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ABSTRACT

Graph Neural Networks (GNNs) are currently dominating in modeling graph-
structure data, while their high reliance on graph structure for inference significantly
impedes them from widespread applications. By contrast, Graph-regularized MLPs
(GR-MLPs) implicitly inject the graph structure information into model weights,
while their performance can hardly match that of GNNs in most tasks. This moti-
vates us to study the causes of the limited performance of GR-MLPs. In this paper,
we first demonstrate that node embeddings learned from conventional GR-MLPs
suffer from dimensional collapse, a phenomenon in which the largest a few eigen-
values dominate the embedding space, when a linear encoder is used. As a result
of this the expressive power of the learned node representations is constrained. We
further propose ORTHO-REG, a novel GR-MLP model, to mitigate the dimensional
collapse issue. Through a soft regularization loss on the correlation matrix of node
embeddings, ORTHO-REG explicitly encourages orthogonal node representations
and thus can naturally avoid dimensionally collapsed representations. Experiments
on traditional transductive semi-supervised classification tasks and inductive node
classification for cold-start scenarios demonstrate its effectiveness and superiority.

1 INTRODUCTION
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Figure 1: As an MLP model, our method
performs even better than GNN mod-
els on Pubmed, but with a much faster
inference speed. GRAND (Feng et al.,
2020) is one of the SOTA GNN models
on task. Circled markers denote MLP
baselines, and squared markers indicate
GNN baselines.

Graph Machine Learning (GML) has been attracting in-
creasing attention due to its wide applications in many real-
world scenarios, like social network analysis (Fan et al.,
2019), recommender systems (van den Berg et al., 2017;
Wu et al., 2019b), chemical molecules (Wang et al., 2021;
Stärk et al., 2022) and biology structures. Graph Neural
Networks (GNNs) (Kipf & Welling, 2017; Hamilton et al.,
2017; Velickovic et al., 2018; Xu et al., 2019) are currently
the dominant models for GML thanks to their powerful
representation capability through iteratively aggregating
information from neighbors. Despite their successes, such
an explicit utilization of graph structure information hin-
ders GNNs from being widely applied in industry-level
tasks. On the one hand, GNNs rely on layer-wise mes-
sage passing to aggregate features from the neighborhood,
which is computationally inefficient during inference, espe-
cially when the model becomes deep (Zhang et al., 2021).
On the other hand, recent studies have shown that GNN
models can not perform satisfactorily in cold-start scenar-
ios where the connections of new incoming nodes are few
or unknown (Zheng et al., 2021). By contrast, Multi-Layer Perceptrons (MLPs) involve no depen-
dence between pairs of nodes, indicating that they can infer much faster than GNNs (Zhang et al.,
2021). Besides, they can predict for all nodes fairly regardless of the numbers of connections, thus
can infer more reasonably when neighborhoods are missing (Zheng et al., 2021). However, it remains
challenging to inject the knowledge of graph structure information into learning MLPs.

One classical and popular method to mitigate this issue is Graph-Regularized MLPs (GR-MLPs
in short). Generally, besides the basic supervised loss (e.g., cross-entropy), GR-MLPs employ
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an additional regularization term on the final node embeddings or predictions based on the graph
structure (Ando & Zhang, 2006; Zhou et al., 2003; Yang et al., 2021; Hu et al., 2021). Though
having different formulations, the basic idea is to make node embeddings/predictions smoothed over
the graph structure. Even though these GR-MLP models can implicitly encode the graph structure
information into model parameters, there is still a considerable gap between their performance
compared with GNNs (Ando & Zhang, 2006; Yang et al., 2021). Recently, another line of work,
GNN-to-MLP knowledge distillation methods (termed by KD-MLPs) (Zhang et al., 2021; Zheng et al.,
2021), have been explored to incorporate graph structure with MLPs. In KD-MLPs, a student MLP
model is trained using supervised loss and a knowledge-distillation loss from a well-trained teacher
GNN model. Empirical results demonstrate that with merely node features as input, the performance
of KD-MLPs can still match that of GNNs as long as they are appropriately learned. However,
the 2-step training of KD-MLPs is undesirable, and they still require a well-trained GNN model
as a teacher. This motivates us to rethink the failure of previous GR-MLPs to solve graph-related
applications and study the reasons that limit their performance.

Presented work: In this paper, we first demonstrate that node embeddings learned from existing
GR-MLPs suffer from dimensional collapse (Hua et al., 2021; Jing et al., 2022), a phenomenon that
the embedding space of nodes is dominated by the largest (a few) eigenvalue(s). Our theoretical
analysis demonstrates that the dimensional collapse in GR-MLP is due to the irregular feature
interaction caused by the graph Laplacian matrix (see Lemma 1). We then propose Orthogonality
Regularization (ORTHO-REG in short), a novel GR-MLP model, to mitigate the dimensional collapse
issue in semi-supervised node representation learning tasks. The key design of ORTHO-REG is to
enforce an additional regularization term on the output node embeddings, making them orthogonal
so that different embedding dimensions can learn to express various aspects of information. Besides,
ORTHO-REG extends the traditional first-order proximity preserving target to a more flexible one,
improving the model’s expressive power and generalization ability to non-homophily graphs. We
provide a thorough evaluation for ORTHO-REG on various node classification tasks. The empirical
results demonstrate that ORTHO-REG can achieve competitive or even better performance than GNNs.
Besides, using merely node features to make predictions, ORTHO-REG can infer much faster on
large-scale graphs and make predictions more reasonable for new nodes without connections. In Fig. 1
we present the performance of ORTHO-REG compared with GNNs and other MLPs on Pubmed,
where ORTHO-REG achieves SOTA performance with the fastest inference speed.

We summarize our contributions as follows:

1) We are the first to examine the limited representation power of existing GR-MLP models
from the perspective of dimensional collapse. We provide theoretical analysis and empirical
studies to justify our claims.

2) To mitigate the dimensional collapse problem, we design a novel GR-MLP model named
ORTHO-REG. ORTHO-REG encourages the node embeddings to be orthogonal through
explicit soft regularization, thus can naturally avoid dimensional collapse.

3) We conduct experiments on traditional transductive semi-supervised node classification tasks
and inductive node classification under cold-start scenarios on public datasets of various
scales. The numerical results and analysis demonstrate that by learning orthogonal node
representations, ORTHO-REG can outperform GNN models on these tasks.

2 BACKGROUNDS AND RELATED WORKS

2.1 PROBLEM FORMULATION

We mainly study a general semi-supervised node classification task on a single homogeneous graph
where we only have one type of node and edge. We denote a graph by G = (V, E), where V is the
node set, and E is the edge set. For a graph with N nodes (i.e., |V| = N ), we denote the node feature
matrix by X ∈ RN×D, the adjacency matrix by A ∈ RN×N . In semi-supervised node classification
tasks, only a small portion of nodes are labeled, and the task is to infer the labels of unlabeled nodes
using the node features and the graph structure. Denote the labeled node set by VL and the unlabeled
node set by VU , then we have VL ∩ VU = ∅ and VL ∪ VU = V .

Denote the one-hot ground-truth labels of nodes by Ŷ ∈ RN×C , and the predicted labels by Y .
One can learn node embeddings H using node features X and adjacency matrix A, and use the
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embeddings to generate predicted labels Ŷ . For example, GNNs generate node representations
through iteratively aggregating and transforming the embeddings from the neighbors and could
be generally formulated as H = fθ(X,A). Then a linear layer is employed on top of node
embeddings to predict the labels Y = gθ(H). The model could be trained in an end-to-end manner
by optimizing the cross-entropy loss between predicted labels and ground-truth labels of labeled
nodes: Lsup = ℓxent(Y

L, Ŷ L) =
∑

i∈VL

ℓxent(yi, ŷi). Note that GNNs explicitly utilize the graph

structure information through learning the mapping from node features and graph adjacency matrix
to predicted labels. However, due to the limitations introduced in Sec. 1 (inefficiency at inference and
poor performance for cold-start nodes), we seek to learn an MLP encoder, i.e., H = fθ(X) that only
takes node features for making predictions.

2.2 GRAPH-REGULARIZED MLPS

Graph-Regularized MLPs (GR-MLPs in short) implicitly inject the graph knowledge to the MLP
model with an auxiliary regularization term on the node embeddings/predictions over the graph
structure (Zhou et al., 2003; Yang et al., 2021; Hu et al., 2021), whose objective function could
be generally formulated as: L = Lsup + λLreg, where Lreg = ℓ(H,A) or ℓ(Y ,A). The most
representative graph regularization method, Graph Laplacian Regularization (Zhou et al., 2003; Ando
& Zhang, 2006), enforces local smoothness of embeddings/predictions between two connected nodes:
ℓ(Y ,A) = tr[Y ⊤LY ], where L = I − Ã = I −D−1/2AD−1/2 is the (symmetric normalized)
Laplacian matrix of the graph. Note that Y can be replaced with H if one would like to regularize
node embeddings instead of predicted labels.

Later works apply advanced forms of regularization, like propagation regularization (P-Reg, Yang
et al. (2021)), contrastive regularization (Hu et al., 2021), etc. Regardless of the minor differences,
they are all based on the graph homophily assumption that connected nodes should have similar
representations/labels. With the graph structure information implicitly encoded into the model
parameters, GR-MLPs can improve the representative power of MLP encoders. However, their
performances are still hard to match compared to those of GNN models.
Remark 1. (Differences from Graph-Augmented MLPs). Though sound similar, Graph-regularized
MLPs(GR-MLPs) are totally different from Graph-augmented MLPs (GA-MLPs). Although trained
with implicit graph structure regularization, GR-MLPs make predictions directly through the MLP
model. By contrast, GA-MLPs, such as SGC (Wu et al., 2019a), APPNP (Klicpera et al., 2019),
GFNN (NT & Maehara, 2019) and SIGN (Rossi et al., 2020) explicitly employs the graph structure to
augment the node representation generated from an MLP model.

2.3 DIMENSIONAL COLLAPSE

Dimensional collapse (also known as spectral collapse in some work (Liu et al., 2019)) is a phe-
nomenon in representation learning where the embedding space is dominated by the largest a few
singular values (other singular values decay significantly as the training step increases). As the actual
embedding dimension is usually large, the dimensional collapse phenomenon prevents different
dimensions from learning diverse information, limiting their representation power and ability to
be linearly discriminated. Jing et al. (2022) has analyzed the dimensional collapse phenomenon
from a theoretical perspective and attributed it to the effect of strong data augmentation and implicit
regularization effect of neural networks (Arora et al., 2019; Ji & Telgarsky, 2019). Previous methods
usually adopt whitening operation (Hua et al., 2021; Ermolov et al., 2021) to mitigate this issue, while
such explicit whitening methods are usually computationally inefficient and thus are not applicable to
GR-MLP where efficiency is much more important. In this paper, we demonstrate that node embed-
dings learned from conventional Graph-Regularized MLPs also suffer from dimensional collapse.
We provide a theoretical analysis on how it is caused and develop a computationally efficient soft
regularization term to mitigate it.

3 ISSUE DETECTION: DIMENSIONAL COLLAPSE IN GR-MLPS

In this section, we investigate the reasons behind the weak representation power of previous GR-
MLPs. In short, we find that node embeddings learned through traditional GR-MLPs (e.g., with graph
Laplacian regularization (Ando & Zhang, 2006)) suffer from dimensional collapse, a phenomenon
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which is first investigated in contrastive self-supervised learning (He & Ozay, 2022; Hua et al., 2021;
Jing et al., 2022). Generally speaking, dimensional collapse indicates that the embedding space is
dominated by the largest few eigenvalues, limiting their representation powers. We then show that
the dimensional collapse phenomenon does exist in the typical GR-MLP model, Graph Laplacian
Regularization (Ando & Zhang, 2006), from both theoretical analysis and empirical justification. We
provide further discussion on the impacts of dimensional collapse on downstream classification tasks
in Appendix E. The objective function of Graph Laplacian Regularization for semi-supervised node
classification tasks could be formulated as follows:

L = ℓxent(Y
L, Ŷ L) + λtr[H⊤LH] =

∑
i∈VL

ℓxent(yi, ŷi) + λ
∑
i,j∈V

Aij∥
hi√
Dii

− hj√
Djj

∥2. (1)

We would like to study the effect of the Laplacian regularization term Lreg = tr[H⊤LH] on H’s
embedding space through analyzing the eigenspectra of its auto-correlation matrix C = {Ckk′},∈
Rd×d, where ckk′ is defined as:

Ckk′ =
Σkk′

√
ΣkkΣk′k′

, and Σ =
∑
i∈V

(hi − h)(hi − h)⊤

|V|
(2)

Note that h =
∑|V|

i=1 hi/|V| is the average node embedding vector, so Σ is the covariance matrix of
H , and we denote C’s eigenvalues in a descending order by {λC

1 , λC
2 , · · · , λC

D}.

Theoretical Analysis. To simplify our analysis, we consider a simple single-layer Perceptron
(linear) model as the encoder to learn node embeddings, i.e., H = XW (note that we validate
the non-linear case empirically in the empirical justification part below), where W ∈ RF×D is the
weight matrix (we further assume F = D in this part for simplicity). The model (i.e., the weight
matrix W ) is optimized using stochastic gradient descent. Then we have the following lemma on the
evolvement of the weight matrix’s singular values.
Lemma 1. (Shrinking singular-space of weight matrix.) Consider the linear model above which is
optimized with Lreg = tr[H⊤LH]. Let P = X⊤LX =

∑
ij

Lijxi·x⊤
j and denote its non-ascending

eigenvalues by {λP
1 , λP

2 , · · · , λP
D}. Denote the randomly initialized weight matrix by W (0) and the

updated weight matrix at time t by W (t), respectively. We further denote the non-ascending singular
values of W at time t by {σW

i (t)}Di=1. Then the relative value of the smaller eigenvalues to the

larger ones will decrease as t increases. Formally, σW
i (t)

σW
j (t)

≤ σW
i (t′)

σW
j (t′)

, ∀ t < t′, i ≤ j. Furthermore,

if the following condition holds: λP
1 ≥ · · · ≥ λP

d > λP
d+1 ≥ · · · ≥ λP

D , then

lim
t→∞

σW
i (t)

σW
j (t)

= 0, ∀ i ≤ d and j ≥ d+ 1. (3)

See proof in Appendix A.1. Lemma 1 indicates that the singular values of W (in proportional to the
larger ones) shrink as the training step increases. With Lemma 1, we can conclude the following
theorem that reveals a dimensional collapse phenomenon under this condition:
Theorem 1. (Laplacian regularization leads to dimensional collapse.) For the linear model above
optimized with Graph Laplacian Regularization, the embedding space of nodes tends to be dominated
by the largest a few eigenvalues. Specifically, if the covariance matrix of input features is an identity
matrix, we have:

lim
t→∞

λC
i (t)

λC
j (t)

= 0, ∀ i ≤ d and j ≥ d+ 1. (4)

See proof in Appendix A.2. Theorem 1 reveals that with the effect of Graph Laplacian Regularization,
the node embeddings suffer from dimensional collapse.N As the eigenspectrum is dominated by its
largest few eigenvalues, the embedding space is narrow, leading to poor robustness and generalization
ability when classified with linear classifiers (see more discussions in Appendix E).

Despite the analysis above, the exact evolving dynamics of node embeddings should be more compli-
cated, as 1) the supervised cross-entropy loss forces nodes of different classes to have distinguishable
embeddings; 2) the encoder is usually an MLP with non-linear activations instead of a simple linear
model. Therefore we further provide empirical results to show that dimensional collapse does exist.
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Figure 2: Eigenspectra for node embeddings with different
strengths of Laplacian regularization λ (the upper three figures),
at different training epochs (the lower three figures). x-axis repre-
sents the index of sorted eigenvalues and y-axis is the normalized
eigenvalue (the ratio to the largest one). The results are averaged
over 10 random initialization with 95% confidence intervals.
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Figure 3: Evolving of NESum
as the training epoch increases,
with different regularization
factors.

Empirical justification. We train a 3-layer MLP model using Eq. 1 on Cora dataset. The embed-
ding dimension is set as 512 and the regularization works on the output of the penultimate layer. To
study the dimensional collapse phenomenon, we plot the decay of the eigenvalues of node embed-
dings’ correlation matrix with different strengths of regularization as the training epochs increase in
Fig. 2 (here we only plot the top-8 eigenvalues for better visualization, while deferring the original
results in Appendix C.4), from which we can easily see that: without Laplacian regularization,
the top-C largest eigenvalues (where C is the number of classes, and C = 7 for Cora) are easily
preserved by the model. This means the model learns to discriminate between different classes.
However, when we increase the Laplacian regularization factor λ, we notice an increasing decay
rate of top eigenvalues. As the top eigenvalues indicate the realistic embedding dimension that takes
effect, we conclude that a large decay rate degrades the importance of the spaces induced by other
eigenvalues, thus leading to feature collapse issues.

Besides, we employ normalized eigenvalue sum (NESum) introduced in He & Ozay (2022) as a metric
to measure the extent of dimensional collapse. Formally, NESum is defined as the ratio between the
summation of eigenvalue and the largest one: NESum({λC

i }) ≜
∑d

i=1 λ
C
i /λC

1 . Intuitively, a large
NESum value indicates that the eigenvalues are fluently distributed, while a very small one indicates
the dimensional collapse phenomenon (the largest eigenvalue becomes dominant).

In Fig. 3, we plot the evolution of NESum with different regularization strengths. It is observed
that 1) NESum decreases as training goes on because the model learns to pay more attention to
important features for downstream classification tasks. 2) NESum trained with purely cross-entropy
loss converges to a high value., which is because the top-C eigenvalues are preserved. 3) With
additional Laplacian regularization, NESum decreases quickly and converges to a small value even if
the regularization factor λ is small. The above observations demonstrate that Laplacian regularization
leads to a larger decay rate of top eigenvalues. The significant decay rate will make the learned
representations less informative as the model focuses much more on the dominant eigenvalue rather
than equal to the top eigenvalues.

4 PROPOSED REMEDY: OVERCOMING DIMENSIONAL COLLAPSE VIA
ORTHOGONALITY REGULARIZATION

4.1 EXPLICIT REGULARIZATION ON THE CORRELATION MATRIX

Our thorough analysis in Sec. 3 reveals that the poor performance of GR-MLPs could be attributed to
less-expressive node representations (due to dimensional collapse). Specifically, we establish that the
eigenspectrum of the embeddings’ correlation matrix is dominated by the largest eigenvalue (different
dimensions are over-correlated).
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In contrast to dimensional collapse, whitened representations have an identity correlation matrix
with equally distributed eigenvalues. Motivated by this, a natural idea should be enforcing a soft
regularization term on the correlation matrix of node embeddings, e.g., minimizing the distance
between C and the identity matrix I:

ℓcorr_reg = ∥C − I∥2F =

d∑
i=1

(1− Cii)
2 +

∑
i ̸=j

C2
ij =

∑
i̸=j

C2
ij . (5)

Note that the on-diagonal terms Cii = 1 for all i, so Eq. 5 is essentially forcing the off-diagonal terms
of the correlation matrix to become zero, or in other words, making the embeddings orthogonal, so
that different dimensions of node embeddings can capture orthogonal information. One may directly
equip Eq. 5 with existing GR-MLPs for alleviating the dimensional collapse issue. However, we
would like to design a more general, flexible, and elegant formulation that can handle high-order
connectivity and non-homophily graphs (Pei et al., 2020; Zheng et al., 2022). We then introduce
ORTHO-REG, a powerful and flexible GR-MLP model, step by step.

4.2 GRAPH-REGULARIZED MLP WITH ORTHO-REG

Similar to previous GR-MLPs, we first use an MLP encoder to map raw node features to the
embeddings. This process can be formulated as H = MLPθ(X), where X = {xi}|V|

i=1 is raw node
features while H = {hi}|V|

i=1 is the embedding matrix.

The next question is what kind of graph structure information is more beneficial. Previous GR-MLPs
either resort to edge-centric smoothing (Zhou et al., 2003; Ando & Zhang, 2006) or node-centric
matching (Yang et al., 2021; Hu et al., 2021). While recent studies indicate that the node-centric
method is more appropriate for node-level tasks as edge-centric methods overemphasize the ability
to recover the graph structure (Yang et al., 2021). Inspired by this, we employ a neighborhood
abstraction operation to summarize the neighborhood information as guidance of the central node.
Formally, for a node i ∈ V and the embeddings of its (up-to) T -hop neighbors {hj}(1:T )(i), we can
get the summary if its T -hop neighborhoods through a pooling function si = Pool({hj}(1:T )(i)).
The exact formulation of the pooling function could be flexible to fit graphs with different properties.
However, here we consider a simple average pooling of node embeddings from different order’s
neighborhoods for simplicity, which can work in most cases:

S =

T∑
t=1

ÃtH/L, where Ã = AD−1. (6)

To make the node embeddings aware of structural information, we employ the following regularization
term on the cross-correlation matrix of node embeddings H and summary embeddings S:

Lreg = −α

D∑
k=1

Ckk + β
∑
k ̸=k′

C2
kk′ , (7)

where C = {Ckk′} ∈ RD×D is the cross-correlation matrix of H and S. We show in the following
theorem that with Eq. 7, the node embeddings will be locally smoothed and at the same time, prevent
dimensional collapse:
Theorem 2. Assume T = 1 and H are free vectors. Let H∗ be a global optimizer of Eq. 7, then H∗

is smoothed over the graph structure and is orthogonal.

See proof in Appendix A.3. Finally, we can employ an additional linear layer to make predictions
Y = LINϕ(H). Then the final objective function to be optimized is:

L = ℓxent(Y
L, Ŷ L)− α

D∑
k=1

Ckk + β
∑
k ̸=k′

C2
kk′ , (8)

where α, β are trade-off hyperparameters to balance the strengths of regularization.
Remark 2. With a well-trained model, we can give prediction for an upcoming node with feature x
with y = Linϕ(MLPθ(x)) quickly, and without the help of graph structure.
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Table 1: Prediction accuracy of semi-supervised node classification tasks on the seven benchmark
graphs. ORTHO-REG outperforms powerful GNN models and competitive MLP-architectured
baselines on 6 out of 7 datasets.

Methods Cora Citeseer Pubmed Computer Photo CS Physics

GNNs
SGC 81.0±0.5 71.9±0.5 78.9±0.4 80.6±1.9 90.3±0.8 87.9±0.7 90.3±1.4
GCN 82.2±0.5 71.6±0.4 79.3±0.3 82.9±2.1 91.8±0.6 89.9±0.7 91.9±1.2
GAT 83.0±0.7 72.5±0.7 79.0±0.3 82.5±1.6 91.4±0.8 90.5±0.8 92.3±1.5

KD-MLPs GLNN 82.6±0.5 72.8±0.4 80.2±0.6 82.1±1.9 91.3±1.0 92.6±1.0 93.3±0.5

GR-MLPs

MLP 59.7±1.0 57.1±0.5 68.4±0.5 62.6±1.8 76.2±1.4 86.9±1.0 89.4±0.7
Lap-Reg 60.3±2.5 58.6±2.4 68.7±1.4 62.6±2.0 76.4±1.1 87.9±0.6 89.5±0.5
P-Reg 64.4±4.5 61.1±2.1 72.3±1.7 68.9±3.3 79.7±3.7 90.9±1.9 91.6±0.7
GraphMLP 79.5±0.6 73.1±0.4 79.7±0.4 79.3±1.7 90.1±0.5 90.3±0.6 91.6±0.8
N2N 83.2±0.4 73.3±0.5 80.9±0.4 81.4±1.6 90.9±0.7 91.5±0.7 91.8±0.7

Ours ORTHO-REG 84.7±0.4 73.5±0.4 82.8±0.5 83.7±1.5 92.3±1.0 92.9±1.1 92.8±0.8

5 EXPERIMENTS

In this section, we conduct experiments to evaluate ORTHO-REG by answering the following research
questions:

• RQ1: What’s the performance of ORTHO-REG on common transductive node classification
tasks compared with GNN models and other MLP models? (Sec. 5.2)

• RQ2: On cold-start settings where we do not know the connections of testing nodes, can
ORTHO-REG demonstrate better performance than other methods? (Sec. 5.3)

• RQ3: Does ORTHO-REG mitigate the dimensional collapse issue, and is each design of
ORTHO-REG really necessary to its success? (Sec. 5.4)

• RQ4: Can ORTHO-REG demonstrates better robustness against structural perturbations
compared with Graph Neural Networks? (Sec. 5.5)

Due to space limits, we defer the experiments on heterophily graphs and scalability comparison
in Appendix C.2 and Appendix C.3, respectively. A brief introduction of the baselines is given in
Appendix B.3.

5.1 EXPERIMENT SETUPS

Datasets. We consider 7 benchmark graph datasets and their variants in this section:
Cora, Citeseer, Pubmed, Amazon-Computer, Amazon-Photo, Coauthor-CS, and
Coauthor-Physics as they are representative datasets used for semi-supervised node classi-
fication (Kipf & Welling, 2017; Hu et al., 2021; Zhang et al., 2021; Zheng et al., 2021). The
detailed introduction and statistics of them are presented in Appendix B. To evaluate ORTHO-REG
on large-scale graphs, we further consider two OGB datasets (Hu et al., 2020): Ogbn-Arxiv
and Ogbn-Products. Note that the two OGB datasets are designed for fully-supervised node
classification tasks, so we defer their results to Appendix C.

Implementations. If not specified, we use a two-layer MLP model as the encoder to generate node
embeddings, then another linear layer takes node embeddings as input and outputs predicted node
labels. We use Pytorch to implement the model and DGL (Wang et al., 2019) to implement the
neighborhood summarizing operation in Eq. 6. If not specified, all our experiments are conducted on
an NVIDIA V100 GPU with 16G memory with Adam optimizer (Kingma & Ba, 2015).

5.2 TRANSDUCTIVE SEMI-SUPERVISED NODE CLASSIFICATION (RQ1)

We first evaluate our method on transductive semi-supervised node classification tasks. For com-
parison, we consider three types of baseline models: 1) Graph Neural Networks (GNNs), including
SGC (Wu et al., 2019a), GCN (Kipf & Welling, 2017) and GAT (Velickovic et al., 2018). 2) Repre-
sentative knowledge distillation (KD-MLP) method GLNN (Zhang et al., 2021). 3) Basic MLP and
GR-MLP models, including Laplacian Regularization (Lap-Reg, Zhou et al. (2003), Ando & Zhang
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Table 2: Test accuracy on the isolated nodes.

Methods Cora Citeseer Pubmed

GNNs GCN 53.02±1.78 47.09±1.38 71.50±2.21
GraphSAGE 55.38±1.92 41.46±1.57 69.87±2.13

KD-MLPs ColdBrew 58.75±2.11 53.17±1.41 72.31±1.99
GLNN 59.34±1.97 53.64±1.51 73.19±2.31

GR-MLPs

MLP 52.35±1.83 53.26±1.41 65.84±2.08
GraphMLP 59.32±1.81 53.17±1.48 72.33±2.11
ORTHO-REG (Ours) 61.93±1.77 56.31±1.54 73.42±1.99

Table 3: Effects of different components
of ORTHO-REG

Variants Cora Citeseer Pubmed

Baseline 84.7 73.5 82.8

α = 0 54.7 51.4 47.2
β = 0 79.3 68.7 76.8

T = 1 83.9 72.9 82.1
T = 2 84.7 73.5 82.8
T = 3 84.3 73.3 82.5

(2006)), Propagation Regularization (P-Reg, Yang et al. (2021)), GraphMLP (Hu et al., 2021), and
Node-to-Neighborhood Mutual Information Maximization (N2N, Dong et al. (2022))

For each dataset, we use 20 nodes per class for training, 500 nodes for validation, and another
1000 nodes for testing. For Cora, Citeseer, and Pubmed we use the public split, while for the
remaining datasets, we split randomly. We report the average prediction accuracy with standard
deviation over 20 random trials in Table 1.

As demonstrated in the table, ORTHO-REG outperforms previous GR-MLPs by a large margin,
which greatly validates the importance and effectiveness of orthogonal node embeddings. Compared
with the competitive knowledge distillation method GLNN, ORTHO-REG also demonstrates better
performance on 6 out of 7 graphs. It is also worth noting that our method even outperforms powerful
GNN models such as GCN and GAT, which indicates that node features of the graphs are less
exploited by these GNN models. In contrast, our method can fully exploit the potential of node
features.

5.3 INDUCTIVE NODE CLASSIFICATION FOR COLD-START SCENARIOS (RQ2)

To evaluate the performance of ORTHO-REG on cold-start scenarios where the connections between
newly encountered nodes and existing nodes are missing, we follow the setups in ColdBrew that
selects a proportion of nodes as isolated nodes which will be removed from the original graph. Then
the model is evaluated on the isolated nodes in the testing set. Due to the space limit, we present the
detailed setups and evaluation methods in Appendix B.2. Besides the baselines used in Zheng et al.
(2021), we also include GLNN for a fair comparison.

In Table. 2, we report the experimental results of ORTHO-REG and baseline methods on the isolation
nodes. As demonstrated in the table, for isolated nodes whose connectivity in the graph is unknown,
GNN models perform poorly as they require both the node features and graph structure for accurate
inference. By contrast, MLP-based models generalize better on isolated nodes as they make the
best of the available node features. The proposed ORTHO-REG outperforms both GNNs and MLPs
(including KD MLPs and GR-MLPs) baselines.

5.4 STUDIES OF ORTHO-REG (RQ3)

5.4.1 DOES ORTHO-REG MITIGATE DIMENSIONAL COLLAPSE?

In Sec. 3 we have attributed the limitation of previous GR-MLPs to the dimensional collapse
phenomenon, and in Sec. 4.2 we have proposed ORTHO-REG to mitigate such a problem from a
theoretical perspective. In this part, we would like to empirically show that ORTHO-REG can avoid
the dimensional collapse issue by keeping node embeddings’ eigenspectra.

In consistency with the settings in Sec. 3, we evaluate the embeddings learned from ORTHO-REG
at different training epochs (we take both Cora and Pubmed for illustrations). The decay of
eigenvalues of node embeddings’ correlation matrix at different epochs is plotted in Fig. 4 (a) and (c).
It is observed that the top eigenvalues are well-reserved thanks to the explicit regularization of node
embeddings’ correlation matrix. In Fig. 4 (b) and (d) we also plot the change of testing accuracy as
well as the NESum value as the training epoch increases, from which we could observe a positive
relationship between the NESum value and the test accuracy: neglecting the initial oscillations, we
notice the test accuracy will grow smoothly as the NESum value increases and will reach its peak
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Figure 4: Visualization of ORTHO-REG’s impact
on node embeddings’ Eigenspectra on Cora and
Pubmed.
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Figure 5: Performance with different strengths of
edge masking ratios.

when NESum overwhelms (Cora) or converges (Pubmed). The above observations demonstrate that
ORTHO-REG does mitigate the dimensional collapse problem and lead to a more powerful model.

5.4.2 ABLATION STUDIES

We then conduct ablation studies to study the effect of different components of ORTHO-REG, and we
present the results in Table 3. We first study the impact of the two regularization terms by setting the
corresponding factors (α and β) to 0, respectively. When α = 0 (i.e., only decorrelating different
dimensions), we observe that the model’s performance is even worse than the pure MLP model (see
in Table 1). This indicates that adding orthogonal regularization is not always beneficial (e.g., for
vanilla MLP), but is indeed beneficial for GR-MLPs. By contrast, without orthogonal regularization
(i.e., β = 0), the power of structure regularization is restricted, and decorrelating different dimensions
can boost performance greatly. We further investigate whether considering a larger neighborhood
would improve the model’s performance. The empirical results demonstrate that considering a larger
neighborhood improves the performance compared to only using first-order neighborhoods, but
T = 2 is already optimal for most datasets.

5.5 ROBUSTNESS AGAINST STRUCTURAL PERTURBATIONS (RQ4)

Finally, we study the robustness of ORTHO-REG against attacks on the graph structures compared
with GNN models. As ORTHO-REG uses node features rather than a combination of node features and
edges for prediction, we expect it to demonstrate better robustness under mild structural perturbations.
To reach this target, we randomly mask a fraction of the edges of the graph and evaluate the
performance of ORTHO-REG and GCN under different edge-masking ratios. In Fig. 5, we plot
how the model’s performance changes (with standard deviation) as the masking ratio increases with
20 random trials. As demonstrated in Fig. 5, our method demonstrates better robustness against
moderate-level edge perturbations. This is because we do not explicitly use the graph structure for
generating predictions, making ORTHO-REG less sensitive to perturbations on the graph structure.

6 CONCLUSIONS

In this paper, we have proposed ORTHO-REG, a novel Graph-Regularized MLP method for node
representation learning. We show that simple graph regularization methods can cause dimensionally
collapsed node embeddings both theoretically and empirically. We show that the proposed ORTHO-
REG, which enforces the orthogonality of the correlation matrix of node embeddings, can naturally
avoid the feature collapse phenomenon. We have conducted extensive experiments, including
traditional transductive semi-supervised node classification tasks and inductive node classification for
cold-start nodes, demonstrating the superiority of ORTHO-REG.
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A PROOFS

A.1 PROOFS FOR LEMMA 1

Proof. First, let’s take the gradient of the regularization loss Lreg with respect to the weight matrix
W :

∂Lreg

∂W
=
∂ tr(H⊤LH)

∂W

=
∂ tr((XW )⊤L(XW ))

∂W

=2X⊤LXW

=2PW

(9)

Treat the weight matrix as a function of the training step t, i.e., W = W (t), then we can derive the
gradient of W (t) with respect to t by dW (t)

dt = 2PW . As both X and L are fixed, we can solve the
equation analytically,

W (t) = exp(P t) ·W (0). (10)
As we have the non-ascending eigenvalues of P as λP

1 ≥ λP
2 ≥ · · · ≥ λP

D , we can define an auxiliary
function f(t;λP

i , λP
j ) = exp(λP

i t)/ exp(λP
j t) = e(λ

P
i −λP

j )t. It is obvious that f(t;λP
i , λP

j ) is
monotonically decreasing for all j ≥ i. As W (t) is a transformation of its initial state W (0) up to
exp(P t), we can easily conclude that

σW
i (t)

σW
j (t)

≤ σW
i (t′)

σW
j (t′)

, ∀ t < t′ and i ≤ j. (11)

If we further have the condition that λP
1 ≥ · · · ≥ λP

d > λP
d+1 ≥ · · · ≥ λP

D , we have
lim
t→∞

f(t;λP
i , λP

j ) = 0,∀i ≤ d, j ≥ d+ 1. Then we are able to complete the proof.

A.2 PROOFS FOR THEOREM 1

Proof. The embedding space is identified by the eigenspectrum of the correlation (covariance) matrix
C of node embeddings H . As H = XW , its correlation matrix can be (simply) identified as:

C =

N∑
i=1

(hi − h)⊤(hi − h)/N

=

N∑
i=1

W⊤(xi − x)⊤(xi − x)W /N.

(12)

According to Lemma 1, W has shrinking singular values, so C has vanishing eigenvalues, indicating
collapsed dimensions.

Specially, when the input features have an identity matrix, we have:

C =

N∑
i=1

W⊤(xi − x)⊤(xi − x)W /N.

=W⊤
N∑
i=1

(xi − x)⊤(xi − x)

N
W

=W⊤W .

(13)

Thus, for C’s eigenvalues {λC
i }Di=1, we have λC

i = (σW
i )2. Then Theorem 1 can be easily concluded

with Lemma 1.
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A.3 PROOFS FOR THEOREM 2

Proof. Note that we aim to optimize the following objective function (Eq. 7):

L = −α

D∑
k=1

Ckk + β
∑
k ̸=k′

C2
kk′ .

As the first term applies only on the on-diagonal terms of the correlation matrix and the second term
applies only on the off-diagonal terms, we are able to study the effects of two terms respectively:

Lon−diag = −α

D∑
k=1

Ckk

Loff−diag = β

D∑
k ̸=k′

C2
kk′

(14)

For the on-diagonal terms Lon−diag, as we have set T = 1, we have C =
N∑
i=1

his
⊤
i /N , and

Ckk =
N∑
i=1

(hi)k · (si)k/N (the subscript k denotes the k-th dimension). Then,

∂Ckk

∂(hi)k
=

1

N
(si)k, and

∂Ckk

∂(hi)′k
= 0, ∀k′ ̸= k. (15)

As a result,

∂
D∑

k=1

Ckk

∂hi
=

1

N
si =

1

N

∑
j∈N (i) hj

|N (i)|
. (16)

Eq. 16 indicates that the on-diagonal terms force each node embedding to be smoothed within its
first-order neighborhoods.

Then we turn to the off-diagonal terms Loff−diag. Similarity, we have Ckk′ =
N∑
i=1

(hi)k · (si)k′/N .

As for both H and S, the diagonal term of their correlation matrixes for each dimension should be
equal to 1, formally,

N∑
i=1

(hi)
2
k

N
=

N∑
i=1

(si)
2
k

N
= 1. (17)

Then according to Cauchy–Schwarz inequality, we have:[
N∑
i=1

(hi)k · (si)k

]2

≤

[
N∑
i=1

(hi)
2
k

][
N∑
i=1

(si)
2
k

]
= N2

N∑
i=1

(hi)k · (si)k

N
≤ 1

, (18)

and the equality holds if and only if (hi)k = (si)k,∀i. As a result, the global optimizer of Lon−diag

will induce hi = si,∀i. Then, when Ckk′ = 0, k ̸= k′, we have:

N∑
i=1

(hi)k · (si)k′/N =

N∑
i=1

(hi)k · (hi)k′/N = Cauto
kk′ = 0, (19)

where Cauto is the auto-correlation matrix of H . So we’ve completed the proof.
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B EXPERIMENT DETAILS IN SECTION 5

B.1 DATASETS DETAILS

We present the statistics of datasets used in transductive node classification tasks in Table 4, including
the number of nodes, number of edges, number of classes, number of input node features as well as
the number of training/validation/testing nodes.

Table 4: Statistics of benchmarking datasets in transductive settings

Dataset #Nodes #Edges #Classes #Features #Train/Val/Test

Cora 2,708 10,556 7 1,433 140/500/1000
Citeseer 3,327 9,228 6 3,703 120/500/1000
Pubmed 19,717 88,651 3 500 60/500/1000
Coauthor-CS 18,333 327,576 15 6,805 300/500/1000
Coauthor-Physics 34,493 991,848 5 8,451 100/500/1000
Amazon-Computer 13,752 574,418 10 767 200/500/1000
Amazon-Photo 7,650 287,326 8 745 160/500/1000

For the inductive node classification tasks in cold-start settings, we also present the statistics of Cora,
Citeseer and Pubmed in Table 5, where we provide the number of isolated nodes, the number of
tail nodes as well as the number of edges left after removing the isolated nodes from the graph.

Table 5: Statistics of benchmarking datasets in inductive settings

Dataset #Nodes #Edges #Isolated #Tail #Edges left

Cora 2,708 10,556 534 534 9,516
Citeseer 3,327 9,228 676 676 7,968
Pubmed 19,717 88,651 4,547 4,547 79,557

B.2 DETAILS OF EXPERIMENTS ON COLD-START SCENARIOS (SEC. 5.3)

In this section, we detailedly elaborate how the inductive isolated nodes are selected. Note that our
processing directly follows the officially-implemented codes1 in ColdBrew (Zheng et al., 2021). For
each dataset, we first rank among the nodes according to their node degrees, through which we are
able to get the degree of the bottom 3th percentile node, termed by d3th. Then we screen out nodes
whose degree is smaller than or equal to d3th as isolated nodes, which are subsequently removed
from the original graph.

Note that in these datasets most of nodes only have a few connections (e.g. 1 or 2), the actually
numbers of isolated nodes and tail nodes are usually much larger than the expected 3%. See Table 5
for details.

For each dataset, we use the fixed 20 nodes per class (as in the public split) for training and all the
remaining nodes for testing.

B.3 INTRODUCTION OF BASELINES

In Sec. 5.1 we’ve briefly introduced the baselines for comparison, here we’d like to detailedly
introduce the MLP-based baselines.

KD-MLPs: We have covered two KD-MLP models: GLNN (Zhang et al., 2021) and Cold-
Brew (Zheng et al., 2021).

1https://github.com/amazon-research/gnn-tail-generalization
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• GLNN: As a typical GNN-to-MLP knowledge distillation method, given the predicted soft
labels from a well-learned GNN model {zi}, GLNN learns an MLP model through jointly
optimizing the supervised loss on labeled nodes and the cross-entropy loss between MLP’s
predictions and GNN’s predictions over all nodes:

Lglnn =Lsup + λLkd

Lsup =
∑
i∈VL

ℓxent(y, ŷ) and Lkd =
∑
i∈V

DKL(ŷi, zi), (20)

where λ is a trade-off hyperparameter.
• ColdBrew: As another KD-MLP model, ColdBrew is specially designed to handle cold-start

problems and has a totally different formulation compared with GLNN. First, it equips the
teacher GNN model with structural embedding so that it can overcome the oversmoothing
issue. Then, besides the knowledge distillation loss, it discovers the virtual neighborhood
of each node using the embedding learned from the student MLP. With this operation, the
model is able to estimate the possible neighbors of each node and thus can generalize better
in inductive cold-start settings.

GR-MLPs: We then introduce the covered GR-MLP models, including Lap-Reg (Zhou et al., 2003;
Ando & Zhang, 2006), P-Reg (Yang et al., 2021) and GraphMLP (Hu et al., 2021) detailedly. Besides
the basic supervised cross-entropy loss, GR-MLPs employ a variety of regularization losses to inject
the graph structure knowledge into the learning of MLPs implicitly.

• Lap-Reg: Based on the graph homophily assumption, Lap-Reg enforces Laplacian smooth-
ing on the predicted node signals over the graph structure. Its regularization target could be
formulated as:

Llap−reg = tr(Y ⊤LY ), (21)
where Y the predicted node signals and L is the Laplacian matrix of the graph.

• P-Reg: Similar to Lap-Reg, P-Reg is also built on top of the graph homophily assumption.
However, instead of using edge-centric smoothing regularization, P-Reg employs a node-
centric proximity preserving term that maximizes the similarity of each node and the average
of its neighbors. The regularization objective could be formulated as:

LP−reg =
1

N
ϕ(H, ÃH), (22)

where ÃH is the propagated node embedding matrix, and ϕ is a function that measures the
difference between H and ÃH , which could be implemented with a variety of measures
like Square Error, Cross Entropy, Kullback-Leibler Divergence, etc.

• Graph-MLP: Inspired by the success of contrastive learning, Graph-MLP tries to get rid of
GNN models by contrasting between connected nodes. Formally:

Lgraph−mlp =
1

N

N∑
i=1

− log

∑
j∈N (i)

exp(sim(hi,hj)/τ)∑
k∈V

exp(sim(hi,hk)/τ)
. (23)

The final objective function is also a trade of between the supervised cross-entropy loss and
the regularization loss.

C ADDITIONAL EXPERIMENTS

C.1 EXPERIMENTS ON OGB-GRAPHS

To study the effectiveness of ORTHO-REG on large-scale graphs, we conduct experiments on two
large-scale graphs: Ogbn-Arxiv and Ogbn-Products, and we present the results in this section.

The statistics of the two datasets in the transductive setting and the inductive cold-start setting are
presented in Table 6 and Table 7. Note that the official split of OGB datasets is different from other
datasets in Sec. 5 and does not follow the semi-supervised setting.
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Table 6: Statistics of OGB datasets in transductive settings

Dataset #Nodes #Edges #Classes #Features #Train/Val/Test

Ogbn-Arxiv 169,343 2,332,486 40 128 90,941 / 29,799 / 48,603
Ogbn-Products 2,449,029 123,718,024 47 100 196,615 / 39,323 / 2,213,091

Table 7: Statistics of OGB datasets in inductive settings

Dataset #Nodes #Edges #Isolated # Nodes left # Edges left

Ogbn-Arxiv 169,343 2,332,486 16,934 152,409 2,298,618
Ogbn-Products 2,449,029 123,718,024 244,902 2,204,127 123,661,058

For fair comparison, we use the same model size (i.e., the number of parameters) for each model. We
train each model for 10 times on each dataset and report the average accuracy with standard deviation
on transductive setting and inductive cold-start setting in Table 8 and Table 9 respectively.

Table 8: Test accuracy on OGB datasets in trans-
ductive settings.

Methods Ogbn-Arxiv Ogbn-Products

GNNs GCN 71.74±0.29 75.26±0.21
SAGE 71.49±0.27 78.61±0.23

KD-MLPs GLNN 69.37±0.25 75.19±0.34

GR-MLPs

MLP 56.28±0.37 61.06±0.08
Lap-Reg 57.83±0.52 65.91±0.31
P-Reg 58.41±0.45 65.32±0.28
GraphMLP 61.11±0.36 68.54±0.33

Ours ORTHO-REG 70.35±0.22 74.35±0.19

Table 9: Test accuracy on the isolated nodes of
OGB datasets.

Methods Ogbn-Arxiv Ogbn-Products

GNNs GCN 44.51±0.85 56.62±1.12
GraphSAGE 47.32±0.89 57.88±1.01

KD-MLPs ColdBrew 52.36±0.84 61.64±0.98
GLNN 53.18±1.05 63.09±0.87

GR-MLPs

MLP 51.03±0.75 60.18±0.84
Lap-Reg 51.87±0.81 60.47±0.77
P-Reg 51.79±0.88 60.59±0.91
GraphMLP 52.21±0.91 61.12±0.98
ORTHO-REG (Ours) 54.51±0.77 63.95±0.74

As demonstrated in Table 8, though under-performing GNN models, ORTHO-REG gives quite good
performance (which are very close to that of GNNs) on these two datasets. On inductive cold-start
prediction tasks, ORTHO-REG also outperforms both GNN models and other MLP models.

C.2 EXPERIMENTS ON HETEROPHILY GRAPHS

Then we study the generalization ability of ORTHO-REG on heterophily (non-homophily) graphs.
We first give the formal definition of graph homophily ratio as follows:

Definition 1. (Graph Homophily Ratio) For a graph G = (V, E) with adjacency matrix A, its
homophily ratio ϕ is defined as the probability that two connected nodes share the same label:

ϕ =

∑
i,j∈V Aij · 1[yi = yj ]∑

i,j∈V Aij
=

∑
i,j∈V Aij · 1[yi = yj ]

|E|
(24)

The evaluated datasets previously are all homophily graphs, where connected nodes tend to share
the same labels. To evaluate ORTHO-REG more extensively we consider three more widely used
heterophily graphs: Chameleon, Squirrel and Actor. We provide statistics of the three datasets
in Table 10.

For heterophily graphs where the graph homophily assumption does not hold (McPherson et al., 2001;
Ciotti et al., 2016), it might be improper to enforce node embeddings/predictions to be smoothed over
the graph structure. As a result, we modify the neighborhood abstraction function so that it can better
adjust to heterophily graphs. Specifically, we adopt the following function to construct summary
embedding:

S = Ã2H/T. (25)

Compared with Eq. 6, we use only the second neighbors for heterophily graphs. We present the results
on the three heterophily graphs in Table 11. For comparison with GNN models, we cover additional
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Table 10: Statistics of heterophily graphs

Dataset #Nodes #Edges #Classes #Features Heterophily ratio ϕ

Chameleon 2,277 36,101 5 2,325 0.25
Squirrel 5,201 217,073 5 2,089 0.22
Actor 7,600 33,544 5 931 0.24

Table 11: Performance on heterophily graphs

Methods Chameleon Squirrel Actor

GNNs Geom-GCN 67.32±1.76 46.01±1.27 30.59±0.76
GPRGNN 66.31±2.05 50.56±1.51 30.78±0.83

KD-MLPs GLNN 60.58±1.72 43.72±1.16 34.12±0.77

GR-MLPs
MLP 47.59±0.73 31.67±0.61 35.93±0.61
Lap-Reg 48.72±1.52 30.44±0.97 33.71±0.59
ORTHO-REG (ours) 63.55±0.83 48.72±0.93 36.64±0.67

two GNN models that specifically designed for handle heterophily graphs: Geom-GCN (Pei et al.,
2020) and GPRGNN (Chien et al., 2021)

As demonstrated in the Table, though can’t match the performance of advanced GNN models on
heterophily graphs, our method greatly narrows the gap between MLPs and GNNs. Specifically,
on heterophily graphs where GNNs even perform worse than the vanilla MLP, our model is able to
achieve even better performance, thanks to the MLP-based encoder and the regularization loss.

C.3 SCALABILITY TEST

Finally, we show that with an MLP model as encoder, ORTHO-REG is able to perform inference fast
without the reliance on graph structure. We plot the inference time of ORTHO-REG and GraphSAGE
on Ogbn-Products with different model depths in Fig. 6. The result demonstrates the superiority
of the inference benefit of ORTHO-REG over GNN models.
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Figure 6: The inference time comparison of GraphSAGE and ORTHO-REG on Ogbn-Products.
ORTHO-REG is able to perform inference much faster than GraphSAGE.

C.4 COMPLETE EMPIRICAL RESULTS FOR SEC. 3

In Fig. 2, we only plot the evolving of top-8 eigenvalues for better visualization. Here, we plot the
evolving of all 512 eigenvalues. We also provide the result when λ = 0.01 for better comparison.
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Figure 7: Eigenspectra for node embeddings with different strengths of Laplacian regularization (λ).
The node embeddings are from the second last layer, with a dimension d = 512. x-axis represents
the index of sorted eigenvalues while y-axis is the corresponding normalized values.

C.5 SENSITIVITY ANALYSIS OF TRADE-OFF HYPERPARAMETERS
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Figure 8: Performance heat map when using different α, β combinations in Eq. 7, on Cora,
Citeseer and Pubmed.

In this section, we study how the two trade-off hyperparameters α and β affects the performance of
ORTHO-REG. We try different combinations of α and β on Cora, Citeseer, and Pubmed, and
plot the performance heatmap in Fig. 8.

The conclusion is very interesting: the performance of ORTHO-REG is not very sensitive to a specific
value of α or β. In other words, for a reasonable value of α (β), we can easily find another value
of β (α) that can achieve similarly high performance. The ratio between α and β seems much
more important. From Fig. 8, we can observe that for Cora, α/β = 2 ∗ 103, and for Pubmed,
α/β = 1 ∗ 103 can lead to the optimal performance; changing the value of α while fixing α/β will
not change the performance very much.

D REPRODUCIBILITY

Please check the supplementary material.

E RELATIONSHIP BETWEEN DIMENSIONAL COLLAPSE AND LINEAR
CLASSIFICATION PERFORMANCE

In Sec. 3, we mainly demonstrate that the dimensional collapse phenomenon does exist in the typical
GR-MLP method Laplacian Regularization. In this section, we’d like to use a simple example to
explain why dimensional collapse may lead to limited expression power and sub-optimal linear
classification performance, which will better support the motivation of this work.

To simplify the analysis, we consider a two-class classification problem where each data point is
embedded in 2-dimensional space R2. The two dimensions are denoted by e1 and e2, respectively. In
Fig. 9, we consider three cases: 1) complete dimensional collapse where the embeddings fall on a line
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Figure 9: How dimensional collapse affects the performance of linear classification. Left: complete
dimensional collapse; Mid: weak dimensional collapse; Right: perfectly decorrelated features.

(the left case); 2) weak dimensional collapse where the variance of the larger eigenvalue’s direction is
much larger than the other one (the middle case); 3) perfectly decorrelated features where the two
eigenvalues’ direction are equally important (the right case). We assume that the labels of training
data are generated according to ŷ = sgn(e2 − e1), i.e., the data point will be labeled as class 1 when
e2 > e1, and class 2 otherwise. As a result, an obvious linear decision boundary will be e2 − e1.

In the first case (complete dimensional collapse), the data points cannot be linearly classified as they
all fall on the same line. In the remaining two cases, data points belonging to two different classes can
be easily separated with the decision boundary illustrated above. However, the above results only hold
when the data points and labels are generated exactly following the above assumption, which is hard
to meet. In many cases, the input data might be noisy, leading to shifting in its final representation.
As shown in the circled areas in Fig. 9, when the embedding shift phenomenon occurs (from the
brown triangle to the brown triangle) in the weak dimensional collapse case, the shifted embedding
can be easily misclassified by the original linear classifier, even if the original embedding is already
far from the decision boundary. By contrast, for perfectly decorrelated features, the embeddings can
show better tolerance for data noise. Besides, decorrelated features can also show better robustness to
attacks and better generalization ability to testing data, thanks to a wider embedding space for each
class separated by the decision boundary.
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