
EGPlace: An Efficient Macro Placement Method via Evolutionary Search with
Greedy Repositioning Guided Mutation

Ji Deng 1 Zhao Li 2 Ji Zhang 3 Jun Gao 1

Abstract
Macro placement, which involves optimizing the
positions of modules, is a critical phase in modern
integrated circuit design and significantly influ-
ences chip performance. The growing complex-
ity of integrated circuits demands increasingly
sophisticated placement solutions. Existing ap-
proaches have evolved along two primary paths
(e.g., constructive and adjustment methods), but
they face significant practical limitations that af-
fect real-world chip design. Recent hybrid frame-
works such as WireMask-EA have attempted to
combine these strategies, but significant technical
barriers still remain, including the computational
overhead from separated layout adjustment and
reconstruction that often require complete layout
rebuilding, the inefficient exploration of design
spaces due to random mutation operations, and
the computational complexity of mask-based con-
struction methods that limit scalability. To over-
come these limitations, we introduce EGPlace, a
novel evolutionary optimization framework that
combines guided mutation strategies with efficient
layout reconstruction. EGPlace introduces two
key innovations: a greedy repositioning-guided
mutation operator that systematically identifies
and optimizes critical layout regions, and an effi-
cient mask computation algorithm that accelerates
layout evaluation. Our extensive evaluation using
ISPD2005 and Ariane RISC-V CPU benchmarks
demonstrate that EGPlace reduces wirelength by
10.8% and 9.3% compared to WireMask-EA and
the state-of-the-art reinforcement learning-based
constructive method EfficientPlace, respectively,
while achieving speedups of 7.8× and 2.8× over
these methods.

1School of Computer Science, Peking University, BeiJing,
China 2Zhejiang Lab, Zhejiang, China 3Nanjing University of
Aeronautics and Astronautics, China. Correspondence to: Jun Gao
<gaojun@pku.edu.cn>.

Proceedings of the 42 st International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
The exponential growth in integrated circuit complexity has
made chip placement a critical challenge in electronic de-
sign automation (MacMillen et al., 2000). The task involves
positioning thousands of macro blocks and millions of stan-
dard cells on a chip, creating a solution space even more
complex than advanced strategic games like Go (Mirhoseini
et al., 2021). Research has been focused on macro place-
ment optimization (Geng et al., 2024b; Mirhoseini et al.,
2021; Lai et al., 2022; Shi et al., 2023) as these functional
blocks significantly impact overall circuit performance.

The macro placement problem presents a complex optimiza-
tion problem with three interrelated technical objectives that
determine circuit viability (Chen et al., 2006). Minimizing
total wirelength between connected models reduces signal
delays and improves chip performance, while managing
routing congestion ensures adequate resources for signal
transmission (Wang et al., 2009). The complete elimina-
tion of physical overlaps between models remains essential
for manufacturing feasibility (Lai et al., 2022). The tech-
nical complexity emerges from the nonlinear relationships
between model positions and performance metrics, where
local modifications can have significant effects on global
optimization goals. This challenge compounds with the
intricate connections between models, which together cre-
ate an enormous combinatorial solution space. Achieving
high-quality placement solutions requires simultaneously
balancing these competing objectives and addressing the
complex challenges.

Research in macro placement optimization has developed
two different categories of approaches: adjustment-based
methods that iteratively improve existing layouts, and con-
structive methods that build solutions progressively. The
adjustment-based category includes both stochastic and an-
alytical optimization techniques. Stochastic methods such
as simulated annealing (Sechen & Sangiovanni-Vincentelli,
1985) and evolutionary algorithms (Cohoon & Paris, 1987;
Shahookar & Mazumder, 1991; Kling & Banerjee, 1989)
modify layouts through random perturbations to explore di-
verse solutions. However, this undirected exploration often
leads to low sample efficiency. Analytical approaches (Lu
et al., 2015; Cheng et al., 2018; Kahng et al., 2005) trans-

1

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

form the placement problem into mathematical equations
solved through techniques like gradient descent. These
methods face practical limitations from relaxing overlap
constraints and difficulty in handling non-differentiable con-
gestion metrics. Constructive methods build layouts from
scratch using different strategies. Recent advances on con-
structive methods have focused on reinforcement learning
approaches (Mirhoseini et al., 2021; Cheng et al., 2022; Lai
et al., 2022; Geng et al., 2024b) that model placement as a
Markov Decision Process with sequential model position-
ing. While these methods have shown promising results,
they require substantial computational resources for training.
The sequential nature of their decision-making also means
each placement choice lacks sufficient reception field about
future layout configurations.

The integration of constructive and adjustment methods
leads to promising approaches to macro placement opti-
mization. A recent state-of-the-art method WireMask-EA
(Shi et al., 2023) implements this concept through an evolu-
tionary algorithm framework. The method applies random
mutations to layouts and uses greedy reconstruction to im-
prove solution quality. However, the hybrid approaches still
encounter three major technical challenges: Executing lay-
out adjustments and reconstructions sequentially can lead
to inefficiencies, as local changes may require a complete
layout overhaul; random mutations in stochastic optimiza-
tion can waste computational resources by exploring less
promising configurations; the mask computations needed
for assessing module positions can become a performance
bottleneck due to redundant calculations during placement.

To solve the aforementioned technical challenges, we intro-
duce EGPlace, an evolutionary optimization framework for
macro placement that integrates guided mutation with effi-
cient reconstruction techniques. Unlike previous approaches
that separate adjustment and construction phases (Shi et al.,
2023), EGPlace implements a unified mutation operator
that selects modules for repositioning based on their quality
impact scores and employs an efficient greedy strategy for
module relocation. To enhance sample efficiency during
exploration within the vast search space, the framework in-
corporates guidance mechanisms at multiple levels - using
fitness functions to identify promising layouts for evolution
and prioritizing poorly placed modules for repositioning.
This targeted optimization approach, combined with an op-
timized mask computation algorithm, enables EGPlace to
achieve superior results with significantly reduced compu-
tational requirements. The main contributions of this work
include:

• A novel and efficient mutation operator with a guid-
ance mechanism that identifies critical modules for
repositioning based on their impact on overall layout
quality, thereby improving sample efficiency. More-

over, this mutation operator seamlessly integrates lay-
out adjustment and reconstruction phases, eliminating
the computational overhead caused by full layout re-
construction after local modifications.

• An advanced mask computation algorithm that reduces
the computational complexity from quadratic to linear
time per module. This improvement enables rapid eval-
uation of potential module positions and accelerates
the overall optimization process.

• Extensive experimental validation on standard
ISPD2005 benchmarks demonstrates that EGPlace
achieves 11% better Half Perimeter Wire Length
(HPWL) (Chen et al., 2006) than WireMask-EA (Shi
et al., 2023), 9% improvement over EfficientPlace
(Geng et al., 2024b), and a 7.8× speedup compared to
WireMask-EA.

2. Related Work
Current chip placement methods are maninly classified into
constructive and adjustment-based techniques. In a signifi-
cant development, recent research has focused on combining
these approaches to create more effective hybrid solutions.

Constructive Methods. Constructive methods generate
layouts from scratch. Early constructive methods rely on
heuristic rules, such as greedy placement rule (Magnuson,
1977; Fukunaga et al., 1983). Those methods place intercon-
nected modules in proximity to reduce wirelength. Although
they are efficient, it is challenging to determine rules that
perform well across different chip benchmarks. Breuer et al.
introduces partition-based methods, which divide circuits
into clusters to minimize inter-cluster connections and place
them in corresponding subregions (Breuer, 1977). Later
improvements include terminal propagation to account for
inter-cluster connections (Dunlop & Kernighan, 1985) and
advanced hypergraph partitioning techniques (Fiduccia &
Mattheyses, 1988; Karypis et al., 1997). However, these
methods optimize placements within each partition indepen-
dently, limiting overall performance.

Recent work utilizes Reinforcement Leaning (RL) to learn
constructive placement strategies. Mirhoseini et al. (Mirho-
seini et al., 2021) introduced sequential module placement
using a trained RL agent. Many studies have focused on
improving the performance of RL-based methods. PRNet
(Cheng & Yan, 2021) integrated chip routing considera-
tions to refine reward signals. MaskPlace (Lai et al., 2022)
leveraged CNNs to better capture pin location information.
Subsequent work prioritizes computational efficiency. Chip-
former (Lai et al., 2023) employed pretrained decision trans-
formers (Zheng et al., 2022) for rapid adaptation to new
circuits. EfficientPlace (Geng et al., 2024b) further ad-
vanced efficiency through a learning-inside-optimization

2

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

framework that combines state storage with Monte Carlo
Tree Search guidance. Despite these innovations, existing
RL-based constructive approaches face two persistent lim-
itations: the substantial computational overhead of agent
training and the inherent myopia of sequential placement
decisions, where each choice does not sufficiently consider
future module positions.

Adjustment-based Methods. Adjustment-based methods
iteratively adjust module locations to improve layout qual-
ity. These methods include stochastic-based and analytical-
based approaches. Stochastic-based approaches typically
use simulated annealing algorithms and represent layouts
with data structures like sequence pairs (Murata et al., 2002),
B*-trees (Chang et al., 2000) and corner block lists (Hong
et al., 2000). These approaches apply perturbations to their
data structures to explore the search space, then transform
them back to the original layout representation for evalua-
tion. However, such transformations are computationally
expensive (Shi et al., 2023), while random perturbations of-
ten lead to low sample efficiency. Analytical-based methods,
including quadratic (Viswanathan & Chu, 2005) and non-
linear approaches (Cheng et al., 2018; Lin et al., 2019; Lu
et al., 2015), model optimization objectives with analytical
equations. Nonlinear methods like ePlace (Lu et al., 2015)
treat module density as charge density in an electrostatic sys-
tem and have shown strong performance. Analytical-based
methods often treat overlap as a soft constraint, addressing
it during a subsequent legalization phase, which may lead to
a significant increase in wirelength or even fail to generate
valid layouts. They also ignore congestion, which is non-
differentiable and hard to optimize with gradient descent.
Some recent RL-based methods (Xue et al., 2024; Chiang
et al., 2025) adopt a novel adjustment paradigm, where
placement begins with a complete layout and policies are
learned to adjust the position of one or a group of modules at
each step. While this approach benefits from a comprehen-
sive state representation that captures the full layout context,
it incurs considerable computational overhead.

Hybrid Methods. Some recent research has focused on
synthesizing the strengths of constructive and adjustment
methods in macro placement optimization. For instance,
WireMask-EA (Shi et al., 2023) employed a simple (1+1)-
EA (Zhou et al., 2019) as its backbone, which maintains a
population of only one layout. In each iteration WireMask-
EA applies random module swapping adjustments on the
layout to explore the search space, and reposition modules
with a greedy constructive method to improve the quality. It
takes advantage of both the efficiency of greedy placement
methods and the capability to broadly explore the solution
space of adjustment methods, and achieves better layout
quality than many state-of-the-art RL-based methods. How-
ever, despite its innovative design, the method still confronts
several computational and optimization challenges that were

outlined in the introduction. In addition, the recent work
LaMPlace (Geng et al., 2024a) integrates a learned mask,
designed to reflect final Power, Performance and Area (PPA)
objectives, into the WireMask-EA framework, and use it in
place of the original WireMask to guide macro placement.
This enhancement leads to substantial improvements in PPA
performance. The learned mask from LaMPlace can also be
incorporated into EGPlace to potientially improve the final
layout quality.

3. Problem Description & Overall Framework
The input of macro placement comprises a rectangular chip
substrate and a circuit netlist represented as a hypergraph,
where modules serve as nodes while nets function as hyper-
edges that connect the pins located on different modules.

Layout quality evaluation involves three key metrics. The
primary metric, wirelength, measures total routing resources
and affects circuit performance. Since the exact wirelength
can be determined only after routing, a more efficient ap-
proximation, Half Perimeter Wire Length (HPWL) (Chen
et al., 2006), is typically used, calculated from the sum of
half-perimeters of net-bounding boxes. For routing con-
gestion analysis, the Rectangular Uniform wire DensitY
(RUDY) metric (Spindler & Johannes, 2007) gauges re-
source utilization density. Additionally, minimizing physi-
cal overlap between modules, quantified by an overlap rate
(Lai et al., 2022), is crucial for manufacturability. While
ideal layouts aim for zero overlap, practical methods (Lin
et al., 2019; Lai et al., 2022) may relax this constraint to
improve optimization efficiency, especially on benchmarks
where modules occupy a large proportion of the placement
region, such as the “ariane” benchmark in Appendix D.4.
Detailed metric definitions and calculations are found in
Appendix B.

The optimization objective combines these metrics through
a weighted sum formulation shown in Equation (1). The
hyperparameters λ1 and λ2 control the relative importance
of RUDY and overlap penalties compared to the primary
HPWL objective, to produce the layouts that balance com-
peting design constraints:

Objective = HPWL + λ1 · RUDY + λ2 · overlap (1)

In this paper, we propose EGPlace for efficient macro place-
ment. The framework of EGPlace is illustrated in Fig. 1.
It utilizes an evolutionary backbone combined with greedy
repositioning-guided mutation.

4. Evolutionary Backbone
EGPlace employs evolutionary search as its optimization
backbone due to its effectiveness in handling complex, non-
differentiable objectives and discrete optimization problems.

3

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

Initialization

Overlap Mask Wire Mask Bound Mask

(a) Evolutionary Search Backbone

Input

ChipNetlist

Select Best Layout

Layout Population

……

Mutation

Fitness Based
Layout Selection

Module Scoring

(b) Greedy Repositioning Guided Mutation

Efficient Mask
Calculation

Greedy
Reposition

Guided Module Removal

Output

Module to be
Repositioned

Greedy Reposition
for one Module

Reposition
Order

Population
Maintanance

Figure 1. EGPlace Framework. We employ an evolutionary search backbone and propose a greedy repositioning-guided mutation. The
mutation process operates in two phases. In the first phase, modules are selected for repositioning based on scores that measure their
impact on layout quality. In the second phase, a mask-guided greedy strategy is applied to determine new positions for selected modules.

The population-based approach can also naturally maintain
solution diversity while exploring the vast configuration
space of circuit layouts.

The search evolves a fixed-size population of layouts
through successive iterations. By maintaining a bounded
population, we avoid memory and runtime overhead while
preserving solution diversity, critical for escaping local op-
tima in macro placement. During each iteration, a layout
undergoes the proposed mutation operator, which integrates
both constructive and adjustment strategies. We focus exclu-
sively on mutation operations as our experiments showed
that crossover mechanisms often disrupt critical local opti-
mization patterns in circuit placement. The modified layout
may enter the population based on its fitness evaluation,
replacing the lowest-performing existing solution. This
selective pressure drives the population toward optimized
configurations until reaching the specified iteration limit.

Initialization. The population is initialized with layouts
constructed using the greedy placement strategy described
in Section 5.2. This constructive strategy is highly efficient
and generates promising layouts for evolution.

Fitness-based Layout Selection. The fitness function eval-
uates layout quality and guides layout selection. The fitness
fLi

of layout Li is defined as the negative of the optimiza-
tion objective in Equation (1), where higher fitness values
correspond to better layout quality. The weights λ1 and λ2

can be adjusted by the user to obtain layouts with congestion
and overlap below desired thresholds.

A layout Li is selected from the population with a proba-
bility p(Li) positively correlated to its fitness, as defined in
Equation (2), where P denotes the layout population.

p(Li) =
efLi∑

Lj∈P efLj

(2)

This fitness-guided selection is based on the intuition that
layouts with higher fitness are more likely to result in high-
quality layouts after adjustment. It ensures a more effective
search while still allowing for random exploration.

Layout Maintenance. The selected layout undergoes mu-
tation as described in Section 5 to generate a new layout.
Then, the mutated layout is added to the population. If the
population size exceeds the specified limit, the layout with
the lowest fitness is discarded. This helps maintain a man-
ageable population size and improves efficiency by stopping
the mutation of less promising layouts.

5. Greedy Repositioning Guided Mutation
Our proposed mutation operator builds on three key de-
sign principles: unified integration of construction and ad-
justment phases, guided mutation processes that maintain
beneficial randomness, and computationally efficient imple-
mentation of masks for rapid iteration.

Guided by the above principles, mutation operator functions
through a two-phase process. In the selection phase, mod-
ules receive quality scores based on their impact on overall
layout metrics. Modules with poorer placement quality have
higher selection probability for repositioning, focusing com-
putational resources on the most promising improvement
opportunities. The repositioning phase then applies a greedy
strategy to the selected modules, determining new positions
that optimize local quality metrics while maintaining global
layout coherence. The following sections detail these selec-
tion and repositioning mechanisms that form the core of our
mutation strategy.

4

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

Algorithm 1 Greedy Placement Strategy
Input: The placement area divided into B ×B bins, the netlist N , and the set of modules M selected to be placed. During population
initialization, M includes all macros. In greedy repositioning, M consists of macros selected according to Section 5.1.
Output: Layout after greedy placement
1: if |M | = the total number of modules then
2: Sort the modules according to their size and connection, and store the results in the list L
3: end if
4: while |L| > 0 do
5: m← the first module from L
6: Compute WireMask, OverlapMask and BoundMask for m
7: Select the set of valid bins Bval,

s.t. for each bin b ∈ Bval, BoundMask[b] = 1 and OverlapMask[b] = min(OverlapMask)
8: Select a set of bins for greedy placement Bgreedy from Bval,

where ∀b ∈ Bgreedy, b ∈ Bval ∧WireMask[bgreedy] = min(WireMask)
9: Randomly select a bin bgreedy ∈ Bgreedy

10: Place the bottom left corner of m into bgreedy
11: Remove m from L
12: end while
Return: A layout

5.1. Module Selection for Repositioning

We perform guided module selection to enhance perfor-
mance, where poorly placed modules are more likely to
be removed and repositioned. This is achieved by scoring
modules according to their impact on layout quality, with
the removal probabilities proportional to their scores.

For a given module m, its scoring function is defined as
a weighted sum of three terms that reflect its influence on
HPWL, congestion, and overlap, respectively, as shown in
Equation (3). Each term undergoes normalization before
being combined to compute the module score.

scorem = wirelenm + λ1 · congm + λ2 ·
overlapm
lmx · lmy

(3)

The first term, wirelenm, represents the module m’s impact
on the wirelength. It is defined as the average Manhattan
distance from each pin p of the module to the center of the
bounding box of the net that contains the pin, as shown in
Equation (4), where Pm denotes the set of pins on module
m, and ep denotes the center of the bounding box of the
net that contains pin p. A larger wirelenm implies that
the module is placed farther from the center, increasing the
likelihood of a longer wirelength.

wirelenm =
1

|Pm|
∑
p∈Pm

d(p, ep) (4)

The second term, congm, measures the module’s impact on
congestion. We use RUDY as the congestion metric. The
RUDY value of the layout is defined as the maximum RUDY
value among all bins in the placement region (Spindler &
Johannes, 2007). Since RUDY is determined by the widths

and heights of net bounding boxes, we quantify module m’s
contribution to congestion by counting the number of nets
that contain pins on m and significantly contribute to layout
congestion. Specifically, the RUDY value of a net is defined
as the maximum RUDY value of the bins covered by its
bounding box. We compute congm as the number of pins on
m belonging to nets whose RUDY values exceed r% of the
overall layout’s RUDY value, where r% is a hyperparameter
set to a high value (e.g. 98%). The formal definition is given
in Equation (5), where rudy(Ep) and rudy(L) represent
the RUDY value of the net containing pin p and the RUDY
value of the entire layout L, respectively.

congm =
∑
p∈Pm

1rudy(Ep)>r%·rudy(L) (5)

The third term quantifies the overlapped area of m with
other modules, normalized by the size of m.

Subsequently, a specified ratio of modules is selected for
removal and repositioning, with the selection probability
being proportional to their respective scores. The selection
probability of module m is calculated by Equation 6, where
M denotes the set of all modules.

pselectm =
scorem∑
i∈M scorei

(6)

5.2. Greedy Reposition with Efficient Mask Calculation

The greedy placement strategy primarily optimizes the
HPWL and overlap metric, while the congestion metric is
mitigated by identifying and repositioning modules that sig-
nificantly contribute to congestion. The greedy placement
strategy places modules in valid locations that minimize
overlap while keeping them close to their connected coun-
terparts to optimize HPWL. We employ this strategy for
module repositioning because it is highly efficient and has

5

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

been shown to yield promising results in the previous work
(Shi et al., 2023).

The sequence of module placement substantially affects the
final layout quality (Lai et al., 2022; Shi et al., 2023; Geng
et al., 2024b). Our method orders module placement by both
size and connectivity, placing larger and highly connected
modules first. This strategy proves effective because larger
modules constrain future placement options, and highly con-
nected modules influence many other components through
their wire dependencies.

To determine the placement location for a module, we com-
pute masks to evaluate the quality of its placement at each
position. Following previous methods (Lai et al., 2022; Shi
et al., 2023; Geng et al., 2024b), we use wire masks to
evaluate the increase in HPWL and bound masks to identify
whether the module exceeds the chip boundaries. We further
introduce overlap masks to quantify the additional overlap
introduced by placing the module. Overlap masks calculate
the exact increase in overlap between models, which differs
from previous methods that use binary values to indicate
whether placing a module at each position causes overlap.
This helps reduce overlaps in scenarios with large module
area coverage, where placement methods struggle to com-
pletely eliminate module overlap, such as in the “ariane”
benchmark in Appendix D.4.

Guided by these masks, the greedy strategy selects the valid
position for each module that minimizes both HPWL and
overlap increase. The valid positions are those that do not
cause boundary violations. A detailed overview of this
process is provided in Algorithm 1. Note that the population
is also initialized using greedy placement, where the set of
modules to be placed includes all modules in the circuit.
When considering the placement of module m in Fig. 1, the
meaning of the masks and how the placement location is
chosen based on these masks are shown in Fig. 2.

Efficient Mask Computation. A straightforward imple-
mentation of mask computation requires iterating over all
bins in the placement area, resulting in a time complexity
proportional to B2, where B is the number of bins per row
in the placement region. Lai et al. (Lai et al., 2022) has
provided an efficient method for computing wire masks and
bound masks.

We further propose an efficient algorithm for computing
overlap masks to facilitate fast module repositioning. We
compute the overlap between the current module m and each
placed module to derive the overlap mask before placing
module m. The efficient computation of overlap between
two modules m and n is demonstrated in Fig. 2. We exploit
the linearity of overlap between modules m and n along
both the x- and y-axes to compute overlap in linear time. As
module m moves across the placement region, the overlap

b3,1

b4,4

b5,7

m

placed models m model to place pin net bounding box

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑏𝑏5,7 = 1
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑏𝑏3,1 = ℎ + 𝑤𝑤 = 3 + 1 = 4,𝑂𝑂𝑂𝑂𝑊𝑊𝑊𝑊𝑂𝑂𝐵𝐵𝑂𝑂𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑏𝑏3,1 = 2

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑏𝑏4,4 = 0,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑏𝑏4,4 = 0,𝑂𝑂𝑂𝑂𝑊𝑊𝑊𝑊𝑂𝑂𝐵𝐵𝑂𝑂𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑏𝑏4,4 = 0

×

𝐵𝐵𝑂𝑂𝑊𝑊𝑊𝑊𝑂𝑂𝐵𝐵𝑂𝑂𝑥𝑥

𝐵𝐵𝑂𝑂
𝑊𝑊𝑊𝑊
𝑂𝑂𝐵𝐵
𝑂𝑂 𝑦𝑦

overlap between m and n

n
𝐵𝐵𝑂𝑂𝑊𝑊𝑊𝑊𝑂𝑂𝐵𝐵𝑂𝑂𝑥𝑥 𝐵𝐵𝑂𝑂𝑊𝑊𝑊𝑊𝑂𝑂𝐵𝐵𝑂𝑂𝑦𝑦

Figure 2. Demonstration of Mask Calculation in Module Place-
ment. When module m is placed in bin b5,7, it exceeds the place-
ment region, so the bound mask is set to 1. When m is placed
in b3,1, the wire mask is determined by the increase in the half-
perimeter of the net bounding box, while the overlap mask is
computed by summing the overlapping area between m and previ-
ously placed modules. The overlap between two modules m and n
is efficiently calculated in linear time along the x- and y-directions
and combined using an outer product. Placing m in b4,4 results in
a bound mask of 0, no increase in overlap, and minimal HPWL
growth. Therefore, b4,4 is selected by the greedy strategy.

in one direction increases linearly, stays constant over a
range, and then decreases linearly. This allows the overlap
along the x- direction to be computed in linear time. The
same approach can be applied to calculate the overlap in
the y-direction. The overlap results from both directions
are combined using the outer product to compute the total
overlap between the two modules. The overall overlap mask
is obtained by summing the overlaps between module m
and all placed modules. Suppose m is the i-th module
to be placed, this computation has a time complexity of
O(iB), which improves upon the O(iB2) complexity of the
straightforward implementation. A detailed computation of
module overlap is provided in Algorithm 2 in the Appendix.

6. Experiments
Benchmarks, Baselines and Settings. Our experimental
evaluation uses eight benchmark circuits from the widely
used ISPD2005 dataset (Nam et al., 2005) and one circuit
from the Ariane RISC-V CPU design benchmark (Zaruba
& Benini, 2019). The ISPD2005 benchmarks have been
extensively used in previous macro placement research
(Lai et al., 2022; 2023; Geng et al., 2024b), which en-
ables direct performance comparisons with existing meth-
ods. The Ariane benchmark provides an important real-
world test case. Dataset characteristics are described in
Appendix D.1. We benchmark EGPlace against leading
placement methods, including reinforcement learning ap-
proaches GraphPlace (Mirhoseini et al., 2021), DeepPR

6

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

Table 1. HPWL Values (×105) Achieved by Different Macro Placement Methods on the ISPD2005 Dataset The results of baseline
methods are taken from Shi et al. (2023) and Geng et al. (2024). All results, except for those of the deterministic method MTUPlace3, are
averaged over 5 runs with different random seeds and reported as mean± std. The symbols ‘+’, ‘−’, and ‘≈’ indicate the number of
circuits where the method performs significantly better than, worse than, or comparable to EGPlace, based on the Wilcoxon rank-sum
test at a 0.05 significance level. Runtime comparisons for WireMask-EA, EfficientPlace, and EGPlace are also provided to highlight the
computational efficiency of our method. The best results are marked in bold.

Method adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue3 +/ − / ≈ Avg. Rank

SP-SA 18.84 ± 4.62 117.36 ± 8.73 115.48 ± 7.56 120.03 ± 4.25 5.12 ± 1.43 164.70 ± 19.55 0/6/0 7.7
NTUPlace3 26.62 321.17 328.44 462.93 22.85 455.53 0/6/0 10.2

RePlace 16.19 ± 2.10 153.26 ± 29.01 111.21 ± 11.69 37.64 ± 1.05 2.45 ± 0.06 119.84 ± 34.43 1/5/0 5.8
DreamPlace 15.81 ± 1.64 140.79 ± 26.73 121.94 ± 25.05 37.41 ± 0.87 2.44 ± 0.06 107.19 ± 29.91 1/5/0 5.3
GraphPlace 30.10 ± 2.98 351.71 ± 38.20 358.18 ± 13.95 151.42 ± 9.72 10.58 ± 1.29 357.48 ± 47.83 0/6/0 9.8

DeepPR 19.91 ± 2.13 203.51 ± 6.27 347.16 ± 4.32 311.86 ± 56.74 23.33 ± 3.65 430.48 ± 12.18 0/6/0 10.0
MaskPlace (3k) 7.62 ± 0.67 75.16 ± 4.97 100.24 ± 13.54 87.99 ± 3.25 3.04 ± 0.06 90.04 ± 4.83 0/6/0 5.7
Chipformer (2k) 6.62 ± 0.05 67.10 ± 5.46 76.70 ± 1.15 68.80 ± 1.59 2.95 ± 0.04 72.92 ± 2.56 0/6/0 4.7

WireMask-EA (1k) 6.15 ± 0.05 64.38 ± 4.43 58.18 ± 1.04 59.52 ± 1.71 2.15 ± 0.01 59.85 ± 3.39 2/3/1 3.0
(3.16h) (1.96h) (1.42h) (2.44h) (1.02h) (6.99h)

EfficientPlace (1k) 5.94 ± 0.04 46.79 ± 1.60 56.35 ± 0.99 58.47 ± 1.61 2.14 ± 0.01 58.38 ± 0.54 2/3/1 2.0
(0.84h) (1.03h) (2.11h) (4.50h) (1.20h) (3.77h)

EGPlace (1k) 5.85 ± 0.08 37.39 ± 1.58 61.09 ± 1.00 55.54 ± 1.64 2.24 ± 0.03 50.89 ± 4.69 1.8
(0.32h) (0.76h) (0.75h) (1.18h) (0.35h) (1.30h)

(Cheng et al., 2022), MaskPlace (Lai et al., 2022), Chip-
former (Lai et al., 2023), EfficientPlace (Geng et al., 2024b),
the hybrid optimization method WireMask-EA (Shi et al.,
2023), analytical based methods DreamPlace (Lin et al.,
2019), NTUPlace3 (Chen et al., 2008), RePlace (Cheng
et al., 2018) and simulated annealing based method SP-SA
(Murata et al., 2002). All evaluations run on a standardized
platform with an NVIDIA RTX 3090 Ti GPU and Intel
Xeon Silver 4210R CPUs (2.40GHz). Our code is provided
at https://github.com/dengji1/EAPlace.

Macro Placement Results. The macro placement results
of EGPlace and the comparison methods on six benchmark
circuits are summarized in Table D.2. For the two largest cir-
cuits, “bigblue2” and “bigblue4”, only a subset of macros is
considered to ensure computational feasibility, and the corre-
sponding results are provided in Appendix D.2. Each place-
ment method is executed with five different random seeds,
and the mean and standard error of HPWL are reported.
Among the six circuits, EGPlace achieves the best average
ranking across all methods based on the Wilcoxon rank-sum
test. In addition, as shown in Appendix D.2, EGPlace con-
sistently outperforms all baseline methods on both bigblue2
and bigblue4. Across the entire ISPD2005 dataset, EG-
Place surpasses the state-of-the-art EfficientPlace method,
yielding a 9.3% reduction in HPWL. EGPlace also demon-
strates high computational efficiency, completing 1,000 iter-
ations in an average of 0.81 hours, which is 2.8× and 7.8×
faster than EfficientPlace and WireMask-EA, respectively.
These results highlight the effectiveness of our guided mu-
tation strategy in efficiently exploring the solution space,
particularly for large-scale circuits such as “bigblue3” and
“bigblue4”. Additionally, we have conducted further ex-
periments on the ICCAD2015 benchmark and present the

results in Appendix D.5.

We further compare EGPlace with existing methods by ana-
lyzing the HPWL progression during the optimization pro-
cess. The trend of the best HPWL over the number of
iterations and runtime (in seconds) are plotted in Fig. 3 and
Fig. 9 in the Appendix, respectively. The results demon-
strate that EGPlace outperforms existing methods on 6 out
of 8 benchmarks in terms of both sample and time efficiency.

Congestion Results. We investigate the congestion results
of EGPlace, measuring congestion with the RUDY metric
(Spindler & Johannes, 2007). First, we set λ1 in Equation
(1) to 0, focusing solely on optimizing HPWL and overlap.
The HPWL and RUDY values for the 8 benchmarks are
presented in Table 8 in the Appendix. EGPlace achieves
smaller HPWL and RUDY on 6 out of 8 datasets, aligning
with the findings in Shi et al. (2023), where shorter HPWL
may lead to smaller congestion.

Moreover, we allow users to specify λ1 to generate lay-
outs with desired congestion levels. As “adaptec2” achieves
the best results among benchmarks containing a full set of
modules, we conduct congestion experiments, along with ab-
lation and parameter analysis, on this benchmark to demon-
strate the advantages of our method and the functionality of
its components. The RUDY and HPWL values of layouts
generated by EGPlace with λ1 ranging from [0, 2.5] on
“adaptec2” are shown in Fig. 4. We observe that increas-
ing λ1 leads to reduced congestion and increased HPWL
in general. However, HPWL also influences congestion, as
smaller HPWL values tend to result in lower global conges-
tion and higher local congestion, as shown in previous work
(Wang et al., 2000). This might explain the fluctuations in
the HPWL and RUDY curves.

7

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

0 200 400 600 800 1000
Iterations

6.0

6.5

7.0

7.5

HP
W

L(
x1

e5
)

adaptec1

0 200 400 600 800 1000
Iterations

40

50

60

70

HP
W

L(
x1

e5
)

adaptec2

0 200 400 600 800 1000
Iterations

60

70

80

90

100

HP
W

L(
x1

e5
)

adaptec3

0 200 400 600 800 1000
Iterations

60

70

80

HP
W

L(
x1

e5
)

adaptec4

0 200 400 600 800 1000
Iterations

2.25

2.50

2.75

3.00

3.25

HP
W

L(
x1

e5
)

bigblue1

0 200 400 600 800 1000
Iterations

12

14

16

18

HP
W

L(
x1

e5
)

bigblue2

0 200 400 600 800 1000
Iterations

50

100

150

HP
W

L(
x1

e5
)

bigblue3

0 200 400 600 800 1000
Iterations

60

80

100

120

HP
W

L(
x1

e5
)

bigblue4

EGPlace WireMask-EA EfficientPlace MaskPlace Chipformer

Figure 3. Comparison of HPWL Trend Over the Number of Iterations. We run the released code of WireMask-EA and EfficientPlace
to generate the results.

0.0 0.5 1.0 1.5 2.0 2.5
1

2

4

RU
DY

(a) RUDY

0.0 0.5 1.0 1.5 2.0 2.5
1

34

36

38

40

HP
W

L(
x1

e5
)

(b) HPWL

Figure 4. RUDY and HPWL of Layouts Generated by EGPlace
with Different λ1 Values. We run EGPlace on the “adaptec2”
benchmark and present the RUDY and HPWL results in subplots
(a) and (b), respectively.

Mixed-size Placement Results. Modern integrated circuits
contain both macro blocks and numerous smaller standard
cells, making mixed-size placement a critical real-world
requirement. In this experiment, we demonstrate the effec-
tiveness of our method in mixed-size placement by using
EGPlace for macro placement and DreamPlace (Lin et al.,
2019) for standard cell placement. The mixed-size place-
ment results is provided in Table D.7 in the Appendix. The
results show that our macro placement approach positively
impacts the mixed-size placement quality.

Ablation Studies. We conduct ablation studies to investi-
gate our choices’ impact on performance by testing the per-
formance on “adaptec2” with different configurations: (1)
w/o greedy reposition: We randomly choose a valid loca-
tion to position the modules, rather than placing them in the
location that minimizes the increase in HPWL; (2) w/o mod-
ule order: In each step, we randomly select a module for
placement, rather than ordering the modules based on their
sizes and connections; (3) w/o guided removal: We select
modules for removal with uniform probability, instead of

0.76

0.80

0.84

0.88

0.92

EGPlace
w/o module order
w/o guided removal
w/o greedy placement

0 200 400 600 800 1000
Iterations

0.00
0.08
0.16
0.24

No
rm

al
ize

d
Fit

ne
ss

Figure 5. Ablation Studies. We test EGPlace on different con-
figurations using the “adaptec2” benchmark and plot the average
normalized fitness values of all individuals in the population at
each iteration. The shaded area represents the standard error of the
fitness values across the individuals.

selecting them with probability proportional to their impact
on the layout quality; (4) EGPlace: The full configuration
of our method. Performance evaluation uses normalized
fitness values tracked across optimization iterations, with
results presented in Fig. 5. The complete EGPlace system
consistently outperforms all ablated variants. The greedy
repositioning strategy proves particularly important, with its
removal causing the most substantial performance degrada-
tion. The quality-guided module removal mechanism also
provides significant benefits, improving both convergence
speed and final solution quality. The module ordering strat-
egy contributes measurably to overall system performance.

Parameter Sensitivity Analysis. We analyze the impact of
population size and the module removal ratio on the muta-
tion operator. The fitness value and HPWL of the layouts
on “adaptec2” generated by EGPlace with population sizes
between [1, 9] over 1,000 iterations are shown in Fig. 6. The

8

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

2 4 6 8
Population Size

0.2

0.4

0.6

0.8

No
rm

al
ize

d
Fit

ne
ss

(a) Normalized Fitness Values

2 4 6 8
Population Size

36

38

40

HP
W

L(
x1

e5
)

(b) HPWL

Figure 6. Layout Quality of EGPlace with Different Population
Sizes. We run EGPlace for 1,000 iterations on “adaptec2” and plot
the normalized fitness values and HPWL of the resulting layouts
in subfigures (a) and (b), respectively.

0 200 400 600 800 1000
Iterations

40

50

60

HP
W

L(
x1

e5
)

(a) Normalized Fitness Values

ratio=0.2
ratio=0.5
ratio=1.0

20 40 60 80 100
Remove Ratio(%)

46

47

48

49

Ti
m

e(
m

in
)

(b) Runtime

Figure 7. Layout Quality of EGPlace with Different Removal.
We run EGPlace for 1,000 iterations on “adaptec2” and plot the
normalized fitness values and runtime in subfigures (a) and (b).

results indicate that a population size that is too small (e.g.,
1 or 2) may lead to under-exploration of the solution space,
resulting in lower layout quality. Conversely, a population
size that is too large (e.g., 8 or 9) can reduce the average
number of mutations applied to each layout within the spec-
ified total number of iterations, thus lowering the quality.
The optimal population size lies between 3 and 6.

We test different ratios (ranging from 10% to 100%) of
modules for removal and repositioning in EGPlace, and run
our method for 1,000 iterations on “adaptec2”. The HPWL
and runtime are shown in Fig. 7. We observe that a higher
removal ratio leads to a slightly smaller HPWL, but also
increases the runtime.

7. Conclusion and Future Work
This paper presents EGPlace, a evolutionary search place-
ment method with a novel greedy repositioning guided muta-
tion operator for macro placement optimization in integrated
circuit design. In order to overcome the challenges in hybrid
methods, EGPlace performs greedy repositioning guided
mutation to achieve good performance, and integrates layout
reconstruction into the mutation operator to improve effi-
ciency. Experimental evaluation on industry-standard bench-
marks show that EGPlace achieves consistent improvements
in layout quality while significantly reducing computational
requirements compared to state-of-the-art methods.

Limitations and Future Research. While the proposed
EGPlace method demonstrates strong performance in macro
placement and achieves competitive results on surrogate
metrics such as HPWL and RUDY, the current design does
not sufficiently account for mixed-size placement and does
not directly target final Power, Performance, and Area (PPA)
design objectives. Extending EGPlace to better support
mixed-size placement and align more closely with PPA-
driven optimization represents an important direction for
future work. Recent advances, including MaskRegulate
(Xue et al., 2024), which introduces a Regulate Mask to
guide mixed-size placement, and LaMPlace (Geng et al.,
2024a), which leverages a learned L-Mask to reflect PPA
objectives, offer promising techniques. Integrating those
masks into EGPlace holds potential for further improving
placement quality and enhancing real-world applicability.

Acknowledgements
This work is supported by NSFC (No. 62272008). We
would like to thank the reviewers for their valuable sugges-
tions.

Impact Statement
The increasing complexity of modern integrated circuits
demands more sophisticated electronic design automation
(EDA) tools, particularly for chip placement optimization.
Our work advances this critical area by introducing EGPlace,
an efficient placement method that significantly improves
both placement quality and computational efficiency. The
method’s ability to reduce wirelength by 6.7% to accelerate
optimization by 7.8× compared to state-of-the-art methods
demonstrates its practical value for industrial chip design.

Beyond immediate performance gains, EGPlace’s unified
optimization approach establishes new directions for scal-
able placement tools. These innovations become particu-
larly valuable as the semiconductor industry moves toward
more complex designs involving 3D integration and het-
erogeneous architectures. The method’s flexible conges-
tion control also enables designers to generate application-
specific layouts, supporting diverse requirements across
different market segments from mobile computing to high-
performance systems.

References
Breuer, M. A. A class of min-cut placement algorithms. In

Proceedings of the 14th Design Automation Conference,
pp. 284–290, 1977.

Chang, Y.-C., Chang, Y.-W., Wu, G.-M., and Wu, S.-W.
B*-trees: A new representation for non-slicing floorplans.
In Proceedings of the 37th Annual Design Automation

9

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

Conference, pp. 458–463, 2000.

Chen, T.-C., Jiang, Z.-W., Hsu, T.-C., Chen, H.-C., and
Chang, Y.-W. A high-quality mixed-size analytical placer
considering preplaced blocks and density constraints. In
Proceedings of the 2006 IEEE/ACM International Con-
ference on Computer-Aided Design, pp. 187–192, 2006.

Chen, T.-C., Jiang, Z.-W., Hsu, T.-C., Chen, H.-C., and
Chang, Y.-W. Ntuplace3: An analytical placer for large-
scale mixed-size designs with preplaced blocks and den-
sity constraints. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 27(7):1228–
1240, 2008.

Chen, Y., Wen, Z., Liang, Y., and Lin, Y. Stronger mixed-
size placement backbone considering second-order infor-
mation. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 1–9. IEEE, 2023.

Cheng, C.-K., Kahng, A. B., Kang, I., and Wang, L. Replace:
Advancing solution quality and routability validation in
global placement. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 38(9):1717–
1730, 2018.

Cheng, R. and Yan, J. On joint learning for solving place-
ment and routing in chip design. Advances in Neural
Information Processing Systems, 34:16508–16519, 2021.

Cheng, R., Lyu, X., Li, Y., Ye, J., Hao, J., and Yan, J.
The policy-gradient placement and generative routing
neural networks for chip design. Advances in Neural
Information Processing Systems, 35:26350–26362, 2022.

Chiang, C.-Y., Chiang, Y.-H., Lan, C.-C., Hsu, Y., Chang,
C.-M., Huang, S.-C., Wang, S.-H., Chang, Y.-W., and
Chen, H.-M. Mixed-size placement prototyping based on
reinforcement learning with semi-concurrent optimiza-
tion. In Proceedings of the 30th Asia and South Pacific
Design Automation Conference, pp. 893–899, 2025.

Cohoon, J. P. and Paris, W. D. Genetic placement. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 6(6):956–964, 1987.

Dunlop, A. E. and Kernighan, B. W. A procedure for place-
ment of standard-cell vlsi circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, 4(1):92–98, 1985.

Fiduccia, C. M. and Mattheyses, R. M. A linear-time heuris-
tic for improving network partitions. In Papers on Twenty-
five years of electronic design automation, pp. 241–247.
1988.

Fukunaga, K., Yamada, S., Stone, H. S., and Kasai, T. Place-
ment of circuit modules using a graph space approach.

In 20th Design Automation Conference Proceedings, pp.
465–471. IEEE, 1983.

Geng, Z., Wang, J., Liu, Z., Xu, S., Tang, Z., Kai, S., Yuan,
M., Hao, J., and Wu, F. Lamplace: Learning to optimize
cross-stage metrics in macro placement. In The Thirteenth
International Conference on Learning Representations,
2024a.

Geng, Z., Wang, J., Liu, Z., Xu, S., Tang, Z., Yuan, M.,
Jianye, H., Zhang, Y., and Wu, F. Reinforcement learning
within tree search for fast macro placement. In Forty-first
International Conference on Machine Learning, 2024b.

Hong, X., Huang, G., Cai, Y., Gu, J., Dong, S., Cheng, C.-
K., and Gu, J. Corner block list: An effective and efficient
topological representation of non-slicing floorplan. In
IEEE/ACM International Conference on Computer Aided
Design. ICCAD-2000. IEEE/ACM Digest of Technical
Papers (Cat. No. 00CH37140), pp. 8–12. IEEE, 2000.

Kahng, A. B., Reda, S., and Wang, Q. Aplace: A general
analytic placement framework. In Proceedings of the
2005 international symposium on Physical design, pp.
233–235, 2005.

Karypis, G., Aggarwal, R., Kumar, V., and Shekhar, S. Mul-
tilevel hypergraph partitioning: Application in vlsi do-
main. In Proceedings of the 34th annual Design Automa-
tion Conference, pp. 526–529, 1997.

Kim, M.-C., Hu, J., Li, J., and Viswanathan, N. Iccad-2015
cad contest in incremental timing-driven placement and
benchmark suite. In 2015 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), pp. 921–
926. IEEE, 2015.

Kling, R. M. and Banerjee, P. Esp: Placement by simulated
evolution. IEEE transactions on computer-aided design
of integrated circuits and systems, 8(3):245–256, 1989.

Lai, Y., Mu, Y., and Luo, P. Maskplace: Fast chip placement
via reinforced visual representation learning. Advances
in Neural Information Processing Systems, 35:24019–
24030, 2022.

Lai, Y., Liu, J., Tang, Z., Wang, B., Hao, J., and Luo, P.
Chipformer: Transferable chip placement via offline deci-
sion transformer. In International Conference on Machine
Learning, pp. 18346–18364. PMLR, 2023.

Lin, Y., Dhar, S., Li, W., Ren, H., Khailany, B., and Pan,
D. Z. Dreamplace: Deep learning toolkit-enabled gpu
acceleration for modern vlsi placement. In Proceedings
of the 56th Annual Design Automation Conference 2019,
pp. 1–6, 2019.

10

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

Lu, J., Zhuang, H., Chen, P., Chang, H., Chang, C.-C.,
Wong, Y.-C., Sha, L., Huang, D., Luo, Y., Teng, C.-
C., et al. eplace-ms: Electrostatics-based placement for
mixed-size circuits. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 34(5):
685–698, 2015.

MacMillen, D., Camposano, R., Hill, D., and Williams,
T. W. An industrial view of electronic design automa-
tion. IEEE transactions on computer-aided design of
integrated circuits and systems, 19(12):1428–1448, 2000.

Magnuson, W. A comparison of constructive placement
algorithms. In IEEE 1977 Region Six Conference Record,
1977., pp. 28–32. IEEE, 1977.

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W.,
Songhori, E., Wang, S., Lee, Y.-J., Johnson, E., Pathak,
O., Nazi, A., et al. A graph placement methodology for
fast chip design. Nature, 594(7862):207–212, 2021.

Murata, H., Fujiyoshi, K., Nakatake, S., and Kajitani, Y.
Vlsi module placement based on rectangle-packing by the
sequence-pair. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 15(12):1518–
1524, 2002.

Nam, G.-J., Alpert, C. J., Villarrubia, P., Winter, B., and
Yildiz, M. The ispd2005 placement contest and bench-
mark suite. In Proceedings of the 2005 international
symposium on Physical design, pp. 216–220, 2005.

Sechen, C. and Sangiovanni-Vincentelli, A. The timberwolf
placement and routing package. IEEE Journal of Solid-
State Circuits, 20(2):510–522, 1985.

Shahookar, K. and Mazumder, P. Vlsi cell placement tech-
niques. ACM Computing Surveys (CSUR), 23(2):143–
220, 1991.

Shi, Y., Xue, K., Lei, S., and Qian, C. Macro placement by
wire-mask-guided black-box optimization. Advances in
Neural Information Processing Systems, 36, 2023.

Spindler, P. and Johannes, F. M. Fast and accurate routing
demand estimation for efficient routability-driven place-
ment. In 2007 Design, Automation & Test in Europe
Conference & Exhibition, pp. 1–6. IEEE, 2007.

Viswanathan, N. and Chu, C. C.-N. Fastplace: Efficient
analytical placement using cell shifting, iterative local
refinement and a hybrid net model. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, 24(5):722–733, May 2005. doi: 10.1109/TCAD.
2005.847937.

Wang, L.-T., Chang, Y.-W., and Cheng, K.-T. T. Electronic
design automation: synthesis, verification, and test. Mor-
gan Kaufmann, 2009.

Wang, M., Yang, X., and Sarrafzadeh, M. Congestion
minimization during placement. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 19(10):1140–1148, 2000.

Wang, Z., Geng, Z., Tu, Z., Wang, J., Qian, Y., Xu, Z., Liu,
Z., Xu, S., Tang, Z., Kai, S., et al. Benchmarking end-to-
end performance of ai-based chip placement algorithms.
arXiv preprint arXiv:2407.15026, 2024.

Xue, K., Chen, R.-T., Lin, X., Shi, Y., Kai, S., Xu,
S., and Qian, C. Reinforcement learning policy as
macro regulator rather than macro placer. arXiv preprint
arXiv:2412.07167, 2024.

Zaruba, F. and Benini, L. The cost of application-class
processing: Energy and performance analysis of a linux-
ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi technol-
ogy. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 27(11):2629–2640, 2019.

Zheng, Q., Zhang, A., and Grover, A. Online decision trans-
former. In international conference on machine learning,
pp. 27042–27059. PMLR, 2022.

Zhou, Z.-H., Yu, Y., and Qian, C. Evolutionary learning:
Advances in theories and algorithms. Springer, 2019.

11

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

A Layout in the
Population

EGPlace

WireMask-EA

HPWLWireMask-EA>HPWLEGPlace

a

bc

d

a
d

b

c

Modules for Reposition
a b d c

Mutation

Select Modules for
Repositioning

Greedy Reposition

a
d

bc

Modules for
Reposition

a c

0

1

a
d

bc

Possibility for R
em

oval

Greedy Genotype-to-
phenotype Transformation

Mutation

a

d

b

c

Random Swap

Module

Pins
Net1
Net2

Figure 8. Comparison between EGPlace and WireMask-EA.

Appendix
The Appendix provides a comprehensive technical exploration of EGPlace, offering detailed insights into its algorithmic
design, computational strategies, and experimental validations. It elaborates on further technical details that underpin the
proposed macro placement approach.

The supplementary materials cover four primary areas: a comparative analysis with WireMask-EA, an in-depth examination
of fundamental placement concepts and metrics, a rigorous assessment of the computational complexity of the proposed
algorithms, and an extensive presentation of experimental results across multiple benchmarks.

By presenting these technical details, the appendix offers researchers and practitioners a thorough understanding of the
methodological innovations and performance characteristics of EGPlace, which extends beyond the summarized findings in
the main manuscript. This supplementary content not only substantiates the research claims but also provides a transparent
view into the algorithmic intricacies that enable the framework’s superior performance in integrated circuit macro placement
optimization.

A. Comparison between EGPlace and WireMask-EA
We analyze the differences between our EGPlace and the state-of-the-art combined method WireMask-EA (Shi et al., 2023),
both of which utilize evolutionary search as the backbone. Fig. 8 illustrates the layout adjustment process for a layout
selected from the population in both methods. The main improvement of our method compared to WireMask-EA lies in two
aspects: firstly, WireMask-EA utilizes random swap mutations, where poorly selected module pairs may lead to low-quality
solutions. In contrast, EGPlace selects and repositions modules based on their impact on layout quality, increasing the
likelihood of producing higher-quality mutated layouts. Secondly, WireMask-EA requires a separate step to transform the
genotype into a phenotype. This step positions all modules in locations that minimize HPWL increment and are closest to
those in the genotype. In comparison, EGPlace incorporates greedy placement directly into the mutation operator, requiring
only the repositioning of selected modules, which significantly improves efficiency.

B. Basic Concepts and Placement Metrics
The key concepts in chip placement are described as bellow.

• Chip: A chip is a rectangular region, often divided into B ×B bins to facilitate metric calculations. A larger B value
provides higher resolution for module placement.

12

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

Table 2. Notations for Complexity Analysis
Symbols Meanings

B The number of bins in each row or column of the placement region
m A module
M The set of modules
P The set of pins
Pm The set of pins on module m
N The set of nets

fgreedy The greedy placement process described in Algorithm 1
fselect The module selection process outlined in Section 5.1
rm% The ratio of modules that undergo repositioning

• Module: Modules are rectangles with fixed sizes and orientations. Macro cells are primarily functional modules, such
as Dynamic Random Access Memory (DRAM) and caches. Standard cells are smaller in size, mainly consisting of
logic gates.

• Pin: A pin is an input/output interface on a circuit module. It is fixed relative to the module and connects the module to
others through nets.

• Port: A port is an input/output interface located at fixed positions on the chip. It connects to other pins or ports through
nets.

• Net: A net consists of a set of connected pins. In digital circuits, pins in a net receive the same 0/1 signal.

Metrics measuring the layout quality include Half Perimeter Wire Length (HPWL) (Chen et al., 2006), Rectangular Uniform
wire DensitY (RUDY) (Spindler & Johannes, 2007) and overlap rate (Lai et al., 2022). HPWL is an commonly used
estimation of the routing wirelength. A short HPWL implies low routing resources, low delay, and low energy consumption.
In HPWL calculation, the net bounding box is defined as the smallest rectangle enclosing all the pins of the net. The total
HPWL of a layout is the sum of the HPWL of all nets, as shown in Equation (7) (Chen et al., 2006), where E is a net
containing pin p.

HPWL =
∑
E

(max
p∈E

px −min
p∈E

px +max
p∈E

py −min
p∈E

py) (7)

RUDY measures the congestion of the layout. Higher congestion may result in increased signal transmission delay, larger
power consumption, and lower performance. The value of RUDY for each bin of the placement region is defined as the sum
of the reciprocal of the height and width of the bounding boxes of all nets covering it. The value of the layout’s RUDY is the
maximum of the RUDY values for all bins.

The overlap rate is defined as the ratio between the modules’ overlapping area and the total chip area.

C. Implement Details and Complexity Analysis
C.1. Efficient Computation of Module Overlaps

We provide a detailed explanation of the efficient computation of module overlap along the x-direction in Algorithm 2. This
algorithm computes the overlap in O(B), where B denotes the number of bins per row in the placement region. The total
overlap is obtained by combining the overlap lengths along the x- and y-directions between each pair of modules.

C.2. Workflow of the Evolutionary Search Backbone and Overall Complexity Analysis

The overall workflow of the evolutionary search backbone is outlined in Algorithm 3. The notations for complexity analysis
is demonstrated in Table 2. The time complexity is analyzed as follows: it takes C(n0fgreedy) to initialize the population.
In each iteration, a layout is selected, and a mutation operator is applied to the layout. The mutation operator consists of two
phases: module selection and repositioning, leading to a time complexity of C(fselect + rm% · fgreedy). Therefore, the

13

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

Algorithm 2 Calculation for Overlap between Two Modules in the x-direction
Input: The placement area divided into B ×B bins, a module m to be placed, and module n with its bottom right corner
placed at (n.x, n.y).
Output: The overlap between module m and n in the x-direction, denoted as overlapx.

1: overlapx[B][B]← 0
2: col← max(0, n.x−m.width)
3: while col < min(n.x, n.x+ n.width−m.width) do
4: overlapx[col, :]← col +m.width− n.x
5: col← col + 1
6: end while
7: while col < n.x+ n.width−m.width do
8: overlapx[col, :]← m.width
9: col← col + 1

10: end while
11: while col < min(B,n.x+ n.width) do
12: overlapx[col, :]← n.x+ n.width− col
13: col← col + 1
14: end while
Return: overlapx

overall time complexity is O(n0C(fgreedy) + Imax(C(fselect + rm% · fgreedy))). A detailed analysis of the complexity
of fselect and fgreedy is provided in the following paragraphs.

The module selection process, fselect, involves calculating the score for each module based on Equation (3), which consists
of three terms. The first term, wirelenm, computes the sum of the Manhattan distances between each pin on the module and
the center of its net bounding box. The net bounding box positions are recorded during the greedy placement, so the center
coordinate of each bounding box can be calculated in O(1) time. Thus, the calculation of wirelenm for all modules requires
O(1) time for each pin, resulting in a total time complexity of O(|P |). For the second term, congm, we first compute the
congestion of each bin in O(|N |) time using the recorded net boundaries. Then, the RUDY value for every net and the layout
L is computed by aggregating the values of the corresponding bins, resulting in a complexity of O(|N |). When calculating
congm for each module, we check whether the congestion of the net associated with each module exceeds the threshold
with in O(1) time. The total time for this is O(|P |). Therefore, the overall time complexity for this term is O(|N |+ |P |),
which can be simplified to O(|P |) as |N | < |P |. The third term, overlapm, can be calculated in O(|M |) by aggregating
the module coverage for each bin recorded during greedy repositioning. The overall module selection process results in a
complexity of O(|P |+ |M |).

fgreedy involves the computation of the wire mask, bound mask and overlap mask before the placement of each module. We
adopt the idea in MaskPlace(Lai et al., 2022) to optimize wire mask calculations, which reduces the complexity to O(BPm)
by caching the boundaries of nets. The bound mask computation can be easily simplified to O(B) by directly verifying the
grids near to the chip boundaries. Suppose m is the i-th module to be placed, the overlap mask computation for m results in
a time complexity of O(Bi). Therefore, the total computation time before placing one module result in O((|P |+ |M |2)B),
and the overall computation time of fgreedy is O((|P |+ |M |2)|M |B).

D. Experimental Details and Additional Results
D.1. Dataset and Experimental Details

The statistics of the ISPD2005 circuit benchmark (Nam et al., 2005) and the Ariane RISC-V CPU design benchmark (Zaruba
& Benini, 2019) are demonstrated in Table 3, where “Macros(to place)” stands for the number of macros that is chosen
for placement by EGPlace. We have also conducted further macro placement experiments on the modern ICCAD2015
benchmark (Kim et al., 2015), and present the statistics in Table 4.

The hyperparameters used in the experiments are configured as follows: the population size is set to 5; the number of bins is
224 × 224; the removal ratio in the mutation operator is set to 50%; the ratio r% in module score computation is set to 98;
λ2 in the objective function is set to 0.1 As congestion is not considered in previous methods, we set the congestion weight

14

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

Algorithm 3 Workflow of Evolutionary Search Backbone
Input: A placement region divided into B ×B bins, a netlist N that defines the features and connectivity of the modules,
population size n, number of initial layouts n0 ≤ n, hyperparameters λ1 and λ2 to balance the metric weights in the
objective function, and the maximum number of iterations Imax.
Output: An optimized layout of circuit modules.

1: Initialize an empty layout population P of size n
2: i← 0
3: while i < n0 do
4: Generate an initial layout L using Algorithm 1 and add it to P
5: end while
6: i← 0
7: while i < Imax do
8: Select a layout L from P with probability given by Equation (2)
9: Select a set of modules M for repositioning from L according to Section 5.1.

10: Remove M from L
11: Obtain the mutated layout L1 by repositioning M according to Algorithm 1.
12: P ← P ∪ {L1}
13: while |P | > k do
14: Remove the layout in P with the lowest fitness
15: end while
16: i← i+ 1
17: end while
Return: The layout in P with the highest fitness

Table 3. Statistics of the ISPD2005 Circuit Benchmark
Circuit Macros Macros(to place) Standard Cells Nets Pins Ports Area Util%)

adaptec1 543 543 210904 221142 944063 0 55.62
adaptec2 566 566 254457 266009 1069482 0 74.46
adaptec3 723 723 450927 466758 1875039 0 61.51
adaptec4 1329 1329 494716 515951 1912420 0 48.62
bigblue1 560 560 277604 284479 1144691 0 31.58
bigblue2 23084 1024 534782 577235 2122282 0 32.43
bigblue3 1293 1293 1095519 1123170 3833218 0 66.81
bigblue4 8170 1024 2169183 2229886 8900078 0 35.68

ariane 932 932 0 12404 22802 1231 78.39

λ1 to 0 in the objective function for fair comparison. Notably, λ1 and λ2 can be adjusted by the user to generate desired
layouts.

D.2. Results on the “bigblue3” and “bigblue4” Circuits

To ensure computational feasibility on the large-scale circuits “bigblue2” and “bigblue4”, we select the first 1,024 macros
based on our module ordering strategy described in Section 5.2. The results are presented in Table ??. The results show that
EGPlace achieves the lowest HPWL on both benchmarks, outperforming the recent EfficientPlace method by 8.5% and
28.7%, respectively. In addition, EGPlace demonstrates substantially lower runtime compared to both EfficientPlace and
WireMask-EA.

D.3. Time Efficiency

Figure 9 demonstrates the HPWL trend over runtime in EGPlace and the comparation methods. The results show that
EGPlace achieves better results on 6 out of 8 benchmarks.

15

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

Table 4. Statistics of the ICCAD2015 Circuit Benchmark
Circuit Macros Macros (to place) Stdandard Cells Nets Pins

superblue1 56898 512 1159346 1215710 3767494
superblue3 58970 512 1160765 1224979 3905321
superblue4 45289 512 756979 802513 2497940
superblue5 76676 512 1014341 1100825 3246878
superblue7 72256 512 1865884 1933945 6372094
superblue10 101837 512 1786523 1898119 5560506
superblue16 4868 512 981140 999902 3013268
superblue18 27099 512 744947 771542 2559143

0 200 400 600 800
Time(min)

6.0

6.5

7.0

7.5

HP
W

L(
x1

e5
)

adaptec1

0 500 1000 1500 2000
Time(min)

40

50

60

70

HP
W

L(
x1

e5
)

adaptec2

0 500 1000 1500 2000 2500
Time(min)

60

70

80

90

100

HP
W

L(
x1

e5
)

adaptec3

0 1000 2000 3000 4000
Time(min)

60

70

80

HP
W

L(
x1

e5
)

adaptec4

0 250 500 750 1000 1250
Time(min)

2.25

2.50

2.75

3.00

3.25

HP
W

L(
x1

e5
)

bigblue1

0 500 1000 1500 2000
Time(min)

12

14

16

18

HP
W

L(
x1

e5
)

bigblue2

0 1000 2000 3000 4000
Time(min)

50

100

150

HP
W

L(
x1

e5
)

bigblue3

0 1000 2000 3000 4000
Time(min)

60

80

100

120

HP
W

L(
x1

e5
)

bigblue4

EGPlace WireMask-EA EfficientPlace MaskPlace Chipformer

Figure 9. Comparison of HPWL Trend Over the Runtime(s).

16

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

Table 5. HPWL Values(×105) Obtained from 5 Macro Placement Methods on “bigblue2” and “bigblue4” circuits. We select 1,024
modules as macros for “bigblue2” and “bigblue4” and run the comparison methods with their default hyperparameter configurations. We
report the runtime of WireMask-EA, EfficientPlace, and EGPlace to highlight the efficiency of our method. The best results are marked in
bold.

Benchmark MaskPlace (3k) Chipformer (2k) WireMask-EA (1k) EfficientPlace (1k) EGPlace (1k)

bigblue2 18.64 ± 0.63 14.06 ± 0.47 11.35 ± 0.15 (19.83h) 12.20 ± 0.29 (2.00h) 11.16 ± 0.47 (0.58h)
bigblue4 117.96 ± 5.62 120.66 ± 8.03 82.96 ± 2.32 (13.87h) 86.86 ± 3.41 (2.85h) 61.90 ± 2.73 (1.26h)

Table 6. HPWL and Overlap Results on the “ariane” Benchmark. We obtain the result of MaskPlace and DreamPlace by running their
released code. We modify the code of EfficientPlace to run on the “ariane” benchmark and include ports in HPWL calculation for fair
comparison.

Method MaskPlace DreamPlace EfficientPlace EGPlace
Overlap rate (%) 3.27 LG failed 3.37 1.24
HPWL (×105) 14.63 LG failed 12.47 7.91

D.4. Results on the “ariane” Benchmark

We conduct experiments on the “ariane” benchmark to evaluate the effectiveness of the overlap mask described in Section
5.2. As shown in Table 3, the “ariane” benchmark consists of macro modules covering 78.39% of the chip area, so it is
difficult for chip placement methods to generate layouts without overlap. Our goal is to produce layouts with minimal
HPWL and as little overlap as possible.

We compare EGPlace with the state-of-the-art analytical method DreamPlace and RL-based methods MaskPlace and
EfficientPlace. MaskPlace and EfficientPlace use position masks with binary values to indicate whether module placement
causes overlap, whereas our method employs an overlap mask that calculates the exact overlap value and combines it with
wire mask for greedy placement. Table 6 presents the results on the “ariane” benchmark. The result shows that DreamPlace
results in significant overlap, leading to legalization failure. EGPlace achieves a significantly lower overlap rate than
MaskPlace and EfficientPlace, demonstrating the effectiveness of the overlap mask in reducing module overlap.

D.5. Results on ICCAD2015 Benchmark

We further conduct experiments on the ICCAD2015 benchmark. The placement files in LEF/DEF format are converted into
bookshelf format using ChiPBench (Wang et al., 2024), and the 256 largest modules in each circuit are selected for macro
placement. The results are presented in Table 7. EGPlace achieves HPWL reductions of 49.5%, 17.4%, and 7.4% compared
to the baselines DreamPlace, WireMask-EA, and EfficientPlace, respectively. These results demonstrate the effectiveness of
our method in macro placement.

Table 7. Comparison of HPWL Results(×108) on the ICCAD2015 benchmark for different methods. We run WireMask-EA and
EfficientPlace with the number of grids set to 224 and 512, respectively, while other settings remain as default. We highlight the best
results in bold and underline the second best results.

Method superblue1 superblue3 superblue4 superblue5 superblue7 superblue10 superblue16 superblue18

DreamPlace 2.53 15.19 3.44 21.36 5.09 12.99 2.66 1.02
WireMask-EA(1k) 1.37 4.40 2.11 11.00 2.86 1.18 2.85 1.46
EfficientPlace(1k) 1.26 3.81 1.99 9.70 2.86 0.93 2.79 1.12

EGPlace(1k) 1.31 3.22 1.91 8.62 2.90 1.00 2.03 0.96

D.6. Congestion Results

A comparison of RUDY and HPWL between EGPlace and the comparative methods is illustrated in Fig. 8. We set the
weight of RUDY in the objective function λ1 to 0, and demonstrate the congestion levels of layouts obtained by optimizing
solely HPWL and overlap. The results indicate that EGPlace achieves lower congestion on 6 out of 8 benchmarks, aligning
with findings in WireMask-EA (Shi et al., 2023), which suggest that a lower HPWL may contribute to reduced congestion.
Furthermore, by adjusting λ1, we can generate layouts that meet specific congestion requirements.

17

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

Table 8. Comparasion on HPWL(×105) and Congestion Results. We obtain the results of the comparison methods by running their
publicly released code. For a fair comparison, the RUDY values are calculated on the placement region divided into 224 × 224 bins.
Following previous methods (Shi et al., 2023; Geng et al., 2024b), we standardize the RUDY value of EGPlace to 1. We highlight the best
results in bold.

Benchmarks adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue2 bigblue3 bigblue4
Metrics HPWL Cong. HPWL Cong. HPWL Cong. HPWL Cong. HPWL Cong. HPWL Cong. HPWL Cong. HPWL Cong.

MaskPlace 7.09 1.51 78.57 3.23 118.32 1.00 91.22 3.80 2.67 1.00 17.49 2.17 96.91 2.56 112.87 0.59
WireMask-EA 5.93 0.97 54.76 1.23 59.31 1.01 59.47 3.10 2.16 2.63 11.23 1.34 66.05 1.56 79.59 0.37
EfficientPlace 5.99 1.05 45.37 2.45 57.37 1.69 59.04 2.20 2.30 1.18 12.30 1.00 58.08 1.22 88.60 0.26

EGPlace 5.75 1.00 37.99 1.00 63.05 1.00 56.09 1.00 2.23 1.00 10.49 1.00 50.50 1.00 58.96 1.00

D.7. Mixed-size Placement Results

We perform mixed-size placement by adopting the two-phase approach in EfficientPlace (Geng et al., 2024b): (1) In the
first phase, we fix all macros placed by EGPlace, and utilize the global placement step of DreamPlace to position the
standard cells, generating coarse layouts. (2) In the second phase, we set all modules movable and carry out a comprehensive
mixed-size placement process using DreamPlace, which includes the global placement step, legalization, and the detailed
placement step. The mixed-size placement results are shown in Table D.7. The results of the comparison methods are taken
from the EfficientPlace paper (Geng et al., 2024b) which adopts a previous version of DreamPlace for mixed-size placement.
However, since recently DreamPlace 4.1.0 (Chen et al., 2023) has shown significant improvements over its previous version
in mixed-size placement, we also conduct experiments using DreamPlace 4.1.0 and reported the results. The results show
that layouts generated by EGPlace followed by DreamPlace 4.0 achieve an average HPWL reduction of 6.5% across eight
circuits compared to EfficientPlace, demonstrating that good quality macro placement results serve as good initial solutions
for mixed-size placement. We also find that integrating EGPlace with DreamPlace 4.1.0 leads to substantial improvements
over the previous version of DreamPlace, however, these results remain slightly inferior to those achieved by DreamPlace
4.1.0 alone. As this work primarily focuses on macro placement, we leave further enhancements in mixed-size placement
for future work.

Table 9. Comparison on HPWL(×107) for Mixed-size Placement on Different Datasets. We conduct further experiments on
DreamPlace 4.1.0 as they achieve significant improvement in placement quality than the previous versions. The results for comparison
methods is are from the paper of EfficientPlace (Geng et al., 2024b). We mark the best results in bold and underline the second best
results.

Method adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue2 bigblue3 bigblue4

DreamPlace 11.10 ± 1.31 13.84 ± 1.74 17.03 ± 0.99 24.37 ± 1.13 10.06 ± 0.28 \ 36.51 ± 0.56 175.86 ± 2.23
DreamPlace 4.1.0 6.85 ± 0.24 8.50 ± 0.20 13.23 ± 0.15 13.15 ± 0.22 8.17 ± 0.01 9.89 ± 0.24 28.52 ± 0.46 63.34 ± 0.55

MaskPlace+DreamPlace 10.86 ± 0.01 12.98 ± 0.58 26.14 ± 0.07 23.52 ± 0.01 10.64 ± 0.01 \ 54.98 ± 1.06 \
WireMask-EA+DreamPlace 8.93 ± 0.01 9.20 ± 0.05 21.72 ± 0.01 20.51 ± 0.01 10.35 ± 0.02 14.88 ± 0.01 42.52 ± 0.11 171.23 ± 0.48
EfficientPlace+DreamPlace 7.20 ± 0.12 9.20 ± 0.61 16.49 ± 1.07 14.70 ± 0.25 8.67 ± 0.10 9.98 ± 0.02 28.48 ± 0.96 125.02 ± 0.02

EGPlace+DreamPlace 4.0 7.53 ± 0.11 9.06 ± 0.36 14.15 ± 0.19 15.69 ± 0.09 8.99 ± 0.06 9.63 ± 0.03 29.08 ± 0.23 62.32 ± 0.32
EGPlace+DreamPlace 4.1.0 6.70 ± 0.36 8.02 ± 0.22 13.84 ± 0.88 13.44 ± 0.03 8.38 ± 0.08 9.57 ± 0.03 32.01 ± 0.32 66.63 ± 0.07

18

EGPlace: An Efficient Macro Placement Method via Evolutionary Search with Greedy Repositioning Guided Mutation

adaptec1 adaptec2 adaptec3 adaptec4

bigblue1 bigblue2 bigblue3 bigblue4

Figure 10. Visualization of Mixed-size Placement Results on the ISPD 2005 Dataset. Macros are marked in red, while standard cells
are marked in blue.

19

