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ABSTRACT

Physics-informed neural networks (PINNs) are an increasingly popular class of
techniques for the numerical solution of partial differential equations (PDEs),
where neural networks are trained using loss functions regularized by relevant PDE
terms to enforce physical constraints. We present a new class of PINNs called
HyResPINNs, which augment traditional PINNs with adaptive hybrid residual
blocks that combine the outputs of a standard neural network and a radial basis
function (RBF) network. A key feature of our method is the inclusion of adaptive
combination parameters within each residual block, which dynamically learn to
weigh the contributions of the neural network and RBF network outputs. Addition-
ally, adaptive connections between residual blocks allow for flexible information
flow throughout the network. We show that HyResPINNs are more robust to
training point locations and neural network architectures than traditional PINNs.
Moreover, HyResPINNs offer orders of magnitude greater accuracy than compet-
ing methods on certain problems, with only modest increases in training costs.
We demonstrate the strengths of our approach on challenging PDEs, including
the Allen-Cahn equation and the Darcy-Flow equation. Our results suggest that
HyResPINNs effectively bridge the gap between traditional numerical methods
and modern machine learning-based solvers.

1 INTRODUCTION

Partial differential equations (PDEs) model a variety of phenomena across science and engineering and
are traditionally solved using numerical methods such as finite difference methods (LeVeque, 2007)
and finite elements (Strang et al., 1974). Physics-informed neural networks (PINNs) are meshless
methods (Raissi et al., 2019; Raissi, 2018) that solve PDEs by training deep feedforward neural net-
works (DNNs) using PDEs as soft constraints. This traditional PINN training method poses challenges
due to complicated loss landscapes arising from the PDE-based soft constraints (Krishnapriyan et al.,
2021). Recent approaches to ameliorating issues include curriculum learning (Krishnapriyan et al.,
2021), novel optimization techniques (Cyr et al., 2020), domain decomposition (X-PINNs) (Jagtap &
Karniadakis, 2020), gradient-enhanced training (G-PINNs) (Yu et al., 2022a), or discretely-trained
PINNs using RBF-FD approximations in place of automatic differentiation (DT-PINNs) (Sharma &
Shankar, 2022). Further significant strides have been made in developing new DNN architectures
to enhance PINNs’ representational capacity, including adaptive activation functions Jagtap et al.
(2020b;a), positional embeddings Liu et al. (2020); Wang et al. (2021b), and innovative architec-
tures Wang et al. (2021a); Sitzmann et al. (2020); Gao et al. (2021); Fathony et al. (2020); Moseley
et al. (2023); Kang et al. (2023).

In addition to architectural choices, certain training pathologies exist including, spectral bias (Ra-
haman et al., 2019; Wang et al., 2021b), unbalanced back-propagated gradients (Wang et al., 2021a;
2022b), and causality violations (Wang et al., 2022a; 2024b). Efforts focused on improving PINNs’
training performance include loss re-weighting schemes (Wang et al., 2021a; 2022b; McClenny &
Braga-Neto, 2020; 2023; Maddu et al., 2022) and adaptive resampling of collocation points, such as
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importance sampling (Nabian et al., 2021), evolutionary sampling (Daw et al.), and residual-based
adaptive sampling (Wu et al., 2023).

Combining traditional methods with DNNs is a new line of research which focuses on leveraging the
advantages of both. For example, incorporating a Fourier feature layer to preprocess DNN inputs
enhances their capacity to capture high-frequency functions (Tancik et al., 2020), while also reducing
eigenvector bias in PINNs (Wang et al., 2021b; Raynaud et al., 2022). Fourier neural operators (Li
et al., 2020) utilize Fourier layers in the network architecture and have become a popular approach for
inverse problems. Similarly, physics-informed radial basis networks (PIRBNs) have been proposed
as efficient local approximators that integrate domain knowledge during training, performing well in
solving PDEs with high-frequency features or ill-posed domains (Bai et al., 2023; Fu et al., 2024).
Chrysos et al. (2022; 2020) augment polynomial neural networks with DNNs, with a direct focus
on classification and discriminative problems. Further explorations encompass alternative objective
functions, such as those employing numerical differentiation techniques Huang & Alkhalifah (2024)
and variational formulations inspired by Finite Element Methods (FEM) Kharazmi et al. (2019);
Berrone et al. (2022); Patel et al. (2022), along with additional regularization terms to expedite
PINNs’ convergence Yu et al. (2022b); Son et al. (2021).

Recent work has investigated deep architectures for solving PDEs through methods such as stacked
DNNs (Howard et al., 2023) and residual blocks with adaptive gating parameters (Wang et al., 2024a).
Wang et al. (2024a) incorporate residual blocks with adaptive skip connections, which dynamically
balance the input and learned residuals at each layer. Specifically, they incorporate adaptive residual
blocks which dynamically balance the contributions of both the input and residual function at each
layer, while the stacked approach of Howard et al. (2023) utilizes transfer learning to improves the
ability of PINNs to handle complex, multi-scale PDEs.

While these deep residual based approaches show much promise, the increased architectural complex-
ity, leads to higher computational costs both in terms of memory and training time—requiring careful
selection of training routines to prevent instabilities or poor convergence. Finally, while Fourier
features help in capturing high-frequency components, they can still struggle with discontinuous
solutions or sharp interfaces, which are challenging for neural networks to approximate due to the
smoothness of typical activation functions.

To address these challenges, we propose a novel class of network architectures termed HyResPINNs,
that combines a standard DNN with a Radial Basis Function (RBF) network within bi-level adaptive
residual blocks, such that the relative contribution of both the DNN and RBF networks are adaptively
learned during training, along with the full residual block outputs. The proposed architecture leverages
the strengths of both smooth and non-smooth function approximators to model complex physical
systems. The standard DNN using smooth activation functions effectively captures the continuous,
global behaviors of the solution, which are common in many physical phenomena. While the RBF
network then captures the localized, discontinuous or sharp features in the target solution. This
representational division ensures that the model can accurately capture both smooth and non-smooth
components of the solution, forming a robust network capable of modeling many types of physical
systems.

Our main contributions are summarized as follows:

• Propose a novel adaptive residual architecture: We introduce a new class of physics-
informed neural networks, HyResPINN, that combine standard neural networks with Radial
Basis Function (RBF) networks within bi-level adaptive residual blocks.

• Demonstrate the superiority of the block structure: We show that our residual block
architecture provides significant improvements over standard approaches in capturing both
smooth and non-smooth features, leading to more accurate modeling of complex physical
systems.

• Highlight the benefits of adaptivity between residual blocks: We demonstrate that the
adaptive learning of contributions between the NN and RBF networks, as well as between
residual blocks, results in superior performance and stability compared to non-adaptive
methods.
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• Thorough empirical evaluation: Show our method HyResPINN outperforms standard
PINNs along with state of the art methods in PINNs on an array of baseline problems,
confirming the general applicability of HyResPINNs.

2 BACKGROUND

2.1 PHYSICS-INFORMED NEURAL NETWORK

Given the spatio-temporal domain Ω ⊂ Rd defined on [0, T ] × Ω ⊂ R1+d where Ω is a bounded
domain in Rd with regular enough boundary ∂Ω, the general form of a parabolic PDE is,

ut + F [u] = f , (1)

such that F [·] is a linear or nonlinear differential operator, and u(t,x) denotes a unknown solution.

The general initial and boundary conditions can be then formulated as:

u(0,x) = g(x), x ∈ Ω , (2)
B[u] = 0, t ∈ [0, T ], x ∈ ∂Ω . (3)

Here, f and g(x) are given functions with certain regularity; B[·] denotes an abstract boundary
operator, representing various boundary conditions such as Dirichlet, Neumann, Robin, and periodic
conditions.

We aim at approximating the unknown solution u(t,x) by a deep neural network uθ(t,x), where
θ denotes the set of all trainable parameters of the network (e.g., weights and biases). If a smooth
activation function is employed, uθ provides a smooth representation that can be queried for any
(t,x). The PDE residuals are defined as,

Rint[uθ](t,x) =
∂uθ
∂t

(t,x) + F [uθ](t,x)− f(x) , (t,x) ∈ [0, T ]× Ω , (4)

and spatial and temporal boundary residuals, respectively, by

Rbc[uθ](t,x) = B[uθ](t,x) , (t,x) ∈ [0, T ]× ∂Ω , (5)

and

Ric[uθ](x) = uθ(0,x)− g(x) , x ∈ Ω . (6)

Then, we train a physics-informed model by minimizing the following composite empirical loss:

L(θ) :=
1

Nic

Nic∑
i=1

∣∣Ric[uθ](x
i
ic)
∣∣2

︸ ︷︷ ︸
Lic(θ)

+
1

Nbc

Nbc∑
i=1

∣∣Rbc[uθ](t
i
bc,x

i
bc)
∣∣2

︸ ︷︷ ︸
Lbc(θ)

+
1

Nr

Nr∑
i=1

∣∣Rint[uθ](t
i
r,x

i
r)
∣∣2

︸ ︷︷ ︸
Lr(θ)

,

(7)

which aims to enforce the neural network function uθ to satisfy the PDEs (1) with initial and spatial
boundary conditions (2)–(3). The training data points {xiic}

Nic
i=1, {tibc,xibc}

Nbc
i=1 and {tir,xir}

Nr
i=1 can

be the vertices of a fixed mesh or points randomly sampled at each iteration of a gradient descent
algorithm.

2.2 RADIAL BASIS FUNCTION NETWORKS

The general form of an RBF network for the training data points x = {xi}Ni=1 with corresponding
function values yi is given by,

f(x) =

Nc∑
j=1

cjψ(||x− xcj ||), (8)

where xc = {xcj}
Nc
j=1 are the center points of the radial basis functions (RBFs). Here, ψ represents

the radial basis function, which are commonly chosen as the Gaussian, multi-quadric, or inverse
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multi-quadric functions, each offering different characteristics and benefits. The elements of the
kernel matrix are given by:

Kij = ψ(||xi − xcj ||), (9)

where xi represent the data points, and (9) evaluates the RBF based on the distance between the
points. The kernel matrix captures the pairwise interactions between data points through the chosen
RBF, and its structure is typically symmetric and positive-definite, assuming an appropriate choice
of ψ. The choice of center points can vary depending on the application; in some cases, the center
points may coincide with the data points, but they may also be selected independently of the data
points to optimize approximation accuracy or computational efficiency. The RBFs determine how
much influence each center has on the input, based on the distance between the input and the center.

W ∈ RNc×p

K(x1, x2, t) ∈ RN×Nc

Weight Layer

σ

Weight Layer

x ∈ RN×d or x ∈ RN×p

+

φ(α(l))F
(l)
R (x) ∈ RN×p

(1− φ(α(l))F
(l)
N (x) ∈ RN×p

σ
(
H(x)

)
∈ RN×p

RBF Net NN

Hybrid Residual Block

Figure 1: Illustration of the RBF+PINN hybrid residual block with trainable strength connections
between the RBF and PINN outputs.

Gradient descent is sometimes used to optimize both the centers and the unknown weights (cj)
simultaneously. These approaches are referred to as RBF networks, where the radial basis functions
are the hidden layer activations, and the RBF coefficients are the trainable network parameters.
The mean-squared error between the linear combination of the hidden layer outputs and the known
functions values is commonly minimized.

3 HYBRID RESIDUAL PINNS (HYRESPINNS)

In this section, we describe our proposed architecture—HyResPINNs. HyResPINNs are a novel type
of residual network such that each residual block incorporates an RBF kernel along with a standard
DNN.

3.1 HYBRID RESIDUAL BLOCKS

Figure 1 shows the hybrid residual block specifics. We denote the output of the l-th residual block
for the input x(l) as H(l)(x(l)). Formally, the forward pass of each hybrid residual block in the
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HyResPINN architecture is,

H(l)(x(l)) = φ(α(l))F
(l)
R (x(l)) + (1− φ(α(l)))F

(l)
N (x(l)), (10)

such that α(l) ∈ R is a trainable parameter, φ represents the sigmoid function, F (l)
R (x(l)) is the output

of the RBF network and F (l)
N (x(l)) is the output from a DNN or PINN within the l-th block. We then

pass σ(H(l)(x(l))) as the input to the next block, where σ is some non-linear activation function.

Hybrid Block Hybrid Block Hybrid BlockInputs ᾱ ᾱ ᾱ DNN Outputs

φ(β(1)) φ(β(2))

Figure 2: Illustration of the HyResPINN architecture using three blocks.

Adaptive Hybrid Contribution Coefficients The trainable parameter α(l) controls the relative
contributions of the DNN and RBF components to the output—where optimizing α finds the best
balance between these two elements. Since the sigmoid function φ constrains its output to the
range [0, 1], the resulting output is a convex combination of the RBF and DNN components. We
further incorporate adaptable residual connection parameters between each hybrid block, denoted as
β(l)—similar to the approaches in (Howard et al., 2023) and (Wang et al., 2024a)

However, unlike (Wang et al., 2024a), where their adaptable parameters are initialized to zero to force
the network to learn non-linearities from scratch, we initialize each φ(α(l)) = 0.5, ensuring equal
contributions from both components at the start of training, and each β(l) = 1. When φ(α) = 1,
only the RBF network contributes; when φ(α) = 0, only the DNN contributes. The optimal choice
of α depends on the problem characteristics. For problems with large regions of smoothness, the
model might favor a lower α, assigning more weight to the DNN components in each residual block.
Conversely, for problems involving sharp transitions or discontinuities, a higher α (favoring the
RBF) may be preferable. In hybrid problems with smooth and non-smooth regions, α will likely fall
between 0.4 and 0.6, providing a balanced combination of the two networks.

To encourage smoother solutions and prevent the network from introducing excessive non-linearity,
we add a regularization term to each block’s trainable parameter α. This regularization penalizes
large values of α, effectively controlling the contribution of non-linearity from the RBF components.
Specifically, the total loss function is defined as:

L = λicLic(θ) + λbcLbc(θ) + λrLr(θ) + λp

Nblocks∑
i=1

α2
i , (11)

where Lic and Lbc represent the loss terms for the initial and boundary conditions, Lr represents
the residual loss, and the final term λp

∑Nblocks

i=1 α2
i acts as an L2 regularization on the α parameters.

The regularization helps balance the contributions of the smooth neural network and non-linear RBF
components, promoting smoother solutions and more stable training.

Adaptive RBF Block Kernel The output of the RBF kernel F (l)
R (x(l)) can be described as,

F
(l)
R (x(l)) = K(x)W, (12)

such that the kernel matrix K is defined as (9) where the kernel matrix K is based on the Wendland
C4 kernel in 2D. In this work, we focus on isotropic version of the Wendland kernel.

The isotropic Wendland C4 kernel for input x and the i-th center is defined as:

ψi(x) =

(
1− ‖x− xci‖

τi

)6

+

(
35

(
‖x− xci‖

τi

)2

+ 18
‖x− xci‖

τi
+ 3

)
, (13)
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Figure 3: 2D Allen-Cahn equation: Comparison of (a subset of) the learned RBF kernels for a
standard RBF network (top row) and the proposed hybrid RBF+NN residual block approach (bottom
row). Each subplot shows the RBF value corresponding to different learned RBF centers in the input
domain, marked by red crosses.

where xci is the center of the i-th RBF, τ is a scaling parameter, and ‖x−xci‖ represents the Euclidean
distance between x and xci . The Wendland kernel is compactly supported, meaning ψi(x) = 0 for
‖x − xci‖ ≥ τi, which leads to sparse kernel matrices and computational efficiency. Each τi is a
trainable parameter in the network and optimize through gradient descent along with all other network
parameters. Figure 3 demonstrates learned scale parameters within an optimized RBF kernel.

Block Neural Network Following the convention of Cyr et al. (2020), we represent the output of
the DNN F

(l)
N (x(l)) F

(l)
N ∈ Rd → R of width w, as a linear combination of adaptive basis functions

given by

F
(l)
N (x; a, θh) =

w∑
i=1

aiσi
(
x; θh

)
, (14)

where each aj for j = 1, .., w and θh constitute the weights and biases in the last layer and hidden
layers respectively, forming the set of all network parameters θ. Then, each σj are non-linear smooth
activation functions such as Tanh acting on the outputs of the hidden layers. We choose to use a
standard DNN architecture, but any DNN architecture such as ResNets, would work. The parameters
θ are computed through some iterative optimization technique. In this work, we use variants of
gradient descent methods such as ADAM Kingma & Ba (2015) and L-BFGS Liu & Nocedal (1989).

Figure 2 shows a visualization of our full model architecture with adaptive residual block skip
connections, along with the input block structure used to lift the inputs to the desired higher dimension,
and the output neural network block used to project each block’s output down to the output dimension.

Problem Domain Boundary Cond. PINN ResPINN Expert Stacked PirateNet HyResPINN
Allen-Cahn 1D Space/Time Periodic 0.526 0.0027 0.00386 0.00587 0.00022 9.62× 10−5

DarcyFlow 2D Annulus Neumann 0.00075 0.00046 0.0005 0.0009 8.71× 10−5 5.44× 10−5

(smooth coefficients) Dirichlet 0.0020 0.0014 0.00012 0.0041 0.00017 6.0× 10−5

3D Annulus Neumann 0.0022 0.012 0.021 0.054 0.039 0.0012

Dirichlet 0.0085 0.0061 0.0011 0.039 0.0013 0.0011

(rough coefficients) 2D Box Neumann 6.85× 10−5 2.69× 10−5 0.00011 0.00015 5.44× 10−5 1.05× 10−5

Table 1: Relative L2 test error results for various PDE problems and baseline methods.

4 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we demonstrate the effectiveness of the proposed HyResPINNs architecture across a
diverse collection of benchmark problems compared to the leading baseline methods. We show that
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HyResPINNs consistently produce lower relative L2 errors between the predicted and ground truth
solutions for the same training set size when compared to the applicable baselines trained under the
same experimental procedures and hyperparameters. We compare each method on the 1D non-linear
hyperbolic Allen-Cahn equation and the Darcy Flow equation in two and three dimensions with both
Dirichlet and Neumann boundary conditions. Our main results are summarized in Table 1.
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Figure 4: 2D Allen-Cahn equation: Comparison
of the predicted solutions for the Allen-Cahn equa-
tion using HyResPINN, standard PINN, and RBF
network models. The top row shows the predicted
solutions at for HyResPINN (left), standard PINN
(center), and RBF network (right). The second row
illustrates the absolute error between the predicted
solutions and the exact solution. The bottom row
shows the predicted solutions for three time steps
comparing the exact solution (green), HyResPINN
(orange), and standard PINN (dashed blue). The
HyResPINN model effectively captures both the
smooth and sharp features of the solution, while
the standard PINN struggles with sharp transitions,
leading to larger errors in these regions.

Baseline Methods. We compare the proposed
HyResPINN against a suite of baseline methods
under exactly the same hyper-parameter settings
in each example. Baselines include the standard
PINN as originally formulated in (Raissi et al.,
2019) (PINN), a PINN based on the architectural
guidelines proposed in Wang et al. (2023) (Ex-
pertPINNs), PINNs with residual connections
(ResPINNs), PirateNets Wang et al. (2024a),
and the stacked PINN approach of (Howard
et al., 2023) (StackedPINNs). To ensure a fair
comparison, we implemented the approaches de-
tailed in (Raissi et al., 2019; Wang et al., 2024a;
2023; Howard et al., 2023) following the archi-
tectural details provided in each.

Experimental Setup. We follow similar exper-
imental design procedures as those described
in Wang et al. (2022a; 2023; 2024a). A full de-
scription of the experimental setups are included
in Appendix A, and exact hyper-parameter set-
ting are detailed in Table 2. We train all models
on Nvidia A100 GPU running Centos 7.2. Code
for our methods and all compared baseline ap-
proaches is written in libtorch 1.11 (the C++
version of PyTorch) and will be made publicly
available upon publication.

4.1 1D ALLEN-CAHN

We first focus on the Allen-Cahn equation, a
challenging benchmark for conventional PINN
models that has been extensively studied in re-
cent literature (Wight & Zhao, 2020; Wang
et al., 2022a; Daw et al.). For simplicity, we
consider the one-dimensional case with a peri-
odic boundary condition with t ∈ [0, 1], and
x ∈ [−1, 1]:

ut − 0.0001uxx + 5u3 − 5u = 0 ,

u(0, x) = x2 cos(πx) ,

u(t,−1) = u(t, 1) , ux(t,−1) = ux(t, 1) .

The Allen-Cahn PDE is an interesting benchmark for PINNs as it introduces periodic boundary
conditions, and because it is a “stiff” PDE that challenges PINNs to approximate solutions with sharp
space and time transitions.

Hybrid residual blocks improve prediction accuracy. We first demonstrate that the hybrid resid-
ual block structure introduced in our method enhances the ability to capture both smooth and sharp
features in the 2D Allen-Cahn solution. As shown in Figure 4, the proposed approach outperforms
competing baselines, which struggle to accurately represent the sharp transitions in the solution.
This difficulty arises from the smoothness constraints of standard neural network architectures. In
contrast, our method effectively captures these sharp transitions by leveraging smooth neural networks
and adaptive non-smooth RBF kernels, allowing the model to balance global smooth behavior and
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localized discontinuities. Figure 3 shows a random subset of the learned RBF kernels captured by
the proposed hybrid approach. Specifically, it captures similar RBF structures (to a standard RBF
network). However, it benefits from the additional flexibility the NN component provides, allowing
for more nuanced function approximation in regions requiring a balance of smoothness and sharp
transitions. This is likely apparent in the smaller kernels learned by the hybrid block.
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HyResPINN
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StackedPINN

Figure 5: Allen-Cahn equation:
Comparison of the mean relative
L2 error using various methods
as a function of the number of
hidden layers.

Stacking structure of residual blocks improve prediction ac-
curacy. We next show that the stacking structure employed by
the HyResPINN in each hybrid residual block structure intro-
duced here further helps to capture the smooth and sharp features
in the Allen-Cahn solution. Figure 5 shows the predicted solu-
tions between the proposed method and the competing baselines.
The competing methods need help accurately capture the sharp
transitions in the solutions. In contrast, our approach more ac-
curately captures these sharp transitions due to the conjunction
of the smooth neural network architecture and the learned non-
smooth RBF kernels.

Next, we evaluate the effect of network depth on predictive accu-
racy for different architectures. Figure 5 HyResPINN consistently
achieves the lowest error across different network depths. The
performance of other methods shows varying sensitivity to the
number of hidden layers, with HyResPINN offering the most
robust performance. Further, the left plot in Figure 6 shows that
HyResPINN and PiratePINN achieve the lowest error over iter-

ations, with HyResPINN consistently reducing the error more effectively than the other methods.
The right plot demonstrates that—although HyResPINN has a slightly higher training cost—it signif-
icantly outperforms other methods in accuracy, particularly for long training times. These results
highlight the robustness and efficiency of HyResPINN in solving complex PDEs.
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Figure 6: Allen-Cahn equation: Comparison of mean relative L2 error
across various methods, plotted against the number of training iterations
(left) and the mean training time (right). Vertical bars in right plot indicate
the time for which each method achieved an error of 10−2.

Remark While
attempting to replicate
the results of (Wang
et al., 2024a), us-
ing the reported
hyperparameters
and implementation
details, we observed
a slight performance
gap between the
results obtained in
our implementation
and those listed in
their paper. The
observed discrepancy
in the final model’s
performance could
stem from several factors such as subtle variations in the implementation environment—such as
hardware differences, software library versions, or random seed initialization. Despite the differences
between our replication results and those reported in (Wang et al., 2024a), the comparison between
our architecture and the replicated version of their approach remains fair, as both were tested under
identical conditions using the same dataset, hyperparameters, and training setup (including hardware
and software environment). Our findings indicate that our architecture outperforms the replicated
version of their model in many cases, along with all other replicated baseline methods.

4.2 DARCY FLOW

In this section, we describe the Darcy Flow problem, an elliptic boundary value problem given by,
−∇ · µ∇φ = f in Ω (15)
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φ = u on ΓD

n · µ∇φ = g on ΓN

where ΓD and ΓN denote Dirichlet and Neumann parts of the boundary Γ, respectively, µ is a
symmetric positive definite tensor describing a material property and f , u and g are given data.

In important applications such as porous media flow, heat transfer, and semiconductor devices,
the flux u = −µ∇φ is the variable of primary interest. Specifically, during the fabrication of
semiconductor devices, impurities are introduced into the silicon substrate to alter its electrical
properties—a process known as doping. The diffusion of dopants can be described by equations
that are similar in form to Darcy’s law, where the dopant concentration gradient drives the diffusion
process. In semiconductor doping, impurities are introduced into the substrate to change its electrical
properties. This involves diffusion, where the concentration gradient drives the movement of dopant
atoms into the semiconductor material. While Darcy’s law governs fluid flow through porous media
based on pressure gradients, the diffusion of dopants in semiconductors is guided by concentration
gradients, analogous to how fluids move through porous materials in Darcy’s law.
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Figure 7: 2D and 3D Smooth Darcy Flow equation: Comparison of the mean relative L2 errors
across each baseline method for the 2D Darcy Flow problem (left) and the 3D Darcy flow problem
(right) plotted against the number of training collocation points. Solid lines show the solution error,
while dashed lines show the x-directional flux errors.

4.2.1 ANNULUS DOMAIN WITH SMOOTH COEFFICIENTS

We initially showcase the convergence rate of our method by employing smooth manufactured
solutions. We consider two scenarios: one within an annular 2D domain, and another within a 3D
domain formed by extruding the 2D geometry in the z-direction, resulting in a cylinder with a height
of two. We present a convergence study analyzing the error rate as the number of points increases.
The exact solutions are set as,

u(x, y) = sin(x) sin(y), u(x, y, z) = sin(x) sin(y) sin(z), (16)

for the 2D and 3D cases, respectively. By substituting these exact solutions into the model problem
we define the source term and the boundary data. We solve the discrete problem with either Dirichlet
or Neumann boundary conditions. Convergence results are shown in Figure 7 for the two and three
dimensional problems and demonstrate that HyResPINNs remain robust to boundary condition type,
size of training set (achieves lowest errors compared to the baselines for fewer training points), and
problem dimension.

4.2.2 2D BOX DOMAIN WITH ROUGH COEFFICIENTS

A defining feature of methods for solving the Darcy Flow equation 4.2, lies in their proficiency in
accurately depicting the flux variable in scenarios where the coefficients µ are discontinuous. In these
instances, the flux’s normal component maintains continuity across material interfaces, whereas the
tangential component may exhibit discontinuities. In contrast, collocated methods like Galerkin, stabi-
lized Galerkin, and least-squares finite elements often fail to replicate this physical behavior, typically
resulting in oscillations at the interface. In this section, we demonstrate that HyResPINNs success-
fully provides physically accurate flux approximations for problems characterized by discontinuous
coefficients.

9
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The initial example presented is the well-documented "five strip problem" Nakshatrala et al. (2006);
Masud & Hughes (2002), which serves as a conventional manufactured solution test to evaluate
a method’s capability to preserve the continuity of normal flux. The prescribed exact solution on
domain Ω = [0, 1]2 is given by,

φex = 1− x, and ΓN = Γ, (17)

such that Ω is divided in five equal strips,

Ωi = {(x, y) | 0.2(i− 1) ≤ y ≤ 0.2i ; 0 ≤ x ≤ 1}, i = 1, ..., 5 (18)

with different µi on each Ωi such that µ1 = 16, µ2 = 6, µ3 = 1, µ4 = 10, µ5 = 2. We solve
the discrete problem with Neumann boundary conditions. Convergence results are shown in Figure 8
and show that HyResPINNs provide accurate solutions, albeit with larger training sizes.

5 CONCLUSION
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Figure 8: 2D Rough Darcy Flow equation: Com-
parison of the mean relative L2 errors across vari-
ous methods, plotted against the number of training
collocation points. Solid lines show the solution
error, while dashed lines show the x-directional
flux errors.

In this work, we introduced HyResPINNs, a
novel class of physics-informed neural networks
that incorporate adaptive hybrid residual blocks
combining the strengths of standard neural net-
works and radial basis function (RBF) networks.
Our architecture effectively captures continu-
ous and discontinuous features by leveraging
smooth and non-smooth function approximators.
The adaptive combination parameters within
each block allow the model to balance the con-
tributions of neural and RBF components dur-
ing training. Furthermore, including Wendland
kernels enhances the model’s ability to handle
sharp transitions while maintaining computa-
tional efficiency. Our experiments demonstrate
that HyResPINNs outperform traditional PINNs
and state-of-the-art methods in accuracy and ro-
bustness, particularly for problems involving
mixed smooth and non-smooth regions. This
work increases the flexibility and generalizabil-
ity of PINNs by bridging the gap between clas-
sical numerical methods and DNN-based ap-
proaches for solving PDEs.
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A EXPERIMENTAL DESIGN

We use mini-batch gradient descent, where collocation points are randomly sampled during training
iteration, for all Allen-Cahn experiments, and we use full-batch gradient descent (but varying training
set size) for all other experiments. We use the Adam optimizer Kingma & Ba (2015), and follow
the learning rate schedule of Wang et al. (2023) which starts with a linear warm-up phase of 5, 000
iterations, starting from zero and gradually increasing to 10−3, followed by an exponential decay
at a rate of 0.9. Following the best practices described in Wang et al. (2023), we also employ a
learning rate annealing algorithm Wang et al. (2023) to balance losses and causal training Wang
et al. (2022a; 2023) to mitigate causality violation in solving time-dependent PDEs and apply exact
periodic boundary conditions Dong & Ni (2021) when applicable. We use the hyperbolic tangent
activation functions and initialize each network’s parameters using the Glorot normal scheme, unless
otherwise specified. We ran five random trials for each test, and report the mean values achieved in
each plot and table.

Parameter Value

Architecture
Number of layers 9
Number of channels 128
Activation Tanh
Fourier feature scale 2.0
Random weight factorization µ = 1.0, σ = 0.1

Learning rate schedule
Initial learning rate 10−3

Decay rate 0.9
Decay steps 5× 103

Warmup steps 5× 103

Training
Training steps 3× 105

Weighting
Weighting scheme Gradient Norm Wang et al. (2022b; 2023)
Causal tolerance 1.0
Number of chunks 32

Table 2: Hyper-parameter configurations for experiments.
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