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Abstract

We study voting rules for participatory budgeting, where a group of voters col-
lectively decides which projects should be funded using a common budget. We
allow the projects to have arbitrary costs, and the voters to have arbitrary additive
valuations over the projects. We formulate two axioms that guarantee proportional
representation to groups of voters with common interests. To the best of our knowl-
edge, all known rules for participatory budgeting do not satisfy either of the two
axioms; in addition we show that the most prominent proportional rule for commit-
tee elections, Proportional Approval Voting, cannot be adapted to arbitrary costs
nor to additive valuations so that it would satisfy our axioms of proportionality. We
construct a simple and attractive voting rule called the Method of Equal Shares that
satisfies one of our axioms (for arbitrary costs and arbitrary additive valuations),
and that can be evaluated in polynomial time. We prove that our other stronger
axiom is also satisfiable, though by a computationally more expensive and less
natural voting rule.

1 Introduction

Consider an abstract model where there is a group of agents who have preferences over a set of
options. Each option has a cost, and the goal is to select a subset of options whose total cost does
not exceed a predefined budget. This model provides a formal framework for a number of real-life
scenarios. Perhaps the most natural example is Participatory Budgeting (PB). Through a voting
system, PB allows residents of a city (the agents) to decide which projects (the options) will be funded
by the government. In recent years, PB has been started in many cities around the world [Cabannes,
2004, Aziz and Shah, 2020], and in some cases is used to decide a significant fraction of the city
budget. For example, in Paris, PB has been run every year since 2014, and since 2016 the total
amount of funding for PB in Paris has been more than 100 million euros annually. Besides PB, the
formal model captures the problem of electing a representative committee for a group of voters, say a
faculty board or a parliament [Faliszewski et al., 2017, Lackner and Skowron, 2020], but also appears
useful in situations that do not involve humans. For example, our framework describes the problem
of selecting validators in consensus protocols, such as the blockchain [Cevallos and Stewart, 2020],
the problem of selecting web pages that should be displayed in response to user queries, where the
selected set of web pages should be useful for different types of user profiles [Skowron et al., 2017]
or the problem of locating public facilities [Skowron et al., 2016, Byrka et al., 2018]. Algorithms
for PB can even be used for improving the quality of genetic algorithms [Faliszewski et al., 2016].
While there are numerous applications of the model that we consider, for concreteness we will use
terminology referring to participatory budgeting.

In this paper, we focus on designing algorithms (which we call aggregation rules) for selecting projects.
We are interested in rules that are fair in the sense that each agent has roughly equal influence on the
outcome.This implies that the selected subset of projects must proportionally represent the views of
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Figure 1: Map of Circleville, showing the locations and costs of the PB project proposals.

the voters, and so every group of voters with similar preferences should have an appropriate portion
of the available budget allocated to fulfilling those preferences. Our results contribute to the study of
fairness in algorithmic decision making. Notably, while many works on this topic aim to be fair to
agents described by feature vectors (that for example contain demographic information), we only use
agents’ preferences. Fair algorithms will need to identify cohesive groups of agents on their own.

To understand the constraints that fairness and proportionality place on the decision procedure, let us
start by discussing the way cities implement PB today. To count the votes, most cities use a variant
of a simple protocol: Each voter is allowed to vote for a certain number of project proposals. Then,
the projects with the highest number of votes are funded, until the budget limit is reached. While
simple and intuitive, this is a bad voting rule. To see this, consider Circleville, a fictional city divided
into four districts. A map of the city is shown in Figure 1. The districts all have similar sizes, but
Northside has the largest population. Suppose $400k have been allocated to PB, and suppose that
all the project proposals are of a local character (such as school renovations), and so residents only
vote for projects that concern their own district. For example, every Northside resident will cast
votes for projects A, B, C, and D, but no one else votes for these. Because Northside is the most
populous district, the Northside projects will all receive the highest number of votes, and the voting
rule described will spend the entire budget on Northside projects. The 280k residents of the other
districts are left empty-handed.

To circumvent this obvious issue, many cities have opted to hold separate elections for each district.
The budget is divided in advance between the districts (e.g., in proportion to their number of residents),
each project is assigned to a district, and voters only vote in their local election. While this avoids
the issue of spending the entire budget in Northside, this fix introduces many other problems. For
example, projects on the boundary of two districts (such as A and P ) need to be assigned to one of
them. Residents of the other district may be in favor of the boundary project, but cannot vote for it.
Thus boundary projects are less likely to be funded, even if they would be more valuable overall.
Similarly, projects without a specific location that benefit the entire city cannot be handled. Also,
interest groups that are not geographic in nature will be underserved; for instance, parents across the
city might favor construction of a large playground (project C), but with separate district elections,
parents cannot form a voting block. Similarly, bike riders across the city cannot express their joint
interest in the construction of a bike trail along Example River (projects R, S, H , and G).

To solve these problems, it seems desirable to hold a single city-wide election, but use a voting
system that ensures that money is spent proportionally. The voting system should automatically
and endogenously identify groups of voters who share common interests, and make sure that those
groups are appropriately represented. This aim has been identified by several researchers [Aziz et al.,
2018b], but no convincing proposal for a proportional voting rule has emerged so far. Indeed, no good
formalization of “proportionality” for the PB context has been identified in the literature, except for
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the concept of the core. However, the core is a very demanding requirement, and there are situations
where it fails to exist [Fain et al., 2018].

In this paper, we formalize proportionality for participatory budgeting as an axiom called extended

justified representation (EJR). The axiom requires that no group of voters with common interests
is underserved. We construct a simple and attractive voting rule (the Method of Equal Shares) that
satisfies EJR for approval preferences, and that satisfies EJR up to one project for general additive
valuations. We then discuss a strengthening of EJR—which we call fully justified representation

(FJR)—and show that this strengthening is still satisfiable, albeit by a different voting rule.

Both our proportionality axiom and our voting rule are generalizations of concepts that have been
introduced in the literature on multi-winner voting [Faliszewski et al., 2017]. That literature can be
seen as handling a special case of PB, where all projects cost the same amount of money. This is
often called the unit cost assumption. It turns out that the unit cost assumption substantially simplifies
the problem. Further, much of the relevant literature studies rules that work with approval ballots,
where voters are allowed to approve or disapprove each project. In our paper, we allow any additive
valuations (not just 0/1), which is more expressive. The proportionality axioms and voting rules
that we introduce all work for general additive valuations. This is notable, since allowing additive
valuations introduces significant conceptual difficulty. Indeed, most prominent multi-winner voting
rules do not naturally extend to additive valuations (or at least not gracefully).

Allowing additive valuations gives voters a way to more precisely describe their preference inten-
sities. This can be valuable information in a PB setting where there are often projects which differ
significantly in their cost. In practice, PB elections typically only elicit approval information. Using
rules such as ours (defined for general additive valuations), we can interpret this approval information
in two different ways: either as 0/1 utilities (so that a voter’s utility for a selected outcome is the
number of approved funded projects) or as cost-based utilities (so the utility for an outcome is the
total cost of approved funded projects). These two interpretations lead to interestingly different rules,
with cost-based utilities favoring more expensive projects and leading to outcomes that are more
similar to the outcomes that are selected by the greedy rule typically used by cities today.

2 Preliminaries

For each t 2 N, write [t] = {1, 2, . . . , t}. An election is a tuple (N,C, cost, {ui}i2N ), where:

• N = [n] and C = {c1, . . . , cm} are the sets of voters and candidates (or projects).
• cost : C ! Q+ is a function that for each c 2 C assigns the cost that needs to be paid if c is

selected. For each T ✓ C, we write cost(T ) =
P

c2T cost(c) for the total cost of T .
• For each voter i 2 N , the function ui : C ! [0, 1] defines i’s additive utility function. If a

set T ✓ C of candidates is implemented, i’s overall utility is ui(T ) =
P

c2T ui(c). For a
subset S ✓ N of voters, we further write uS(T ) =

P
i2S

P
c2T ui(c) for the total utility

enjoyed by S if T is implemented. We assume that uN (c) > 0 for each c 2 C, so that every
candidate is assigned positive utility by at least one voter.

The voters have a fixed common budget which we normalize to 1. A subset of candidates W ✓ C
is feasible if cost(W )  1. Our goal is to choose a feasible subset of candidates, which we call an
outcome, based on voters’ utilities. An aggregation rule (or, in short, a rule) is a function R that for
each election E returns a feasible outcome W = R(E) called the winning outcome.1

There are two interesting special cases of our model:

Committee elections. In this case, there exists k 2 N (the committee size) such that each candidate
costs 1/k. Then W is an outcome if and only if |W |  k. In this special case we also refer to
outcomes as committees, and we say that the election satisfies the unit cost assumption.

Approval utilities. In this case, for each i 2 N and c 2 C it holds that ui(c) 2 {0, 1}. The
approval set of voter i is A(i) := {c 2 C : ui(c) = 1}, and we say that i approves candidate c if
c 2 A(i). If c 2 A(i) \W , we say that c is a representative of i.

Often we combine of these special cases, and study approval-based committee elections.
1Sometimes there are ties. For the results of this paper it does not matter how these ties are broken.
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3 The Method of Equal Shares (MES)

Recently, Peters and Skowron [2020] introduced an aggregation rule for approval-based committee
elections that they called Rule X. In that setting the rule satisfies a combination of appealing
proportionality properties. Here, we extend it to the more general model of participatory budgeting,
that is, to the model with arbitrary costs and utilities. We will call this rule the Method of Equal
Shares (in short, MES).

Definition 1 (Method of Equal Shares (MES)). Each voter is initially given an equal fraction of
the budget, i.e., each voter is given 1/n dollars. We start with an empty outcome W = ; and
sequentially add candidates to W . To add a candidate c to W , we need the voters to pay for c. Write
pi(c) for the amount that voter i pays for c; we will need that

P
i2N pi(c) = cost(c). We write

pi(W ) =
P

c2W pi(c)  1
n for the total amount i has paid so far. For ⇢ � 0, we say that a candidate

c 62 W is ⇢-affordable if

X

i2N

min
�
1
n � pi(W ), ui(c) · ⇢

�
= cost(c).

If no candidate is ⇢-affordable for any ⇢, MES terminates and returns W . Otherwise it selects a
candidate c 62 W that is ⇢-affordable for a minimum ⇢. Individual payments are given by

pi(c) = min
�
1
n � pi(W ), ui(c) · ⇢

�

Intuitively, when the Method of Equal Shares (MES) adds a candidate c, it asks voters to pay an
amount proportional to their utility ui(c) for c; in particular, the cost per unit of utility is ⇢. If a voter
does not have enough money, the rule asks the voter to pay all the money the voter has left, which
is 1

n � pi(W ). Throughout the execution of MES, the value of ⇢ increases. Thus, candidates are
added in decreasing order of utility per dollar that the voters get from the candidates. In comparison
to the work of Peters and Skowron [2020], the new elements in our definition of the rule are (1) the
formula according to which the costs of selected projects are divided among the voters, and (2) the
algorithm specifying in which order the candidates are selected; these are critical to ensure that the
rule is proportional.

3.1 Extended Justified Representation (EJR)

The first notion of proportionality that we examine is Extended Justified Representation (EJR). This
axiom was first proposed for approval-based committee elections [Aziz et al., 2017]. Even for the
special case of approval-based committee elections, only few rules are known to satisfy EJR [Aziz
et al., 2017, 2018a, Peters and Skowron, 2020], but the Method of Equal Shares is one of them. In
this section, we introduce a generalization of EJR to the PB model and show that our rule continues
to satisfy EJR.

We first recall the definition of EJR for approval-based committee elections. Intuitively, this axiom
ensures that every large enough group of voters whose approval sets have a large enough intersection
must obtain a fair number of representatives. For example, if a group of voters forms an ↵-fraction
of the whole population and if this group agrees on sufficiently many candidates, then it should
be allowed to decide about an ↵-fraction of the elected candidates. Formally, this is achieved by
excluding the possibility that each member of the group approves less than b↵kc elected candidates.

Definition 2 (Extended Justified Representation for approval-based committee elections). We say
that a group of voters S is `-cohesive for ` 2 N if |S| � /̀k · n and |

T
i2S A(i)| � `. A rule R

satisfies extended justified representation if for each election instance E and each `-cohesive group S
of voters there exists a voter i 2 S such that |A(i) \R(E)| � `.

At first sight it is unintuitive that we only require that at least one voter obtain ` representatives.
However, the strengthening of EJR that requires each member of S to obtain ` representatives is
impossible even on very small instances [Aziz et al., 2017]. Still, even with only the at-least-one
guarantee, EJR has plenty of bite [Aziz et al., 2018a, Skowron, 2018, Peters and Skowron, 2020].
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The generalization of this axiom to the PB model is not straightforward and to the best of our
knowledge none has been proposed in the literature.2 To warm up, let’s first relax the unit cost
assumption, but stay in the approval-based setting. Then EJR should state the following.
Definition 3 (Extended Justified Representation for approval-based elections). We say that a group
of voters S is T -cohesive for T ✓ C if |S| � cost(T ) · n and T ✓

T
i2S A(i). A rule R satisfies

extended justified representation if for each election instance E and each T -cohesive group S of
voters there exists a voter i 2 S such that |A(i) \R(E)| � |T |.

Thus, cohesiveness now requires that the group S can identify a collection of projects T that they all
approve and that is affordable with their fraction of the budget (|S| � cost(T ) · n). Note that voters
i 2 S obtain utility ui(T ) = |T | from T ; EJR requires that at least one member of S must attain this
utility in the election outcome.

To further generalize EJR beyond approvals is more difficult, because the notion of a candidate
who is approved by all members of S does not have an analogue. Instead, we quantify cohesion by
calculating the minimum utility that any member of S assigns to each project in T .
Definition 4 (Extended Justified Representation). A group of voters S is (↵, T )-cohesive, where
↵ : C ! [0; 1] and T ✓ C, if |S| � cost(T ) · n and if ui(c) � ↵(c) for all i 2 S and c 2 T . A rule
R satisfies extended justified representation if for each election instance E and each (↵, T )-cohesive
group of voters S there exists a voter i 2 S such that ui(R(E)) �

P
c2T ↵(c).

Again, an (↵, T )-cohesive group of voters S can propose the projects in T , since they are affordable
with S’s share of the budget. The values (↵(c))c2T denote how much the coalition S agrees about
the desirability of the projects in T . In particular, we have ui(T ) �

P
c2T ↵(c) for each i 2 S.

Consequently, Definition 4 prohibits any outcome in which every voter in S gets utility strictly lower
than

P
c2T ↵(c); hence there must exists i 2 S such that ui(R(E)) �

P
c2T ↵(c).

EJR is a demanding property in the PB model. Consider the special case where there is only one
voter, N = {1}. Then any outcome W satisfying EJR must solve the knapsack problem, i.e. it
must maximize

P
c2W u1(c), since otherwise an optimum knapsack T witnesses an EJR violation.

Because the knapsack problem is weakly NP-hard, this presents a difficulty for a rule to satisfy EJR.3

Proposition 1. Unless P = NP, no aggregation rule that can be computed in strongly polynomial

time can satisfy EJR in the general PB model.

Indeed, the Method of Equal Shares fails EJR in the general PB model. However, we can show that it
satisfies a mild relaxation, which requires EJR to hold “up to one project”.
Definition 5 (Extended Justified Representation Up To One Project). A rule R satisfies extended
justified representation up to one project if for each election instance E and each (↵, T )-cohesive
group of voters S there exists a voter i 2 S such that either ui(R(E)) �

P
c2T ↵(c) or for some

a 2 C it holds that ui(R(E) [ {a}) >
P

c2T ↵(c).

It is worth noting that in the approval-based model, Definitions 4 and 5 are actually equivalent,
because the “up to one project” option never applies: Consider an (↵, T )-cohesive group of voters S.
Since voters’ utilities are 0/1, we may assume that for each c 2 T we have ↵(c) = 1: if ↵(c) > 0

this is clear; otherwise we can remove c from T without losing cohesiveness. Thus, the cohesiveness
condition is equivalent to the condition that every voter approves every candidate in T . Finally, note
that in the approval model, due to the strict inequality, both conditions ui(R(E)) �

P
c2T ↵(c) and

9a2C .ui(R(E) [ {a}) >
P

c2T ↵(c) boil down to |A(i) \R(E)| �
P

c2T ↵(c) = |T |.
Our main result is that the Method of Equal Shares satisfies EJR up to one project in the general PB
model. By the previous observation, it hence satisfies EJR in the approval-based model (even when
not imposing unit costs).
Theorem 1. The Method of Equal Shares satisfies EJR up to one project in the participatory budgeting

model.

2Aziz et al. [2018b] generalize the weaker axiom of Proportional Justified Representation (PJR) [Sánchez-
Fernández et al., 2017] beyond unit costs, but they operate in a non-standard utility model where voters care
more about more expensive projects.

3Aziz et al. [2018b, Prop. 3.8] prove a similar result for their BPJR-L notion, by reduction from subset sum.
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Proof. For a contradiction, assume there is an election E, a set S ✓ N and a set T ✓ C such that:
(i) cost(T )  |S|/n, (ii) ui(c) � ↵(c) > 0 (candidates with ↵(c) = 0 can be skipped) for each i 2 S
and c 2 T , and (iii) ui(R(E) [ {a}) 

P
c2T ↵(c) for each i 2 S and a 2 T .

Assume for a while that the voters from S have unrestricted initial budgets, and let us analyze
how MES would proceed in this case. For simplicity, let us rename the candidates in T so that
T = {c1, . . . , ct} and so that for 1  i < j  t candidate ci is picked by MES before candidate cj .

Whenever a candidate c 2 T is selected, the voters pay for this candidate. Voter i pays pi(c) dollars for
c, and in return, she gets utility ui(c). Thus, the price-per-utility she pays equals ⇢i(c) = pi(c)/ui(c).
MES works in a way that all voters from S who pay for c obtain the same price-per-utility ratio, i.e.,
for all i, j 2 S and c 2 C we have that ⇢i(c) = ⇢j(c). Further, this price-per-utility equals at most
cost(c)/uS(c), independently of whether any voters from N \ S pay for c or not (if no voters from
N \ S pays for c, then the price-per-utility equals exactly cost(c)/uS(c)):

⇢i(c) =
pi(c)

ui(c)
=

pi(c) ·
P

j2S uj(c)P
j2S uj(c)

ui(c)
=

1P
j2S uj(c)

·
X

j2S

pi(c)

ui(c)
· uj(c) =

P
j2S pj(c)P
j2S uj(c)

 cost(c)

uS(c)
.

Since ui(c) � ↵(c) for each i 2 S and c 2 T , the price-per-utility for c 2 T equals at most
cost(c)/|S|↵(c). Now, consider the voter who in the first possible iteration uses more than 1/n dollars4.
For this voter, call her i, let us consider the function f defined as follows. For each value x, the
function f returns the price that i needs to pay to achieve the utility x. We make this function
continuous, by assuming that the candidates are divisible. That is, if the voter pays p for her first paid
candidate c with utility ui(c), then f(ui(c)/2) = p/2, f(ui(c)/3) = p/3, and so on. The key observation
is that the function f is convex. This is because MES selects the candidates in increasing order of
price-per-utility. This function is depicted below.

ui(c1)

pi(c1)

ui(c)
c /2 T

pi(c)

ui(c2)

pi(c2)

P
c2T ↵(c)

t

We are interested in the value f(
P

c2T ↵(c)). This value would be maximized if the fragments of the
function with the lowest slope were the shortest. However, we know that the part of the function that
corresponds ⇢i(c) must be of length at least equal to ui(c) � ↵(c). Thus:

f

 
X

c2T

↵(c)

!

X

c2T

↵(c) · ⇢i(c) 
X

c2T

↵(c) · cost(c)|S|↵(c) =

X

c2T

cost(c)

|S| =
cost(T )

|S|  1

n
.

Now, consider the first moment when i uses more than 1/n dollars. Until this time moment, MES
behaves exactly in the same way as if the voters from S had their initial budgets set to 1/n (this
follows from how we chose i). Further, we know that in this moment, if we chose a candidate that
would be chosen if the voters had unrestricted budgets, then the utility of voter i would be greater
than

P
c2T ↵(c). This gives a contradiction, and completes the proof.

Theorem 1 establishes the Method of Equal Shares as a prime candidate for voting under a budget
constraint, showing that it satisfies a demanding fairness property. This makes it the first known rule

4The only case when there is no such voter is when every candidate c 2 C with uS(c) > 0 has already been
elected before. But then the utility of i from the elected outcome is clearly at least

P
c2T ui(c) �

P
c2T ↵(c).
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that can give such strong proportionality guarantees in the model with additive utilities and arbitrary
costs. In the literature on the special case of approval-based committee elections, another rule has
received much attention: Proportional Approval Voting (PAV). Let us briefly recall the definition of
this rule.
Definition 6 (Proportional Approval Voting (PAV)). For an approval-based election, PAV selects a
feasible outcome maximizing

P
i2N H(|A(i) \W |), where H(r) =

Pr
j=1

1/j is the rth harmonic
number.

This rule satisfies EJR when assuming unit costs [Aziz et al., 2017]. But without unit costs, PAV fails
EJR. In fact, Example 1 shows that, for each r � 0, PAV does not even satisfy EJR up to r projects.
Example 1. Fix a constant r 2 N (r � 2), and consider the following approval-based profile:

r2 � 1 voters: {a1, a2, . . . , ar},
1 voter: {b1, b2, . . . , br}.

The candidates a1, a2, . . . , ar cost 1/r dollars each; the candidates b1, b2, . . . , br cost 1/r3 dollars each.
EJR requires that the one voter who approves candidates b1, . . . , br must approve at least r candidates
in the outcome. However, PAV selects {a1, a2, . . . , ar}, leaving the voter with nothing.

In fact, in Appendix A, we prove that no rule that globally maximizes an objective function over voter
utilities (like PAV) can satisfy proportionality. Further, in Appendix C we argue that another rule for
proportional approval-based committee elections, Phragmén’s rule, does not extend to the PB setting.

3.2 Approximating the Core

An important proportionality property that has been proposed for PB is the core [Aziz et al., 2017,
Fain et al., 2018], an idea adapted from cooperative game theory.
Definition 7 (The Core). For an election (N,C, cost, {ui}i2N ), an outcome W is in the core if for
every S ✓ N and T ✓ C with |S| � cost(T ) · n there exists i 2 S such that ui(W ) � ui(T ).

The core is a stronger guarantee than EJR. The core allows any group S to present an arbitrary
“counter-proposal” T that they can afford, and guarantees that at least one member i 2 S would
prefer to stick with the core outcome W , so ui(W ) � ui(T ). EJR only guarantees that ui(W ) �P

c2T minj2S uj(c). Thus, EJR only respects counter-proposals T if they have broad agreement
within the coalition S. This is arguably a reasonable restriction, since such coalitions can more easily
coordinate to “complain” against the selected W . Still, it would be nice to give the stronger core
guarantee. Unfortunately, there are elections where no outcome is in the core, even with unit costs.
Example 2.5 We have 6 voters and 6 candidates with unit costs, and k = 3. Utilities satisfy

u1(c1) > u1(c2) > 0, u2(c2) > u2(c3) > 0, u3(c3) > u3(c1) > 0;

u4(c4) > u4(c5) > 0, u5(c5) > u5(c6) > 0, u6(c6) > u6(c4) > 0,

and all other utilities are equal to 0. Let W ✓ C be any feasible outcome, so |W |  3. Then either
|W \ {c1, c2, c3}|  1 or |W \ {c4, c5, c6}|  1. Without loss of generality assume the former, and
assume that c2 62 W and c3 62 W . Then S = {v2, v3} and T = {c3} block W , since 2 = |S| �
cost(T ) ⇤ n =

1
3 · 6 = 2 and both u2(c3) > u2(c1) � u2(W ) and u3(c3) > u3(c1) � u3(W ).

Notably, this example is not approval-based. It is unknown whether the core is always non-empty for
approval-based elections (with or without the unit cost assumption).

In the committee context, Peters and Skowron [2020] showed that the Method of Equal Shares (MES)
returns an outcome that never violates the core too badly. We can generalize this result to the general
PB setting: MES provides a multiplicative approximation to the core.6

Definition 8. For ↵ � 1, we say that an outcome is in the ↵-core if for every S ✓ N and T ✓ C
with |S| � cost(T ) · n there exists i 2 S and c 2 T such that ui(R(E) [ {c}) � ui(T )

↵ .
5This example is adapted from Fain et al. [2018, Appendix C] so as to satisfy the unit cost assumption.
6Our approximation notion differs from one proposed by Fain et al. [2018] (which also involves an additive

term) and one proposed by Cheng et al. [2019] and Jiang et al. [2020] which approximates the coalition size.
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Theorem 2. Given an election E, let umax be the highest utility a voter can get from a feasible

outcome. Let umin we denote the smallest, yet positive utility a voter can get from a feasible outcome:

umax = max
i2N

max
cost(W )1

ui(W ) and umin = min
i2N

min
ui(W )>0

ui(W ).

Then the outcome selected by MES is always in the ↵-core for ↵ = 4 log(2 · umax/umin).

The bound of ↵ is asymptotically tight. All proofs omitted from the main text appear in Appendix D.

3.3 Other properties of the Method of Equal Shares

In Appendices B and C we discuss two other properties: priceability [Peters and Skowron, 2020,
Peters et al., 2021] and exhaustiveness. Here, let us only discuss the latter one. Exhaustiveness
requires that a voting rule spends its entire budget. Of course, due to the discrete model, we cannot
guarantee that the rule will spend exactly 1 dollar (i.e., the entire budget); however, we can require
that no additional project is fits within the budget.
Definition 9 (Exhaustiveness, Aziz et al., 2018b). An election rule R is exhaustive if for each election
instance E and each non-selected candidate c /2 R(E) it holds that cost(R(E) [ {c}) > 1.

Notably, the Method of Equal Shares fails to be exhaustive: even if there is enough budget remaining
to fund more projects, the rule may reach a state when no project is ⇢-affordable. In Appendix C
we discuss a few possible ways to make the rule exhaustive. We experimentally compare these
modifications in Appendix H.

4 Greedy Cohesive Rule

In Section 3 we discussed the EJR axiom for the PB model, and saw that it is implemented by Method
of Equal Shares. We will now propose a strengthening of EJR, and show a rule that satisfies the
new strong property. Interestingly, even in the approval-based committee-election model our new
property is substantially stronger than EJR, and hence this new rule provides the strongest known
proportionality guarantees. On the other hand, compared to MES, it is computationally expensive
and arguably less natural.

4.1 Full Justified Representation (FJR)

Our new proportionality axiom strengthens EJR by weakening its requirement that groups must be
cohesive. Thus, the new axiom guarantees representation to groups that are only partially cohesive.
Definition 10 (Full Justified Representation (FJR)). We say that a group of voters S is weakly

(�, T )-cohesive for � 2 R and T ✓ C, if |S| � cost(T ) · n and ui(T ) � � for every voter i 2 S. A
rule R satisfies full justified representation (FJR) if for each election instance E and each weakly
(�, T )-cohesive group of voters S there exists a voter i 2 S such that ui(R(E)) � �.

In the approval-based committee-election model, FJR boils down to the following requirement: Let
S be a group of voters, and suppose that each member of S approves at least � candidates from some
set T ✓ C with |T |  `, and let |S| � /̀k · n. Then at least one voter from S must have at least �
representatives in the committee. It is clear that in the special case of � = `, we obtain Definition 2,
hence FJR implies EJR. The same implication holds in the general PB model.
Proposition 2. FJR implies EJR in the general PB model.

It is easy to see that FJR is implied by the core property (cf. Definition 7). It is related to, but stronger
than, some other relaxations of the core discussed by Peters and Skowron [2020, Section 5.2].

Previously known aggregation rules faill FJR (see Appendix E). Still, it turns out that FJR can always
be satisfied: we present a (somewhat artificial) rule satisfying this strong notion of proportionality.
Definition 11 (Greedy Cohesive Rule (GCR)). The Greedy Cohesive Rule (GCR) is defined sequen-
tially as follows: we start with an empty outcome W = ;. At each step, we search for a weakly
(�, T )-cohesive group S. If such a group exists, we find one where � � 1 is maximum,7 add all the

7In Appendix F.1 we study additional properties of GCR. For those results it is useful, at this stage, to break
ties in favor of smaller cost(T ). The proof of Theorem 3 does not depend on the way we break ties.
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candidates from T to W , remove all voters in S from the election and repeat the search. If no such
group exists, we stop and return W .

Let us first check that the Greedy Cohesive Rule always selects an outcome that does not exceed the
budget limit. Indeed, whenever the algorithm adds some set T to W , then by definition of weakly
cohesive groups, we have |S| � cost(T ) · n, and hence it removes at least cost(T ) · n voters after
this step. Thus, if GCR selects an outcome with total cost cost(W ), then it must have removed at
least cost(W ) · n voters during its execution. Hence cost(W )  1.
Theorem 3. The Greedy Cohesive Rule satisfies FJR.

In Appendix F we further analyze GCR and discuss ways to extend its outcome when it is not
exhaustive. We also present an example where GCR selects a counter-intuitive outcome.

5 Experiments

In this section we evaluate different voting rules on data from real-world participatory budgeting
elections carried out in several major cities in Poland. The data we use is taken from Pabulib and
was collected by [Stolicki et al., 2020].8 The data is anonymized except for some basic demographic
information which we do not use in our experiments.

We looked at election instances in which the projects were divided into several groups. One group
consists of city-wide projects, and each other group consists of projects that were assigned to a city
district. Each voter was allowed to approve at most ten city-wide projects, and at most ten projects
from her district. A part of the municipal budget was assigned to city-wide projects and the other
part was divided among the districts in proportion to their populations. Currently, the cities that
we consider use a rule that selects projects greedily in order of approval score until the budget is
exhausted.

In our experimental analysis we used two types of voters’ preferences:

Approval utilities: corresponding directly to the approval-ballots from our PB data.
Cardinal utilities: for each voter i and each project cj we obtained the utility ui(cj) as follows. If
i does not approve cj , we set ui(cj) = 0. If i approves cj , we sample ui(cj) from the normal
distribution centred at cost(cj). (We also tested similar models where ui(cj) was sampled from
the uniform and exponential distributions, but those led to qualitatively similar conclusions.)

We are interested in comparing the Method of Equal Shares, the greedy approval rule currently used
for selecting projects, Phragmén’s rule, and the sequential version of PAV (sPAV). (We have limited
the experiments to polynomial-time algorithms, since the instances are quite large.) Since Phragmén’s
rule does not extend to additive utilities, we only use this rule for approval utilities.

In our analysis we evaluated the following metrics:

Total utility (UTIL). The total utility of the voters from the selected set W :
P

i2N

P
c2W ui(c).

Distribution of projects (PROJ-DIS). For each election instance we look at the projects selected
from each district. We compute their cost and divide it by the fraction of the budget that is
proportional to the population of the district. From those ratios we take a variance.

Distribution of utilities (UTIL-DIS). For each election instance and each voter i we compute her
normalised utility from the set of selected projects W , which we define as

P
i2N

P
c2W ui(c)

divided by n ·
P

c2W ui(c). We compute the variance of these values.

In Appendix H.1 we discuss in detail the obtained results and provide tables summarizing the
measured metrics. Below we only briefly discuss the conclusions from the experimental evaluation.

First we checked whether the outcome that was in fact selected by the cities is fair according to the
kind of fairness criteria we have been studying. We found that in at least 59 out of 366 elections
(16%), EJR was failed. In most cases, the failure was of the form that there was a group of voters
who approved 0 of the selected projects but who approved an unelected project in common, and the

8The data is publically available at pabulib.org.
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group was large enough to afford that project. This is even a failure of the PB version of the axiom
JR (Justified Representation).

Second, we compared three different strategies of making MES exhaustive. We observed substantial
differences between different variants of MES. We conclude that MES gives a lot of flexibility to
a mechanism designer, as it often selects outcomes that do not spend all of the budget, while still
satisfying strong fairness requirements like EJR. Depending on the specific objectives, a mechanism
designer can choose to complete this outcome using different strategies. Among the strategies we
described in Appendix C, we observed that the outcomes produced by EXH2 are better from a
utilitarian perspective. It also divides the budget between different city districts in a substantially
fairer way than outcomes produced by EXH1. Therefore we suggest EXH2 as the preferred method.

In our third experiment we compared MES, Phragmén’s rule, and PAV. We observed that for approval
utilities the results returned by MES and Phragmén’s rule are comparably good, both in terms of
the total utility obtained by the voters and in terms of proportionality measured as a distribution of
projects and voters’ utilities. On the other hand, if we take a model with more fine-grained utilities, the
difference between the two rules becomes apparent. This difference is unsurprising since Phragmén’s
rule does not take into account the more fine-grained information on utilities, but operates only on
approval ballots. Yet, our results suggest that there is indeed a considerable advantage of using rules
(like MES) that take into account the full information contained in cardinal additive utilities. We
conclude that MES performs as well as Phragmén’s rule for approval ballots and outperforms it when
more fine-grained information on voters’ utilities are available. Somewhat surprisingly, we show that
the sequential variant of PAV produces highly disproportional outcomes compared to Phragmén’s rule
and MES. Altogether, our experiments confirm our theoretical results and suggest that the Method of
Equal Shares outperforms the other two rules in terms of proportionality and/or efficiency.

6 Conclusion

In this paper, we have formulated two axioms, EJR and FJR, that capture the idea of proportionality in
the participatory budgeting (PB) model. We have argued that none of the prominent committee elec-
tion rules extend to the PB model so that it would satisfy even much weaker forms of proportionality.
We have designed a simple and natural rule for the PB model, the Method of Equal Shares (MES). It
satisfies EJR and other proportionality-related properties, and it is computable in polynomial time.
The stronger of our two properties, FJR, is also satisfiable, albeit by a different and arguably less
natural voting rule. It is an interesting open question whether there exists a natural voting rule that
satisfies FJR and shares other desirable properties of MES.

There are numerous results which are not included in the main text. Specifically, in Appendices B
and C we discuss other properties of MES, and in Appendix F we provide a more detailed analysis of
GCR. In Appendix G we explain that our rules can be directly applied to a model where voters have
ordinal preferences, that is, when they rank the candidates from the most to the least preferred one.
Notably, in the ordinal model MES satisfies the axiom of proportionality for solid coalitions, which is
perhaps the strongest known axiom of proportionality for ordinal preferences.

Many cities run PB by dividing the overall budget between districts and running separate elections
in each district. In particular, this is true in the Polish cities that provide our experimental election
data. We claimed in the introduction that this practice of separate elections leads to inferior outcomes.
We designed a final experiment to study this question. Our results show a visible advantage of
using global rules such as MES over separate district elections. For example, MES always produces
outcomes with a more equal distribution of voter utility, and in most cases also provides a higher total
utility in comparison to the rules that are in actual use in the elections we examined.
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