×B(R), ν ×m),
wherem is the Lebesgue measure on R, and B(R) is the Borel σ-algebra on R. The Poisson random
measure with evolving intensity λt(y) can be defined in the augmented measure space as

N [λ]((s, t]×B) :=

∫ t

s

∫
B

∫
R
10≤ξ≤λτ (y)N(dτ, dy, dξ), (C.1)
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where N(dτ, dy, dξ) is the Poisson random measure on R+ × X× R w.r.t. measure ν(dy)dξ.

Then it is straightforward to verify the two conditions in the definition of Poisson random measure
with evolving intensity by noticing that for pairwise disjoint sets {Bi}i∈[n] ⊂ B, {Bi × R}i∈[n] ⊂
B × B(R) are also pairwise disjoint.

The Poisson random process N [λ](dt, dy) with evolving intensity λt(y) is well-defined up to an
eventual explosion time

T = inf
T

{∫ T

0

∫
X
λt(y)ν(dy)dt =∞, a.s.

}
.

We refer the readers to [25] for a more rigorous detailed version of the proof.

Remark C.5 (Relation to the Cox process). The Poisson random measure with evolving intensity
shares multiple similarities with the Cox process [103, 104], including being a point process and
with the intensity being a random measure. The main difference is that the Cox process is defined
on a general measure space, while the Poisson random measure with evolving intensity is defined on
the product space (X×R,B×B(R), ν×m) and the intensity function is required to be predictable
to ensure the well-definedness of its stochastic integral.

C.2 Stochastic Integral w.r.t. Poisson Random Measure

The following theorems provide the properties of stochastic integrals w.r.t. Poisson random measure
with evolving intensity. The proofs are based on the observation that with the augmentation of the
measure space argument (C.1), the stochastic integral w.r.t. Poisson random measure with evolving
intensity in (X,B, ν) can be reduced to the stochastic integral w.r.t. homogeneous Poisson random
measure in (X×R,B×B(R), ν×m), and under certain conditions on the measure space (X,B, ν),
to the well-known Lévy-type stochastic integral [26]. For simplicity, we will work on the interval
t ∈ [0, T ] with T < T and the following regularity conditions of the Poisson random measure:

0 < ess inf
τ∈[0,T ],y∈X

λτ (y) ≤ ess sup
τ∈[0,T ],y∈X

λτ (y) < +∞.

One can easily generalize the following results to their local versions on [0, T ) by considering its
compact subsets.

Theorem C.6 (Stochastic Integrals w.r.t. Poisson Random Measure with Evolving Density). For any
predictable process Kt(y) on R+ × X × Ω, the stochastic integral w.r.t. Poisson random measure
with evolving intensity λt(y)

xt = x0 +

∫ t

0

∫
X
Kt(y)N [λ](dt, dy), (C.2)

has a unique solution, for which the following properties hold:

(1) (Expectation) For any t ≥ 0, we have

E
[∫ t

0

∫
X
Kt(y)N [λ](dt, dy)

]
=

∫ t

0

∫
X
Kt(y)λt(y)ν(dy)dt;

(2) (Martingale) For any t ≥ 0, we have∫ t

0

∫
X
Kt(y)Ñ [λ](dt, dy) :=

∫ t

0

∫
X
Kt(y)N [λ](dt, dy)−

∫ t

0

∫
X
Kt(y)λt(y)ν(dy)dt

is a local Ft-martingale;

(3) (Itô Isometry) For any t ≥ 0, we have

E

[(∫ t

0

∫
X
Kt(y)N [λ](dt, dy)

)2
]
=

∫ t

0

∫
X
Kt(y)

2λt(y)ν(dy)dt.
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Proof. We first write the integral (C.2) in the augmented measure space (X×R,B × B(R), ν ×m)
as

xt = x0 +

∫ t

0

∫
X

∫
R
Kt(y)10≤ξ≤λt(y)N(dt, dy, dξ), (C.3)

and since Kt(y)10≤ξ≤λt(y) is a predictable process, the desired properties can be derived from the
corresponding properties of the stochastic integral w.r.t. Poisson random measure in the augmented
measure space.

The subsequent proof will follow a similar argument as the proof of the stochastic integral w.r.t.
Brownian motion (e.g. in [105]) by starting from proving the properties for elementary processes,
which in our case refer to working with the elementary predictable processes of the following form:

Zt(y, ξ)(ω) =

n−1∑
i=0

m∑
j=1

l∑
k=1

Zi,j,k(ω)1t∈(ti,ti+1]1y∈Bj
1ξ∈Ck

,

where 0 = t0 < · · · < tn = T is a partition of [0, T ], Bj ∈ B for j ∈ [m] are a parti-
tion of X with ν(Bk) < ∞, and Ck ∈ B(R) for k ∈ [l] are a partition of the time interval
[0, ess supτ∈[0,T ],y∈X λτ (y)] with m(Ck) < ∞, and Ki,j,k is bounded and Fti -measurable, on
which the stochastic integral is defined as∫ t

0

∫
X
Zt(y, ξ)N(dt, dy, dξ) =

n−1∑
i=0

m∑
j=1

l∑
k=1

Zi,j,kNti((ti, ti+1]×Bj × Ck).

Then, it is straightforward to verify the properties of the stochastic integral for the elementary pre-
dictable process Z+

t (y, ξ), using the definition of Poisson random measure (Definition C.1). For
general predictable processes Zt(y, ξ), we write Zt(y, ξ) = Z+

t (y, ξ) − Z−
t (y, ξ), where Z+

t (y, ξ)
and Z−

t (y, ξ) are positive and negative parts of Zt(y, ξ), and apply the results to Z+
t (y, ξ) and

Z−
t (y, ξ) separately.

Finally, we take Zt(y, ξ) = Kt(y)10≤ξ≤λt(y) to derive the properties of the stochastic integral w.r.t.
Poisson random measure with evolving intensity.

We refer readers to [106, Section 2.2] for detailed arguments. For the uniqueness of the solution to
the stochastic integral, we also refer to [25, Theorem 3.1].

Proposition C.7. Define the list of jump times (tn)n∈N recursively as

t0 = 0, tn+1 = inf{t > tn|∆xt ̸= 0}, n ≥ 0,

the Poisson random measure N [λ](dt, dy) with evolving intensity λt(y) can be written as

N [λ](dt, dy) =

∞∑
n=1

δtn(dt)δYn
(dy), (C.4)

and the stochastic integral (C.2) is càdlàg and can be rewritten as a sum of jumps:

xt = x0 +

N∑
n=1

∆xtn = x0 +

N∑
n=1

Ktn(Yn), (C.5)

whereN is a random variable satisfying tN ≤ t < tN+1, and ∆xtn are the jumps ∆xtn = xtn−xt−n
with xt−n := lims→t−n

xs.

Proof. To see the solution is càdlàg, we notice the following right limit at time t:

lim
ϵ→0

(xt+ϵ − xt) =
∫
(t,t+ϵ]×X

Kt(y)N [λ](dt, dy)→ 0,

and the left limit at time t:

∆xt = lim
ϵ→0

(xt − xt−ϵ) =

∫
(t−ϵ,t]×X

Kt(y)N [λ](dt, dy)→
∫
X
Kt(y)N [λ]({t} × dy), (C.6)
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where the notation N [λ]({t}× dy) should be understood as N [λ]({t}× dy) = 0 if t /∈ {tn}n∈N, or
otherwise Yn = N [λ]({tn} × dy) is a random variable on X.

Since the Poisson random measure N [λ](dt, dy) with evolving intensity λt(y) is a random counting
measure, it can be represented as a countable sum of Dirac measures as in (C.4), and thus we have

xt = x0 +

∫ t

0

∫
X
Kt(y)N [λ](dt, dy)

=x0 +

∫ t

0

∫
X
Kt(y)

N∑
n=1

δtn(dt)δYn(dy) = x0 +

N∑
n=1

Ktn(Yn).

By the definition of Poisson random measure, (tn)n∈[N ] are also the jump times of the homo-
geneous Poisson random measure N(dt, dy, dξ) in the augmented measure space (X × R,B ×
B(R), ν ×m) w.r.t. measure ν(dy)dξ. Therefore, with a slight abuse of notations, we will assume
(tn, Yn,Ξn)n∈[N ] are i.i.d. random variables with probability measure proportional to dtν(dy)dξ,
for each of which Ξn ≤ λtn(Yn) holds because otherwise the jump would not occur.

Then the distribution of Yn can be derived as a conditional probability of the jump location Yn given
the jump time tn and Ξn ≤ λtn(Yn):

P(Yn = y)ν(dy) =

∫
R ν(dy)1Ξn≤λtn (y)dξ∫

R
∫
X ν(dy)1Ξn≤λtn (y)dξ

=
λtn(y)ν(dy)∫
X λtn(y)ν(dy)

, (C.7)

and the proof is complete.

The following theorem gives the martingale characterization of Poisson random measure with evolv-
ing intensity, which will be crucial for the proof of the change of measure arguments:

Theorem C.8 (Martingale Characterization of Poisson Random Measure with Evolving Density).
Let N [λ](dt, dy) be a Ft-adapted process in the probability space (Ω,F ,P). Then N [λ](dt, dy) is
a Poisson random measure with evolving intensity λt(y) if and only if the complex-valued process

Mt[f ] = exp

(
i

∫ t

0

∫
X
fτ (y)N [λ](dτ, dy) +

∫ t

0

∫
X

(
1− eifτ (y)

)
λτ (y)ν(dy)dτ

)
(C.8)

is a local martingale for any predictable process fτ (y) satisfying that fτ (y) ∈ L1(X, ν), a.s..

Proof. By Proposition C.7, we rewrite the stochastic integral as a sum of jumps:∫ t

0

∫
X
ft(y)N [λ](dτ, dy) =

N∑
n=1

ftn(Yn),

where (tn, Yn,Ξn)n∈[N ] are i.i.d. random variables with probability measure proportional to
dtν(dy)dξ, for each of which Ξn ≤ λtn(Yn) holds, following a similar argument as in the proof of
Proposition C.7.

Then, it is straightforward to derive the following probability of the jump time tn = τ :

P(tn = τ)dτ =

∫
X P(Yn = y, tn = τ)ν(dy)∫ t

0

∫
X P(Yn = y, tn = τ)ν(dy)dτ

=

∫
X λτ (y)ν(dy)dτ∫ t

0

∫
X λτ (y)ν(dy)dτ

;

and by the definition of the Poisson random measure, we have the following probability of the total
number of jumps N = n:

P(N = n) =
1

n!
exp

(
−
∫ t

0

∫
X
λτ (y)ν(dy)dτ

)(∫ t

0

∫
X
λτ (y)ν(dy)dτ

)n

.
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Without loss of generality, we only verify E[Mt[f ]] = 1 as follows, and general cases are similar by
Markov property:

E
[
exp

(
i

∫ t

0

∫
X
ftn(y)N [λ](dτ, dy)

)]
=E

[
exp

(
i

N∑
n=1

f(Yn)

)∣∣∣∣Ξn ≤ λtn(Yn), ∀n ∈ [N ]

]

=E

[
N∏

n=1

E
[
eiftn (Yn)

∣∣Ξn ≤ λtn(Yn)
]]

=E

[
N∏

n=1

E
[∫

X

eifτ (y)λτ (y)ν(dy)∫
X λτ (y)ν(dy)

∣∣∣∣tn = τ

]]

=

∞∑
n=1

1

n!

(∫ t

0

∫
X
eifτ (y)λτ (y)ν(dy)dτ

)n

exp

(
−
∫ t

0

∫
X
λτ (y)ν(dy)dτ

)
=exp

(∫ t

0

∫
X

(
eifτ (y) − 1

)
λτ (y)ν(dy)dτ

)
,

which immediately yields the desired result E[Mt[f ]] = 1.

On the other hand, for any 0 ≤ s < t and B ∈ B, we set

Zt(y) = u1t∈(s,t]1y∈B ,

where u ∈ R, and by assumption, we have

E [Mt[Z]] = E
[
exp

(
i

∫ t

0

∫
X
Zτ (y)N [λ](dτ, dy) +

∫ t

0

∫
X

(
1− eiZτ (y)

)
λτ (y)ν(dy)dτ

)]
=E

[
exp

(
iu

∫ t

s

∫
B

N [λ](dτ, dy) +

∫ t

s

∫
X

(
1− eiu

)
λτ (y)ν(dy)dτ

)]
=E

[
exp

(
iuN [λ]((s, t]×B) +

(
1− eiu

)
(t− s)

∫
X
λτ (y)ν(dy)

)]
= 1,

i.e. the following holds for any u ∈ R:

E [exp (iuN [λ]((s, t]×B)))] =
(
eiu − 1

)
(t− s)

∫
X
λτ (y)ν(dy),

which by Lévy’s continuity theorem implies that

N [λ]((s, t]×B) ∼ P
(
(t− s)

∫
X
λτ (y)ν(dy)

)
,

and thus N [λ](dt, dy) is a Poisson random measure with evolving intensity λt(y) by Definition C.1.

Theorem C.9 (Itô’s Formula for Poisson Random Measure with Evolving Density). Let
N [λ](dt, dy) be a Poisson random measure with evolving intensity λt(y) in the probability space
(Ω,F ,P) and Kt(y) be a predictable process on R+ × X × Ω. Suppose a process xt satisfies the
stochastic integral

xt = x0 +

∫ t

0

∫
X
Kt(y)N [λ](dt, dy), (C.9)

then for any ft(y) ∈ C(R+ × X) with probability 1, we have

ft(xt) = f0(x0) +

∫ t

0

∂τfτ (xτ )dτ +

∫ t

0

∫
X
(fτ (xτ− +Kτ (y))− fτ (xτ−))N [λ](dτ, dy).
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Proof. By Proposition C.7, we again rewrite the stochastic integral as a sum of jumps:

xt = x0 +

N∑
n=1

Ktn(Yn),

where (tn)n∈[N ] are the jump times with t0 = 0 and tN ≤ t < tN+1, and (Yn)n∈[N ] are the jump
locations. Consequently, it is easy to see that xt−n = xt = xtn−1 for t ∈ (tn−1, tn] and n ∈ [N ].

Then we have the following decomposition:

ft(xt)− f0(x0)

=ft(xt)− ftN (xtN ) +

N∑
n=1

(
ftn(xtn)− ftn(xt−n ) + ftn(xt−n )− ftn−1

(xtn−1
)
)

=

∫ t

tN

∂τfτ (xtN )dτ +

N∑
n=1

∫ tn

tn−1

∂τfτ (xtn−1)dτ +

N∑
n=1

(
ftn(xtn−1 +Ktn(Yn))− ftn(xtn−1)

)
,

and for the last term in the above equation, we have

N∑
n=1

(
ftn(xtn−1 +Ktn(Yn))− ftn(xtn−1)

)
=

N∑
n=1

(
ftn(xt−n +Ktn(Yn))− ftn(xt−n )

)
=

∫ t

0

∫
X
(fτ (xτ− +Kτ (y))− fτ (xτ−))N [λ](dτ, dy).

Combining the above results, we have the desired result.

Lemma C.10. Denote the trajectory obtained by simulating the master equation (2.1) of the forward
process of the discrete diffusion model as xt, then the time interval ∆tn = tn+1 − tn is distributed
according to the following distribution:

P(∆tn > τ) = exp

(∫ τ

0

Qτ ′(xtn , xtn)dτ
′
)
, (C.10)

and the jump location xtn+1
is distributed according to the following distribution:

P(xtn+1
= y) = −

Qtn+1
(y, xtn)

Qtn+1
(xtn , xtn)

. (C.11)

Proof. The results can be found in [107, Section 1.2]. While a fully rigorous proof can be conducted
by discretizing the time-inhomogeneous continuous-time Markov chain into 2n uniform steps and
taking the limit as n→∞, following the approach in [108], we will provide a more intuitive proof
here for completeness.

Set ptn = extn
, where ey is the y-th unit vector in R|X|. then the xtn -th entry of (2.1) yields

d

dt
P(xt = xtn) =

d

dt
pt(xtn) =

∑
y∈X

Qt(xtn , y)pt(y),

which, by the assumed continuity of the rate matrix Qt, implies

P(∆tn > τ) = P(xtn+τ = xtn) = 1 +Qtn(xtn , xtn)τ + o(τ),

and thus

d

dτ
logP(∆tn > τ) = lim

τ→0

logP(∆tn > τ)

τ
= lim

τ→0
Qtn(xtn , xtn) + o(1) = Qtn(xtn , xtn),

integrating the above equation yields the desired result.
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Similarly, by setting ptn+1−τ = extn
, we have for all y ∈ X \ {xtn}:

P(xtn+1
= y) = ptn+1

(y)

= lim
τ→0

ptn+1−τ (y) +Qtn+1−τ (y, xtn)τ + o(τ)∑
y∈X\{xtn}

(
ptn+1−τ (y) +Qtn+1−τ (y, xtn)τ + o(τ)

)
=

Qtn+1
(y, xtn)∑

y∈X\{xtn}Qtn+1
(y, xtn)

= −
Qtn+1

(y, xtn)

Qtn+1
(xtn , xtn)

,

and the result follows.

C.3 Proofs of Change of Measure Related Arguments

Proof of Theorem 3.3. In the following, we will denote the expectation under the measure P by EP
and the expectation under the measure Q by EQ.

By Theorem C.8, to verify that the Poisson random measure N [λ](dt, dy) with evolving intensity
λt(y) is a Poisson random measure with evolving intensity λt(y)ht(y) under the measure Q, it
suffices to show that for any f ∈ L1(X, ν), the complex-valued process

Mt[f ] = exp

(
i

∫ t

0

∫
X
f(y)N [λ](dτ, dy) +

∫ t

0

∫
X

(
1− eif(y)

)
λτ (y)hτ (y)ν(dy)dτ

)
is a local martingale under the measure Q.

To this end, we perform the following calculation:

EQ [Mt[f ]] = EP [Mt[f ]Zt[h]]

=EP

[
exp

(
i

∫ t

0

∫
X
f(y)N [λ](dτ, dy) +

∫ t

0

∫
X

(
1− eif(y)

)
λτ (y)hτ (y)ν(dy)dτ

)
exp

(∫ t

0

∫
X
log ht(y)N [λ](dt× dy)−

∫ t

0

∫
X
(ht(y)− 1)λt(y)ν(dy)

)]
=EP

[
exp

(
i

∫ t

0

∫
X
(f(y) + log ht(y))N [λ](dτ, dy) +

∫ t

0

∫
X

(
1− eif(y)ht(y)

)
λt(y)ν(dy)

)]
=EP [Mt[f + log h]] ,

and by assumption, f+log h ∈ L1(X, ν), a.s., which implies thatMt[f+log h] is a local martingale
under the measure P again by Theorem C.8. Consequently, Mt[f ] is a local martingale under the
measure Q, and the result follows.

Corollary C.11 (Equivalence between KL Divergence and Score Entropy-based Loss Function). Let
⃗p0:T and q0:T be the path measures of the backward process (2.2) and the approximate backward

process (2.4), then it holds that

DKL( ⃗pT ∥qT ) ≤ DKL( ⃗p0:T ∥q0:T )

=DKL( ⃗p0∥q0) + E

[∫ T

0

∫
X
K

(
⃗ŝθs( ⃗xs− ,y)

⃗ss( ⃗xs− ,y)

)
⃗ss( ⃗xs− , y)Q̃s( ⃗xs− , y)ν(dy)dt

]
,

(C.12)

whereK(x) = x−1−log x ≥ 0, and the expectation is taken w.r.t. paths generated by the backward
process (3.2). Consequently, minimizing the loss (2.3) is equivalent to minimizing the KL divergence
between the path measures of the ground truth and the approximate backward process.

Proof of Corollary C.11. With a similar argument as in the proof of Proposition 3.2, we have the
following stochastic integral representation of the approximate backward process with the learned
neural network score function ŝθt :

ys = y0 +

∫ s

0

∫
X
(y − ys−)N [µ̂θ](ds, dy), with µ̂θ

s(y) =
⃗ŝθs(ys− , y)Q̃s(ys− , y) = µ̂θ

s(y). (C.13)
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By the data-processing inequality and the chain rule of KL divergence, we have

DKL( ⃗pT ∥qT ) ≤ DKL( ⃗p0:T ∥q0:T ) = DKL( ⃗p0∥q0) + E [DKL( ⃗p0:T ∥q0:T | ⃗x0 = y0 = y)] .

Then notice that conditioning on the alignment of the initial state ⃗x0 = y0 = y for any y ∈ X, the
second term in the above equation can be expressed as

DKL( ⃗p0:T ∥q0:T | ⃗x0 = y0 = y) = E
[
log

d ⃗p0:T
dq0:T

∣∣∣∣ ⃗x0 = y0 = y

]
= E

[
logZ−1

T

[
µ̂θ

µ

]]
,

where the last equality is by the change of measure in Theorem 3.3 from the stochastic integral
formulation (3.2) of the backward process (2.2) with the true score function ⃗s to the stochastic
integral formulation (C.13) of the approximate backward process with the learned score function ŝθ.

Plug in the expression of ZT in (3.3) and notice that

µ̂θ
s

µs
=

⃗ŝθs(ys− , y)Q̃s(ys− , y)

⃗ss(ys− , y)Q̃s(ys− , y)
=

⃗ŝθs(ys− , y)

⃗ss(ys− , y)
,

we have

E
[
logZ−1

T

[
µ̂θ

µ

]]

=E

− ∫ T

0

∫
X
log

⃗ŝθs(ys− , y)

⃗ss(ys− , y)
N [µ](ds× dy) +

∫ T

0

∫
X

 ⃗ŝ
θ

s(ys− , y)

⃗ss(ys− , y)
− 1

µs(y)ν(dy)ds


=E

∫ T

0

∫
X

 ⃗ŝ
θ

s(ys− , y)

⃗ss(ys− , y)
− 1− log

⃗ŝθs(ys− , y)

⃗ss(ys− , y)

 ⃗ss(ys− , y)Q̃s(ys− , y)ν(dy)ds


=E

[∫ T

0

∫
X

(
⃗ŝ
θ

s(ys− , y)− ⃗ss(ys− , y)− ⃗ss(ys− , y) log
⃗ŝθs(ys− , y)

⃗ss(ys− , y)

)
Q̃s(ys− , y)ν(dy)ds

]
,

rearranging the terms in the above equation yields the desired result.

C.4 Proofs of Stochastic Integral Formulations

Proof of Proposition 3.2. In the following, we will denote the trajectory obtained by simulating the
master equation (2.1) of the forward process of the discrete diffusion model as x̃t and the trajectory
obtained by the stochastic integral (3.1) as xt, with x0 = x̃0. We will also use the notation ·̃ to denote
the quantities associated with the trajectory x̃t. The goal is to show that xt and x̃t are identically
distributed for any t ∈ [0, T ].

We prove this claim by induction. We assume that for any t ∈ [0, tn], where n ∈ N and tn is the
n-th jump time with t0 = 0, the two trajectories xt and x̃t are identically distributed. For simplicity,
we realign the two processes xt and x̃t at time tn by setting xtn = x̃tn .

We first consider the process x̃t generated by the discrete diffusion model (2.1). Recall the definition
λt(y) = Q̃t(y, x̃t−), we have that∫

X
λt(y)ν(dy) =

∑
y∈X

Q̃t(y, x̃t−) = −Qt(x̃t− , x̃t−) = −Qt(x̃tn , x̃tn), for t ∈ (tn, tn+1].

By Lemma C.10, the time interval ∆t̃n = t̃n+1 − t̃n is distributed according to (C.10), i.e.

P(∆t̃n > τ) = exp

(∫ τ

0

Qτ ′(x̃tn , x̃tn)dτ
′
)

= exp

(
−
∫ τ

0

∫
X
λτ ′(y)ν(dy)dτ ′

)
.

Similarly, the jump location x̃tn+1
is distributed according to (C.11), i.e.

P(x̃tn+1
= y) = −

Qtn+1
(y, x̃tn)

Qtn+1
(x̃tn , x̃tn)

=
λtn+1

(y)∫
X λtn+1

(y)ν(dy)
.
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Now we turn to the stochastic integral (3.1). By definition of the Poisson random measure, we have

P(∆tn > τ) = P(N [λ]((tn, tn + τ ]× X) = 0) = exp

(
−
∫ tn+τ

tn

∫
X
λτ ′(y)ν(dy)dτ ′

)
,

and the jump location is distributed according to (C.7), i.e.

P(xtn+1
= y) =

λtn+1(y)∫
X λtn+1

(y)ν(dy)
.

Comparing the arguments above, we conclude that the two processes xt and x̃t are identically dis-
tributed for any t ∈ [0, tn+1], and the induction is complete.

The proof of the equivalence between the backward process of the discrete diffusion model governed
by (2.2) and the corresponding stochastic integral (3.2) can be conducted similarly, and the result
follows.

C.4.1 τ -Leaping

The τ -leaping algorithm is summarized in Algorithm 1.

Algorithm 1: τ -Leaping Algorithm for Discrete Diffusion Model Inference
Input: ŷ0 ∼ q0, time discretization scheme (si)i∈[0:N ] with s0 = 0 and sN = T − δ, intensity

function µ̂θ
s defined in Proposition 4.1, and neural network-based score function

estimation ŝθt .
Output: A sample ŷsN ∼ q̂tN .

1 for n = 0 to N − 1 do
2 ŷsn+1

←
∑
y∈X

(y − ŷsn)P(µ̂θ
s(ŷsn)(sn+1 − sn)); (C.14)

3 end

Proof of Proposition 4.1. Without loss of generality, we give the proof for s = sN , and the general
case can be proved similarly.

The stochastic integral (4.1) can be partitioned by the time discretization (si)i∈[0:N ] intoN intervals
along which the evolving intensity is constant, i.e.

ŷsN = ŷ0 +

∫ s

0

∫
X
(y − ŷ⌊s⌋−)N [µ̂⌊·⌋](ds, dy)

=ŷ0 +

N∑
i=1

∫ si

si−1

∫
X
(y − ŷs−i−1

)N [µ̂si−1 ](ds, dy)

=ŷ0 +

N∑
i=1

∫
X
(y − ŷs−i−1

)N [µ̂si−1 ]((si−1, si], dy),

which given X is finite, can be further decomposed into the following sum of jumps:

ŷsN = ŷ0 +

N∑
i=1

∫
X
(y − ŷs−i−1

)N [µ̂si−1
]((si−1, si], dy)

=ŷ0 +

N∑
i=1

∑
y∈X

(y − ŷs−i−1
)N [µ̂si−1 ]((si−1, si], {y})

∼ŷ0 +
N∑
i=1

∑
y∈X

(y − ŷs−i−1
)P((si − si−1)µ̂si−1

(y)),

which is exactly (C.14) in the τ -leaping algorithm (Algorithm 1).
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C.4.2 Uniformization

The uniformization algorithm is summarized in Algorithm 2, in which σ(m) denotes the m-th order
statistic of the M uniform random variables on [0, 1], and the randomness in (C.15) should be
understood as sampling a categorical distribution and updating the state accordingly. The main idea
is to simulate the backward process by a Poisson random measure with a piecewise constant intensity
upper bound process and then sample the behavior of each jump according to the intensity µ̂θ

s(y) at
time s.

Algorithm 2: Uniformization Algorithm for Discrete Diffusion Model Inference
Input: ŷ0 ∼ q0, time discretization scheme (sb)b∈[0,N ] with s0 = 0 and sB = T − δ, intensity

upper bound process λs, intensity function µ̂θ
s defined in Proposition 4.1, and neural

network-based score function estimation ŝθt .
Output: A sample xsB ∼ qtB .

1 for b = 0 to B − 1 do
2 M ∼ P(λsb+1

(sb+1 − sb)), σm ∼ Unif([0, 1]) for m ∈ [M ];
3 for m = 1 to M do
4

ŷsb+σ(m)
←

{
y, with prob. µ̂θ

sb+σ(m)
(y)/λsb+1

, for y ∈ X,
ŷsb , with prob. 1−

∑
y∈X µ̂

θ
sb+σ(m)

(y)/λsb+1
;

(C.15)

5 end
6 end

Theorem C.12 (Accurate Simulation by Uniformization). The uniformization algorithm (Algo-
rithm 2) with its stochastic integral formulation in (4.2) is equivalent to the approximate backward
process with its stochastic integral formulation in (C.13).

Proof of Proposition 4.2 and Theorem C.12. For simplicity, we only consider the stochastic inte-
gral (4.2) within the time interval (sb, sb+1].

We rewrite the stochastic integral (4.2) as a sum of jumps:

ysb+1
= ysb +

N∑
i=1

(Yn − ys−b,n)10≤Ξn≤
∫
X µ̂θ

ssb,n
(y)ν(dy),

where by Proposition C.7, (sb,n)n∈[N ] are the jump times and (Yn,Ξn)n∈[N ] are the jump locations
that are distributed according to

P(Yn = y,Ξn = ξ) =
µ̂θ
sb,n

(y)∫
X µ̂

θ
sb,n

(y)ν(dy)
∫ λ

0
dξ

=
µ̂θ
sb,n

(y)∫
X µ̂

θ
sb,n

(y)ν(dy)λ
. (C.16)

Therefore, the n-th jump is not performed if
∫
X µ̂

θ
ssb,n

(y)ν(dy) < Ξn ≤ λ, which is of probability

P(Ξn > µ̂θ
sb,n

(ys−b,n
)) =

∫
X µ̂

θ
sb,n

(y)ν(dy)∫
X µ̂

θ
sb,n

(y)ν(dy)

λ−
∫
X µ̂

θ
ssb,n

(y)ν(dy)

λ

= 1−
∫
X µ̂

θ
sb,n

(y)ν(dy)

λ
,

and is to the state y with probability

P
(
Yn = y,Ξn ≤

∫
X
µ̂θ
ssb,n

(y)ν(dy)

)
=

µ̂θ
sb,n

(y)∫
X µ̂

θ
sb,n

(y)ν(dy)

∫
X µ̂

θ
sb,n

(y)ν(dy)

λ
=
µ̂θ
sb,n

(y)

λ
,

which coincides with (C.15) in the uniformization algorithm (Algorithm 2).
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By conditioning on the occurrence of each jump, i.e. 0 ≤ Ξn ≤
∫
X µ̂

θ
ssb,n

(y)ν(dy), with slight
abuse of notation, we have that

P
(
Yn = y

∣∣∣∣0 ≤ Ξn ≤
∫
X
µ̂θ
ssb,n

(y)ν(dy)

)
=

µ̂θ
sb,n

(y)∫
X µ̂

θ
sb,n

(y)ν(dy)
,

which again by Proposition C.7 implies that ys also satisfies the stochastic integral (C.13) corre-
sponding to the approximate backward process, and vice versa, and the result follows.

D Results for Continuous-Time Markov Chain

In this section, we will provide some results for the continuous-time Markov chain (CTMC), in-
cluding the mixing time, the spectral gap, the modified log-Sobolev constant, etc. We will use the
notation G(Q) to denote the graph corresponding to the rate matrix Q, i.e.

G(Q) = (X, E(G(Q)), Q), where E(G(Q)) = {(x, y) ∈ X× X|x ̸= y,Q(x, y) > 0},
and the weight of the directed edge (x, y) ∈ E(G(Q)) is Q(x, y). We will assume that the
continuous-time Markov chain is irreducible and reversible on the state space X, and the corre-
sponding stationary distribution is π.

D.1 Spectral Gap

Definition D.1 (Spectral Gap). Let L = −Q be the graph Laplacian matrix with D = diagL,
corresponding to the graph G(Q). with

0 = λ1(L) < λ2(L) ≤ . . . ≤ λ|X|(L) ≤ 2max
x∈X

D(x, x) = 2D,

the spectral gap λ(Q) of the rate matrix Q is defined as the second smallest eigenvalue of the graph
Laplacian L, i.e. λ(Q) = λ2(L).
Remark D.2 (Asymptotic Behavior of the score function st). Assume Q is symmetric with the
following orthogonal eigendecomposition:

Q = −UΛU⊤,

where U = (u1,u2, . . . ,u|X|) is an orthogonal matrix, and the distribution pt has the following
decomposition w.r.t. the eigenvectors of the graph Laplacian L:

pt =

|X|∑
i=1

αt(i)ui = Uα(t),

then the solution to the master equation (2.1) is given by

pt = exp(tQ)p0 = U exp(−tΛ)U⊤p0 = U exp(−tΛ)α0 =

|X|∑
j=1

uj exp(−tλj)α0(j),

i.e. αt = exp(−tΛ)α0 and thus for any i ∈ [|X|],

pt(i)− p0(i) =
|X|∑
j=1

uj(i)(−1 + exp(−tλj))α0(j) = −
∑
j>1

uj(i)α0(j)λjO(t).

Therefore, we have

st(x, y) =
pt(y)

pt(x)
=
p0(y)−

∑
j>1 uj(y)α0(j)λjO(t)

p0(x)−
∑

j>1 uj(x)α0(j)λjO(t)
≲ 1 ∨ (Ft)−1,

given that the following condition is satisfied

F = min
x∈X

∣∣∣∣∣∣
∑
j>1

uj(x)α0(j)λj

∣∣∣∣∣∣ > 0,

which only depends on the initial distribution p0 and the rate matrix Q.

Especially, the bound st(x, y) ≲ 1 for any x ∈ X s.t. p0(x) > 0 and st(x, y) ≲ t−1 for those s.t.
p0(x) = 0.
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Definition D.3 (Conductance). The conductance ϕ(G) of a graph G is defined as

ϕ(G) = min
S⊂X

∑
x∈S,y/∈S Q(x, y)

min
{∑

x∈S D(x, x),
∑

y/∈S D(y, y)
} .

Theorem D.4 (Cheeger’s Inequality). Denote the normalized graph Laplacian matrix by L̃ =
D−1/2LD−1/2 with eigenvalues

0 ≤ λ1(L) ≤ λ2(L) ≤ . . . ≤ λ|X|(L) ≤ 2,

then the conductance of the graph G(Q) can be bounded by

1

2
λ2(L) ≤ ϕ(G(Q)) ≤

√
2λ2(L).

D.2 Log-Sobolev Inequalities

Definition D.5 (Modified Log-Sobolev Constant [109]). For any function f, g : X→ R, we denote
the entropy functional Entπ(f) of f as

Entπ(f) := Eπ[f log f ]− Eπ[f ] logEπ[f ],

and the Dirichlet form Eπ(f, g) as

Eπ(f, g) = Eπ[fL
T g] :=

∑
y∈X

f(y)(LT g)(y)π(y) =
∑

x,y∈X

f(y)L(x, y)g(x)π(y),

where the Laplacian L = Q. Then the modified log-Sobolev constant of the rate matrix Q is defined
as

ρ(Q) := inf

{
Eπ(f, log f)
Entπ(f)

∣∣∣∣ f : X→ R, Entπ(f) > 0

}
.

Theorem D.6 (Theorem 2.4, [109]). For any initial distribution p0, we have for any t ≥ 0,

DKL(pt∥π) ≤ DKL(p0∥π) exp (−ρ(Q)t) ,

i.e. the KL divergence converges exponentially fast with rate ρ(Q).

Proof. Noticing that Entπ(pt

π ) = DKL(pt∥π), we differentiate DKL(pt∥π) with respect to t to
obtain that

d

dt
DKL(pt∥π) =

d

dt

∑
x∈X

pt(x)

π(x)
log

(
pt(x)

π(x)

)
π(x) =

∑
x∈X

(
log

pt(x)

π(x)
+ 1

)
π(x)

d

dt

pt(x)

π(x)

=
∑
x∈X

(
log

pt(x)

π(x)
+ 1

)
d

dt
pt(x) = −

∑
x,y∈X

log
pt(x)

π(x)
L(x, y)pt(y)

=−
∑
y∈X

pt(y)

π(y)

(∑
x∈X

L(x, y) log
pt(x)

π(x)

)
π(y)

=− Eπ
(pt
π
, log

pt
π

)
≤ −ρ(Q)DKL(pt∥π),

(D.1)

and the result follows by applying Grönwall’s inequality to both sides above.

Then, the following proposition connects the modified log-Sobolev constant with the spectral gap.

Proposition D.7 ([109, Proposition 3.5]). The modified log-Sobolev constant ρ(Q) of the rate matrix
Q is bounded by the spectral gap λ(Q), i.e. ρ(Q) ≤ λ(Q).
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Proof. Below we provide a sketch of the informal proof of the proposition above for the sake of
completeness. Let f : X→ R be an arbitrary function and ζ > 0 be any positive number. From the
definition of the modified log-Sobolev constant, we have

Eπ(eζf , ζf) ≥ ρ(Q)Entπ(e
ζf ). (D.2)

Under the limit ζ → 0+, we may apply Taylor expansion to the two terms on the LHS and RHS,
which implies

Eπ(eζf , ζf) = Eπ(1 + ζf +O(ζ2), ζf)

= ζEπ(1, f) + ζ2Eπ(f, f) +O(ζ3) = ζ2Eπ(f, f) +O(ζ3)

Entπ(e
ζf ) = Eπ[e

ζfζf ]− Eπ[e
ζf ] logEπ[e

ζf ]

= Eπ

[(
1 + ζf +O(ζ2)

)
ζf
]
− Eπ[1 + ζf +O(ζ2)] logEπ[e

ζf ]

= ζEπ[f ] + ζ2Eπ[f
2] +O(ζ3)

−
(
1 + ζEπ[f ] +O(ζ2)

)
log
(
1 + ζEπ[f ] +O(ζ2)

)
= ζEπ[f ] + ζ2Eπ[f

2] +O(ζ3)−
(
1 + ζEπ[f ] +O(ζ2)

) (
ζEπ[f ] +O(ζ2)

)
= ζ2

(
Eπ[f

2]− Eπ[f ]
2
)
+O(ζ3)

(D.3)

Substituting (D.3) into (D.2) and taking the limit ζ → 0+ then yield the following inequality

ρ(Q) ≤ Eπ(f, f)
Eπ[f2]− Eπ[f ]2

for any non-constant function f : X→ R. Taking infimum on both sides above with respect to all f
then indicates

ρ(Q) ≤ inf
f

Eπ(f, f)
Eπ[f2]− Eπ[f ]2

≤ inf
f :Eπ [f ]=0

Eπ(f, f)
Eπ[f2]

= λ2(L) = λ(Q) (D.4)

where the last two equalities above follows from the definition of spectral gap, as desired.

In general, the lower bound of the modified log-Sobolev constant ρ(Q) and the spectral gap λ(Q)
depends on the connectivity and other specific structures of the graph G(Q), and the related research
is still an active area on a graph-by-graph basis [109].

The properties of the spectral gap λ(Q) are better known in the literature, as it is closely related to the
conductance of the graph G(Q) via Cheeger’s inequality (Theorem D.4), and thus when D = DI ,
the spectral gap λ(Q) satisfies

1

2D
λ(Q) =

1

2
λ2(L) ≤ ϕ(G(Q)) ≤

√
2λ2(L) =

√
2λ(Q)

D
.

However, as shown in Proposition D.7, the lower bound on the modified log-Sobolev constant ρ(Q)
is hard to obtain, as the KL divergence, the exponential convergence of which is controlled by ρ(Q),
is stronger than the total variation distance, the exponential convergence of which is controlled by
λ(Q), via Pinsker’s inequality. The following theorem gives a rough lower bound on d-regular
graphs.

Theorem D.8 ([109, Proposition 5.4]). Suppose G is a d-regular graph on X with unit weights and
Q is the corresponding rate matrix such that G(Q) = G, then the modified log-Sobolev constant
ρ(Q) of the rate matrix Q satisfies

λ(Q)

log |X|
≤ ρ(Q) ≤ 8d log |X|

diam(G)2
,

where diam(G) is the diameter of the graph G.

For some specific graphs, the modified log-Sobolev constant ρ(Q) and the spectral gap λ(Q) can
be explicitly calculated, such as the following examples:
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Example D.9 (Hypercube [110]). Let X = {0, 1}d and Q be the rate matrix for which the graph
G(Q) is a hypercube, and for any two states x, y ∈ X, the rate Q(x, y) = 1 if x and y differ in
exactly one coordinate. Then the modified log-Sobolev constant ρ(Q) and the spectral gap λ(Q)
are given by

ρ(Q) = λ(Q) = 4,

which is dimensionless.
Example D.10 (Asymmetric Hypercube [111]). Let X = {0, 1}d and Q be the rate matrix for which
the graph G(Q) is a hypercube, and for any two states x, y ∈ X, the rate Q(x, y) = p if x and y
differ in exactly one coordinate and x is the state with 0 in that coordinate, andQ(x, y) = q = 1−p
if with 1 in that coordinate. Then the modified log-Sobolev constant ρ(Q) and the spectral gap λ(Q)
are given by

ρ(Q) =
2(p− q)

pq(log p− log q)
, and λ(Q) =

1

pq
.

Further results on log-Sobolev inequalities related to finite-state Markov chains are beyond the scope
of this paper, and we refer the readers to [112, 113, 114, 115, 116, 117] for more detail.

D.3 Mixing Time

Definition D.11 (Mixing Time). We define the mixing time tmix(ϵ) of the continuous-time Markov
chain with rate matrix Q as the smallest time t such that starting from any initial distribution p0,
the KL divergence DKL(pt∥π) is less than ϵ, i.e.

tmix(ϵ) = inf

{
t ∈ R+

∣∣∣∣DKL(pt∥π) = DKL(e
−tQp0∥π) ≤ ϵ

}
.

Similarly, we define the mixing time tmix,TV(ϵ) as the smallest time t such that starting from any
initial distribution p0, the total variation distance TV(pt,π) is less than ϵ, i.e.

tmix,TV(ϵ) = inf

{
t ∈ R+

∣∣∣∣TV(pt,π) = TV(e−tQp0,π) ≤ ϵ
}
.

With a slight abuse of notation, we will also denote the e−1-mixing time as tmix = tmix,KL(e
−1)

and tmix,TV = tmix,TV(e
−1).

Proposition D.12. The mixing time tmix(ϵ) of the continuous-time Markov chain with rate matrix
Q is bounded by the modified log-Sobolev constant ρ(Q), i.e.

tmix(ϵ) ≲ ρ(Q)−1
(
log ϵ−1 + log log π−1

∗
)
,

And the mixing time tmix,TV(ϵ) is bounded by the spectral gap λ(Q), i.e.

tmix,TV(ϵ) ≲ λ(Q)−1
(
log ϵ−1 + log log π−1

∗
)
.

Proof. Define π∗ = minx∈X π(x), we first bound DKL(p0∥π) as follows:

DKL(p0∥p∞) ≤
∑
x∈X

p0(x) log
p0(x)

π(x)
≤ log π−1

∗ , (D.5)

and thus by Theorem D.6, we have

DKL(pt∥π) ≤ DKL(p0∥π) exp (−ρ(Q)t) ≤ log π−1
∗ exp (−ρ(Q)t) . (D.6)

Therefore, by setting the right-hand side of (D.6) to be ϵ, we have the desired result for the mixing
time

tmix(ϵ) ≤
1

ρ(Q)

(
log ϵ−1 + log log π−1

∗
)
.

For the mixing time tmix,TV(ϵ), we use the Pinsker’s inequality to obtain:

TV(pt,π) ≤ 2
√
DKL(pt∥π) ≤ 2

√
log π−1

∗ exp (−ρ(Q)t) ,
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and therefore,

tmix,TV(ϵ) ≲
1

ρ(Q)
log

(
ϵ−1

√
log π−1

∗

)
≲ 1

ρ(Q)

(
log ϵ−1 + log log π−1

∗
)
.

Corollary D.13. The e−1-mixing time tmix and tmix,TV of the continuous-time Markov chain with
rate matrix Q satisfy

tmix ≲ ρ(Q)−1 log log π−1
∗ , and tmix,TV ≲ λ(Q)−1 log log π−1

∗ ,

and thus tmix ≳ tmix,TV.

E Proofs of Error Analysis in Section 4.3

In this section, we provide the proofs of the main results in Section 4.3. We first introduce the
assumptions in Section 4.2 and then provide the proofs of the main results in Section ??.

E.1 Discussions on Assumptions in Section 4.2

We need the following assumptions to ensure the well-definedness of discrete diffusion models. For
simplicity, we assume the rate matrix Qt is time-homogeneous and symmetric, i.e. Qt = Q for
any t ≥ 0. In fact, the results can be easily extended to the time-inhomogeneous case of the family
Qt = βtQ with a rescaling factor βt, and asymmetric cases will be left for future works.

Assumption E.1 (Regularity of the Rate Matrix). The rate matrix Q satisfies the following condi-
tions:

(i) For any x, y ∈ X, Q(x, y) ≤ C and D ≤ −Q(x, x) ≤ D for some constants C,D,D > 0;

(ii) The modified log-Sobolev constant ρ(Q) of the rate matrix Q (cf. Definition D.5) is lower
bounded by ρ > 0.

Statement (i) assumes the regularity of the rate matrix, which is often trivially satisfied in many
applications, while Statement (ii) ensures the exponential convergence of the forward process in
discrete diffusion models. In general, ρ(Q) may depend on the connectivity and other structures of
the corresponding graph G(Q) (cf. Definition D.1). Such lower bound has been obtained for specific
graphs (e.g. Example D.9 and D.10), and general results are in active research [113, 109]. We refer
readers to Appendix D for further discussions on the literature of the modified log-Sobolev constant,
as well as its relation to the spectral gap, the mixing time, etc..

Assumption E.2 (Bounded Score). The true score function satisfies st(x, y) ≲ 1 ∨ t−1, while the
learned score function satisfies ŝθs(x, y) ∈ (0,M ], for any x, y ∈ X.

The first part on the asymptotic behavior of the true score corresponds to the estimation E[∥st∥2] ∼
E[∥xt − µt∥2/σ2

t ] ∼ 1 ∨ t−1 in the continuous case [27, Assumption 1] and further justification
is provided in Remark D.2. The bound on the estimated score can be easily satisfied by adding
truncation in post-processing in the implementation of the NN-based score estimator.

Assumption E.3 (Continuity of Score Function). For any t > 0 and y ∈ X such thatQ(xt− , y) > 0,

we have
∣∣∣µt+ (y)

µt(y)

∣∣∣ := ∣∣∣pt(xt− )Q(xt,y)

pt(xt)Q(xt− ,y) − 1
∣∣∣ ≲ 1 ∨ t−γ , for some exponent γ ∈ [0, 1].

Assumption E.3 corresponds to the Lipschitz continuity of the score function (cf. [90, Assumption
1], [27, Assumption 3]) for continuous diffusion models, and is in light of the postulation that ad-
jacent vertices should have close score function and intensity values. In the worse case, assume
Q(x, y) = Θ(1), then a naïve bound would be

∣∣∣µt+ (y)

µt(y)

∣∣∣ ≲ |st(xt, xt−)| ≲ 1∨ t−1 with γ = 1. How-
ever, when the initial distribution is both upper and lower bounded, γ may be as small as 0, and we
plan to investigate how this (local) continuity of the score function affects the overall performance
of discrete diffusion models.
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Assumption E.4 (ϵ-accurate Score Estimation). The score function st(xt) is estimated by the neural
network ŝθt (xt) with ϵ-accuracy, i.e.

N−1∑
n=0

(sn+1 − sn)E

[∫
X
K

(
⃗ŝθsn( ⃗xs−n , y)

⃗ssn( ⃗xs−n , y)

)
⃗ssn( ⃗xs−n , y)Q̃( ⃗xs−n , y)ν(dy)

]
≤ ϵ.

This assumption assumes the expressive power and sufficient training of the NN-based score estima-
tor and is standard in diffusion model-related theories [90, 27, 28, 96].

E.2 Truncation Error

Theorem E.5 (Truncation Error). The forward process (2.1) converges to the uniform distribution
p∞ = 1/|X| exponentially fast in terms of the KL divergence, i.e.

DKL(pt∥p∞) = DKL

(
pt

∥∥∥ 1

|X|

)
≲ e−ρt log |X|,

where |X| is the size of the state space, and tmix is the mixing time of the continuous-time Markov
chain corresponding to the rate matrix Q defined in Definition D.11.

Proof. Since Q is symmetric, we have the stationary distribution π = 1/|X| and thus
DKL(pt∥p∞) = DKL(pt∥π), and π∗ = 1/|X|.
By Assumption E.1 and Corollary D.13, we have

DKL(pt∥π) ≤ e−ρ(Q)tDKL(p0∥π) ≤ e−ρt log π−1
∗ ≤ e−ρt log |X|,

where the last inequality is by (D.5).

E.3 Discretization Error

Denote the shorthand notation G(x; y) = x(log x − log y) − x; it is easy to check that G′(x; y) =
log x− log y.
Proposition E.6. For any y ∈ X, we have

|∂σG(µσ(y); µ̂
θ
⌊sn⌋(y))| ≲ (logC + log (1 ∨ (T − σ)) + logM)µσ(y)D

(
1 ∨ (T − σ)−2

)
.

Proof. By the chain rule, we have

∂σG(µσ(y); µ̂
θ
⌊sn⌋(y)) = G′(µσ(y); µ̂

θ
⌊sn⌋(y))∂σµσ(y) =

(
log µσ(y)− log µ̂θ

⌊sn⌋(y)
)
∂σµσ(y).

We first compute ∂σµσ(y) as

∂σµσ(y) = Q̃( ⃗xσ− , y)∂σ ⃗sσ( ⃗xσ− , y) = Q̃( ⃗xσ− , y)∂σ

(
⃗pσ(y)

⃗pσ(xσ−)

)
=Q̃( ⃗xσ− , y)

(
1

⃗pσ(xσ−)
∂σ ⃗pσ(y)−

⃗pσ(y)

⃗pσ(xσ−)2
∂σ ⃗pσ(xσ−)

)

=Q̃( ⃗xσ− , y)

− ⃗pσ(y)

⃗pσ(xσ−)

∑
y′∈X

⃗pσ(y
′)

⃗pσ(y)
Q(y, y′) +

⃗pσ(y)

⃗pσ(xσ−)

∑
y′∈X

⃗pσ(y
′)

⃗pσ(xσ−)
Q(xσ− , y′)


=µσ(y)

−∑
y′∈X

⃗sσ(y, y
′)Q(y, y′) +

∑
y′∈X

⃗sσ(xσ− , y′)Q(xσ− , y′)

 ,

by which we have

|∂σµσ(y)| ≲ µσ(y)

∑
y′∈X

(
1 ∨ (T − σ)−2

)
|Q(xσ− , y′)|

 ≲ µσ(y)D
(
1 ∨ (T − σ)−2

)
,

31



and thus∣∣∣∂σG(µσ(y); µ̂
θ
⌊sn⌋(y))

∣∣∣ ≤ ∣∣∣log µσ(y)− log µ̂θ
⌊sn⌋(y)

∣∣∣ |∂σµσ(y)|

≤
(
| log Q̃( ⃗xσ− , y)|+ | log ⃗sσ( ⃗xσ− , y)|+ | log Q̃( ⃗xs−n , y)|+ | log

⃗ŝ
θ

sn( ⃗xs−n , y)|
)
|∂σµσ(y)|

≲µσ(y)
(
logC + log

(
1 ∨ (T − σ)−1

)
+ logM

)
D
(
1 ∨ (T − σ)−2

)
.

Proposition E.7. For any 0 < s < t ≤ T , we have∫ t

s

∫
X
µσ(y

′)ν(dy′)dσ ≲
(
1 ∨ (T − t)−1

)
D(t− s).

Proof. ∫ t

s

∫
X
µσ(y

′)ν(dy′)dσ =

∫ t

s

∫
X

⃗sσ( ⃗xσ− , y′)Q̃( ⃗xσ− , y′)ν(dy′)dσ

≲
(
1 ∨ (T − t)−1

) ∫ t

s

∫
X
Q̃(y, ⃗xσ−)ν(dy′)dσ

≲
(
1 ∨ (T − t)−1

) ∫ t

s

|Q( ⃗xσ− , ⃗xσ−)| dσ ≲
(
1 ∨ (T − t)−1

)
D(t− s).

(E.1)

Proposition E.8. For any y ∈ X, we have

E
[∣∣∣G(µs; µ̂

θ
⌊sn⌋(y))−G(µsn ; µ̂

θ
⌊s⌋(y))

∣∣∣]
≲
(
logC + log

(
1 ∨ (T − sn+1)

−1
)
+ logM

)
µσ(y)D(s− sn)

(
1 ∨ (T − sn+1)

−1−γ
)
.

Proof. Applying Theorem C.9 to the backward process (3.2), we have

G(µs(y); µ̂
θ
⌊sn⌋(y)) =G(µsn(y); µ̂

θ
⌊s⌋(y)) +

∫ s

sn

∂σG(µσ(y); µ̂
θ
⌊sn⌋(y))dσ

+

∫ s

sn

∫
X

(
G(µσ+(y); µ̂θ

⌊sn⌋(y))−G(µσ(y); µ̂
θ
⌊sn⌋(y))

)
N [µ](dσ, dy′),

where we adopt the notation µσ+(y) as the right limit of the càglàd process µσ(y), i.e. µσ+(y) =

⃗sσ( ⃗xσ, y)Q̃( ⃗xσ, y).

For the first term, we have by Proposition E.6 that∣∣∣∣∫ s

sn

∂σG(µσ(y); µ̂
θ
⌊sn⌋(y))dσ

∣∣∣∣ ≲ ∫ s

sn

∣∣∣∂σG(µσ(y); µ̂
θ
⌊sn⌋(y))

∣∣∣ dσ
≲
∫ s

sn

(
logC + log

(
1 ∨ (T − σ)−1

)
+ logM

)
µσ(y)D

(
1 ∨ (T − σ)−2

)
dσ

≲
(
logC + log

(
1 ∨ (T − sn+1)

−1
)
+ logM

)
µσ(y)D(s− sn)

(
1 ∨ (T − sn+1)

−1
)
.

For the second term, we have∣∣∣G(µσ+(y); µ̂θ
⌊sn⌋(y))−G(µσ(y); µ̂

θ
⌊sn⌋(y))

∣∣∣
=
∣∣∣G′(ξ; µ̂θ

⌊sn⌋(y))(µσ+(y)− µσ(y))
∣∣∣ = ∣∣∣(log ξ − log µ̂θ

⌊sn⌋(y))(µσ+(y)− µσ(y))
∣∣∣

≤
(
|log µσ+(y)|+ |log µσ(y)|+

∣∣∣log µ̂θ
⌊sn⌋(y)

∣∣∣) ∣∣∣∣µσ+(y)

µσ(y)
− 1

∣∣∣∣µσ(y)

≲
(
logC + log

(
1 ∨ (T − σ)−1

)
+ logM

) (
1 ∨ (T − σ)−γ

)
µσ(y),
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where the first equality follows from the mean value theorem and the last inequality is by Assump-
tion E.3.

Therefore,

E
[∣∣∣G(µs; µ̂

θ
⌊sn⌋(y))−G(µsn ; µ̂

θ
⌊s⌋(y))

∣∣∣]
≤E

[∣∣∣∣∫ s

sn

∂σG(µσ(y); µ̂
θ
⌊sn⌋(y))dσ

∣∣∣∣]
+E

[∫ s

sn

∫
X

∣∣∣G(µσ+(y); µ̂θ
⌊sn⌋(y))−G(µσ(y); µ̂

θ
⌊sn⌋(y))

∣∣∣N [µ](dσ, dy′)

]
≲
(
logC + log

(
1 ∨ (T − sn+1)

−1
)
+ logM

)
µσ(y)D(s− sn)

(
1 ∨ (T − sn+1)

−1
)

+

∫ s

sn

∫
X

(
logC + log

(
1 ∨ (T − σ)−1

)
+ logM

)
µσ(y)

(
1 ∨ (T − σ)−γ

)
µσ(y

′)ν(dy′)dσ

≲
(
logC + log

(
1 ∨ (T − sn+1)

−1
)
+ logM

)
µσ(y)D(s− sn)

(
1 ∨ (T − sn+1)

−1
)

+
(
logC + log

(
1 ∨ (T − sn+1)

−1
)
+ logM

)
µσ(y)

(
1 ∨ (T − sn+1)

−1−γ
)
(s− sn)D

≲
(
logC + log

(
1 ∨ (T − sn+1)

−1
)
+ logM

)
µσ(y)D(s− sn)

(
1 ∨ (T − sn+1)

−1−γ
)
,

where the second to last inequality is by Proposition E.3.

Proposition E.9 (Discretization Error). The following bound holds∫ T−δ

0

∫
X

∣∣∣G(µs(y); µ̂
θ
⌊sn⌋(y))−G(µsn(y); µ̂

θ
⌊s⌋(y))

∣∣∣ ν(dy)ds
≲
{
D

2
κT, γ < 1,

D
2
κ
(
T + log2 δ−1

)
, γ = 1,

with N =

{
κ−1T, γ < 1

κ−1(T + log δ−1), γ = 1
steps, by taking γ < η ≲ 1− T−1 when γ < 1, and η = 1

when γ = 1. In particular, in the former case, early stopping at time T − δ is not necessary, i.e.
δ = 0.

Proof. We have by Proposition E.8 that∫ sn+1

sn

∫
X

∣∣∣G(µs(y); µ̂
θ
⌊sn⌋(y))−G(µsn(y); µ̂

θ
⌊s⌋(y))

∣∣∣ ν(dy)ds
≲
∫ sn+1

sn

∫
X
µσ(y)ν(dy)(

logC + log
(
1 ∨ (T − sn+1)

−1
)
+ logM

)
D(s− sn)

(
1 ∨ (T − sn+1)

−1−γ
)
ds

≲
(
logC + log

(
1 ∨ (T − sn+1)

−1
)
+ logM

)
D

2
(sn+1 − sn)2

(
1 ∨ (T − sn+1)

−1−γ
)
.

• Case 1: γ < η ≲ 1− T−1

The following bound holds∫ sn+1

sn

∫
X

∣∣∣G(µs(y); µ̂
θ
⌊sn⌋(y))−G(µsn(y); µ̂

θ
⌊s⌋(y))

∣∣∣ ν(dy)ds
≲
(
1 + log

(
1 ∨ (T − sn+1)

−1
))
D

2
κ(sn+1 − sn)

(
1 ∨ (T − sn+1)

−1−γ+η
)
,
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and thus, the following error

N−1∑
n=0

∫ sn+1

sn

∫
X

∣∣∣G(µs(y); µ̂
θ
⌊sn⌋(y))−G(µsn(y); µ̂

θ
⌊s⌋(y))

∣∣∣ ν(dy)ds
≲

N−1∑
n=0

(
1 + log

(
1 ∨ (T − sn+1)

−1
))
D

2
κ(sn+1 − sn)

(
1 ∨ (T − sn+1)

−1−γ+η
)

≲D2
κ

(
T +

∫ 1

δ

t−1−γ+η log t−1dt

)
≲ D

2
κ

(
T +

∫ δ−1

1

t−1−(η−γ) log tdt

)
≲D2

κ
(
T + δη−γ log δ−1

)
→ D

2
κT, as δ → 0,

is achievable with finite number of steps N , i.e.

N ≲
∫ T

δ

1

κ (1 ∧ tη)
dt ≲ κ−1T + κ−1

∫ 1

δ

t−ηdt ≲ κ−1

(
T +

1

1− η

)
≲ κ−1T,

where we take η ≲ 1− T−1.

• Case 2: γ = η = 1

We have the following bound∫ sn+1

sn

∫
X

∣∣∣G(µs(y); µ̂
θ
⌊sn⌋(y))−G(µsn(y); µ̂

θ
⌊s⌋(y))

∣∣∣ ν(dy)ds
≲
(
1 + log

(
1 ∨ (T − sn+1)

−1
))
D

2
κ(sn+1 − sn)

(
1 ∨ (T − sn+1)

−1
)
,

and similarly

N−1∑
n=0

∫ sn+1

sn

∫
X

∣∣∣G(µs(y); µ̂
θ
⌊sn⌋(y))−G(µsn(y); µ̂

θ
⌊s⌋(y))

∣∣∣ ν(dy)ds
≲

N−1∑
n=0

(
1 + log

(
1 ∨ (T − sn+1)

−1
))
D

2
κ(sn+1 − sn)

(
1 ∨ (T − sn+1)

−1
)

≲D2
κ

(
T +

∫ δ−1

1

t−1 log tdt

)
≲ D

2
κ
(
T + log2 δ−1

)
.

However, the number of steps N is now bounded by

N ≲
∫ T

δ

1

κ(1 ∧ t)
dt ≲ κ−1(T + log δ−1).

E.4 Overall Error Bound

Theorem E.10. Let ⃗p0:T and q̂0:T be the path measures of the backward process with the stochastic
integral formulation (3.2) and the interpolating process (4.1) of τ -leaping algorithm (Algorithm (1)),
then it holds that

DKL( ⃗p0:T ∥q̂0:T ) = DKL( ⃗p0∥q̂0)+E

[∫ T

0

∫
X

(
µs(y) log

µs(y)

µ̂θ
⌊s⌋(y)

− µs(y) + µ̂θ
⌊s⌋(y)

)
ν(dy)dt

]
,

(E.2)
where the expectation is taken w.r.t. paths generated by the backward process (3.2).

Now, we are ready to present the proof of Theorem 4.7.

34



Proof of Theorem 4.7. We first rewrite the integral in (E.2) as∫ sn+1

sn

∫
X

(
µs(y) log

µs(y)

µ̂θ
⌊s⌋(y)

− µs(y) + µ̂θ
⌊s⌋(y)

)
ν(dy)ds

=

∫ sn+1

sn

∫
X

(
µsn(y) log

µsn(y)

µ̂θ
⌊sn⌋(y)

− µsn(y) + µ̂θ
⌊s⌋(y)

+G(µs(y); µ̂
θ
⌊sn⌋(y))−G(µsn(y); µ̂

θ
⌊s⌋(y))

)
ν(dy)ds.

Therefore, the overall error is bounded by
DKL( ⃗p0:T−δ∥q̂0:T−δ)

≲DKL( ⃗p0∥q̂0) + E

[∫ T−δ

0

∫
X

(
µsn(y) log

µsn(y)

µ̂θ
⌊sn⌋(y)

− µsn(y) + µ̂θ
⌊sn⌋(y)

)
ν(dy)dt

]

+

∫ sn+1

sn

∫
X

∣∣∣G(µs(y); µ̂
θ
⌊sn⌋(y))−G(µsn(y); µ̂

θ
⌊s⌋(y))

∣∣∣ ν(dy)ds
≲DKL(pT−δ∥p∞)

+E
[N−1∑

n=0

(sn+1 − sn)

∫
X

(
⃗ssn( ⃗xs−n , y) log

⃗ssn( ⃗xs−n , y)

⃗ŝθsn( ⃗xs−n , y)
− ⃗ssn( ⃗xs−n , y) +

⃗ŝθsn( ⃗xs−n , y)

)
Q̃( ⃗xs−n , y)ν(dy)

]

+

N−1∑
n=0

(logC + logM)D
2
κ(sn+1 − sn)

≲
{
exp(−ρT ) log |X|+ ϵ+D

2
κT, γ < 1,

exp(−ρT ) log |X|+ ϵ+D
2
κ
(
T + log2 δ−1

)
, γ = 1,

where in the last inequality we used results for the first term (Truncation error, cf. Theorem E.5), the
second term (Approximation error, cf. Assumption E.4) and the third term (Discretization error, cf.
Proposition E.9).

By taking

T = O

(
log
(
ϵ−1 log |X|

)
ρ

)
, κ = O

(
ϵρ

D
2
log (ϵ−1 log |X|)

)
,

deploying the time discretization scheme with γ < η ≲ 1 − T−1 when γ < 1, and η = 1 when
γ = 1, and performing early stopping as

δ =

{
0, γ < 1,

Ω
(
exp(−

√
T )
)
, γ = 1,

we have DKL( ⃗pT−δ∥q̂T ) ≤ DKL( ⃗p0:T−δ∥q̂0:T−δ) ≲ ϵ with

N ≲ κ−1T = O

(
D

2
log2

(
ϵ−1 log |X|

)
ϵρ2

)
steps.

Remark E.11 (Remark on Early Stopping). As in Assumption E.2, the true score function may
exhibit singular behavior as s→ T , due to possible vacancy in the target distribution p0. To handle
this singularity, two different regimes are considered for the time discretization scheme depending
on the continuity parameter γ of the score function (Assumption E.3). The main intuition is that (a)
in the worse case γ = 1, early stopping at time s = T − δ is necessary; (b) if the target distribution
p0 is such well-posed (e.g. both upper and lower bounded) and the rate matrix Q is constructed
in a way that the score exhibits certain (local) continuity reflected by γ < 1, one may choose an
appropriate shrinkage η, with which finite discretization error can be achieved with finite steps.
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Proof of Theorem 4.8. Due to the equivalence of the stochastic integral formulation (4.2) of the
uniformization scheme and the approximate backward process (C.13) established in Proposition 4.2,
the error for the uniformization scheme is directly bounded by the error (E.2) in Corollary C.11, i.e.

DKL( ⃗p0:T−δ∥q0:T−δ)

≤DKL( ⃗p0∥q0) + E

[∫ T−δ

0

∫
X

(
µs(y) log

µs(y)

µ̂θ
s(y)

− µs(y) + µ̂θ
s(y)

)
ν(dy)dt

]
≲DKL(pT ∥p∞)

+E

[∫ T−δ

0

∫
X

(
⃗ss( ⃗xs− , y) log

⃗ss( ⃗xs− , y)

⃗ŝθs( ⃗xs− , y)
− ⃗ss( ⃗xs− , y) + ⃗ŝθs( ⃗xs− , y)

)
Q̃( ⃗xs− , y)ν(dy)ds

]
≲|X| exp(−ρT ) + ϵ.

The expectation of the number of steps N is bounded by

E[N ] = E

[
B−1∑
b=0

P
(
λsb+1

(sb+1 − sb)
)]

=

B−1∑
b=0

λsb+1
(sb+1 − sb)

≲
B−1∑
b=0

D(1 ∨ (T − sb+1))
−1(sb+1 − sb)

≲D
(
T +

∫ 1

δ

t−1dt

)
= D(T + log δ−1).

By taking

T = O

(
log
(
ϵ−1 log |X|

)
ρ

)
, δ = Ω(exp(−T ))

we have DKL( ⃗pT−δ∥qT−δ) ≤ DKL( ⃗p0:T−δ∥q0:T−δ) ≲ ϵ with

E[N ] = O

(
D log

(
ϵ−1 log |X|

)
ρ

)
steps.
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