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Abstract
Offline goal-conditioned reinforcement learning
(GCRL) learns a goal-conditioned value func-
tion to train policies for diverse goals with pre-
collected datasets. Hindsight experience replay
addresses the issue of sparse rewards by treating
intermediate states as goals but fails to complete
goal-stitching tasks where achieving goals re-
quires stitching different trajectories. While cross-
trajectory sampling is a potential solution that as-
sociates states and goals belonging to different tra-
jectories, we demonstrate that this direct method
degrades performance in goal-conditioned tasks
due to the overestimation of values on uncon-
nected pairs. To this end, we propose Conser-
vative Goal-Conditioned Implicit Value Learning
(CGCIVL), a novel algorithm that introduces a
penalty term to penalize value estimation for un-
connected state-goal pairs and leverages the quasi-
metric framework to accurately estimate values
for connected pairs. Evaluations on OGBench, a
benchmark for offline GCRL, demonstrate that
CGCIVL consistently surpasses state-of-the-art
methods across diverse tasks.

1. Introduction
Goal-Conditioned Reinforcement Learning (GCRL) aims
to train RL agents that are capable of mastering a diverse
range of skills, each defined by a distinct goal (Schaul et al.,
2015; Liu et al., 2022). In offline settings, these goals are
typically identified as states already contained in the dataset,
eliminating the need for manual goal design and facilitating
the acquisition of general-purpose policies without active en-
vironment interactions. Such a setup is especially beneficial
for real-world applications, where direct interactions can be
costly, time-consuming, or even hazardous (Kumar et al.,
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2020). Consequently, offline GCRL has attracted significant
attention in recent years, enabling the learning of skillful
agents from pre-collected datasets while circumventing the
challenges of online data collection (Ma et al., 2022b; Park
et al., 2023; Kim et al., 2024).

A common approach in offline GCRL is to train a goal-
conditioned value function V (s, g) from a static dataset via
temporal difference (TD) learning (Sutton & Barto, 2018;
Schaul et al., 2015; Ghosh et al., 2023). One of the primary
challenges in value learning is the low learning efficiency
issue caused by sparse rewards. Existing methods utilize
Hindsight Experience Replay (HER) (Andrychowicz et al.,
2017), which samples states and goals within a single tra-
jectory, to tackle this problem. However, such approaches
ignore the issue of the cross-trajectory state-goal pairs,
i.e., pairs that can only be connected by stitching multiple
trajectories. Such cross-trajectory pairs are essential in goal-
stitching tasks, where the initial state and the goal could
belong to different trajectories.

However, directly incorporating cross-trajectory state-goal
pairs into data sampling can lead to value estimation er-
rors, particularly when some of these pairs are uncon-
nected—that is, when no valid sequence of transitions exists
within the dataset linking the state to the goal. Therefore,
their values cannot be estimated accurately using TD learn-
ing and tend to be consistently overestimated during training.
Moreover, these overestimated values propagate to neighbor-
ing states through the bootstrapping process of TD learning,
thus misleading the policy to select suboptimal actions.

In this paper, we investigate the above issue in depth. First,
by theoretically analyzing the discrepancy between the esti-
mated and optimal values, we show that the overestima-
tion of values on unconnected state-goal pairs leads to
propagation errors in adjacent states. Then, we propose
Conservative Goal-Conditioned Implicit Value Learning
(CGCIVL), a novel algorithm designed to learn a conserva-
tive estimate of the goal-conditioned value function. Specif-
ically, a regularization term is incorporated to prevent over-
estimated values of unconnected pairs and a quasimetric
model is employed to prevent potential under-estimation on
cross-trajectory but connected state-goal pairs. Theoretical
guarantees further show that the proposed method allevi-
ates overestimation of values on unconnected pairs while
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maintaining accurate value estimates for all connected pairs.
Empirically, experiments on OGBench (Park et al., 2024), a
benchmark specifically designed for offline GCRL, demon-
strate that our algorithm consistently matches or surpasses
state-of-the-art methods across distinct environments with
varying configurations.

2. Preliminaries
Problem setting The problem of offline GCRL can be
formulated as a Goal-Augmented Markov Decision Process
(GA-MDP)M = (S,A, T,R,G, γ) and a datasetD, where
S denotes the state space, A denotes the action space, T :
S ×A → S denotes the transition function, R : S × G →
[rmin, 0] denotes the reward function, G denotes the goal
space, and γ ∈ (0, 1] is the discount factor. The dataset
D consists of trajectories τ = (s0, a0, s1, a1, . . . , sT ). We
consider any state in the dataset as a potential goal and
define the goal space G as {s | s ∈ D}.

The objective of offline GCRL is to learn a policy π that
maximizes the expected cumulative reward:

J(π) = Eg∼G,s0∼µ0(·),
at∼π(·|st,g)

[

T−1∑
t=0

γtR(st, g)]. (1)

Off-policy value estimation in GCRL In GCRL, the
goal-conditioned value function is learned through an itera-
tive process based on the optimal Bellman operator T :

Vk+1 = min
V

E s∼D,
g∼pα

m(g|s)
[V (s, g)− T Vk(s, g)], (2)

where T is defined as:

(T V )(s, g) := R(s, g) + γ

[
max

a,s′∼T (·|s,a)
V (s′, g)

]
. (3)

The mixture distribution pαm(g | s) is defined as:

pαm(g | s) := αptraj(g | s) + (1− α)pDrand(g), (4)

where α ∈ [0, 1] is the weight of the mixture and the com-
ponents are defined as follows:

• ptraj(g | s): Given a state st at time t in trajectory
τ = (s0, a0, s1, . . . , sN ), a future state g = sm is
sampled by selecting m uniformly at random from the
discrete interval {t, t+ 1, . . . , N}.

• pDrand(g): A uniform probability distribution over all
states in the dataset D.

Quasimetric model Given a set S , a quasimetric is a func-
tion d : S × S → R≥0 satisfying the following properties:

∀s1, s2, s3 ∈ S, d(s1, s2) + d(s2, s3) ≥ d(s1, s3), (5)
∀s ∈ S, d(s, s) = 0. (6)

Quasimetrics generalize metrics by relaxing the symmetry
requirement. The space of all quasimetrics over S is denoted
as Q(S), and its negation is defined as Q−(S) := {−d|d ∈
Q(S)}.

The quasimetric model dθ is a parameterized model that sat-
isfies the properties of the quasimetric, where θ is the param-
eter to be optimized. Specifically, a quasimetric model dθ
typically consists of (1) a deep encoder mapping two states
s1, s2 ∈ S to x1, x2 in the latent space Rd and (2) a differen-
tiable latent quasimetric head dlatent ∈ Q(S) that computes
the quasimetric distance such as ||x1 − x2||2, for two input
latents. In this work, we implement quasimetric models
using Interval Quasimetric Embeddings (IQE) (Wang &
Isola, 2022a), with details provided in Appendix C.1.

The optimal goal-conditioned value function under GA-
MDP can be represented by quasimetric models as it sat-
isfies triangle inequality, which has been proved in prior
works (Pitis et al., 2020; Wang & Isola, 2022a; Liu et al.,
2023):

∀s1, s2, s3, V ∗(s1; s2) + V ∗(s2; s3) ≤ V ∗(s1; s3). (7)

Equation (7) shows that V ∗ ∈ Q−(S). Therefore, we can
use −dθ to fit goal-conditioned value functions.

3. Motivation: Value Overestimation in
Cross-trajectory Sampling

In this section, we consider value learning with a static
dataset D, where sampled state-goal pairs fall into the fol-
lowing two categories:
Definition 3.1. Given a state set S, an action set A, and
a dataset D = {τi | i ∈ {1, . . . , n}}, the state-goal pair
(s, g) ∈ S × S is in-trajectory if there exists a trajectory
τ = {s0, a0, s1, . . . , sT−1, aT−1, sT } in the dataset and
indices i, j ∈ {0, 1, . . . , T} such that: si = s, sj = g,
i < j. Otherwise, the state-goal pair (s, g) is called cross-
trajectory.

As shown in Equation (4), when α = 1, only in-trajectory
state-goal pairs are sampled, akin to HER. As α decreases,
arbitrary states are more likely to be sampled as targets, lead-
ing to a higher probability of selecting cross-trajectory pairs.
To demonstrate the challenge of value function learning for
cross-trajectory pairs, we conduct experiments to evaluate
the performance under different values of the parameter
α. As shown in Figure 1, HER performs well on goal-
navigating tasks (left), where pairs of initial states and goals
are in-trajectory, but fails on goal-stitching tasks involving
cross-trajectory pairs (right). Moreover, incorporating cross-
trajectory pairs into value learning with a lower α degrades
performance on both tasks. To further clarify this issue, we
first provide a definition to categorize cross-trajectory pairs
into the following two types:
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Figure 1. Performance of the GCIVL, on two different tasks under
varying α. In PointMaze-large-navigate (left), pairs of initial states
and goals are in-trajectory in the dataset. The algorithm achieves
optimal performance at α = 1.0. In PointMaze-large-stitch (right),
pairs of initial states and goals are cross-trajectory in the dataset.
The policy fails to complete this task across all α settings.

Definition 3.2. Given a state set S, an action set A, the
static dataset can be represented as D = {(si, ai, si+1) |
si, si+1 ∈ S, ai ∈ A}. A state-goal pair (s, g) ∈
S × S is connected if there exists a finite sequence
{s0, a0, s1, . . . , sn−1, an−1, sn} such that: s0 = s, sn = g,
(sk, ak, sk+1) ∈ D for all k ∈ {0, 1, . . . , n−1}. Otherwise,
the state-goal pair (s, g) is called unconnected.

The unconnected state-goal pairs, whose values cannot be
estimated accurately, may induce the policy to incorrect
actions. Furthermore, the estimation error can be propa-
gated to other states through TD learning. We consider
the example illustrated in Figure 2 to provide an easy-to-
understand explanation. Assume the discount factor γ = 1
and the reward function is −1 for every transition, except
when the goal is reached, where the reward is 0. The value
function is updated via the optimal Bellman operator. Ac-
cording to Definition 3.2, the state-goal pair (s3, g1) is un-
connected, with its value V (s3, g1) assumed to be randomly
initialized to 0. As there is no valid path in the dataset
D that connects s3 to g1, the value V (s3, g1) cannot be
updated and could remain its initial overestimated value
during TD learning. Then, V (s3, g1) remains fixed at its
initial overestimated value. This overestimation affects pol-
icy extraction at s1, where the policy π(s1, g1) incorrectly
favors action a−, which leads to s3, over the correct action
a, since V (s2, g1) = −2 < V (s3, g1) = −1. Furthermore,
based on the optimal Bellman iteration, the connected state-
goal pair (s1, g1) is incorrectly estimated to −1 instead
of the expected value −2 according to the valid trajectory
(s1 → s2 → g1).

Let ζk(s, g) = |Vk(s, g)− V ∗(s, g)| denote the total
error at iteration k of V-learning, and let δk(s, g) =
|Vk(s, g)− T Vk−1(s, g)| denote the Bellman iteration er-
ror (Kumar et al., 2019), where T is the optimal Bellman
operator. Then, we derive the following bound on the total
error at iteration k:

Theorem 3.3 (Error Propagation in Goal-Conditioned Value
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Figure 2. Illustration of an unconnected state-goal pair in offline
GCRL. The reward function is defined as −1 for each transition
and 0 upon reaching the goal and the discount factor is set to γ = 1.
Solid black lines represent transitions present in the dataset. The
target goal g1 is represented by the green circle. The state-goal pair
(s3, g1) is unconnected, while other state-goal pairs are connected.
The values of the s1 and s2 can be overestimated via the optimal
Bellman operator, as represented by the yellow circle.

Learning).

ζk(s, g) ≤ δk(s, g) + γ max
a,s′∼T

ζk−1(s
′, g).

Proof. See proof in Appendix B.2.

For any unconnected state-goal pair (s′, g), its error
ζk−1(s

′, g) tends to be large due to the difficulty in esti-
mating its true value from the dataset D. Consequently, for
connected state-goal pair (s, g) adjacent to (s′, g) (i.e., there
exists an action a such that (s, a, s′) ∈ D), Theorem 3.3 im-
plies that the error ζk(s, g) may also be large, as it inherits
the propagated error from ζk−1(s

′, g).

To mitigate this issue, it is desirable to prevent the selection
of actions a that lead to unconnected state-goal pairs (s′, g)
during the iterative process. This requires introducing addi-
tional mechanisms to underestimate values for unconnected
state-goal pairs, which we describe in the next section.

4. Conservative Goal-Conditioned Implicit
V-Learning

In this section, we develop a novel algorithm, Conservative
Goal-Conditioned Implicit V-learning (GCIVL), to avoid
the overestimation of value on unconnected state-goal pairs
in offline settings. The core idea is to penalize the value of
unconnected pairs while ensuring accurate value estimation
for connected pairs through a quasimetric framework as dis-
cussed in Section 4.1 and Section 4.2. We detail the practical
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implementation of the proposed algorithm and highlights
key techniques that ensure its efficiency in Section 4.3.

4.1. Conservative Goal-Conditioned Off-Policy
Evaluation

We aim to estimate the value function V π(s, g) for a tar-
get policy π given access to a dataset D generated by a
behavior policy πβ . In order to prevent overestimation of
the value function for unconnected state-goal pairs, we in-
troduce a penalty term that minimizes the value of state-
goal pairs sampled from a specific distribution pµ(s, g).
Since the value function training process does not query
the value function at unobserved states, we restrict pµ to
match the marginal state distribution in the dataset, such that
pµ(s, g) = dπβ (s)µ(g|s), where µ(g|s) denotes an arbitrary
distribution which satisfies suppµ ⊂ supp pαm, dπβ (s) is
the state marginal distribution of the dataset and is related to
πβ . The resulting update formula, as a function of a tradeoff
factor η, is as follows:

V̂ π
k+1 ← min

V

(
ηEs∼dπβ (s),

g∼µ(g|s)
[V (s, g)]

+Es∼dπβ (s),
g∼pα

m(g|s)

(
B̂πV̂k(s, g)− V (s, g)

)2 )
,

(8)

where V̂ represents an empirical estimate of the true value
function V , B̂ denotes the empirical Bellman operator,
which is the sample-based counterpart of the theoretical
Bellman operator. In Theorem 4.1, we demonstrate that the
learned value function V̂ π, defined as V̂ π := limk→∞ V̂ π

k ,
serves as a conservative lower bound for the V π at all state-
goal pairs.

Theorem 4.1. For any µ(g|s) with suppµ ⊂ supp pαm and
δ ∈ (0, 1), with probability ≥ 1 − δ, the V-function V̂ π

obtained by iterating Equation (8) satisfies:

∀s ∈ D, g,V̂ π(s, g) ≤ V π(s, g)− η
[
(I − γPπ)

−1 µ

pαm

]
(s, g) +

[
(I − γPπ)

−1 Cr,T,δRmax

(1− γ)
√
|D|

]
(s, g).

Proof. See proof in Appendix B.3.

Given Theorem 4.1, it follows that the value V̂ π is under-
estimated across all state-goal pairs with an appropriate
choice of parameter η. However, it is important to avoid
underestimation on values of in-trajectory state-goal pairs.
In practice, we replace µ(g|s) with a uniform random dis-
tribution pDrand(g), which equally samples across all goals in
the dataset. Assuming that the empirical Bellman operator

is unbiased, the estimated value function is given by:

V̂ π(s, g) = V π(s, g)− η
[
(I − γPπ)−1 p

D
uni

pαm

]
(s, g). (9)

We then provide a formal proof showing that, under suit-
able conditions, the value function accurately estimates in-
trajectory state-goal pairs while preserving conservative
estimates on cross-trajectory pairs.

Proposition 4.2. For any ϵ > 0, there exists a penalty
factor η such that the learned value function in Equation (9)
satisfies:

V̂ π(s+, g) ≥ V π(s+, g)− ϵ,
where (s+, g) denotes any in-trajectory state-goal pairs in
the dataset D.

Proof. See proof in Appendix B.4.

Proposition 4.2 demonstrates that in-trajectory state-goal
pairs can be accurately estimated. Subsequently, it is shown
that cross-trajectory pairs are assigned substantially lower
value estimates compared to in-trajectory pairs.

Proposition 4.3. For any ϵ > 0 with a static η, η > 0, there
exists an α such that the learned value function satisfies:

V̂ π(s−, g) < V̂ π(s+, g)− ϵ,

where (s+, g) denotes any in-trajectory state-goal pairs,
and (s−, g) denotes any cross-trajectory state-goal pairs.

Proof. See proof in Appendix B.5

4.2. Quasimetric-Based Value Estimation for Cross-
Trajectory State-Goal Pairs

As shown in Proposition 4.3, the values of cross-trajectory
state-goal pairs are underestimated, encompassing all un-
connected pairs. However, cross-trajectory pairs that are
connected can also be underestimated. As a result, we lever-
age a quasimetric model to represent the value function so
that the value of such pair can be bounded via triangle in-
equality. As illustrated in Figure 2, s1 and g1 are connected
but belong to different trajectories with intermediate nodes
s2. Since V (s1, s2) and V (s2, g1) can be accurately esti-
mated given Proposition 4.2, the value of V (s1, g1) can be
bounded by the triangle inequality.

Proposition 4.4. Suppose the learned value function V̂ π

satisfies the properties of quasimetric. For any ϵ > 0, and
the connected state-goal pair (s, g) with intermediate states
s1, s2, . . . , sn observed in the dataset, there exists a penalty
factor η such that:

V̂ π(s, g) ≥
n∑

i=0

V π(si, si+1)− ϵ,
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where s0 = s, sn+1 = g.

Proof. The proof follows directly from the properties of the
quasimetric and Proposition 4.2. The triangle inequality
ensures that the accumulated values of sub-segments (s, si)
and (si, g) provide a valid lower bound for the total value
(s, g). Adjusting for a small ϵ through appropriate tuning of
η completes the proof.

Proposition 4.4 guarantees that the value of any connected
state-goal pairs are bounded by the sum of sub-segment
values no matter whether they belong to the same trajectory.
Building on this property, we further leverage the quasimet-
ric, in conjunction with the penalty-based conservative value
estimation, to achieve a clear separation between connected
and unconnected state-goal pairs.

Proposition 4.5. For any η > 0 and ϵ > 0, there exists a
hyperparameter α such that the learned value function V̂ π

satisfies:
V̂ π(s−, g) ≤ V̂ π(s+, g)− ϵ,

where (s+, g) represents any connected state-goal pairs,
and (s−, g) are any unconnected pairs.

Proof. See proof in Appendix B.6.

By combining Proposition 4.4 and Proposition 4.5, we show
that incorporating quasimetric constraints into value func-
tion estimation ensures reasonable lower bounds for con-
nected state-goal pairs while maintaining underestimation
for unconnected pairs.

4.3. A Practical Algorithm

Our algorithm is implemented based on Goal-Conditioned
Implicit V-Learning (Park et al., 2023), which is a variant of
Implicit Q-Learning (IQL) (Kostrikov et al., 2021) designed
for handling goal-conditioned tasks in the offline setting. As
stated in Appendix A, at any time step k, GCIVL can be
interpreted as performing policy evaluation for a specific
policy πτ

k . Given this observation, we incorporate a penalty
term into the original loss function, leading to the following
updated formula:

Vk+1 = min
V

Es∼dπβ (s),g∼pα
m(g|s),

s′∼p(s′|s,g)
[ℓ2τ (r(s, g) + γVk(s

′, g)

− V (s, g)) + ηEs∼dπβ (s),

g∼pD
rand(g)

[V (s, g)]],

(10)

where V ∈ Q−(S) ensures that the value function satisfies
the property of quasimetric.

4.3.1. QUASIMETRIC DISTILLATION

In goal-conditioned problems, the optimal value function
actually obeys the triangle inequality. However, during
TD learning, intermediate values may not naturally adhere
to this property, so directly enforcing the quasimetric con-
straint can negatively impact learning performance (Wang
et al., 2020; 2021). To address this issue, we use a dual-
network approach: an unrestricted network θv for TD learn-
ing and a quasimetric-constrained network θd ∈ Q−(S).
The expectile regression loss for θv is defined as:

Lθv = Es∼dπβ ,g∼pα
m,

s′∼T (s′|s,g)
[ℓ2τ (r(s, g) + γVk(s

′, g)

− V (s, g))].

(11)

Then, we distill values from θv into θd and add a penalty
term to underestimate values of unconnected state-goal pairs.
The loss for θd is defined as:

Lθd = Es∼dπβ ,g∼pα
m,

s′∼T (s′|s,g)
[ℓ2(Vθv (s, g)− Vθd(s, g))]

+ ηE s∼dπβ ,

g′∼pD
rand(g)

[Vθd(s, g
′)].

(12)

Finally, to align θv with the conservative estimates of θd, we
introduce a supervised term in the loss function of θv . This
ensures that θv incorporates the conservative estimated of
Vθd on unconnected pairs while retaining flexibility during
TD updates. The final loss function for θv is:

Lθv = Es∼dπβ ,g∼pα
m,

s′∼T (s′|s,g)
[ℓ2τ (r(s, g) + γVk(s

′, g)− V (s, g))]

+ ρE s∼dπβ ,

g′∼pD
rand(g)

[ℓ2(Vθv (s, g
′)− Vθd(s, g′))],

(13)

where ρ is a tunable hyperparameter. The proposed dual-
network framework effectively decouples value iteration
(via θv) from quasimetric constraints (via θd). Ablation
studies in Section 5.3 demonstrate that this structure im-
proves the efficiency of value learning.

4.3.2. HIERARCHICAL FRAMEWORK

As highlighted in prior works, existing offline reinforce-
ment learning algorithms often struggle with long-horizon
tasks where the goal is far away, primarily due to the signal-
to-noise ratio challenge (Park et al., 2023). An effective
approach to addressing this issue is to leverage a hierar-
chical policy framework. Specifically, we extract both a
high-level policy πh

θh
(st+k | st, g) and a low-level pol-

icy πℓ
θℓ
(a | st, st+k), aiming to maximize V (st+k, g) and

V (st+1, st+k), respectively. Here, st+k is treated as a way-
point or sub-goal, where k represents the step size.

The high-level policy outputs sub-goals st+k based on the
current state st and the final goal g. The low-level policy
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Algorithm 1 CGCIVL
Input: offline dataset D
initialize unconstrained value function Vθv (s, g), quasi-
metric value function model Vθd(s, g), high-level policy
πh
θh
(st+k|st, g), low-level policy πℓ

θℓ
(a|st, st+k)

while not converged do
θv ← θv − λv∇θvLV (θV ) {# Equation (13)}
θd ← θd − λd∇θdLd(θd) {# Equation (12)}
θh ← θh − λh∇θhLh(θh) {# Equation (14)}
θℓ ← θℓ − λℓ∇θℓLℓ(θℓ) {# Equation (15)}

end while

then outputs appropriate actions a conditioned on the current
state and the sub-goal. The loss functions for the high-level
and low-level policies are as follows:

Lθh = E(st,st+k,g)[− exp(β · Ãh(st, st+k, g))

log πh
θh
(st+k | st, g)],

(14)

Lθℓ = E(st,at,st+1,st+k)[− exp(β · Ãℓ(st, at, st+k))

log πℓ
θℓ
(at | st, st+k)],

(15)

where we approximate Ãh(st, st+k, g) as Vθv (st+k, g) −
Vθv (st, g) and Ãℓ(st, at, st+k) as Vθv (st+1, st+k) −
Vθv (st, st+k). The pseudocode of CGCIVL is shown in
Algorithm 1.

5. Experiments
We conduct a series of experiments to evaluate the effec-
tiveness of the proposed algorithm in addressing offline
goal-conditioned tasks. In Section 5.1, we describe the ex-
perimental setup, including the environments with different
configurations and the dataset types used for training. In Sec-
tion 5.2, we compare CGCIVL1 with several strong baseline
methods across diverse environments and datasets, demon-
strating its superior performance in both goal-navigating
and goal-stitching tasks. In Section 5.3, we analyze ablation
studies to evaluate the sensitivity of the cross-trajectory goal-
sampling ratio and the penalty coefficient. Furthermore, we
discuss the contribution of the quasimetric distillation and
the hierarchical policy structure to the overall performance.

5.1. Experimental Setup

We evaluate the proposed algorithm on OGbench (Park
et al., 2024), a benchmark designed to evaluate algorithms
in offline GCRL across different tasks and datasets. The ex-
periments are conducted in three locomotion environments
(PointMaze, AntMaze, HumanoidMaze) and three manip-
ulation environments (Cube, Puzzle, Scene). In each task,
the policy is evaluated across five different goals, with an

1Implementation details can be found in Appendix C.2

average success rate computed over 50 trials per goal. In our
experiments, we report 95% confidence intervals as shaded
regions in figures or standard deviations in tables, unless oth-
erwise specified. We provide more details of environments
and datasets in Appendix D.

Our algorithm is compared with the following approaches:
1) Goal-Conditioned Behavioral Cloning (GCBC) (Lynch
et al., 2020; Ghosh et al., 2021), a straightforward goal-
conditioned method that learns policies by mimicking the
trajectories in the dataset; 2) Goal-Conditioned Implicit
V-Learning (GCIVL) (Park et al., 2023), an offline GCRL
algorithm that uses expectile regression to approximate the
optimal value functions; 3) Goal-Conditioned Implicit Q-
Learning (GCIQL) (Kostrikov et al., 2021), which, like
GCIVL, applies expectile regression but focuses on approx-
imating Q-values instead; 4) Quasimetric Reinforcement
Learning (QRL) (Wang et al., 2023), a non-traditional
GCRL method that fits a quasimetric value function with a
dual-objective framework; 5) Contrastive Reinforcement
Learning (CRL) (Eysenbach et al., 2022), a one-step RL
algorithm that learns value functions through contrastive
learning and performs single-step policy improvement; and
6) Hierarchical Implicit Q-Learning (HIQL) (Park et al.,
2023), a hierarchical RL algorithm that derives a two-level
policy based on GCIVL.

5.2. Performance on Offline Goal-Conditioned Tasks

The results in Table 1 demonstrate that CGCIVL consis-
tently outperforms or matches all baseline algorithms across
most tasks in every environment. In locomotion environ-
ments, our algorithm achieves state-of-the-art performance
and particularly excels in long-horizon and goal-stitching
tasks. For instance, on PointMaze-giant-stitch, CGCIVL
achieves an 81% success rate, surpassing the second-best
method (50%) by a substantial margin. Similarly, on both
AntMaze-giant-stitch and HumanoidMaze-giant-stitch, CG-
CIVL exhibits a clear advantage. In addition, in goal-
navigating tasks, the proposed algorithm also demonstrates
improvements over prior methods. This advantage arises
from the fact that trajectories in the dataset are suboptimal,
and CGCIVL effectively leverages the strengths of different
trajectories to construct more efficient goal-reaching strate-
gies. Moreover, our algorithm also achieves nearly optimal
results in the manipulation environment, particularly in the
Cube and Scene. This indicates that our proposed algo-
rithm is capable of learning diverse trajectory-based skills
to accomplish more complex goals.

The significant effectiveness of the proposed algorithm
stems from its more accurate value function estimation. As
shown in Figure 3, in GCIVL, the value function shows
little variation for states far from the goal, remaining around
−200. Specifically, with the goal located in the bottom-left,
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values for states in the bottom-right corner, despite being
closer to the goal, are noticeably similar to those in the top-
right corner. In contrast, CGCIVL achieves more accurate
value estimates, especially for states far from the goal.
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Figure 3. Estimated value functions of GCIVL and CGCIVL in the
PointMaze-giant-stitch environment (α = 0.7). The goal location
is marked with a red star. The magnitude of the value function
is represented by the color scale, with warmer colors indicating
higher values. Arrows depict the actions chosen by the policy.

5.3. Ablation Study

Ablation 1 As shown in Figure 4, we analyze the per-
formance of CGCIVL under the varying cross-trajectory
goal-sampling ratio, controlled by the parameter α. In goal-
navigating tasks, increasing α achieves higher success rates
by encouraging the algorithm to focus more on in-trajectory
goals during training. However, as α reaches higher values
(e.g., 0.7, 0.9, 1.0), the algorithm’s performance remains
relatively stable, largely due to its accurate value function
estimation, even with a certain probability of random goal
sampling. In contrast, in goal-stitching tasks, reducing α
brings significant improvements in experimental results, as
sampled state-goal pairs in the test often span across multi-
ple trajectories in the dataset, requiring the agent to prioritize
cross-trajectory goals during the training process.
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Figure 4. Performance of CGCIVL on two different environments
under varying α. The success rate is shown across different training
steps, with shaded regions representing the standard deviation.

Ablation 2 As shown in Figure 5, we evaluate the perfor-
mance of CGCIVL under different penalty coefficients η.
The results indicate that both excessively small and large
η degrade the performance. Specifically, when η = 0.0,
the conservative regularization is entirely removed, and the
algorithm struggles on both navigation and stitching tasks.
This suggests that the algorithm fails to learn an accurate
value function due to the overestimation of values on uncon-
nected state-goal pairs. Conversely, an excessively large η
(e.g. η = 1.0) also harms performance, as it over-constrains
the optimization and limits the ability of the model to fit the
true value effectively. In practice, we determine the optimal
η through empirical validation across multiple candidate
values.
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Figure 5. Performance of CGCIVL on two different environments
under varying η. The success rate is shown across different training
steps, with shaded regions representing the standard deviation.

Ablation 3 The results in Figure 6 highlight the signifi-
cant contributions of both the hierarchical policy framework
and the quasimetric distillation mechanism to CGCIVL’s
performance. The figure shows that hierarchical architec-
tures excel in long-horizon tasks through sub-goal selection
and long-term planning but offer limited benefits in simpler
environments. In addition, the quasimetric distillation mech-
anism is crucial for accurate value estimation, especially for
cross-trajectory goals. Its removal severely impacts success
rates, with the most pronounced effects observed in stitching
tasks. These findings emphasize that the hierarchical policy
framework enables efficient planning, while the quasimetric
distillation mechanism ensures robust value estimation for
goal stitching and long-horizon reasoning.

6. Related Work
Goal-Conditioned RL GCRL focuses on learning a uni-
versal value function (Schaul et al., 2015), enabling agents
to achieve various goals. Prior work on goal-conditioned
RL has explored a diverse range of techniques, such as
contrastive learning (Eysenbach et al., 2021; 2022), state-
occupancy matching (Durugkar et al., 2021; Ma et al.,
2022a) and successor features (Borsa et al., 2018; Touati
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Table 1. Experimental results for PointMaze, AntMaze, HumanoidMaze, Cube, Scene and Puzzle across diverse datasetsets. The table
reports the average binary success rate (%) across five test-time goals for each task, averaged over 8 seeds. Standard deviations are
indicated by the ± symbol. Entries within 95% of the best-performing value in each row are highlighted in bold.

Environment Dataset Type Dataset GCBC GCIVL GCIQL QRL CRL HIQL CGCIVL

PointMaze

navigate

pointmaze-medium-navigate-v0 9± 6 63± 6 53± 8 82± 5 29± 7 79± 15 87± 4
pointmaze-large-navigate-v0 29± 6 45± 5 34± 3 86± 7 39± 7 58± 15 92± 4
pointmaze-giant-navigate-v0 1± 2 0± 0 0± 0 68± 7 27± 10 46± 9 80± 12
average performance 13.00 36.00 29.00 78.67 31.67 61.00 86.33

stitch

pointmaze-medium-stitch-v0 23± 18 70± 14 21± 9 80± 12 10± 8 74± 16 89± 8
pointmaze-large-stitch-v0 7± 5 12± 6 31± 2 84± 15 0± 0 13± 6 98± 2
pointmaze-giant-stitch-v0 0± 0 0± 0 0± 0 50± 8 0± 0 0± 0 81± 17
average performance 10.00 27.33 17.33 71.33 3.33 29.00 89.33

AntMaze

navigate

antmaze-medium-navigate-v0 29± 4 72± 8 71± 4 88± 3 95± 1 96± 1 95± 1
antmaze-large-navigate-v0 24± 2 16± 5 34± 4 75± 6 83± 4 91± 2 91± 2
antmaze-giant-navigate-v0 0± 0 0± 0 0± 0 16± 3 16± 3 65± 5 73± 5
average performance 17.67 29.33 35.00 59.67 64.67 84.00 86.33

stitch

antmaze-medium-stitch-v0 45± 11 44± 6 29± 6 59± 7 53± 6 94± 1 91± 3
antmaze-large-stitch-v0 3± 3 18± 2 7± 2 18± 2 11± 2 67± 5 79± 3
antmaze-giant-stitch-v0 0± 0 0± 0 0± 0 0± 0 0± 0 25± 7 36± 7
average performance 16.00 20.67 12.00 25.67 21.33 62.00 68.67

HumanoidMaze

navigate

humanoidmaze-medium-navigate-v0 8± 2 24± 2 27± 2 21± 8 60± 4 89± 2 91± 3
humanoidmaze-large-navigate-v0 1± 0 2± 1 2± 1 5± 1 24± 4 49± 4 58± 8
humanoidmaze-giant-navigate-v0 0± 0 0± 0 0± 0 1± 0 3± 2 24± 7 29± 9
average performance 3.00 8.67 9.67 9.00 29.00 54.00 59.33

stitch

humanoidmaze-medium-stitch-v0 29± 5 12± 2 12± 3 18± 2 36± 2 88± 2 90± 2
humanoidmaze-large-stitch-v0 6± 3 1± 1 0± 0 3± 1 4± 1 28± 3 32± 4
humanoidmaze-giant-stitch-v0 0± 0 0± 0 0± 0 0± 0 0± 0 6± 5 34± 6
average performance 11.67 4.33 4.00 7.00 13.33 40.67 52.00

Cube play

cube-single-play-v0 6± 2 53± 4 68± 6 5± 1 19± 2 15± 3 84± 4
cube-double-play-v0 1± 1 36± 3 40± 5 1± 0 10± 2 6± 2 46± 4
cube-triple-play-v0 1± 1 1± 0 3± 1 0± 0 4± 1 3± 1 5± 2
cube-quadruple-play-v0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0
average performance 2.00 22.50 27.75 1.50 8.25 6.00 33.75

Scene play scene-play-v0 5± 1 42± 4 51± 4 5± 1 19± 2 38± 3 77± 5

Puzzle play

puzzle-3x3-play-v0 2± 0 6± 1 95± 1 1± 0 3± 1 12± 2 13± 3
puzzle-4x4-play-v0 0± 0 13± 2 26± 3 0± 0 0± 0 0± 0 32± 5
puzzle-4x5-play-v0 0± 0 7± 1 14± 1 0± 0 1± 0 4± 1 15± 3
puzzle-4x6-play-v0 0± 0 10± 1 12± 1 0± 0 4± 1 3± 1 9± 2
average performance 0.05 9.00 36.75 0.25 2.00 4.75 17.25

& Ollivier, 2021; Ghosh et al., 2023). One of the primary
challenges in GCRL is the low learning efficiency caused
by sparse rewards. HER (Andrychowicz et al., 2017) is
proposed to address this issue, which treats the intermedi-
ate states in trajectories as new goals, thereby providing
additional learning signals to the agent. Other works have
explored alternative approaches, such as hierarchical frame-
works (Kulkarni et al., 2016; Nachum et al., 2018; Chane-
Sane et al., 2021), which decompose tasks into manageable
subgoals, and model-based planning (Zhu et al., 2021; Men-
donca et al., 2021), which utilizes predictive models to guide
agents toward their goals.

In addition, several studies have discovered that the opti-
mal value function in GCRL satisfies the triangle inequal-
ity (Pitis et al., 2020; Wang & Isola, 2022a; Liu et al., 2023),
offering a novel perspective that the optimal value function
can be interpreted as a generalized metric function, known

as a quasimetric. Based on this insight, various network
architectures have been proposed to effectively represent
quasimetric functions (Wang & Isola, 2022b;a; Liu et al.,
2023). Utilizing these architectures to represent the value
function helps constrain the function space, thereby acceler-
ating value function convergence (Wang et al., 2023).

Offline GCRL Offline GCRL aims to learn goal-reaching
policies from pre-collected datasets. Due to the lack of inter-
actions with the environment, most GCRL algorithms strug-
gle to perform well in offline settings. Some approaches
adopt imitation learning methods, directly fitting policies
to the trajectories in the dataset (Ghosh et al., 2021; Yang
et al., 2022). However, these methods heavily depend on the
quality of the collected trajectories. Other approaches adapt
traditional offline reinforcement learning algorithms (Ku-
mar et al., 2020; Kostrikov et al., 2021) to goal-conditioned
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Figure 6. Ablation study results on four tasks: pointmaze-large-navigate-v0, pointmaze-giant-navigate-v0, pointmaze-large-stitch-v0, and
pointmaze-giant-stitch-v0. Each plot compares the full CGCIVL algorithm against its ablated versions. CGCIVL (blue) represents the
complete algorithm. CGCIVL (w/o HF) (green) removes the hierarchical policy framework, and CGCIVL (w/o QD) (red) removes the
quasimetric distillation mechanism.

scenarios, avoiding the issue of distribution shift (Park et al.,
2023). A key challenge in offline GCRL is goal stitch-
ing (Park et al., 2024). Previous works have utilized genera-
tive models to stitch different trajectories in the dataset (Kim
et al., 2024; Li et al., 2024). However, these methods de-
pend on the quality of the trained generative model, making
the reliability of the generated trajectories difficult to en-
sure. In contrast, we focus on enabling the agent to learn
and integrate knowledge from existing trajectories without
augmenting the dataset.

7. Conclusion
In this work, we classify state-goal pairs in offline settings
and identify a key challenge in value estimation for cross-
trajectory pairs—some of these pairs may be unconnected.
Values of those unconnected state-goal pairs cannot be es-
timated accurately, and errors may be propagated to other
states, thus misleading policy to extract suboptimal actions.
To address this problem, we propose a novel algorithm
that incorporates a regularization term and quasimetric con-
straints during the value function learning process. This
approach ensures the underestimation of unconnected state-
goal pairs while providing accurate value estimates for con-
nected pairs. Experiments across multiple environments
and datasets demonstrate that our method significantly im-
proves performance on goal-conditioned tasks, especially in
goal-stitching scenarios.

Future research could focus on developing a more robust and
generalizable framework for learning reduced goal spaces
from offline datasets, thereby improving the algorithm’s
scalability and adaptability to diverse and complex envi-
ronments. Additionally, an interesting direction could be
exploring strategies to identify more suitable distributions
for underestimating the value function of state-goal pairs,
thereby improving the stability of the learning process.

Acknowledgments
We gratefully acknowledge the support from the Dis-
tinguished Young Scholars Project funded by the Nat-
ural Science Foundation of Guangdong Province (No.
2025B1515020060), the Basic and Applied Basic Research
Program of the Guangzhou Science and Technology Plan
(No. 2025A04J7141), and the Xiaomi Young Talents Pro-
gram.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,

R., Welinder, P., McGrew, B., Tobin, J., Pieter Abbeel,
O., and Zaremba, W. Hindsight experience replay. In
Advances in Neural Information Processing Systems, vol-
ume 30, 2017.

Borsa, D., Barreto, A., Quan, J., Mankowitz, D., Munos,
R., Van Hasselt, H., Silver, D., and Schaul, T. Uni-
versal successor features approximators. arXiv preprint
arXiv:1812.07626, 2018.

Chane-Sane, E., Schmid, C., and Laptev, I. Goal-
conditioned reinforcement learning with imagined sub-
goals. In International Conference on Machine Learning,
pp. 1430–1440, 2021.

Durugkar, I., Tec, M., Niekum, S., and Stone, P. Adver-
sarial intrinsic motivation for reinforcement learning. In

9



Conservative Offline Goal-Conditioned Implicit V-Learning

Advances in Neural Information Processing Systems, vol-
ume 34, pp. 8622–8636, 2021.

Eysenbach, B., Salakhutdinov, R., and Levine, S. C-
learning: Learning to achieve goals via recursive clas-
sification. In International Conference on Learning Rep-
resentations, 2021.

Eysenbach, B., Zhang, T., Levine, S., and Salakhutdinov,
R. R. Contrastive learning as goal-conditioned reinforce-
ment learning. In Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 35603–35620, 2022.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Ghosh, D., Gupta, A., Reddy, A., Fu, J., Devin, C. M.,
Eysenbach, B., and Levine, S. Learning to reach goals via
iterated supervised learning. In International Conference
on Learning Representations, 2021.

Ghosh, D., Bhateja, C. A., and Levine, S. Reinforcement
learning from passive data via latent intentions. In Inter-
national Conference on Machine Learning, volume 202,
pp. 11321–11339, 2023.

Kim, S., Choi, Y., Matsunaga, D. E., and Kim, K.-E. Stitch-
ing sub-trajectories with conditional diffusion model for
goal-conditioned offline rl. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp.
13160–13167, 2024.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforce-
ment learning with implicit q-learning. In International
Conference on Learning Representations, 2021.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenen-
baum, J. Hierarchical deep reinforcement learning: In-
tegrating temporal abstraction and intrinsic motivation.
In Advances in Neural Information Processing Systems,
volume 29, 2016.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S.
Stabilizing off-policy q-learning via bootstrapping error
reduction. In Advances in Neural Information Processing
Systems, volume 32, 2019.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-
servative q-learning for offline reinforcement learning.
In Advances in Neural Information Processing Systems,
volume 33, pp. 1179–1191, 2020.

Li, G., Shan, Y., Zhu, Z., Long, T., and Zhang, W. Diffstitch:
Boosting offline reinforcement learning with diffusion-
based trajectory stitching. In International Conference on
Machine Learning, volume 235, pp. 28597–28609, 2024.

Liu, B., Feng, Y., Liu, Q., and Stone, P. Metric residual
network for sample efficient goal-conditioned reinforce-
ment learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 8799–8806, 2023.

Liu, M., Zhu, M., and Zhang, W. Goal-conditioned rein-
forcement learning: Problems and solutions. In Inter-
national Joint Conference on Artificial Intelligence, pp.
5502–5511, 2022.

Lynch, C., Khansari, M., Xiao, T., Kumar, V., Tompson,
J., Levine, S., and Sermanet, P. Learning latent plans
from play. In Proceedings of the Conference on Robot
Learning, pp. 1113–1132, 2020.

Ma, J. Y., Yan, J., Jayaraman, D., and Bastani, O. Offline
goal-conditioned reinforcement learning via f-advantage
regression. In Advances in Neural Information Processing
Systems, volume 35, pp. 310–323, 2022a.

Ma, J. Y., Yan, J., Jayaraman, D., and Bastani, O. Offline
goal-conditioned reinforcement learning via f -advantage
regression. In Advances in Neural Information Processing
Systems, volume 35, pp. 310–323, 2022b.

Mendonca, R., Rybkin, O., Daniilidis, K., Hafner, D., and
Pathak, D. Discovering and achieving goals via world
models. In Advances in Neural Information Processing
Systems, volume 34, pp. 24379–24391, 2021.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-
efficient hierarchical reinforcement learning. In Advances
in Neural Information Processing Systems, volume 31,
2018.

Newey, W. and Powell, J. Asymmetric least squares estima-
tion and testing. Econometrica: Journal of the Economet-
ric Society, pp. 819–847, 1987.

Park, S., Ghosh, D., Eysenbach, B., and Levine, S. Hiql:
Offline goal-conditioned rl with latent states as actions.
In Advances in Neural Information Processing Systems,
volume 36, pp. 34866–34891, 2023.

Park, S., Frans, K., Eysenbach, B., and Levine, S. Ogbench:
Benchmarking offline goal-conditioned rl. arXiv preprint
arXiv:2410.20092, 2024.

Pitis, S., Chan, H., Jamali, K., and Ba, J. An inductive
bias for distances: Neural nets that respect the triangle
inequality. In International Conference on Learning Rep-
resentations, 2020.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Uni-
versal value function approximators. In International
Conference on Machine Learning, pp. 1312–1320, 2015.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

10



Conservative Offline Goal-Conditioned Implicit V-Learning

Touati, A. and Ollivier, Y. Learning one representation to
optimize all rewards. In Advances in Neural Information
Processing Systems, volume 34, pp. 13–23, 2021.

Wang, R., Foster, D. P., and Kakade, S. M. What are the
statistical limits of offline rl with linear function approxi-
mation? arXiv preprint arXiv:2010.11895, 2020.

Wang, R., Wu, Y., Salakhutdinov, R., and Kakade, S. Insta-
bilities of offline rl with pre-trained neural representation.
In International Conference on Machine Learning, pp.
10948–10960, 2021.

Wang, T. and Isola, P. Improved representation of asym-
metrical distances with interval quasimetric embeddings.
arXiv preprint arXiv:2211.15120, 2022a.

Wang, T. and Isola, P. On the learning and learnability of
quasimetrics. arXiv preprint arXiv:2206.15478, 2022b.

Wang, T., Torralba, A., Isola, P., and Zhang, A. Opti-
mal goal-reaching reinforcement learning via quasimetric
learning. In International Conference on Machine Learn-
ing, pp. 36411–36430, 2023.

Yang, R., Lu, Y., Li, W., Sun, H., Fang, M., Du, Y., Li,
X., Han, L., and Zhang, C. Rethinking goal-conditioned
supervised learning and its connection to offline rl. In
International Conference on Learning Representations,
2022.

Zhang, T., Janner, M., Li, Y., Rocktäschel, T., Grefenstette,
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A. Analysis of GCIVL
GCIVL is a variant of Implicit Q-Learning (IQL) (Kostrikov et al., 2021) designed for handling goal-conditioned tasks
in the offline setting. GCIVL leverages expectile regression (Newey & Powell, 1987) to learn the goal-conditioned value
function, updated iteratively as follows:

Vk+1 = min
V

Es∼D,g∼pα
m(g|s),

s′∼p(s′|s,g)
[ℓ2τ (r(s, g) + γVk(s

′, g)− V (s, g))], (16)

where ℓ2τ (x) =
∣∣τ − 1{x<0}(x)

∣∣x2 denotes the expectile loss with an expectile τ ∈ [0.5, 1).

Lemma A.1. In the deterministic environment described above, there exists a policy πτ
k such that the value function update

in Equation (16) can be equivalently expressed as:

Vk+1 = argmin
V

Es∼DS ,g∼pα
m(g|s)

a∼πτ
k ,s

′∼T (·|s,a)
[(r(s, g) + γVk(s

′, g)− V (s, g))2], (17)

where T (· | s, a) represents the deterministic transition dynamics, and πτ
k is a policy that depends on the current value

function Vk.

Based on the above lemma, GCIVL can be interpreted as a composite process of value function evaluation and policy
improvement. Specifically, Vk+1 is computed via policy evaluation by iterating the Bellman operator:

Bπ
τ
kVk = r + γPπτ

kVk, (18)

where the transition operator Pπτ
kVk is defined as:

Pπτ
kVk(s, g) = Ea∼πτ

k (·|s,g),s′∼T (·|s,a)[Vk(s
′, g)]. (19)

As τ → 1, the operator converges to the optimal Bellman operator T (Ghosh et al., 2023).

B. Proofs
B.1. Proof of Lemma A.1

Proof.

Vk+1 = min
V

E s∼DS ,
g∼pα

m(g|s)
[ℓ2τ (r(s, g) + γVk(s

′, g)− V (s, g))] (20)

= min
V

EpD(s)pα
m(g|s)pπβ

(s′|s,g)[ℓ
2
τ (r(s, g) + γVk(s

′, g)− V (s, g))], (21)

where pD(s) denotes uniformly sampling state s from the dataset, and pπβ
(s′|s, g) represents the probability of s′ being

adjacent to s in the dataset, conditioned on s and goal g. We assume:

Us = {s′ | pπβ
(s′ | s, g) > 0, s′ ∈ D}, (22)

U+
s = {s′ | r(s, g) + γVk(s

′, g) > V (s, g), s′ ∈ Us}, (23)

U−
s = Us − U+

s . (24)

Thus:

Vk+1 = min
V

EpD(s)pα
m(g|s)[

∑
s′∈U+

s

τ(r(s, g) + γVk(s
′g)− V (s, g))2 · pπβ

(s′ | s, g)

+
∑

s′∈U−
s

|1− τ | · (r(s, g) + γVk(s
′g)− V (s, g))2 · pπβ

(s′ | s, g)].
(25)

By setting the derivative of Equation (25) to 0, we obtain the following expression for Vk+1:

Vk+1(s, g) =

∑
s′∈U+

s
τpπβ

(s′|s, g) · Bk(s, g, s′) +
∑

s′∈U−
s
τpπβ

(s′|s, g) · Bk(s, g, s′)
τ
∑

s′∈U+
s
pπβ

(s′|s, g) + |1− τ | ·
∑

s′∈U−
s
pπβ

(s′|s, g)
, (26)

12
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where Bk(s, g, s′) = r(s, g) + γVk(s
′, g). We denote:

p̃(s′ | s, g) =


τ ·pπβ

(s′|s,g)
τ
∑

s′∈U
+
s

pπβ
(s′|s,g)+(1−τ)

∑
s′∈U

−
s

pπβ
(s′|s,g) , s′ ∈ U+

s

(1−τ)·pπβ
(s′|s,g)

τ
∑

s′∈U
+
s

pπβ
(s′|s,g)+(1−τ)

∑
s′∈U

−
s

pπβ
(s′|s,g) , s′ ∈ U−

s

, (27)

where
∑

s′∈Us
p̃(s′ | s, g) = 1. We could express Vk+1(s, g) =

∑
s′∈Us

p̃(s′ | s, g) · Bk(s, g, s′). Since the environment is
deterministic, we first define a generalized inverse mapping:

T−1(s′ | s, g) = a, where T (a | s, g) = s′. (28)

Then we could construct a policy πτ
k(a | s, g):

πτ
k(a | s, g) =

{
p̃(s′ | s, g), if a = T−1(s′ | s, g),
0, otherwise.

. (29)

B.2. Proof of Theorem 3.3

Proof.

ζk(s, a) = |Vk(s, g)− V ∗(s, g)| (30)
= |Vk(s, g)− T Vk−1(s, g) + T Vk−1(s, g)− V ∗(s, g)| (31)
≤ |Vk(s, g)− T Vk−1(s, g)|+ |T Vk−1(s, g)− V ∗(s, g)| (32)

= |Vk(s, g)− T Vk−1(s, g)|+ γ
∣∣∣max

a′
Vk−1(s

′, g)−max
s′

V ∗(s′, g)
∣∣∣ (33)

≤ |Vk(s, g)− T Vk−1(s, g)|+ γmax
s′
|Vk−1(s

′, g)− V ∗(s′, g)| (34)

= δk(s, g) + γmax
s′

ζk−1(s
′, g), (35)

where the inequality in (33) holds due to the triangle inequality and the inequality in (35) holds because the absolute
difference between two maxima is bounded by the maximum of the absolute differences.

B.3. Proof of Theorem 4.1

Proof. By setting the derivative of Equation (8) to 0, we obtain the following expression for V̂k+1 in terms of V̂k:

∀s, g ∈ D, k, V̂ k+1(s, g) = B̂πV̂ k(s, g)− η µ(g|s)
pαm(g|s)

. (36)

Since, µ(g|s) ≥ 0, η ≥ 0,pαm(g|s) ≥ 0, we conclude that at each iteration, the updated V-value remains underestimated, i.e.
V̂ k+1 ≤ B̂πV̂ k. As proved in prior work (Kumar et al., 2020), if the reward function r(s, g) and the transition function
T (s′|s, g) satisfy concentration properties, then with high probability(w.h.p) ≥ 1 − δ, δ ∈ (0, 1), the empirical Backup
operator is bounded:

∀V, s, g ∈ D, |B̂πV̂ k(s, g)− BπV̂ k(s, g)| ≤ Cr,T,δRmax

(1− γ)
√
|D|

. (37)

So the fixed point of Equation (36) is given by:

V̂ π(s, g) ≤ (I − γPπ)−1

[
R− η µ

pαm
+

Cr,T,δRmax

(1− γ)
√
|D|

]

= V π(s, g)− η
[
(I − γPπ)−1

[
µ

pαm

]]
(s, g) +

[
(I − γPπ)−1 Cr,T,δRmax

(1− γ)
√
|D|

]
(s, g),

(38)

thus proving the underestimation of the value iterated via Equation (8).

13
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Furthermore, when µ(g|s) = pDuni(g) meaning the goals are sample uniformally from dataset D and the emprical Bellman
operator is unbiased, the estimated value function V̂ π is as follows :

V̂ π(s, g) = V π(s, g)− η

[
(I − γPπ)−1

[
pDuni

αpDtraj + (1− α)pDuni

]]
(s, g). (39)

B.4. Proof of Proposition 4.2

Proof. For the state-goal pair (s+, g) which within the same trajectory, we have:

V̂ π(s+, g) = V π(s, g)− η

(I − γPπ)−1

 1

α(
pD

traj

pD
uni
− 1) + 1


 (s, g). (40)

Obviously, pDtraj ≥ pDuni, then:
V̂ π(s+, g) ≥ V π(s+, g)− η

[
(I − γPπ)−1

]
(s+, g). (41)

To guarantee
V̂ π(s+, g) ≥ V π(s+, g)− ϵ,

it suffices to ensure, for the given pair (s+, g),

η ·
[
(I − γPπ)−1[1 ]

]
(s+, g) ≤ ϵ.

Hence, one can choose
η ≤ ϵ[

(I − γPπ)−1[1 ]
]
(s+, g)

.

If the inequality must hold for all state-goal pairs (s, g), then

η ≤ ϵ

sup
(s,g)

[
(I − γPπ)−1[1 ]

]
(s, g)

=
ϵ∥∥(I − γPπ)−1[ 1 ]

∥∥
∞
.

B.5. Proof of Proposition 4.3

Proof. For the state-goal pair (s+, g) which within the same trajectory, we have:

V̂ π(s+, g) ≥ V π(s+, g)− η
[
(I − γPπ)−1

]
(s+, g). (42)

For the state-goal pair (s+, g) which is unconnected, pDtraj = 0, so we have:

V̂ π(s−, g) = V π(s, g)− η
[
(I − γPπ)−1

[
1

1− α

]]
(s, g). (43)

We want to show that there exists a choice of α ∈ (0, 1) such that

V̂ π(s−, g) < V̂ π(s+, g) − ϵ.

Recall the two key inequalities/equalities:

(1) V̂ π(s+, g) ≥ V π
(
s+, g

)
− η

[
(I − γPπ)−1

]
(s+, g),

(2) V̂ π(s−, g) = V π(s, g) − η
[
(I − γPπ)−1

[
1

1−α

]]
(s, g).

14



Conservative Offline Goal-Conditioned Implicit V-Learning

For brevity, define:

c1 =
[
(I − γPπ)−1

]
(s+, g), c2(α) =

[
(I − γPπ)−1

[
1

1−α

]]
(s, g).

Then from (1) and (2) we get:

V̂ π(s+, g) ≥ V π(s+, g) − η c1, V̂ π(s−, g) = V π(s, g) − η c2(α).

Subtracting the second from the first,

V̂ π(s+, g)− V̂ π(s−, g) ≥
[
V π(s+, g)− η c1

]
−

[
V π(s, g)− η c2(α)

]
,

i.e.,

V̂ π(s+, g)− V̂ π(s−, g) ≥
(
V π(s+, g)− V π(s, g)

)
+ η

[
c2(α) − c1

]
.

As α→ 1−, the term 1
1−α grows unboundedly. Under mild assumptions (nonnegative transitions, γ < 1, etc.), the operator

(I − γPπ)−1[·] is monotone with respect to its input. Hence c2(α) can be made arbitrarily large by choosing α close
enough to 1. Therefore, η

[
c2(α)− c1

]
can exceed any fixed constant (including ϵ−

(
V π(s+, g)− V π(s, g)

)
, if necessary).

Consequently, we can select α sufficiently close to 1 such that:

V̂ π(s+, g) − V̂ π(s−, g) > ϵ.

Equivalently,
V̂ π(s−, g) < V̂ π(s+, g) − ϵ.

Thus, for any fixed η, there always exists an α that satisfies the desired inequality.

B.6. Proof of Proposition 4.5

Proof. Any connected state-goal pair can be categorized into two cases:

Case 1: In-trajectory state-goal pairs. According to Proposition 4.3, the proposition holds directly.

Case 2: Cross-trajectory state-goal pairs. Assume s− and g are in different trajectories within the dataset D. By
definition, pDtraj(s

−, g) = 0, and thus we have:

V̂ π(s−, g) = V π(s, g) − η
[
(I − γPπ)−1

[
1

1−α

]]
(s, g).

On the other hand, suppose there exist n intermediate states s1, s2, . . . , sn connecting some s+ to the same goal g, where
each pair (si, si+1) is in-trajectory. By the properties of the quasimetric, we know:

V̂ π(s+, g) ≥ V̂ π(s+, s1) + V̂ π(s1, s2) + · · ·+ V̂ π(sn, g).

Therefore, to establish a strict value separation, it suffices to show:

V̂ π(s−, g) ≤ V̂ π(s+, s1) + V̂ π(s1, s2) + · · ·+ V̂ π(sn, g) − ϵ. (44)

According to the proof in Appendix B.5, it is straightforward to show that there exists some α such that the inequality in
Equation (44) holds. Combining Case 1 and Case 2, the proposition is proved.
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C. Implementation Details
C.1. Interval Quasimetric Embeddings

IQE trains an encoder f(x; θ) that maps states s ∈ S to latent vectors zs ∈ Z , alongside a latent quasimetric head
dlatent(zs, zg;ψ) to estimate the distance between state s and goal g in the latent space. Together, these components define a
parameterized quasimetric over the state space S:

d(s, g; θ, ψ) := dlatent(f(s; θ), f(g; θ);ψ). (45)

IQE structures input latents as two-dimensional matrices by reshaping. Given latents u, v ∈ Rk×l, IQE quantifies the
Lebesgue measure of unions of multiple intervals along the real line:

∀i = 1, 2, . . . , k, di(u, v) ≜

∣∣∣∣∣∣
l⋃

j=1

[uij ,max(uij , vij)]

∣∣∣∣∣∣ . (46)

A fundamental IQE is obtained by summing over all components:

dIQE-sum(u, v) ≜
k∑

i=1

di(u, v). (47)

A more flexible alternative, IQE-maxmean, introduces an additional parameter α, blending maximum and mean reductions:

dIQE=maxmean(u, v;α) ≜ maxmean(d1(u, v), . . . , dk(u, v);α) (48)

≜ α ·max(d1(u, v), . . . , dk(u, v)) + (1− α) ·mean(d1(u, v), . . . , dk(u, v)). (49)

C.2. Implementation Details of CGCIVL

Our algorithm implementation is based on the reproduction of HIQL in the open-source OGbench and can be found at
https://github.com/kkq2018/CGCIVL.git. On this basis, we implemented the quasimetric model based on IQE, denoted as
dθ. The underestimation of the value function is represented as max dθd . In order to stabilize the maximization process
of dθd , a function ϕ is introduced, which is a monotonically increasing convex function. The final penalty term can be
written as maxϕ(dθ). At the same time, in the process of distilling the value function, a masking mechanism is employed to
exclude certain loss contributions when the error between the predicted and target values falls within a specified range.

C.3. Hyperparameter Settings

The detailed hyperparameter settings are shown in Table 2.The training process employed a batch size of 1024, with the
policy and value networks designed as MLPs of dimensions (256, 256) and (512, 512, 512), respectively. The GELU
activation function was used to ensure smooth gradient flow, while the Adam optimizer, configured with a learning rate
of 0.0003, facilitated efficient parameter updates. To further stabilize the training process, the target network smoothing
coefficient is set to 0.005.

Table 2. Hyperparameters.
Hyperparameter Value
Batch size 1024
Policy MLP dimensions (256, 256)
Value MLP dimensions (512, 512, 512)
Nonlinearity GELU
Optimizer Adam
Learning rate 0.0003
Target network smoothing coefficient 0.005
Penalty coefficient 0.01

Some hyperparameters in the training process are tuned based on the specific task and environment. Specifically:
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• In the antmaze-giant-stitch-v0 environment, the algorithm was trained for 2,000,000 steps.

• In the humanoidmaze-giant-navigate-v0 and humanoidmaze-giant-stitch-v0 environments, the algorithm was trained
for 3,000,000 steps.

• For all other environments, the training steps were set to 1,000,000, consistent with the settings in OGbench.

In the goal-stitching task, α was set to 0.5 to emphasize sampling from cross-trajectory pairs. In contrast, for the goal-
navigating task, α was set to 0.9 to prioritize sampling from in-trajectory pairs. During the quasimetric distillation phase,
another parameter, αd, was introduced to control sampling, ensuring the quasimetric focuses more on in-trajectory pair
estimation. αd is typically set to 0.8.

D. Details of Environments and Datasets
We evaluate the proposed algorithm on OGbench, a recently introduced benchmark designed to assess offline goal-
conditioned reinforcement learning algorithms across diverse tasks and datasets.

Environments Our experiments involve six representative environments:

• PointMaze: A 2D navigation task where a point mass agent must traverse a maze to reach specified goal locations.

• AntMaze: A more challenging task requiring a quadrupedal ant agent with 8 degrees of freedom (DoF) to navigate
complex environments.

• HumanoidMaze: The most complex task, involving a humanoid agent with 21 DoF, which requires high-dimensional
control and advanced planning to solve.

• Cube: A pick-and-place manipulation task involving 1–4 cube blocks. The agent must learn to move, stack, swap, and
permute cubes using a robot arm. Training data consists of play-style demonstrations with random pick-and-place
actions. The task requires generalizable multi-object manipulation and long-horizon planning from unstructured data.

• Scene: A long-horizon manipulation task involving diverse objects such as a cube, drawer, window, and button locks.
The agent must execute complex object interactions (e.g., unlocking and using containers) to reach goal configurations.
It demands sequential reasoning and composition of atomic manipulation skills.

• Puzzle: A combinatorial reasoning task where a robot arm solves the “Lights Out” puzzle by pressing buttons on a grid
(3×3 to 4×6). Pressing toggles adjacent buttons’ states, and the goal is to match a target pattern. The agent must learn
precise control and combinatorial generalization over a vast discrete state space, based on random-play trajectories.

Each environment is evaluated across three maze configurations:

• Medium: A small maze layout identical to the medium maze in D4RL (Fu et al., 2020).

• Large: A larger maze with increased navigation complexity, matching the large maze in D4RL.

• Giant: A significantly larger maze, featuring paths up to 3000 steps, adapted from Zhang et al. (2023) with added
layout complexity.

Datasets Three dataset types are used to evaluate different capabilities:

• Navigate: The dataset collected using a noisy expert policy that navigates the maze by sequentially reaching randomly
sampled goals. This dataset is used to evaluate navigation performance.

• Stitch: The dataset composed of short goal-reaching trajectories. Completing tasks with this dataset requires stitching
multiple short trajectories to reach the goal, testing long-horizon reasoning capabilities.

• Play: The dataset consists of ”play”-style data collected by non-Markovian expert policies with temporally correlated
noise. It features unstructured, exploratory interactions with the environment, where the agent performs random actions
without specific task goals.
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