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ABSTRACT

Multi-label learning with label noise is a practical but more challenging problem,
as the underlying label dependency complicates the modeling from clean labels to
noisy variants. Progress in this area is usually explored from the perspectives of
semi-supervised learning, robust loss functions, or noise transition, which are less
effective on complicated datasets or highly sensitive to transition matrix estimation.
To refine the noisy labels in a general framework, we propose a simple but effective
method, named Bootstrapped Optimal Transport method (BOT). Unlike the explicit
linear transition matrix with stringent conditions, BOT considers the modeling
between true labels and noisy labels as an implicit optimal transport procedure
which has a more powerful degree of freedom. We show that with the proper
reference by bootstrapping and adversarial orientation, the underlying true labels
can be effectively estimated for training by the Sinkhorn-Knopp algorithm. Despite
the simplicity, extensive experiments on a range of benchmark datasets prove
that BOT consistently outperforms state-of-the-art methods, and comprehensive
ablations explain the success behind BOT.

1 INTRODUCTION

Learning with noisy labels has drawn much attention in the past few years with a range of explorations
proposed (Han et al., 2018a; Jiang et al., 2018; Li et al., 2013; Ma et al., 2020; Patrini et al., 2017; Yao
et al., 2020; Yu et al., 2023). Nevertheless, the current success is mainly achieved in the multi-class
setting (Han et al., 2018b; Jiang et al., 2018; Ren et al., 2018), while multi-label learning with label
noise remains challenging and under-explored as it couples with more complex label dependency.

Existing efforts for multi-label noise learning can be divided into three categories: semi-supervised
methods, robust loss functions, and transition-based methods. The first (Vahdat, 2017; Veit et al.,
2017; Zhao and Gomes, 2021) requires a representative clean subset to calibrate the training, which
might not always be practical in real-world applications. The second (Xie and Huang, 2022) built
robust loss functions to handle noise, which is limited by the accurate noise rate estimation, especially
on large-scale multi-label datasets. The latter (Li et al., 2022) exploited a noise transition matrix to
characterize the class-conditional label corruption process and reverse it to refine the noisy labels.
Though it achieves state-of-the-art performance, this paradigm is up to the capacity of a linear system
to estimate the noise transition matrices, which sacrifices the inherent instance dependencies.

To avoid the dilemma mentioned above in previous methods, we explore a new paradigm, Optimal
Transport (OT) (Caron et al., 2020; Peyré et al., 2019; Xia et al., 2022) for multi-label noise learning,
which enjoys a powerful capacity to explain away the complex transition by optimization. The
key challenges here are how to define a reasonable hypothesis space, a helpful reference point, and
construct an efficient solver to facilitate the search. To handle these problems, we come up with
decomposing the multi-label solution space into multiple binary label solution spaces to reduce the
search complexity, combining noisy labels and model knowledge to obtain a better reference point,
and leveraging prior knowledge and entropy regularization to direct the optimization orientation.

Specifically, we propose a simple yet effective method, Bootstrapped Optimal Transport method
(BOT). Different from the vanilla OT, BOT decomposes multi-label transport polytope into binary
polytopes for each class and minimizes the distances between the refined labels and the cost matrices
as the hypothesis space. As shown in Fig. 1, the cost matrices are defined as the bootstrapping (Reed
et al., 2014) with noisy labels and model predictions to conserve both the useful information in noisy
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Figure 1: Illustration of transition-based methods and BOT. (a) Transition-based methods rely highly
on the transition matrix estimation that will be severely complicated in the setting of multi-label
learning, easily inducing a suboptimal estimation of true labels. (b) BOT outperforms standard OT
via optimizing the label refinement with bootstrapping reference and adversarial orientation guidance.

labels and important knowledge learned through the training to improve the reference. Finally, BOT
incorporates class-wise prior knowledge to lead the refined labels to conform to prior knowledge
and introduces a Lagrange multiplier for the entropy constraints to maximize the entropy, assigning
labels to each class uniformly. The adversarial optimization between class-wise orientation and
entropy-maximized orientation enables the quality and robustness of the refined labels that are used
to train the model on the loss function manifold and establish a projected distillation. Besides, BOT
can be easily extended with advanced multi-label learning methods to further boost the prediction
performance and, in turn, improve the label refinement quality.

In summary, our main contributions are three-fold:

• We propose a simple yet effective method, Bootstrapped Optimal Transport (BOT), for
multi-label noise learning, which is the first to consider the transition between true labels and
noisy labels as the optimal transport process and maintains the merits in powerful modeling
of the complex transition and the efficient optimization for label refinement.

• We provide a comprehensive understanding of BOT that its outstanding performance comes
down to its multi-label transport polytope decomposition, bootstrapping cost matrices, and
adversarial orientation, and different from linear transition, it does have instance-level
refinement capacity that is inherent in the constraint optimization, and show its flexible
compatibility with advanced multi-label learning methods.

• We conduct extensive experiments on three widely-used benchmark datasets under both
semi-supervised learning and not. The empirical results demonstrate that BOT consistently
outperforms the current state-of-the-art methods. Besides, a range of ablation studies verify
the effects of each component and their sensitivities, as well as the compatibility in BOT.

2 RELATED WORK

Multi-class learning with noisy labels. Various methods for multi-class learning with noisy labels
have been proposed, such as loss correction (Han et al., 2018a; Patrini et al., 2017), robust loss
functions (Ma et al., 2020; Wang et al., 2019; Zhang and Sabuncu, 2018), and sample selection (Han
et al., 2018b; Jiang et al., 2018; Ren et al., 2018). Loss correction can be either achieved explicitly
with model predictions and label corruption matrix estimation (Liu and Tao, 2015) or implicitly
through relabeling the noisy instances (Tanaka et al., 2018). Plenty of novel loss functions have
been proposed and theoretically proved robust to different types of noises, such as Generalized
Cross Entropy (GCE) (Zhang and Sabuncu, 2018), Active Passive Loss (APL) (Ma et al., 2020), and
curriculum loss (CL) (Lyu and Tsang, 2019). Another popular line of works focuses on selecting
true-labeled examples from a noisy training dataset based on the memorization effect of neural
networks (Arpit et al., 2017). These approaches usually leverage multiple DNNs to cooperate with
each other (Han et al., 2018b) or run multiple training rounds (Wang et al., 2018). Comprehensive
reviews on label noise can be found in Han et al. (2020); Song et al. (2022).
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Multi-label learning with noisy labels. It is more challenging when generalized to multi-label
cases because of the highly complicated label space of multi-label datasets. One type of works
assumes that a small fraction of clean labels are given, or auxiliary information is available. Earlier
approaches (Hu et al., 2019; Veit et al., 2017) built a multi-task network to jointly learn to model
the transition between noisy and clean labels and to classify images accurately. Vahdat (2017)
proposed a conditional random field model equipped with an auxiliary distribution representing the
relation between noisy and clean labels to gain robustness against noise. Another line considers
robust learning methods. For example, CCMN (Xie and Huang, 2022) established two robust loss
functions to alleviate the impact of noisy labels. The recent state-of-the-art NTMLC (Li et al., 2022)
attempts to model the class-conditional label corruption process by transition, which solves a linear
system with occurrence probabilities and prior probabilities to estimate the noise transition matrix.

3 METHOD

3.1 PRELIMINARY

Let Σk := {x ∈ Rk
+ : xT1k = 1} be the k-dimensional simplex and 1k be the k-dimensional

vector of ones. The problem we address here is to train a multi-label classification model under
a set of data with noisy labels that might be partially true. Denote N as the number of instances
and K as the number of classes. Consider that we have a dataset D = (X, Ỹ ) = {(xi, ỹi)}Ni=1,
where ỹi ∈ {0, 1}2×K is the noisy label matrix of the input xi, and its corresponding true label
yi ∈ {0, 1}2×K is unknown. To train a K-class multi-label classification model pθ : X → Y , we
need to refine the noisy labels Ỹ towards the true labels Y . Thereafter, the model pθ is learned by
minimizing multi-label cross-entropy loss with the refined labels.

3.2 BOOTSTRAPPED OPTIMAL TRANSPORT FOR MULTI-LABEL NOISE LEARNING

Towards the above goal, we propose to model the label refinement as an optimal transport (OT)
whose approximation solution is the refined label Q = [Q1, · · · , QK ], where Qk ∈ [0, 1]N×2. In the
following, we first define the basic transport polytope.
Definition 1 (Multi-Label Transport Polytope for Class k). In a multi-label problem where the
number of instances is N and the number of classes is K. We define the multi-label transport
polytope for class k, U(rk, sk) w.r.t rk ∈ ΣN and sk ∈ Σ2 as

U(rk, sk) := {Q ∈ [0, 1]N×2 | Q12 = rk, Q
T1N = sk},

where rk = 1N/N and sk = [
∑N

i=1 1yi
1,k=1/N,

∑N
i=1 1yi

2,k=1/N ].

The transport polytype constrains the solution space of the true label Y refined from the noisy label
Ỹ . With the polytope U(rk, sk) and a proper transport cost Ck, the OT problem for multi-label noise
learning for each class k can be formulated as follows:

min
Qk∈U(rk,sk)

⟨Qk, Ck⟩, (1)

where ⟨·, ·⟩ stands for the Frobenius dot-product, Qk denotes the label variable to be estimated, and
Ck denotes the cost matrix that characterizes the penalty of solution in the solution space. The row
constraint rk ensures that the estimation is in the form of probabilities, while the column constraint sk
ensures that the overall class probabilities conform to the class-wise prior knowledge. Furthermore,
the dependencies between class i and the other classes are considered implicitly via the column
constraint sk modeling the one versus K − 1 class-wise knowledge.

The most critical part of BOT is how to design the cost matrix Ck properly. Different from the
ordinary setting by the noisy labels Ỹ as the cost matrix, i.e., the vanilla OT, we construct Ck by
bootstrapping the noisy labels Ỹk with the model prediction probabilities pk(X) of class k as follows:

Ck = − logBk, Bk = αỸk + (1− α)pk(X), (2)

where hyperparameter α ∈ [0, 1] is used to balance the noisy labels Ỹk and the model prediction
probabilities pk(X) of class k. The importance of bootstrapping is further studied in Section 3.3.1.
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Figure 2: The label refinement process of BOT. First, noisy labels and the model prediction probabili-
ties are bootstrapped to obtain a better reference point. Then, to optimize the noisy labels toward
the true labels in the feasible solution space, the solver establishes an adversarial orientation by
incorporating class-wise prior knowledge to guide the optimization and maximizing the entropy
regularization to adjust the orientation, gaining a robust transport path. Finally, the refined labels
supervise the model training on the loss function manifold, building a projected distillation.

Optimization. To solve Eq. (1) efficiently, a fast version of the Sinkhorn-Knopp algorithm (Cuturi,
2013) is usually considered, yielding a closed-form estimation Qk = diag(uk)B

kλdiag(vk), where
uk ∈ RN and vk ∈ R2 are two scaling vectors that transform Bk to comply with row and column
constraints rk and sk, and the Lagrange multiplier λ plays a similar role as the temperature to control
the softness. As λ grows, the obtained estimation will be harder, and the convergence rate will drop
dramatically. Thus, a moderate λ is recommended to regularize the estimation of Q for training.

Regarding uk and vk, we can calculate iteratively via (uk, vk)← (rk./B
kλvk, sk./B

kλ
T

uk).

Complexity Analysis. The overall algorithm is presented in Algorithm 1 in Appendix B. Franklin and
Lorenz (1989) proved that for B ∈ RN×K

+ , the convergence rate of the Sinkhorn-Knopp algorithm is
linear and bounded by the contraction ratio of Bλ, denoted as κ(Bλ)2:

κ(Bλ) =
ϑ(Bλ)1/2 − 1

ϑ(Bλ)1/2 + 1
< 1 and ϑ(Bλ) = max

i,j,k,l

Bλ
i,kB

λ
j,l

Bλ
j,kB

λ
i,l

.

In our BOT algorithm, K binary optimizations are required. However, the optimizations can be done
in parallel, and the convergence rate does not change. The space complexity is considered O(N ×K)
because of K binary Bk with dimension of N × 2 and 2K scaling vectors uk and vk of length N .

3.3 UNDERSTANDING

3.3.1 BOOTSTRAPPING THE IMPORTANCE AND ADVERSARIAL ORIENTATION

In this section, we explain why Eq. (1) and Eq. (2) are essential for the optimization of BOT from the
following two perspectives, which is the key to achieving success in multi-label noise learning.

Bootstrap the importance. The optimization performance will deteriorate when the reference point
is too unreliable, which is the noisy label Ỹ . To gain a better reference point, we bootstrap the noisy
labels and the model prediction probabilities as the cost matrix. According to the memorization effect
of deep neural networks (Arpit et al., 2017), the model warmed up with the noisy labels Ỹ can learn
and provide helpful knowledge different from the noisy labels Ỹ to optimize the refinement. As
illustrated in Fig. 2, we can see that the distance between the bootstrapping B and the latent true label
Y is reduced so as to facilitate the optimization. We provide the following analysis to explain the
resulting advantage in minimization.
Theorem 1 (Distance for Bootstrapped Cost). Consider a discrete random variable Y ∈ {0, 1}N×2,
for any discrete random variable Ỹ ∈ {0, 1}N×2 and continuous random variable P ∈ [0, 1]N×2,
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Table 1: Comparisons between Noise Transition-based methods and BOT on class Person in Pascal-
VOC 2007 with clean or symmetric noisy labels. The results (mean±std) are reported over 3 random
runs, the best results are boldfaced, and the second best results are underlined.

Metric Method Clean Noise Rate
0.2 0.3 0.4

Accuracy

Cross Entropy 94.56± 0.09 89.24± 1.11 87.08± 1.03 75.23± 2.80
Backward 94.21± 0.19 89.88± 0.28 87.05± 0.88 79.18± 1.24
Forward 93.59± 0.28 91.57± 0.75 87.49± 2.25 81.39± 1.56

True Backward 94.62 ± 0.12 91.53± 0.58 89.57± 1.38 80.81± 2.80
True Forward 94.46± 0.06 91.21± 0.57 88.80± 1.43 81.48± 2.18

BOT (α = 0.2) 94.16± 0.03 92.16 ± 0.59 89.71 ± 2.01 83.91 ± 3.66

there exists an α ∈ [0, 1] such that

⟨Y,− log
(
αỸ + (1− α)P

)
⟩ ≤ ⟨Y,− log Ỹ ⟩.

The result guarantees that the distance between the latent true labels Y and the bootstrapping logB
is smaller than the distance between Y and the noisy labels log Ỹ . In addition, similar results for
model prediction probabilities log p(X) can be drawn, leading to the overshooting problem. Thus,
bootstrapping logB is a better reference than noisy labels log Ỹ and model prediction probabilities
log p(X). Both useful information in noisy labels and important knowledge learned by the model
are conserved by bootstrapping. Hence, minimizing the distance between the refined labels Q and
the bootstrapping logB will result in closer and better quality refined labels Q. Besides, the OT
refinement with noisy labels Ỹ has a unique solution and is thus static. Model predictions introduce
dynamics in the refinement as the model is improved iteratively, rendering Q closer to clean labels Y .
The importance of bootstrapping is experimentally shown in Section 4.5.

Adversarial orientation. Even though our bootstrapping provides a better reference point, the OT
refinement lacks a robust transport path. Inspired by projected gradient descent (Goldstein, 1964;
Traonmilin et al., 2020) that projects the gradient into the feasible space to update the parameters, we
propose to project the bootstrapping labels into the feasible label space by the OT formulation to refine
the labels. Our OT formulation is class-oriented, as we incorporate class-wise prediction knowledge
in {Bk}Kk=1 to guide the search of {Qk}Kk=1 in multi-label transport polytope {U(rk, sk)}Kk=1 and
projection on the loss function manifold. The column constraints {sk}Kk=1 guarantee that the transport
path of {Qk

1}Kk=1 accords with the class proportions, yielding the optimization towards overall class
correctness. However, overall class correctness may lead to bias since this class-wise orientation
is inaccurate and in one direction. As shown in Fig. 2, the class-wise orientation presented as
the blue arrow is directed toward the center instead of the latent true label. Nevertheless, the fast
Sinkhorn-Knopp algorithm (Cuturi, 2013) takes entropy-maximized orientation by introducing an
entropy constraint into Eq. (1):

min
Qk∈U(rk,sk)

⟨Qk, Ck⟩ − 1

λ
h(Qk), (3)

where h(Qk) = −
∑N

i=1 Q
k
i logQ

k
i is the entropy of Qk. The entropy maximization encourages the

label assignment to each class uniformly, shown as the orange arrows in Fig. 2, to prevent overfitting
and redirect the orientation. Hence, this term acts as the adversary with our class-wise orientation,
which allows the algorithm to correct the transport path in a proper stage dynamically. As illustrated
in Fig. 2, class-wise orientation as the big blue arrow will dominate the path, and entropy-maximized
orientation as the small orange arrows will adjust the path. This adversarial orientation plays a similar
role to adversarial learning to ensure optimization robustness and improve the refinement quality.

3.3.2 CAPABILITY OF BOT COMPARED WITH TRANSITION-BASED METHODS

In this part, we compare the capacity of BOT with transition-based label refinement methods (Gold-
berger and Ben-Reuven, 2016; Patrini et al., 2017). Specifically, we consider the binary classification
as the example to accurately control the noise factor and test on Pascal-VOC 2007 (Everingham et al.,
2010) so as to help illustrate the behavior of all these methods and reflect the refinement abilities
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in real-world tasks. For Pascal-VOC 2007, we choose the largest class Person as the positive class.
We exploit five baselines: (1) CE is learning with cross-entropy loss directly on noisy datasets. (2)
Backward (Patrini et al., 2017) is a transition-based method to estimate the inverse of the noise
transition matrix and denoise the noisy labels. (3) Forward (Goldberger and Ben-Reuven, 2017)
is a transition-based method to estimate the noise transition matrix and the clean labels. (4) True
Backward is the Backward method with the true noise transition matrix. (5) True Forward is the
Forward method with the true noise transition matrix. It is worth noting that BOT has equal or
even less information than True Backward and True Forward methods in our multi-class control
experiments where the noisy examples are sampled uniformly because the class-wise proportions can

be calculated via p(Y ) =
(

TT
)−1

p(Ỹ ) given the true noise transition matrix T.

In Table 1, we can observe that BOT outperforms all the other baselines by large margins, especially
when the noise rate is high, even if True Backward and True Forward also have class-wise proportion
information, showing that our OT formulation is a more effective way to refine the noisy labels. The
superiority of BOT over transition-based methods can be attributed to two aspects: (1) BOT avoids the
anchor points estimation that is the foundation of most transition-based methods. These methods rely
on a too strong assumption that anchor points exist, and these anchor points are examples that must
belong to a particular class, leading to unreliable noise transition matrix estimation. Furthermore,
sampling bias of anchor points also occurs. (2) BOT has instance-level refinement capacity owing
to the constraint optimization, while transition-based methods only have class-wise capacity. BOT
optimizes each instance differently and constrains them to conform to class proportions, while
transition-based methods apply the same noise transition matrix to each instance, leading to average
refinement. For multi-label classification, the experimental results are discussed in Section 4.2.

3.3.3 EXTENSIONS WITH ADVANCED MULTI-LABEL LEARNING METHODS

As BOT is only a label refinement method, it can be easily extended with existing approaches for
multi-label classification as a plug-and-play module. Namely, BOT can be implemented as a precursor
of many advanced multi-label learning methods (Chen et al., 2019; Liu et al., 2022a;b; Ye et al.,
2020; Zhu and Wu, 2021) to refine the noisy labels, and the refined labels serve as the clean labels to
facilitate the training. These extensions enable the model to leverage label dependency and improve
itself so as to facilitate the process of label refinement while better-refined labels also, in turn, help
supervise the model training. Corresponding experimental results are discussed in Section 4.4.

4 EXPERIMENTS

In this section, we first examine the effectiveness of our proposed algorithm on the multi-label classi-
fication task on three different real datasets. Then, we test it in a semi-supervised learning scenario
and verify the effectiveness under different multi-label learning backbones. Subsequently, we explore
the choices of B, the sensitivity to the accuracy of the prior knowledge, and the hyperparameter λ.

4.1 EXPERIMENTAL SETUP

Noise Definition. We follow Li et al. (2022) to consider the symmetric and instance-independent
multi-label noise in the experiments, where approximately the same number of positive and negative
labels are corrupted. The training data labels are corrupted by a noise transition matrix T =[

1− ρ− ρ−
ρ+ 1− ρ+

]
, where ρ− = na

K−na
ρ, ρ+ = ρ and na is the average number of labels per

image. Specifically, the noise rates are denoted in the form of (ρ−, ρ+).

Setup. We evaluate our proposed method on three multi-label datasets, i.e., Pascal-VOC 2007 (Ev-
eringham et al., 2010), Pascal-VOC 2012 (Everingham et al., 2010), and MS-COCO (Lin et al.,
2014). The average labels per image for these three datasets are 1.5, 1.5, and 2.9, respectively. For
Pascal-VOC 2007 and Pascal-VOC 2012, we follow the same settings as Gao and Zhou (2021); Li
et al. (2022) , and for MS-COCO, we follow the settings in Chen et al. (2019); Gao and Zhou (2021).
Mean average precision (mAP) is applied to compare the performances of different methods1.

1For overall F1-measure (OF1) and per-class F1-measure (CF1), we refer readers to Appendix E.2 for the
results.
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Table 2: Comparisons between the baselines and BOT on Pascal-VOC 2007, Pascal-VOC 2012,
MS-COCO with clean or symmetric label noise. The results (mean±std) are reported over 3 random
runs and the best results are boldfaced, and the second best results are underlined.

Dataset Method Clean Noise Rate (ρ−,ρ+)
(0.017, 0.2) (0.034, 0.4) (0.052, 0.6)

VOC 2007

BCE 89.02± 0.29 85.07± 0.36 80.17± 0.17 68.90± 1.05
BOOTSTRAP 89.05± 0.29 84.85± 0.52 79.90± 0.51 69.37± 0.36

CDR 89.03± 0.30 84.99± 0.48 79.98± 0.41 69.13± 0.80
CCMN 89.02± 0.31 82.71± 0.50 73.95± 0.69 54.37± 1.50

NTMLC 89.17± 0.31 85.52± 0.57 80.65± 1.36 74.03± 1.31
BOT 88.73± 0.33 86.66 ± 0.36 83.08 ± 0.56 76.31 ± 1.83

Dataset Method Clean Noise Rate (ρ−,ρ+)
(0.017, 0.2) (0.033, 0.4) (0.050, 0.6)

VOC 2012

BCE 90.95± 0.40 88.16± 0.19 85.25± 0.79 76.60± 0.95
BOOTSTRAP 90.79± 0.24 88.36± 0.39 85.10± 1.01 76.56± 0.90

CDR 90.83± 0.38 88.23± 0.17 85.19± 0.58 75.95± 0.34
CCMN 90.81± 0.26 86.55± 0.76 81.50± 1.25 71.98± 0.72

NTMLC 90.90± 0.20 88.57± 0.31 86.11± 0.53 80.46± 0.96
BOT 90.70± 0.21 89.35 ± 0.39 87.09 ± 0.59 83.27 ± 0.43

Dataset Method Clean Noise Rate (ρ−,ρ+)
(0.008, 0.2) (0.015, 0.4) (0.023, 0.6)

MS-COCO

BCE 76.28± 0.06 70.79± 0.83 69.73± 0.23 64.36± 0.52
BOOTSTRAP 76.23± 0.14 69.75± 0.66 69.18± 0.68 64.33± 0.31

CDR 76.23± 0.09 70.11± 0.61 67.88± 1.19 60.63± 0.56
CCMN 76.27± 0.08 71.10± 0.25 66.39± 0.35 59.01± 0.80

NTMLC 76.80± 0.07 72.05± 0.26 70.40± 0.09 64.98± 0.25
BOT 76.21± 0.07 73.81 ± 0.13 71.25 ± 0.10 66.27 ± 0.20

Implementation. For a fair comparison, a ResNet-50 network (He et al., 2016) pre-trained on
ImageNet is chosen as the backbone for all methods, optimized by Adam optimizer (Kingma and Ba,
2015) with β = 0.9. Input images are resized into 256×256. The training epoch is 20, the batch size
is 128, and the learning rate is fixed to 5× 10−5. All results run over three times.

Baselines. We compare several baselines: (1) Training directly with binary cross-entropy loss, BCE.
(2) Noisy multi-class learning methods, BOOTSTRAP (Reed et al., 2014), CDR (Xia et al., 2020).
(3) Noisy multi-label learning methods, CCMN (Xie and Huang, 2022), NTMLC (Li et al., 2022).

4.2 RESULTS ON DIFFERENT MULTI-LABEL CLASSIFICATION BENCHMARKS

As shown in Table 2, consistent improvements of BOT over other baselines are observed across all
configurations. For Pascal-VOC 2007, there is an averaged 1.59%, 2.91%, and 7.41% performance
gap between BOT and BCE for positive noise rates of 0.2, 0.4, and 0.6, suggesting that BOT is an
effective way to refine noisy labels, especially when the noise rate is high. Comparing BOT with
the second-best method NTMLC, BOT achieves a performance gain of 1.14%, 2.43%, and 2.28%
for noise rates of 0.2, 0.4, and 0.6. For Pascal-VOC 2012, BOT outperforms BCE by 1.19%, 1.84%,
and 6.67%, and outperforms the second-best method NTMLC by 0.78%, 0.98%, and 2.81% for
noise rates of 0.2, 0.4, and 0.6. Similarly, on MS-COCO, BOT always yields consistent superiority
compared to other baselines. For instance, the standard deviation under a positive noise rate of 0.2 is
reduced by 50% compared with NTMLC. This may be attributed to the class-wise prior knowledge
constraints {sk}Kk=1, which help prevent over-refining labels to particular classes.

4.3 RESULTS IN THE SEMI-SUPERVISED LEARNING MANNER

Here, we verify the effectiveness of BOT under the semi-supervised learning setting. In the ex-
periment, we split the entire training set into a clean set and a noisy set based on the clean ratio τ
denoting the percent of clean labels. The noisy set is corrupted with ρ = 0.6. Note that the clean
labels will be directly used to supervise the training of the backbone. Here, we consider another four
methods other than the former baselines: (1) Fine-tuning the last layer with the clean set, FT-clean.
(2) Fine-tuning the last layer with both the clean set and the noisy set, FT-mixed. (3) Label cleaning
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Table 3: Comparisons between the baselines and BOT on Pascal-VOC 2007, Pascal-VOC 2012,
MS-COCO with multi-label noise under the setting of semi-supervised learning. The positive noise
rate is fixed to 0.6. The results (mean±std) are reported over 3 random runs and the best results are
boldfaced, and the second best results are underlined.

Dataset Methods Clean Ratio (τ )
0.05 0.10 0.15

VOC 2007

BCE 69.96± 1.24 72.04± 1.17 74.85± 0.48
FT-clean 67.89± 1.94 71.90± 1.30 75.54± 1.06
FT-mixed 70.60± 0.66 73.67± 1.00 76.07± 0.77

Veit et al. (2017) 64.18± 4.27 67.17± 3.74 68.09± 4.31
Hu et al. (2019) 74.56± 2.03 78.49± 0.53 78.95± 0.28

CCMN 67.72± 3.26 71.25± 2.15 72.32± 0.80
NTMLC 74.71± 0.96 75.84± 1.77 75.99± 0.51

BOT 78.25 ± 0.32 80.85 ± 1.03 81.83 ± 0.97

VOC 2012

BCE 77.14± 1.63 79.24± 1.92 80.49± 0.29
FT-clean 78.23± 0.79 79.24± 1.94 81.72± 0.20
FT-mixed 79.37± 0.96 80.20± 1.43 82.02± 0.44

Veit et al. (2017) 71.84± 4.30 76.17± 2.10 76.57± 2.65
Hu et al. (2019) 80.22± 0.28 81.14± 0.05 81.84± 0.42

CCMN 79.97± 0.66 82.16± 0.86 82.52± 0.53
NTMLC 80.78± 1.15 81.67± 1.29 83.04± 0.42

BOT 83.86 ± 1.11 85.40 ± 0.50 86.21 ± 0.1

MS-COCO

BCE 64.56± 0.60 65.93± 0.34 67.25± 0.40
FT-clean 64.54± 0.59 66.29± 0.35 68.09± 0.34
FT-mixed 65.98± 0.45 67.38± 0.31 68.52± 0.28

Veit et al. (2017) 52.42± 2.00 55.35± 0.40 58.56± 0.72
Hu et al. (2019) 65.50± 0.39 66.78± 0.16 66.83± 0.09

CCMN 59.19± 0.02 59.40± 1.01 59.65± 0.32
NTMLC 66.24± 0.15 66.47± 0.19 67.20± 0.81

BOT 67.08 ± 0.14 68.25 ± 0.25 69.61 ± 0.01

Table 4: Compatibility of BOT with other multi-label learning methods on Pascal-VOC 2007. The
results (mean±std) are reported over 3 random runs and the best results are boldfaced.

Method Clean Noise Rate (ρ−,ρ+)
(0.017, 0.2) (0.034, 0.4) (0.052, 0.6)

GCN 90.65± 0.08 77.86± 0.06 65.15± 0.36 41.30± 4.03
GCN+BOT 90.52± 0.21 87.01 ± 0.19 78.40 ± 0.87 78.40 ± 0.87

IDA 89.52± 0.36 79.44± 0.26 66.55± 1.15 47.74± 1.47
IDA+BOT 89.59± 0.36 86.76 ± 0.39 76.29 ± 1.54 65.77 ± 2.38
ADDGCN 92.04± 0.14 84.46± 0.70 76.30± 0.27 57.04± 1.18

ADDGCN+BOT 91.88± 0.01 88.85 ± 0.62 82.51 ± 1.31 72.27 ± 0.75
CSRA 90.12± 0.25 86.42± 0.40 80.10± 0.78 67.55± 1.11

CSRA+BOT 90.00± 0.11 87.08 ± 0.21 82.37 ± 0.39 79.85 ± 0.46
CCD 91.28± 0.10 88.67± 0.18 82.16± 1.62 65.59± 1.52

CCD+BOT 91.61± 0.24 90.51 ± 0.15 86.76 ± 1.07 82.09 ± 0.41

network methods (Hu et al., 2019; Veit et al., 2017). In Table 3, we notice that BOT consistently
performs significantly better than all the other baselines across all the datasets and clean ratios,
proving its effectiveness under the semi-supervised setting.

4.4 RESULTS OF EXTENSION WITH ADVANCED MULTI-LABEL LEARNING METHODS

In Table 4, we report the experimental results of the extension experiments on Pascal-VOC 2007, in
which we compare five advanced multi-label classification methods with their variants incorporating
BOT for label refinement. Although these advanced methods show poor robustness against multi-label
noise, especially under high noise rates, BOT can consistently help them gain significantly better
classification accuracies while keeping the accuracy on the clean data comparable with original
methods. It empirically demonstrates the compatibility of BOT with various multi-label learning
methods. Please refer to Appendix E.4 for the results on Pascal-VOC 2012 and MS-COCO.
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Figure 3: Ablation studies of the sensitivities of BOT. a) Cost matrix controlled by α. b) Class-wise
prior knowledge s accuracy. c) Lagrange multiplier λ for the entropy regularization.

4.5 ABLATION STUDIES

In this part, we conduct ablation experiments on PASCAL VOC 2007 to provide a thorough under-
standing of our BOT. For the ablation study results on PASCAL VOC 2012 and MS-COCO, we leave
more details in Appendix E.5.

Cost matrix. In Fig. 3(a), we show the results under different choices of α. When α = 0, the cost
matrix works the same as a negative log probability C = − log pθ(j|x). In this formulation, the
pre-trained or warmed-up model predictions are used to supervise the training. When α = 1, the cost
matrix is annealed using all noisy labels. It can be seen that the best performance is achieved when
α = 0.2 or α = 0.3, which indicates that both noisy labels and model predictions contain meaningful
information, and their proper balance promotes label refinement.

Prior Knowledge Accuracy. As the column constraints {sk}Kk=1 depend on the class prior knowl-
edge, we investigate its sensitivity for BOT. Concretely, we perturb the column constraints {sk}Kk=1 by
up to 20% and test the performance of BOT. According to Fig. 3(b), the performance of our proposed
method does not change much. For a noise rate of 0.2, our proposed method can still outperform the
second-best method, NTMLC, with 15% perturbation. Besides, our proposed method can consistently
outperform NTMLC even with 20% perturbation when the noise rate is higher. The reason that
our method is robust to the column constraints {sk}Kk=1 might be because our BOT refinement is
instance-level and class-wise. Therefore, it will assign large weights to those confident instances and
small weights to those less confident instances (Knight, 2008; Sinkhorn, 1966) to comply with the
column constraints {sk}Kk=1, which alleviates the problem of inaccurate prior knowledge.

Lagrange multiplier λ. In the optimization of BOT, the Lagrange multiplier λ controls the softness
of the obtained refined labels. As λ grows, the obtained refined labels will be harder. To verify its
effect, we conduct the experiments of different λ in Fig. 3(c). As can be seen, the model performance
does not change much except when λ = 1, suggesting that a moderate value of λ is recommended as
the goal here is to find a satisfactory estimation rather than solving the problem exactly.

5 CONCLUSION

In this paper, we study the multi-label noise learning. Different from existing explorations, we propose
a simple and effective method, named Bootstrapped Optimal Transport method (BOT) that establishes
an optimal transport formulation to refine the noisy labels. The success of BOT is attributed to
its good reference point owing to bootstrapping with the noisy labels and model predictions and
its accurate optimization search because of the decomposition of the multi-label linear programs
and its adversarial orientation. Experimental results on both binary classification and multi-label
classification, as well as semi-supervised learning and extension with advanced multi-label learning
methods, all demonstrate the superiority and compatibility of BOT, and the ablation studies verify
the effectiveness and sensitivities of each component. In the future, we will extend BOT to more
real-world datasets and more general domains to verify its effectiveness.
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A OPTIMAL TRANSPORT (OT) FOR MULTI-LABEL NOISE

As presented in Section 3, BOT decomposes the multi-label OT problem into K binary OT problems
for each class instead of solving a multi-label linear program. The reason why the multi-label OT
problem is decomposed in such way is that degeneracy is avoided in addition to the two reasons
presented in the main text that the solution space is decomposed and thus reduced to facilitate the
search and the numbers of labels for each sample r is difficult to collect in practice. First, we give the
definition of the multi-label transport polytope.
Definition 2 (Multi-Label Transport Polytope). In a multi-label problem where the number of
instances is N is and the number of classes is K. We define the transport polytope for multiple labels
U(r, c) w.r.t r ∈ ΣN and c ∈ ΣK as

U(r, c) := {Q ∈ RN×K
+ | Q1K = r,QT1N = c},

where r =
∑K

k=1 1yk=1/N denotes the proportion of labels for each sample, and c =∑N
i=1 1yi=1/N denotes the proportion of labels for each class.

The corresponding label refinement objective function can be written as follows:

min
Q∈U(r,c)

⟨Q,C⟩. (4)

Directly optimizing the objective function 4 will lead to degeneracy. In multi-label learning, each
sample is assigned to multiple classes. However, optimizing Q by Equation 4 might lead to assigning
all the weights to one class to achieve the minimum because the values of each class are not
distinguished and restricted. Therefore, we decompose the multi-label OT problem into K binary OT
problems for each class where there is only one positive class to avoid the degeneracy.

B BOOTSTRAPPED OPTIMAL TRANSPORT FOR MULTI-LABEL NOISE
LEARNING

Algorithm 1 summarizes the entire refinement process of BOT, and Algorithm 2 summarizes the
entire training process with BOT and the noisy labels.

Algorithm 1 Bootstrapped Optimal Transport (BOT) for Multi-Label Noise Learning

Input: Bootstrapped Cost matrix {Ck}Kk=1, row constraint {rk}Kk=1, column constraints{sk}Kk=1,
Sinkhorn regularization parameter λ
for k = 1, 2, . . . ,K do
uk := 1N/N, vk := 12/2.
while stopping criteria do
uk = rk./s

λ
kvk

vk = sk./s
λT

k uk

end while
Qk = diag(uk)C

kλdiag(vk)
end for
return Q = [Q1

1, · · · , QK
1 ]
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Algorithm 2 Training with BOT and Noisy Labels

Input: samples with noisy labels {xi, ỹi}Ni=1, epoch number for warm up Nw, epoch number for
training Nt, Bootstrapping parameter α, row constraint {rk}Kk=1, column constraints {sk}Kk=1,
Sinkhorn regularization parameter λ
Initialize model parameters θ
// Warm up model
for t = 1, 2, . . . , Nw do
L(θ) = − 1

N

∑N
i=1 ỹ

i log p(xi)
Update model parameters θ

end for
for t = 1, 2, . . . , Nt do

// Compute refined labels
for k = 1, 2, . . . ,K do

Ck = − log
(
αỸk + (1− α)pk(X)

)
end for
Q← BOT({Ck}Kk=1, {rk}Kk=1, {sk}Kk=1, λ) (Algorithm 1)
// Update model
L(θ) = − 1

N

∑N
i=1 q

i log p(xi)
Update model parameters θ

end for
return model parameters θ

C PROOF OF THEOREM 1

𝑌

෨𝑌

𝑃1

𝑃2

𝑃3

Figure 4: Illustration of Theorem 1.

Proof. Let α = 1, then ⟨X,αY + (1 − α)Y ′⟩ =
⟨X,Y ⟩.
Therefore, there always exists an α ∈ [0, 1] such
that ⟨X,αY + (1− α)Y ′⟩ ≤ ⟨X,Y ⟩. ■

Theorem 1 theoretically guarantees that we can
always find a bootstrapping with the noisy labels
Ỹ and the model prediction probabilities p(X) is
closer or equivalent to clean labels Y than the
noisy labels Ỹ . As illustrated in Fig. 4 , if P is
below the hyperplane tangent to the ball at point
Ỹ , we are guaranteed to find a bootstrapping that
is closer to the clean labels Y than the noisy labels
Ỹ . If P is on or above the hyperplane, then set
α = 1 and the bootstrapping equals to the noisy
labels Ỹ .

D TRANSITION-BASED METHODS

Noise transition-based methods use the noise transition matrix T to characterize the class-conditional
label corruption process by the means of noisy class-posterior estimation:

p(y|x) =
(

TT
)−1

p(ỹ|x),

where Tij = p(ỹ = j|y = i) is the noisy class-posterior between class i and class j.

Nevertheless, noise transition-based methods suffer from two main drawbacks. First. the performance
of transition-based methods is highly sensitive to the noise transition matrix T estimation which is
usually inaccurate and unreliable since it relies on the accurate fitting of noisy class-posterior or
anchor points xk = argmaxx∈D p(ỹk = 1|x) that may not exist or are unreliable with sampling bias.
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In contrast, BOT is free from these concerns and it is stable even if the class-wise prior knowledge is
not accurate as discussed in Section 4.5. Secondly, the label refinement of transition-based methods
are instance-independent because the same noise transition matrix T is applied to each instance.
Average noisy class-posterior operation are performed on every instance regardless of whether the
label is clean or noisy, unlike dynamic instance-level refinement of BOT. BOT refines the probabilities
of every instance differently, and it assigns more weights to confident bootstrapping probabilities,
and vice versa (Knight, 2008; Sinkhorn, 1966).

E EXPERIMENTAL RESULTS

E.1 BINARY CLASSIFICATION ON REAL DATASET

In Table 5, we report the experimental results of the binary experiments on class Person in Pascal-
VOC 2007 with three other evaluation metrics, precision, recall and F1 score, in which we compare
BOT with CE, Backward (Patrini et al., 2017), Forward (Goldberger and Ben-Reuven, 2017), True
Backward and True Forward. We can observe that BOT often outperforms all the other baselines
with all three metrics, showing that the effectiveness of BOT to refine the noisy labels.

Table 5: Comparisons between Transition-based methods and Optimal Transport with the Sinkhorn-
Knopp method on Pascal-VOC 2007 with clean or symmetric label noise. The results (mean±std)
are reported over 5 random runs and the best results are boldfaced.

Metrics Methods Clean Symmetric Noise Rate (η)
0.2 0.3 0.4

Precision ↑

Cross Entropy 96.44± 0.06 90.66± 0.66 91.50± 3.41 69.61± 3.75
Backward 96.24± 0.57 96.01 ± 1.54 95.48 ± 2.73 84.90± 7.22
Forward 95.73± 0.55 92.95± 1.08 91.81± 2.52 81.23± 4.4

True Backward 96.79± 0.63 94.92± 1.28 92.47± 5.92 76.40± 6.89
True Forward 96.50± 0.52 93.55± 0.88 90.72± 3.84 80.66± 6.88

BOT 95.93± 0.73 95.29± 2.47 91.10± 3.38 87.00 ± 8.91

Recall ↑

Cross Entropy 90.49± 0.28 83.13± 2.17 76.86± 3.76 73.99± 2.14
Backward 89.84± 0.74 79.43± 1.27 73.07± 4.47 63.61± 8.89
Forward 88.84± 1.15 86.66 ± 0.86 77.43± 5.53 73.44± 3.17

True Backward 90.32± 0.51 84.55± 0.78 82.72± 3.22 81.47 ± 6.96
True Forward 90.19± 0.66 85.14± 2.30 82.15± 1.94 75.50± 6.60

BOT 90.05± 0.76 85.88± 3.75 83.99 ± 2.80 74.46± 5.92

F1 score ↑

Cross Entropy 93.37± 0.12 86.73± 1.48 83.41± 1.54 71.71± 2.81
Backward 92.93± 0.26 86.92± 0.38 82.62± 1.87 71.86± 3.21
Forward 92.15± 0.41 89.69± 0.91 83.88± 3.35 76.98± 1.45

True Backward 93.44± 0.14 89.43± 0.69 87.09± 1.03 78.27± 2.03
True Forward 93.24± 0.11 89.12± 0.88 86.15± 1.59 77.50± 2.41

BOT 92.89± 0.07 90.23 ± 1.06 87.36 ± 2.42 79.73 ± 3.95
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E.2 MULTI-LABEL CLASSIFICATION

In Table 6 and Table 7, we demonstrate the experimental results evaluated by OF1 and CF1 on Pascal-
VOC 2007, Pascal-VOC 2012, and MS-COCO. It is shown that BOT always yields consistently better
results than all the other baselines, showing its effectiveness in multi-label noise learning.

Table 6: Comparisons in OF1 between the baselines and BOT on Pascal-VOC 2007, Pascal-VOC
2012, MS-COCO with clean or symmetric label noise. The results (mean±std) are reported over 3
random runs and the best results are boldfaced, and the second best results are underlined.

Dataset Method Clean Noise Rate (ρ−,ρ+)
(0.017, 0.2) (0.034, 0.4) (0.052, 0.6)

VOC 2007

BCE 85.39± 0.18 79.57± 0.65 66.35± 1.27 36.80± 4.59
BOOTSTRAP 85.49± 0.32 79.20± 0.68 65.08± 0.57 36.84± 4.57

CDR 85.38± 0.21 79.39± 0.91 65.20± 1.30 32.05± 2.15
CCMN 85.46± 0.33 80.50± 0.43 72.56± 0.19 58.22± 1.56

NTMLC 85.63± 0.19 80.91± 0.08 74.44± 1.56 63.87± 2.02
BOT 85.43± 0.23 83.01 ± 0.27 79.29 ± 0.31 74.61 ± 2.96

Dataset Method Clean Noise Rate (ρ−,ρ+)
(0.017, 0.2) (0.033, 0.4) (0.050, 0.6)

VOC 2012

BCE 86.79± 0.42 81.02± 1.74 66.70± 3.18 21.73± 6.06
BOOTSTRAP 86.69± 0.23 80.73± 0.94 65.38± 3.42 21.57± 6.43

CDR 86.63± 0.21 80.83± 1.55 64.88± 3.95 19.11± 2.20
CCMN 86.67± 0.29 81.95± 0.44 78.09± 1.88 66.67± 2.44

NTMLC 86.81± 0.13 83.28± 0.37 79.16± 0.79 68.09± 2.92
BOT 86.50± 0.30 85.07 ± 0.24 82.11 ± 0.39 78.80 ± 1.48

Dataset Method Clean Noise Rate (ρ−,ρ+)
(0.008, 0.2) (0.015, 0.4) (0.023, 0.6)

MS-COCO

BCE 74.98± 0.18 66.86± 1.77 51.98± 1.08 15.59± 2.16
BOOTSTRAP 74.64± 0.20 65.60± 1.44 50.59± 1.37 15.16± 2.37

CDR 74.74± 0.26 67.49± 1.32 50.85± 1.02 11.25± 0.90
CCMN 74.91± 0.20 70.79± 0.45 67.25± 0.39 61.65± 0.51

NTMLC 75.46± 0.13 70.46± 0.38 64.19± 2.10 51.67± 2.89
BOT 74.69± 0.45 72.95 ± 0.22 70.02 ± 0.89 63.57 ± 2.29

To evaluate the label refinement quality of BOT, we propose a metric called label distance dl defined
as follows:

dl =
∥Q− Y ∥1
N ×K

, (5)

where Q ∈ [0, 1]N×K is the refined labels obtained and Y ∈ {0, 1}N×K is the true labels. In Fig. 5,
we can see that after the warm-up stage, the label distances between the refined labels Q and the true
labels decrease and converge quickly, showing the strong refinement capability of BOT resulting in
outstanding performance in multi-label noise learning.
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Table 7: Comparisons in CF1 between the baselines and BOT on Pascal-VOC 2007, Pascal-VOC
2012, MS-COCO with clean or symmetric label noise. The results (mean±std) are reported over 3
random runs and the best results are boldfaced, and the second best results are underlined.

Dataset Method Clean Noise Rate (ρ−,ρ+)
(0.017, 0.2) (0.034, 0.4) (0.052, 0.6)

VOC 2007

BCE 83.44± 0.24 77.57± 0.69 64.42± 1.16 34.61± 2.37
BOOTSTRAP 83.54± 0.29 77.27± 0.63 63.76± 1.13 34.64± 2.08

CDR 83.47± 0.27 77.43± 0.91 63.67± 1.09 29.14± 4.58
CCMN 83.50± 0.33 77.58± 0.20 63.47± 0.72 38.20± 4.27

NTMLC 83.78± 0.15 79.98± 0.20 73.44± 1.69 67.06± 1.35
BOT 83.60± 0.24 81.04 ± 0.30 75.28 ± 0.33 67.33 ± 6.54

Dataset Method Clean Noise Rate (ρ−,ρ+)
(0.017, 0.2) (0.033, 0.4) (0.050, 0.6)

VOC 2012

BCE 85.28± 0.37 78.71± 1.77 64.86± 2.08 20.49± 5.71
BOOTSTRAP 85.09± 0.32 78.40± 0.94 62.51± 3.19 20.18± 6.08

CDR 85.35± 0.48 78.63± 1.77 62.69± 2.79 16.12± 3.87
CCMN 85.03± 0.44 80.29± 0.20 75.41± 1.78 62.45± 2.55

NTMLC 85.43± 0.19 81.76± 0.51 77.09± 0.32 71.20± 1.07
BOT 85.40± 0.30 83.83 ± 0.24 79.58 ± 0.34 76.51 ± 3.54

Dataset Method Clean Noise Rate (ρ−,ρ+)
(0.008, 0.2) (0.015, 0.4) (0.023, 0.6)

MS-COCO

BCE 70.63± 0.29 62.02± 1.08 46.41± 0.18 16.86± 1.47
BOOTSTRAP 70.63± 0.15 61.34± 1.37 46.12± 0.89 16.55± 1.51

CDR 70.42± 0.28 61.44± 1.20 46.09± 2.42 14.95± 1.21
CCMN 70.48± 0.33 65.42± 0.55 60.70± 0.77 52.29± 0.93

NTMLC 71.39± 0.11 67.13± 0.91 62.21± 0.50 51.98± 0.59
BOT 70.77± 0.90 68.51 ± 0.59 64.51 ± 1.19 54.60 ± 3.90
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(a) PASCAL VOC 2007
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(b) PASCAL VOC 2012
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(c) MS-COCO

Figure 5: Label distance vs. number of epochs across different noise rates and datasets. Curves of
different colors represent results of experiments conducted under different positive noise rates.

E.3 BASELINES IN THE SEMI-SUPERVISED LEARNING MANNER

Veit et al. (2017) introduced a semi-supervised learning framework for multi-label image classification
that utilized small sets of clean annotations in conjunction with massive sets of noisy annotations.
This approach built a multi-task network that used the clean dataset to learn a mapping between noisy
and clean labels for label cleaning. Meanwhile, the network learned to classify images under the
supervision of the clean and full dataset with reduced noise.

Hu et al. (2019) proposed an approach that consisted of a clean net and a residual net, which aimed to
learn a mapping from feature space to clean label space and a residual mapping from feature space to
the residual between clean labels and noisy labels respectively.
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E.4 RESULTS OF EXTENSION WITH ADVANCED MULTI-LABEL LEARNING METHODS

CSRA (Zhu and Wu, 2021) designed a simple and effective module to capture different spatial
regions occupied by objects from different categories. It generates class-specific features for every
category by calculating a simple spatial attention score, and then combines it with the class-agnostic
average pooling.

GCN (Chen et al., 2019) utilized Graph Convolutional Network (GCN) to propagate the semantic
representations of categories (e.g. word embeddings) and then generate a set of inter-dependent
object classifiers, which replaced the last linear layer in a normal deep convolutional neural network.

ADDGCN (Ye et al., 2020) designed a semantic attention module (SAM) to generate the content-
aware category representations decomposed from the extracted feature map. The representations are
then fed into a Dynamic GCN (D-GCN) module for final classification.

CCD (Liu et al., 2022b) developed a novel Causal Context Debiasing (CCD) Module to mitigate
contextual bias. Specifically, they adopted causal intervention to eliminate the effect of confounder
and counterfactual reasoning to obtain a Total Direct Effect (TDE) free from the contextual bias.

IDA (Liu et al., 2022a) proposed a novel attention module named Interventional Dual Attention (IDA)
to learn causal object features robust for contextual bias. Specifically, IDA adopted two attention
layers with multiple sampling intervention, which compensated the attention against the confounder
context.

Table 8: Experiments to verify the compatibility of BOT with other multi-label learning methods.
The results (mean±std) are reported over 3 random runs and the best results are boldfaced.

Dataset Method Clean (η=0.0) Noise Rate (ρ−,ρ+)
(0.017,0.2) (0.033,0.4) (0.050,0.6)

VOC 2012

CSRA 90.93± 0.19 88.63± 0.43 85.11± 0.55 75.61± 0.58
CSRA+BOT 91.00± 0.24 89.96 ± 0.08 86.37 ± 0.40 82.76 ± 1.49

GCN 91.96± 0.05 85.16± 0.60 77.95± 1.04 62.08± 0.21
GCN+BOT 91.64± 0.21 89.62 ± 0.33 86.25 ± 0.47 78.34 ± 2.01

ADDGCN 92.65± 0.15 88.83± 0.20 84.31± 0.89 72.81± 2.35
ADDGCN+BOT 92.95± 0.33 91.56 ± 0.13 88.04 ± 0.53 83.61 ± 0.45

CCD 92.49± 0.46 91.06± 0.24 87.68± 0.33 78.99± 0.46
CCD+BOT 92.36± 0.38 92.07 ± 0.47 90.25 ± 0.49 87.10 ± 0.07

IDA 91.35± 0.17 87.24± 1.04 81.05± 0.62 66.70± 2.75
IDA+BOT 91.28± 0.18 89.93 ± 0.04 85.78 ± 0.69 79.25 ± 0.28

Dataset Method Clean (η=0.0) Noise Rate (ρ−,ρ+)
(0.008,0.2) (0.015,0.4) (0.023,0.6)

MS-COCO

CSRA 78.00± 0.05 74.39± 0.20 70.65± 0.09 64.41± 0.28
CSRA+BOT 76.22± 0.07 75.24 ± 0.12 72.86 ± 0.36 67.38 ± 0.87

GCN 78.69± 0.04 74.30± 0.40 70.53± 0.84 62.96± 0.18
GCN+BOT 78.56± 0.11 76.53 ± 0.25 74.04 ± 0.11 65.43 ± 0.67

ADDGCN 78.19± 0.21 76.33± 0.60 73.51± 0.41 68.34± 0.12
ADDGCN+BOT 80.44± 0.08 78.42 ± 0.44 76.31 ± 0.34 70.55 ± 0.19

CCD 78.01± 0.11 72.76± 0.95 70.54± 1.46 65.41± 0.49
CCD+BOT 78.02± 0.24 76.51 ± 0.24 74.28 ± 0.41 68.76 ± 0.14

IDA 79.16± 0.15 74.71± 0.89 72.68± 0.65 65.88± 0.77
IDA+BOT 79.15± 0.15 77.52 ± 0.30 74.99 ± 0.11 67.92 ± 0.75
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E.5 ABLATION STUDIES

In Table 9, we report the results under different choices of α. We can notice that the best performance
is achieved when α = 0.3 and the noise rate is low, when α = 0.2 and the noise rate is high. Thus, the
best performance is achieved when model predictions is weighted more, showing that the knowledge
learnt by the model is more important. However, the information contained in the noisy labels are
also important as the model performance with α = 0 drops. The results show that both noisy labels
and model predictions contain meaningful information, and their proper balance can promote the
label refinement improve the model performance.

Table 9: Model performances with different choices of hyperparameter α. The best results are in
bold.

Dataset α
Noise Rate (ρ−,ρ+)

(0.017,0.2) (0.034,0.4) (0.052,0.6)

VOC 2007

0 84.88± 0.34 80.11± 0.56 73.06± 1.27
0.2 85.56± 0.18 82.81± 0.40 76.31 ± 1.83
0.3 86.66 ± 0.36 83.08 ± 0.56 72.18± 0.86
0.5 85.25± 0.44 80.52± 0.58 67.93± 1.08
0.8 85.19± 0.40 79.54± 0.16 66.81± 0.72
1.0 84.67± 0.48 78.33± 1.01 65.69± 1.20

Dataset α
Noise Rate (ρ−,ρ+)

(0.017,0.2) (0.033,0.4) (0.050,0.6)

VOC 2012

0 88.44± 0.39 85.55± 0.30 80.01± 1.82
0.2 88.99± 0.21 87.07± 0.57 83.27 ± 0.43
0.3 89.35 ± 0.39 87.09 ± 0.59 80.26± 0.82
0.5 88.62± 0.36 85.34± 0.74 76.85± 1.67
0.8 88.42± 0.38 85.26± 0.79 75.74± 1.49
1.0 88.23± 0.23 84.87± 0.89 75.74± 1.49

Dataset α
Noise Rate (ρ−,ρ+)

(0.008,0.2) (0.015,0.4) (0.023,0.6)

MS-COCO

0 73.17± 0.23 69.84± 0.06 64.62± 0.21
0.2 73.20± 0.17 71.16± 0.07 66.27 ± 0.20
0.3 73.81 ± 0.13 71.25 ± 0.10 65.57± 0.10
0.5 71.33± 0.17 69.62± 0.59 64.56± 0.02
0.8 70.33± 0.26 69.15± 0.53 64.62± 0.20
1.0 69.85± 0.42 69.27± 0.37 64.67± 0.25

In Table 10, we present the results under different perturbations of the class-wise prior knowledge,
i.e., the column constraints {sk}Kk=1. It can be seen that the performance of our proposed method
does not change much, showing that BOT is robust and not very sensitive to the prior knowledge
accuracy.

In Table 11, we show the results under different values of the regularization hyperparameter λ. We can
observe that the performance of our proposed method does not change much except when λ = 1, 9.
Therefore, a moderate value of λ is recommended because the convergence rate will drop dramatically
as λ grows, and the objective here is to find a satisfactory estimation.
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Table 10: Model performances with different levels of accuracy of dataset-level statistics c. The best
results are in bold.

Dataset c
Noise Rate (ρ−,ρ+)

(0.017,0.2) (0.034,0.4) (0.052,0.6)

VOC 2007

0 86.66 ± 0.36 83.08 ± 0.56 76.31± 1.83
±5% 86.21± 0.17 82.81± 0.59 76.78± 1.64
±10% 86.12± 0.23 82.73± 0.55 77.10 ± 2.15
±15% 85.92± 0.16 82.54± 0.51 77.06± 2.20
±20% 85.12± 0.63 82.45± 0.50 76.06± 1.43

Dataset c
Noise Rate (ρ−,ρ+)

(0.017,0.2) (0.033,0.4) (0.050,0.6)

VOC 2012

0 89.35 ± 0.39 87.09± 0.59 83.27± 0.43
±5% 89.34± 0.09 87.19 ± 0.58 83.82± 0.27
±10% 89.22± 0.10 87.15± 0.57 83.91 ± 0.43
±15% 89.20± 0.22 87.08± 0.52 83.66± 0.39
±20% 89.05± 0.23 86.86± 0.53 83.60± 0.42

Dataset c
Noise Rate (ρ−,ρ+)

(0.008,0.2) (0.015,0.4) (0.023,0.6)

MS-COCO

0 73.81 ± 0.13 71.25 ± 0.10 66.27 ± 0.20
±5% 73.73± 0.17 71.14± 0.09 66.15± 0.23
±10% 73.80± 0.36 70.93± 0.05 66.16± 0.16
±15% 73.66± 0.18 70.91± 0.16 66.22± 0.33
±20% 73.38± 0.41 70.81± 0.12 66.05± 0.14

Table 11: Model performances with different values of λ on VOC2007. The best results are in bold.

Dataset λ
Noise Rate (ρ−,ρ+)

(0.017,0.2) (0.034,0.4) (0.052,0.6)

VOC 2007

1 85.77± 0.54 79.73± 0.89 67.36± 1.53
3 86.60± 0.47 82.65± 0.36 75.98± 1.97
5 86.66 ± 0.36 83.08 ± 0.56 76.31± 1.83
7 86.61± 0.30 82.50± 0.53 76.34± 1.87
9 86.48± 0.38 82.44± 0.50 76.68 ± 2.03

Dataset λ
Noise Rate (ρ−,ρ+)

(0.017,0.2) (0.033,0.4) (0.050,0.6)

VOC 2012

1 88.68± 0.46 85.20± 0.74 75.70± 1.44
3 89.42 ± 0.35 86.98± 0.60 83.20± 0.66
5 89.35± 0.39 87.09± 0.59 83.27 ± 0.43
7 89.35± 0.37 87.04± 0.58 83.22± 0.41
9 89.14± 0.27 87.12 ± 0.56 82.89± 0.30

Dataset λ
Noise Rate (ρ−,ρ+)

(0.008,0.2) (0.015,0.4) (0.023,0.6)

MS-COCO

1 73.56± 0.29 70.43± 0.27 65.46± 0.18
3 73.76± 0.12 71.07± 0.07 65.92± 0.13
5 73.81 ± 0.13 71.25 ± 0.10 66.27 ± 0.20
7 73.76± 0.10 71.24± 0.16 66.25± 0.16
9 73.23± 0.19 69.85± 0.05 64.58± 0.21
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