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ABSTRACT

Learning an effective global model on private and decentralized datasets has be-
come an increasingly important challenge of machine learning when applied in
practice. Federated Learning (FL) has recently emerged as a solution to address
this challenge. In particular, the FL clients agree to a common model parameteri-
zation in advance, which can then be trained collaboratively via synchronous ag-
gregation of local model updates. However, such a strong requirement of model-
ing homogeneity and synchronicity across clients makes FL inapplicable to many
practical scenarios. For example, in distributed sensing, a network of heteroge-
neous sensors sample from different data modalities of the same phenomenon.
Each sensor thus requires its own specialized model. Local learning therefore hap-
pens in isolation but inference still requires merging the local models to achieve
consensus.
To enable isolated local learning and consensus inference, we investigate a feature
fusion approach that extracts local feature representations from local models and
incorporates them into a global representation for holistic prediction. We study
two key aspects of this feature fusion. First, we use alignment to correspond
feature components which are arbitrarily arranged across clients. Next, we learn
a consensus graph that captures the high-order interactions among data sources or
modalities, which reveals how data with heterogeneous features can be stitched
together coherently to achieve a better prediction. The proposed framework is
demonstrated on four real-life data sets including power grids and traffic networks.

1 INTRODUCTION

To improve the scalability and practicality of machine learning applications in situations where train-
ing data are becoming increasingly decentralized and proprietary, Federated Learning (FL) (McMa-
han et al., 2017; Yang et al., 2019a; Li et al., 2019; Kairouz et al., 2019) has been proposed as a new
model training paradigm that allows data owners to collaboratively train a common model without
having to share their private data with others. The FL formalism is therefore poised to resolve the
computation bottleneck of model training on a single machine and the risk of privacy violation, in
light of recent policies such as the General Data Protection Regulation (Albrecht, 2016).

However, FL requires a strong form of homogeneity and synchronicity among the data owners
(clients) that might not be ideal in practice. First, it requires all clients to agree in advance to
a common model architecture and parameterization. Second, it requires clients to synchronously
communicate their model updates to a common server, which assembles the local updates into a
global learning feedback. This is rather restrictive in cases where different clients draw observations
from a different data modality of the phenomenon being modeled. It leads to heterogeneous data
complexities across clients, which in turn requires customized forms of modeling. Otherwise, en-
forcing a common model with high complexity might not be affordable to clients with low compute
capacity; and vice versa, switching to a model with low complexity might result in the failure to
unlock important inferential insights from data modalities.

A variant of FL (Hardy et al., 2017; Hu et al., 2019; Chen et al., 2020), named vertical FL, has been
proposed to address the first challenge, which embraces the concept of vertically partitioned data.
This concept is figuratively named through cutting the data matrix vertically along the feature axis,
rather than the data axis. Existing approaches generally maintain separate local model parameters
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distributed across clients and global parameters on a central server. All parameters are then learned
jointly, causing however a practical drawback:

Coordination overhead among clients and the central server, such as engineering protocols
that enable multiple rounds of communication (i.e., synchronicity) and coordination effort
(i.e., homogeneity) to converge on universal choices of models and training algorithms, would
be required, which can be practically expensive depending on the scale of the application.

To mitigate both constraints on homogeneity and synchronicity1 satisfactorily, we ask the following
question and subsequently develop an answer to it:

Can we separate global consensus prediction from local model training?

As shown later in our experiments, we will address this question in a real-world context of the
national electricity grid, over which thousands of phasor measurement units (PMUs) were deployed
to monitor the grid condition and data were recorded in real-time by each PMU (Smartgrid.gov).
PMU measurements, as time series data, are owned by several parties, each of which may employ
different technologies leading to heterogeneous recordings under varying sampling frequencies and
measured attributes. These data may be used to train machine learning models that identify grid
events (e.g., fault, oscillation, and generator trip). Such an event detection system relies on collective
series measurements at the same time window but distributed across owners. Using VFL to build a
common model on such decentralized and heterogeneous data is plausible but not practical, because
of a lack of autonomy that facilitates coordination among the owners.

To resolve the challenge, we instead introduce a feature fusion perspective to this setting, which
aims to minimize coordination among clients and maximize their autonomy via a local–global model
framework. Therein, each client trains a customized local model with its data modalities. The train-
ing is independent and incurs no coordination. Once trained, local feature representations of each
client can then be extracted from the penultimate layer of the corresponding local models. Then, a
central server collects and aggregates these representations into a more holistic global representa-
tion, used to train a model for global inference. There are two technical challenges that need to be
addressed to substantiate the envisioned framework.

C1. There is an ambiguity regarding the correspondence between components of local feature
representations across different clients. This ambiguity arises because local models were trained
separately in isolation and there is no mechanism to enforce that their induced feature dimensions
would be aligned. As a matter of fact, it is possible to permute the induced feature dimensions
without changing the prediction outcome. Thus, if two models are trained separately, they might
end up looking at the same feature space but with permuted dimensions.

C2. There are innate local interactions among subsets of clients that need to be accounted
for. Naively concatenating or averaging the local feature representations accounts for the global
interaction but ignores such local interactions, which are important to boost the accuracy of global
prediction as shown later in our experiments.

To address C1, note that the feature dimension alignment problem is discrete in nature; furthermore,
there is no direct feedback to optimize for such alignment. To sidestep this challenge, we develop a
neuralized alignment layer whose parameters are differentiable and can therefore be part of a larger
network, including the feature aggregation and prediction layers, which can be trained end-to-end
via gradient back-propagation (Section 4). To address C2, we employ graph neural networks as the
global inference model, where the graph corresponds to the explicit or implicit relational structure
of the data owners. As such a graph might not be given in advance, we treat the combinatorial graph
structure as a random variable of a product of Bernoulli distributions whose (differentiable) param-
eters can also be optimized via gradient-based approach (Section 5). The technical contributions of
this work are summarized below.

1. We formalize a feature fusion perspective for distributed learning, in settings where data is ver-
tically partitioned. This is an alternative view to VFL but as elaborated above, is more applicable
when iterative training synchronicity is not possible among clients (Section 2).

1Note that in our case, synchronicity requires co-training among clients which is a weaker constraint than
its usual meaning of further requiring clients to synchronize their updates per iteration.
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2. We formulate a federated feature fusion (F3) framework that consists of a network of pre-trained
local models and a central model that collects and fuses the local feature representations (induced
from these pre-trained models) to generate a global model with better predictive performance (Sec-
tion 3). This is achieved via addressing C1 (Section 4) and C2 (Section 5) above.

3. We demonstrate experiments with four real-life data sets, including power grids and traffic net-
works, and show the effectiveness of the proposed framework (Section 6).

2 PROBLEM SETTING AND RELATED WORK

Federated Feature Fusion (F3) is a new but more practical setup for VFL (Hu et al., 2019; Chen et al.,
2020); it aims to enable collaboration between data owners that possess private access to different
sets of features describing the same set of training data points. However, unlike VFL which require
clients to synchronize their training processes (Yang et al., 2019b; Li et al., 2021; Fu et al., 2021;
Cheng et al., 2021; Hu et al., 2019; Diao et al., 2021) in multiple iterations of communication,
F3 allows data owners to train their own local models in isolation and only requires one round of
communication in which local feature representations induced from the heterogeneously pre-trained
local models are shared with a trusted server for feature fusion.

Remark. Previously, similar ideas on extending federated learning to accommodate clients with
heterogeneous models (Tan et al., 2022b;a; Lin et al., 2020; Chen et al., 2022) has been proposed but
are still restricted to horizontal settings: Local models still need to operate on the same feature space
and cannot be trained in isolation which consequently require multiple rounds of communication and
potentially incur extra coordination overhead.

Thus, to emphasize on the novelty of our setting and solution significance, we further review and
discuss the formulation of VFL and F3 below, which argues with concrete, real-life examples why
the F3 setting is more practical and how this practicality would entail significant technical challenges
that necessitate new solutions in Sections 4 and 5.

Federated Learning with Vertically Partitioned Data. From a data perspective, the decentralized
nature of data in VFL is a transposition to that of the traditional horizontal federated learning (HFL)
(McMahan et al., 2017). Instead of owning the same set of features for different sets of data points
as in HFL, the data owners in VFL now own different sets of features for the same set of data points;
and they share a common label set of these data points.

From the existing literature, two lines of work are noted. One takes the data matrix literally – by
assuming tabular data and studying linear models – where model parameters have natural corre-
spondence to the data parts (Hardy et al., 2017; Nock et al., 2018; Heinze et al., 2014; 2016). Often,
these approaches are hard to generalize to complex data with many owners. Another line of work
advocates the use of models with modular structure in which separate parts of the model are respon-
sible to locally aggregate different sets of local features owned by different owners; and a global
parameterization is used to combine these local features. This is similar in spirit to F3 but require
clients to synchronize the training processes of their assigned model parts, which incurs expensive
communication and creates dependence among the clients (Hu et al., 2019; Chen et al., 2020).2

Mathematically, for each datum xk with label yk, let xi
k be the feature set of the datum that the i-th

owner possesses. That is, xk = (x1
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where each ϕi(x
i
k;θi) is a (learnable) local embedding of xi

k parameterized by a separate parameter
vector θi owned by the i-th owner, g(ϕ1, ϕ2, . . . , ϕn;w) is an aggregation function parameterized
by w and ℓ is a prediction loss, e.g. the cross-entropy loss for classification or ℓ2 loss for regression.
The loss in Eq. (1) is averaged over all training data points x1,x2, . . . ,xm.

Federated Feature Fusion. The setting of F3 is similar to VFL, except that the data owners share
neither data nor models with each other to ensure a higher degree of privacy compliance, which is

2Note that the approach proposed by Hu et al. (2019) assumes no parameters for the global model. Were
global parameters present, gradient communication is inevitable.
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often the more practical setting in industry – see the example on power grid at the end of this section.
For this reason, the VFL minimization task in Eq. (1) above is changed to

minimize
w
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where hi
k = ϕ∗

i (x
i
k) with ϕ∗

i = argminϕi
ℓi
(
ϕi(x

i
k), yk

)
which characterizes the locally optimal

feature representation obtained in isolation by the i-th owner. As such, Eq. (2) only requires one
round of communication where {hi

k}k,i are communicated to a trusted server. Prior to that, each
data owner can freely learn their own feature representation model ϕi(x

i
k) with different parame-

terization and architecture, catering towards their own compute capacities and data representation.
This avoids forcing the data owners to participate in a joint training scheme which often requires
expensive coordination and is not practical. However, in exchange for this practicality, two key
challenges arise. First, as local models are separately trained, the correspondence between compo-
nents of induced feature representations across local models become ambiguous since there is no
mechanism to enforce their alignment. Second, for the same reason, there are potential innate local
interactions among subsets of clients and a naive concatenation or averaging of their corresponding
feature presentations will likely ignore such interactions, resulting in decreasing performance. These
correspond to high-level challenge C1 and C2 in Section 1 which will be addressed in Sections 4
and 5 as our key technical contributions.

Figure 1: Federated Feature Fusion: A global pre-
diction is produced collectively based on a set of
global features which are the result of fusing lo-
cal feature representations supplied by the data
owners. These feature representations are induced
from locally trained models on raw local data
which might be heterogeneous.

Data Example. Let us consider the power
grid monitoring task as an example. Figure 1
pictorially illustrates PMU measurements dis-
tributed across data owners. A panel of time
series corresponds to a specific time window
and the series collectively represent one data
point, which the event detection system clas-
sifies. In this simplified illustration, each data
owner possesses one series recorded by one
PMU; but in practice they may own different
amounts of PMUs (and thus series). More-
over, the series may differ in length because
of varying sampling frequencies; and the series
are multivariate with possibly different number
of variates. All these variations contribute to
data heterogeneity, which necessitates the con-
struction of separate local models. Note that if
an event does not cascade over the entire grid,
some local models may report event whereas
others report normal, resulting in conflicting
opinions. A consensus global model is respon-
sible to resolve the conflict. Additionally, miss-
ing data may occur.

3 FEDERATED FEATURE FUSION FRAMEWORK

As detailed above, the proposed framework for Federated Feature Fusion consists of local models ϕi

and a global feature fusion model g, such that their composition minimizes the loss in Eq. (2). Each
data owner i possesses a local model trained with its data, independently of other owners. This way,
no data sharing is invoked and privacy is of minimal concern. However, because the local models
lack a global vision and may be conflicting, a central (global) model is key to coordinating the
local opinions for final prediction. To maintain autonomy, local models are frozen once pre-trained
and will not join the training of the global model. Data owners send local data representations to
a centralized server for global model training (and inference). In other words, the global model
queries neither the raw data nor the local models from data owners. As long as owners agree to send
the less decipherable representations to the central server, global inference can be made.

Local Models. We treat a neural network except the final output layer as a feature extractor, which
produces the representation hi

k of an input fragment xi
k; and treat for simplicity the output layer as
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Figure 2: Federated Feature Fusion Framework. Local models are trained independently and sepa-
rately from the global model. The algorithm is summarized in Algorithm 1.

a logistic regression. That is, a local model gi(xi
k) reads:

gi
(
xi
k

)
≜ softmax

(
Wi · hi

k + bi

)
where hi

k = ϕi

(
xi
k

)
. (3)

Hereafter, we will interchangeably use representation, embedding, and latent vector to mean hi
k.

These hi
k’s are assumed to have the same shape across i, although xi

k can have different shapes and
the embedding function can have different architectures to cope with data heterogeneity. A simple
example of the embedding function is a fully connected layer hi

k = ReLU(Ui · xi
k + ci); but an

arbitrarily complex function is also applicable.

Global Model. The global model g melds together all local representations to generate a prediction:

yk ≃ ŷk ≜ g
(
h1
k,h

2
k, . . . ,h

n
k ;w

)
. (4)

which is parameterized by w. For example, the parameterization w = {W0,W1,b0,b1} can
characterize a fully connected layer followed by mean pooling and another fully connected layer:

g
(
h1
k,h

2
k, . . . ,h

n
k ;w

)
= softmax

(
W1 ·

1

n

n∑
i=1

ReLU
(
W0 · hi

k + b0

)
+ b1

)
. (5)

Thus, given a particular parameterization w, we can substantiate Eq. (4) above and plug it into
Eq. (2). The optimal value for w can then be achieved by solving the corresponding minimiza-
tion task therein. However, designing the form of w is highly non-trivial and is in fact tied to the
previously mentioned challenges C1 and C2, which we further elaborate below.

Challenges. Two considerations are pertinent to the design of w. First, when the latent dimensions
have semantic meaning – e.g. when the local models are trained to yield disentangled representa-
tions (Higgins et al., 2018) – each latent feature of the local representations may not match, because
an arbitrary permutation of the latent dimensions does not change a local model. Second, a naive
mean pooling as in (5) may miss the interdependencies between local data, leading to a less well per-
forming global model. Such interdependencies naturally occur in the power grid example because of
the physics of an electricity network. Hence, in subsequent sections, we use latent alignment to ad-
dress the first problem and graph neural network to address the second one. Incorporating these two
components, we show the full proposed framework in Figure 2 and Algorithm 1. We now discuss
the solutions to these challenges in Sections 4 and 5 below.

4 ALIGNING LOCAL REPRESENTATIONS

For the global model to be meaningful, the feature dimensions of the local representations hi
k should

be aligned under the same feature space. For example, in (5), all hi
k’s multiply the same weight

matrix W0; in other words, each element of hi
k corresponds to one input neuron of the initial fully

connected layer. Permutations of the elements will destroy the correspondence. That is, even if
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Algorithm 1 Federated Feature Fusion (F3)

1: function TRAINING({(xi
k, yk)

m
k=1}ni=1)

2: Each data owner i trains a local model gi with its local data part (xi
k, yk)

m
k=1.

3: Each data owner i sends its local data representations {hi
k}mk=1 to the central server – Eq. (3)

4: Central server learns ŷk = g(P1h
1
k,P

2h2, . . . ,Pnhn) via Eq. (7).
5: Here, the global model is (8), where the loss is taken over the distribution of Â.
6: Entries of Â are sampled using (9).
7: Each alignment matrix P i is a learnable arbitrary parameter matrix.
8: end function

9: function INFERENCE(x1, . . . ,xm where xk = (x1
k, . . . ,x

n
k ))

10: Each data owner i evaluates its local model with xi
k to obtain hi

k and sends to server.
11: Server evaluates takes {hi

k}ni=1 as input and produces prediction via Eq. (5).
12: end function

the local models are fixed, the arbitrary arrangement of the feature dimensions of the latent vectors
causes ambiguity of what an optimal global model can be built.

Mathematically, let us use a vector p to denote the index (column) permutation of a vector (matrix).
Then, the ith local model (3) can be equivalently written as

gi
(
xi
k

)
≜ softmax

(
Wi [:,pi] · hi

k [pi] + bi [pi]
)

where hi
k ≜ ϕi

(
xi
k

)
, (6)

for any permutation pi as long as the embedding function is able to produce a permuted hi
k[pi] under

the same input xi
k. Such a requirement can be easily satisfied if the embedding function is a fully

connected layer such as h[p] = ReLU(W[p, :] · x + b[p]). In fact, it is satisfied by most neural
networks as well. In Appendix B, we give another example: the GRU (Cho et al., 2014).

Hence, we propose to align the feature dimensions across all local vectors hi
k to disambiguate the

ambiguity. This proposal amounts to modifying the global model (4) to the following:

yk ≃ ŷk ≜ g
(
P1 · h1

k,P2 · h2
k, . . . ,Pn · hn

k

)
, (7)

where Pi is an alignment matrix for each data owner i, implementing the (manual) index or column
permutation above in linear algebra. We can then treat each Pi as a free parameter matrix to opti-
mize. It may be square or rectangle, the latter case indicating a change of the number of features. We
also show an alternative hard alignment by parametrizing Pi a permutation matrix in Appendix H.

5 LEARNING A CONSENSUS GRAPH

The example global model (5) performs a naive averaging for the local representations. Since data
owners are often interconnected, a more expressive model exploits their relational interactions to
improve inference (Battaglia et al., 2018). To this end, we propose to use a graph neural network
(GNN) (Zhang et al., 2020; Wu et al., 2021) to process the latent representations.

A. Modeling Consensus Graph via GCN with Latent Graph. Many GNNs are applicable; we
focus on GCN (Kipf & Welling, 2017) for its simplicity. Let A be the graph adjacency matrix and
let Hk be the matrix of aligned local representations:

Hk ≜

−(P1h
1
k)

⊤−
...

−(Pnh
n
k )

⊤−

 .

Traditionally, GCN was designed for node classification so we modify it slightly for our purpose,

yk ≃ ŷk ≜ softmax

(
1

n
1⊤Â · ReLU

(
ÂHkW0

)
·W1

)
, (8)

where Â is a normalization of A – see (Kipf & Welling, 2017) for details – and W0 and W1 are
weight matrices. The modification is the inclusion of 1

n1
T as pooling before output. Modulo this
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modification, the formula (8) is a standard one used in the literature, with the bias terms omitted.
It is interesting to note the equivalence of GCN (8) and the graph-agnostic model (5) when Â is
replaced by the identity matrix (omitting bias terms).

In GCN, A corresponds to the consensus graph among local owners as graph nodes. If such a graph
is not present, it is possible to learn one such that (8) still outperforms (5). In this case, we treat A
as a random variable of the matrix Bernoulli distribution, where the success probabilities are free
parameters to learn. Formally, the elements Aij are independent and each follows Ber(θij), where
θij denotes the corresponding probability (Kipf et al., 2018; Shang et al., 2021). Then, the global
model g has W0, W1, the Pi’s, as well as θ, as parameters. Following Franceschi et al. (2019);
Shang et al. (2021), we formulate the training loss as an expectation over A’s distribution and draws
a sample A to obtain an unbiased estimate of the loss as well as the gradient.

B. Differentiable Graph Sampling via Re-parameterization. However, the central challenge of
this approach is that the sample Aij is not differentiable with respect to the corresponding Bernoulli
bias θij , which in turn makes the training loss non-differentiable with respect to θ. To sidestep this
difficulty, we propose the following reparameterization, which presents a learnable (differentiable)
transformation of a sample drawn from a continuous distribution to a discrete Bernoulli sample.
This transformation is detailed in Definition 1 below, which is followed by Theorem 1 showing the
distributional convergence of this transformation to the desired Bernoulli distribution.

Definition 1. Let F be the CDF of an arbitrary continuous probability distribution. Sample s from
this reference distribution and let

z ≜ sigmoid

(
1

τ

(
F−1(θ)− s

))
, τ > 0. (9)

We call this the ICDF re-parameterization which is named after the use of inverse cumulative F−1.

Theorem 1. For all τ > 0, θ ∈ (0, 1) and t ∈ [0, 1], if the distribution with CDF F is finitely
supported on [a, b], then

Pr(z ≤ t) =


0 if t < sigmoid((F−1(θ)− b)/τ),

1 if t > sigmoid((F−1(θ)− a)/τ),

1− F (F−1(θ) + τ log(t−1 − 1)) otherwise.
(10)

On the other hand, if the distribution is not finitely supported (i.e., a = −∞ and/or b = +∞),
Eq. (10) still holds because either (or both) of the first two cases will not be invoked. As a conse-
quence, the distribution of z converges to Ber(θ) as τ → 0.

Discussion. We note that an alternative to the above can be achieved via using the Gumbel softmax
reparameterization (Jang et al., 2017; Maddison et al., 2017) which also features a differentiable
relaxation of the categorical distribution (in this case, the Bernoulli distribution) that approximates
it asymptotically. However, in order to obtain one Bernoulli sample, the Gumbel trick requires
to sample the Gumbel distribution twice. Instead, our proposed reparameterization only requires
sampling from the reference distribution only once. We also show that the ICDF re-parameterization
converges as fast as the Gumbel softmax. Both approaches have asymptotic convergence rate on the
order of O(τ2) as shown in Section D. Empirically, we also show that ICDF induces marginally
better performance than Gumbel softmax. This is why we prefer ICDF to Gumbel in our work.

6 EXPERIMENTS

In this section, we demonstrate comprehensive experiments to show that federated feature fusion
(F3) can be effectively conducted by using the proposed techniques in Sections 4 and 5.

Datasets. We use four real-life, time series datasets. Two are PMU data collected from multiple
data owners of the U.S. power grid. For proof of concept, we smooth out heterogeneity and prepare
homogeneous data sets. Such a pre-processing is sufficient to test the proposed techniques under
minimal impact of the complication by the otherwise diverse local models. Since the PMU data
sets are proprietary, we also use two public, traffic data sets (Li et al., 2018) for experimentation. A
summary of these data sets is given in Table 1 and the processing details are given in the supplement.
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Table 1: Datasets.

METR-LA PEMS-BAY PMU-B PMU-C

# Data samples 2856 4343 4853 1884
# Data owners 207 325 43 188
Series length 12 12 30 30
# Features 1 1 2 2
# Classes 2 2 4 4
Missing data? no no yes yes
Given graph? yes yes no no Figure 3: Distributions of prediction en-

tropy across local models.

Experiment Setting. All local models are LSTM (Hochreiter & Schmidhuber, 1997) with the same
hyperparameters, but pre-trained separately by using local data. The local models are not fine-tuned
in the training of the global model. Each dataset is split randomly for training/validation/testing.
See the supplement for further details.

Conflicting Local Predictions. We first show that local models do not produce consistent predic-
tions, which justifies the effort of training a global model and performing federated inference. For
each datum, we compute the entropy of the predicted labels and summarize the entropies for all data
into a distribution, plotted in Figure 3. Recall that the lower the entropy, the more consistent the
local predictions. The figure, however, shows that a substantial amount of entropies is away from
zero, suggesting that local predictions are inconsistent.

Effectiveness of Federated Feature Fusion. We make two sets of comprehensive comparisons to
evaluate the effectiveness of the proposed framework. The first set, as outlined in Table 2, com-
pares F3 with a number of non-graph baselines (A–G) and including (a) a vanilla federated learning
baseline (A) which requires both model homogeneity and training synchronicity among clients that
are not admitted in our setting; (b) a set of standard ensemble strategies (B–F) to combine the local
models such as voting, binary thresholding, best local model, mean-pooling via Eq. (5), as well as an
advanced fusion model via a simplified Set Transformer with 2 layers and 4 heads (Lee et al., 2019)
(F); and (c) a vertical federated learning baseline (G) via feature concatenation. This set also con-
tains several variants of our proposed federated feature fusion model, featuring an ablation study of
the effectiveness of our model components: (H) F3 without alignment; (K) F3 with learnable align-
ment; and (J) F3 with partially tied parameter among local models which require local models to
use standard FL to collaboratively learn a common feature aggregation matrix ∀i ∈ [n] : W = Wi

– readers can recall the role of Wi in Eq. (3) – among all local models. Baseline (K) is thus an
alternative to alignment which comes with the cost of imposing strong homogenization – though not
as strong as (A) – among local models despite the different nature of their local data. All variants of
F3 (H–K) use the ICDF re-parameterization to learn the graph structure.

From Table 2, we observe that baselines (A–D), either lacking necessary localized models or a holis-
tic global model, perform significantly worse than the other baselines (including our F3 variants, the
ensemble via mean pooling baseline and vertical federated learning). On the other hand, baselines
(E–H) perform better than (A–D) but lacking a proper alignment of local models or imposing a
strong form of homogenization among local models to sidestep alignment, they are expectedly out-
performed by baseline (K) that performs alignment.

We also compare with two variants of our final model K in the vertical federated learning setting.
L uses the same local and global models as K but allows gradients to be sent back to local clients,
thus local models can be updated. It achieves similar performance as K but leads to much more
communication cost with multiple rounds of gradient messages. M assumes no local pretrained
models and all local and global models are trained jointly from scratch. Its performance is much
worse than K and L – explains the merit of pretrained local models. Another typical VFL baseline
(G) with pretrained local models and a simple concatenation based global model is also inferior.

Impact of Learning Graph. Our next set of experiments, as outlined in Table 3, demonstrate the
impact of learning a graph that characterizes the innate local interactions among subsets of clients,
following our challenge statement C2 in the introduction, on both alignment and non-alignment
baselines. This provides ablation studies on the isolated impact of having a specific graph learning

8
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Table 2: Effectiveness of latent alignment in a graph-based global model. Superscript numbers are
standard deviations. Note that baseline (A) and (H) are not applicable to the federated feature fusion
where (local) model homogenization and training synchronicity are not allowed.

METR-LA PEMS-BAY PMU-B PMU-C
F1 AUC F1 AUC F1 AUC F1 AUC

A: Federated Learning .25.000 - .33.000 - .36.000 - .29.000 -
B: Majority Voting .11.000 - .09.000 - .29.000 - .18.000 -
C: Binary Thresholding .69.000 - .64.000 - - - - -
D: Best Model Selection .53.000 .70.000 .55.000 .79.000 .37.000 .69.000 .32.000 .62.000

E: Mean Pooling – Eq. (5) .77.009 .96.004 .74.012 .93.001 .38.008 .71.006 .34.008 .64.010

F: Transformer .78.023 .94.018 .72.045 .93.027 .39.003 .70.009 .40.053 .67.058

G: Concatenation .83.008 .97.002 .80.066 .96.028 .39.006 .71.036 .40.025 .68.040

H: F3 with no alignment .80.009 .96.004 .75.009 .94.001 .39.003 .73.015 .40.020 .66.018

J: F3 with parameter tying .82.009 .97.001 .75.009 .94.004 .39.006 .72.010 .37.012 .66.008

K: F3 with alignment .83.010 .97.001 .86.005 .98.002 .39.008 .73.008 .45.015 .72.003

L: VFL w. graph/alignment .83.012 .97.001 .86.014 .98.002 .39.006 .74.009 .45.015 .73.003

M: VFL w.o. pretrained local .77.02 .94.021 .77.014 .95.006 .34.014 .69.012 .35.008 .65.014

Table 3: Impact of learning graph across different alignment settings. ⋆ Some references of rows are
with respect to Table 2.

METR-LA PEMS-BAY PMU-B PMU-C
F1 AUC F1 AUC F1 AUC F1 AUC

N
o

A
lig

n No Graph .768.009 .957.004 .738.012 .935.001 .381.008 .711.006 .342.008 .636.010

Given Graph .763.020 .957.007 .742.024 .942.005 - - - -
k-NN Graph .715.015 .952.004 .695.013 .934.004 .372.001 .711.013 .404.016 .68.014

ICDF .798.009 .963.004 .755.009 .943.001 .387.003 .734.015 .403.020 .663.018

A
lig

n

No Graph .813.009 .970.002 .846.008 .977.001 .386.009 .725.012 .386.008 .694.005

Given Graph .828.007 .974.001 .854.003 .977.001 - - - -
k-NN Graph .803.020 .968.002 .855.003 .973.002 .378.002 .718.015 .418.007 .702.009

ICDF .835.010 .975.001 .860.005 .980.002 .390.008 .734.008 .451.015 .725.003

component. In particular, for each alignment setting, we demonstrate the impact on performance
with (a) not using a graph; (b) using a graph given by the domain experts; (c) learning the graph
structure using a k-NN baseline (Fatemi et al., 2021); and (d) learning the graph structure using
ICDF. The reported numbers suggest that regardless of whether the model performs alignment,
graph learning always improves performance.

Remark. The k-NN baseline (k = 10) is implemented following the description in (Fatemi et al.,
2021). Specifically, during training, we generate a local graph for each batch for node features X via
a symmetrization of Ã = k-NN(MLP(X)) which (1) feeds the node features through a MLP neural
block; and (2) draws an edge between each node and its k nearest neighbors where the neighborhood
is defined using the cosine similarity on the space of MLP-projected feature vectors.

7 CONCLUSIONS

In this paper, we study federated feature fusion, which presents a less addressed scenario of federated
learning where data owners or clients need to customize their own local models to accommodate
different sets of (federated) features. Unlike federated learning, the clients need to learn their own
model separately in isolation and only communicate their local feature representations afterwards.
We motivate the practicality of federated feature fusion scheme with a power grid example and
propose a local–global model framework for it. Two important components of the framework are the
alignment of the data representations produced by local models and the learning of the global model
by using a graph neural network. Comprehensive experiments suggest the feasibility of federated
feature fusion and the effectiveness of the framework.

9
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Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
and open problems in federated learning. Preprint arXiv:1912.04977, 2019.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In ICML, 2018.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Harold W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955.
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A RELATED WORK

The concept of federated learning was first coined by McMahan et al. (2017) and it has attracted
surging interests since. A form of distributed optimization, federated learning is faced with data
challenges beyond conventional assumptions and puts communication efficiency and data privacy
as primary concerns. Recent surveys (Yang et al., 2019a; Li et al., 2019; Kairouz et al., 2019)
comprehensively study the subject, review systems and infrastructures, and suggest open problems.

The typical setting of federated learning is that data sets across owners share the same feature space
but differ in samples. Besides this horizontal partitioning of the data matrix, a vertical partitioning
was studied by Hardy et al. (2017); Nock et al. (2018); Heinze et al. (2014; 2016), wherein fea-
tures are split across owners instead. This setting bears resemblance to our federated feature fusion
scenario, but a crucial distinction is that existing methods for vertical federated learning all perform
joint training. In the referenced work, to preserve privacy, encrypted data or randomly projected data
are communicated among data owners as well as a central coordinator. Such an approach incurs de-
manding communication for many owners. Recently, Chen et al. (2020) study a different model,
whose parameters are distributed among owners as well as a central server. The part of the model
corresponding to an owner bears resemblance to our local models; but they are not local models
since they are not independently trained by using local data. Another work along a similar direction
is conducted by Hu et al. (2019), but the global model has no parameters; it is merely a sum of the
local outputs followed by activation (e.g., sigmoid for classification).

Our framework learns parameter matrices to align local representations. Such alignments similarly
appear in model fusion, where a number of models are fused together into a common model through
aligning model parameters (Yurochkin et al., 2019a). In the context of deep learning, if the neural
networks come from the same model family, their weights can be matched layerwise, even if the
numbers of weights are different (Yurochkin et al., 2019b; Wang et al., 2020). The referenced work
treats the problem as a bipartite graph matching, where the cost matrix is inferred from maximum a
posteriori estimation. Then, the Hungarian algorithm (Kuhn, 1955) is applied to find the matching.
In our work, instead we treat the permutation alignment as a differentiable parameterization with the
help of Sinkhorn–Knopp (Sinkhorn & Knopp, 1967; Mena et al., 2018; Emami & Ranka, 2018), so
that it can be learned end-to-end with other parameters of the global model.

Our framework also advocates learning a graph of data owners in the global model. Graph structure
learning appears under various contexts. One field of study is probabilistic graphical models and
casual inference, whereby a directed acyclic structure is learned. Gradient-based approaches in this
context include Zheng et al. (2018); Yu et al. (2019); Lachapelle et al. (2020). On the other hand, a
general graph may still be useful without resorting to causality. Recent approaches supporting GNN-
based modeling include Kipf et al. (2018); Franceschi et al. (2019); Wu et al. (2020); Shang et al.
(2021), wherein a graph structure is simultaneously learned together with the GNN parameters.
The Gumbel trick (Jang et al., 2017; Maddison et al., 2017) is frequently used for differentiable
parameterization, but in this paper we study a more economic alternative parameterization ICDF.

B PERMUTATION AMBIGUITY EXAMPLE FOR GRU

In Section 3, we discuss that one can arbitrarily permute the latent representations while keeping a
local model fixed. Here, we give another example – the GRU. Let x = {x1, x2, . . . , xT } be an input
sequence. The embedding function h = embedding(x) implemented as a GRU reads:

1: function h = GRU({xt}Tt=1,)
2: h0 = 0
3: for t = 1, . . . , T do
4: zt = sigmoid(Wzxt + Uzht−1 + bz)
5: rt = sigmoid(Wrxt + Urht−1 + br)
6: nt = tanh(Wnxt + Un(rt ⊙ ht−1) + bn)
7: ht = (1− zt)⊙ ht−1 + zt ⊙ nt

8: end for
9: return h = hT

10: end function
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One can arbitrarily permute the elements of h through manipulating the GRU parameters properly.
To achieve h[p] = embedding(x;p),

• the gate outputs and bias vectors (zt, rt, nt, ht, bz , br, bn) will need be permuted accordingly
(zt[p], rt[p], nt[p], ht[p], bz[p], br[p], bn[p]);

• the weight matrices attached to the input (Wz , Wr, Wn) will need to have their rows (i.e., output
neurons) permuted (Wz[p, :], Wr[p, :], Wn[p, :]); and

• the weight matrices attached to the hidden states (Uz , Ur, Un) will need to have both their rows
and columns permuted (Uz[p,p], Ur[p,p], Un[p,p]).

C PROOFS AND ADDITIONAL RESULTS OF THEOREM 1, SECTION 5

C.1 DISTRIBUTION OF GUMBEL SOFTMAX

The Gumbel softmax reparameterization trick (Jang et al., 2017; Maddison et al., 2017) works in the
following manner. Let Cat(π) be the categorical distribution with probability vector π and let g, of
the same shape as π, be a vector variable whose elements are i.i.d. ∼ Gumbel(0, 1). Then,

y = softmax

(
1

τ
(logπ + g)

)
, τ > 0 (11)

admits a distribution converging to Cat(π) when τ → 0. Hence, to sample Ber(θ) approximately
but differentiably, it suffices to let π = [θ, 1− θ]⊤ and use y1 as the sample.

As preliminary, we consider the first entry y1 of the random variable y defined in (11) for the Gumbel
softmax parameterization. Note that for any τ ̸= 0, y1 is only approximately binary; the possible
values of y1 in fact span the entire interval [0, 1]. We derive the following CDF for y1. Recall that
for notational simplicity, θ denotes a scalar rather than a matrix.

Theorem 2. For all τ > 0, θ ∈ (0, 1), and t ∈ [0, 1], we have

Pr(y1 ≤ t) =
tτ (1− θ)

tτ (1− θ) + (1− t)τθ
. (12)

Proof. We first consider the case 0 < t < 1. Through simple algebraic manipulation, we obtain that
y1 ≤ t is equivalent to

g1 − g2 ≤ τ log
t

1− t
− log

θ

1− θ
. (13)

Let g1 = − log(− log u) and g2 = − log(− log v), where u and v are independent and ∼ U(0, 1).
Then, (13) is equivalent to

v ≥ uM where M =
tτ (1− θ)

(1− t)τθ
.

Therefore, by recalling that u and v are uniform in [0, 1]2, we note that the probability that v ≤ uM

happens is the double integral

Pr(v ≥ uM ) =

∫ 1

0

∫ 1

uM

1 dvdu.

This integral is nothing but

1−
∫ 1

0

uM du =
M

1 +M
,

which completes the proof of (12). The cases of t = 0 or 1 obviously hold by continuity.
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C.2 PROOF OF THEOREM 1

We first consider the case when the distribution with cdf F is finitely supported on [a, b]. Through
simple algebraic manipulation, we obtain that z ≤ t is equivalent to s ≥ M where M := F−1(θ) +
τ log(t−1 − 1). If t < sigmoid((F−1(θ) − b)/τ), we see that M > b and thus such s can never
occur. Similarly, if t > sigmoid((F−1(θ)− a)/τ), we see that M < a, which indicates that s ≥ M
always happens. Otherwise, when t is within the two extremes, the probability that s ≥ M happens
is 1− F (M), concluding the proof of (10).

The statement of the theorem regarding the case when the distribution is not finitely supported is
obviously true.

To show that the distribution of z converges to Ber(θ), let us first consider the scenario when
the distribution with cdf F is finitely supported. The cdf of z (see (10)) is always continu-
ous but it has three segments connected by two joints: t1 = sigmoid((F−1(θ) − b)/τ) and
t2 = sigmoid((F−1(θ) − a)/τ). When τ → 0, the joint t1 → 0 and the joint t2 → 1 and
thus the middle segment has a wider and wider support converging to [0, 1]. Hence, it suffices to
consider only the middle segment. Further, with an analogous argument for other scenarios, it is
also true that it suffices to consider only the third case of (10).

In this case, for any fixed t < 1 and when τ → 0, we have τ log(t−1 − 1) → 0 and thus Pr(z ≤
t) → 1 − F (F−1(θ)) = 1 − θ. Meanwhile, we cannot push τ → 1 because then the limit of
τ log(t−1 − 1) is undefined. However, we know by definition that Pr(z ≤ 1) = 1. Hence, the
continuous distribution of z converges to a degenerate distribution Pr(z < 1) = 1 − θ and Pr(z =
1) = 1. This is the CDF of Ber(θ).

D TUNING GUIDANCE FOR TEMPERATURE τ

Our tuning guidance for the temperature τ is motivated from a asymptotic convergence comparison
between ICDF and Gumbel re-parameterization, which is featured in the theorem below.

Theorem 3. When τ is small,

Bias(y1) =
1

6
τ2π2θ(1− θ)(1− 2θ) + O(τ4), (14)

Bias(z) =
1

6
τ2π2F ′′(F−1(θ)) + O(τ4). (15)

Moreover, when F is the CDF of a normal variable ∼ N(0, σ2),

Bias(z) = − 1

6σ2
τ2π

3
2 erf−1 (2θ − 1) e−(erf−1(2θ−1))2 + O(τ4). (16)

Its formal proof is detailed later in Appendix E.

Theorem 3 suggests that the ICDF method converges equally fast as does the Gumbel trick – both
on the order of O(τ2). On the other hand, the biases depend on θ. Thus, one cannot set temperatures
τ independently of the desired probability θ to equate the two biases. In practice, τ is a tunable
hyper-parameter and a guidance on the tuning range is therefore necessary.

To begin, we use a subscript to distinguish the two temperatures – τg for the Gumbel trick and τi for
the ICDF method – and write, based on (14) and (16) and ignoring the high order terms,

Bias(y1)

Bias(z)
≃

τ2g σ
2

τ2i
r(θ) where r(θ) =

√
πθ(1− θ)(2θ − 1)

erf−1(2θ − 1)e−(erf−1(2θ−1))2
.

Note that r(θ) is symmetric around θ = 1
2 , is concave, attains maximum 1

2 when θ = 1
2 , and

attains minimum 0 when θ = 0, 1. Hence, if τg = τi and σ =
√
2, the bias of the Gumbel trick

is (approximately) smaller than that of the icdf method. On the other hand, for a σ >
√
2, there

exist θ̃1 < θ̃2 such that σ−2 = r(θ̃1) = r(θ̃2) and that Bias(y1) ⪆ Bias(z), whenever θ ∈ [θ̃1, θ̃2].
For example, when σ ≈ 2.5, on the interval θ ∈ [0.01, 0.99], the bias of the Gumbel trick is
(approximately) greater than that of the icdf method.
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Based on the foregoing, a practical guide is to use the same tuning range of τ for the ICDF method
as for the Gumbel trick. A small change of σ (e.g.,

√
2 versus 2.5) will entirely flip the landscape

of the bias comparison between the two methods. Because the tuning range is much wider than the
change of σ, for simplicity it suffices to fix σ = 1.

E PROOF OF THEOREM 3 AND ADDITIONAL RESULTS

By the definition of bias, we have

Bias(x) = E[x]− θ where E[x] =
∫ 1

0

t dPr(x ≤ t) = 1−
∫ 1

0

Pr(x ≤ t) dt.

Therefore, for Gumbel softmax,

Bias(y1) = 1− θ −
∫ 1

0

tτ (1− θ)

tτ (1− θ) + (1− t)τθ
dt,

and for icdf with any F ,

Bias(z) =

∫ 1

0

F (F−1(θ) + τ log(t−1 − 1)) dt− θ.

We now prove Theorem 3 in a few parts.

Proof of (15). Let s = F−1(θ) and perform a change of variable m = log(t−1 − 1). Then,

Bias(z) =

∫ 1

0

[F (s+ τm)− F (s)] dt =

∫ ∞

−∞
[F (s+ τm)− F (s)]

em

(1 + em)2
dm.

We perform Taylor expansion of F around s and obtain

F (s+ τm)− F (s) =

∞∑
n=1

F (n)(s)

n!
τnmn.

Therefore,

Bias(z) =

∞∑
n=1

F (n)(s)

n!
τn
∫ ∞

−∞

mnem

(1 + em)2
dm

Each integral term is finite and the odd terms vanish because the integrands are odd functions. Thus,
for small τ , we are left with

Bias(z) =
F ′′(s)

2
τ2
∫ ∞

−∞

m2em

(1 + em)2
dm+O(τ4).

The definite integral evaluates to π2

3 ; we therefore conclude the proof.

Proof of (16). Equation (16) is straightforward by substuting

F ′′(s) = − s

σ3
√
2π

e−
s2

2σ2 = −erf−1(2θ − 1)

σ2
√
π

e−(erf−1(2θ−1))2 .

into (15).

Proof of (14). To simplify notation, let β = θ/(1 − θ) and perform a change of variable m =
log(t−1 − 1). Then,∫ 1

0

tτ (1− θ)

tτ (1− θ) + (1− t)τθ
dt =

∫ 1

0

dt

1 + βemτ
=

∫ ∞

−∞

1

1 + βemτ

em

(1 + em)2
dm.

Denote h(τ,m) = [1 + βemτ ]−1. Treating h a function of τ and performing Taylor expansion
around zero, we obtain

h(τ,m) =

∞∑
n=0

h(n)(0,m)

n!
τn.
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Therefore, ∫ 1

0

tτ (1− θ)

tτ (1− θ) + (1− t)τθ
dt =

∞∑
n=0

τn

n!

∫ ∞

−∞
h(n)(0,m)

em

(1 + em)2
dm.

In a moment, we will show that for all n,

h(n)(0,m) = Cnm
n where Cn is independent of m. (17)

Suppose that (17) holds. Then, each integral term is finite and the odd terms vanish, because the
integrands are odd functions. Therefore, for small τ , we are left with∫ 1

0

tτ (1− θ)

tτ (1− θ) + (1− t)τθ
dt = C0

∫ ∞

−∞

em

(1 + em)2
dm+ C2

τ2

2

∫ ∞

−∞

m2em

(1 + em)2
dm+O(τ4).

By calculating

C0 = h(0,m) = [1 + β]−1 = 1− θ, C2 = h′′(0,m) = −θ(1− θ)(1− 2θ),∫ ∞

−∞

em

(1 + em)2
dm = 1,

∫ ∞

−∞

m2em

(1 + em)2
dm =

π2

3
,

we conclude that

Bias(y1) =
τ2π2θ(1− θ)(1− 2θ)

6
+O(τ4).

It remains to prove (17). We suppress the argument on m and write g(τ) = 1 + βemτ and h(τ) =
g(τ)−1. By Faà di Bruno’s formula,

h(n)(0) =

(
1

g(τ)

)(n)
∣∣∣∣∣
τ=0

=

n∑
k=1

(−1)kk!

g(0)k+1
·Bn,k

(
g′(0), g′′(0), . . . , g(n−k+1)(0)

)
,

where Bn,k is the Bell polynomial. Clearly, g(0) = 1 + β and g(r)(0) = βmr for all r > 0. Hence,
Bn,k is a multiple of mn. Therefore, h(n)(0) is a multiple of mn.

E.1 ADDITIONAL RESULT REGARDING THE BIAS

Theorem 3 states results for a small temperature τ . The purpose is to understand the limiting be-
havior of the bias. Here, we give an additional result for any τ > 0. It states that the biases of the
two sampling approaches have the same sign. This result is a nontrivial extension of Theorem 3 and
requires a different proof technique.
Theorem 4. For any τ > 0,

Bias(y1) > 0 when θ < 1
2 , Bias(y1) = 0 when θ = 1

2 , Bias(y1) < 0 when θ > 1
2 . (18)

Moreover, if F ′(x) (that is, the pdf) is even and is increasing when x < 0, then

Bias(z) > 0 when θ < 1
2 , Bias(z) = 0 when θ = 1

2 , Bias(z) < 0 when θ > 1
2 . (19)

We prove Theorem 4 in two parts.

Proof of (18). Consider

Bias(y1) =

∫ 1

0

g(t, θ) dt where g(t, θ) = 1− θ − tτ (1− θ)

tτ (1− θ) + (1− t)τθ
.

With a brute-force calculation, we have

g(t, θ) + g(1− t, θ) =
[(1− t)τ − tτ ]2θ(1− θ)(1− 2θ)

[tτ (1− θ) + (1− t)τθ][(1− t)τ (1− θ) + tτθ]
.

All terms on the right-hand side are positive, except 1− 2θ. Therefore, when θ < 1
2 , g(t, θ)+ g(1−

t, θ) > 0 and hence

Bias(y1) =

∫ 1

0

g(t, θ) + g(1− t, θ)

2
dt > 0.
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The other cases (θ > 1
2 and θ = 1

2 ) are similarly proved.

Proof of (19). Consider

Bias(z) =

∫ 1

0

h(t, θ) dt− θ where h(t, θ) = F (F−1(θ) + τ log(t−1 − 1)).

We have
h(1− t, θ) = F (F−1(θ)− τ log(t−1 − 1)).

To simplify notation, let F−1(θ) = s and τ log(t−1 − 1) = a. Then, h(t, θ) = F (s + a) and
h(1− t, θ) = F (s− a). Let us first consider the case s < 0 and a > 0. We see that

F (s+ a)− F (s) =

∫ s+a

s

F ′(m) dm and F (s)− F (s− a) =

∫ s

s−a

F ′(m) dm.

For any b > 0, if s + b < 0, then by monotonicity, F ′(s + b) > F ′(s − b). On the other hand, if
s + b ≥ 0, then F ′(s + b) = F ′(−s − b) > F ′(s − b). In both cases, the right integral is always
smaller than the left integral. In other words,

F (s+ a) + F (s− a) > 2F (s).

In fact, the above inequality is also established when s < 0 and a < 0. Therefore, whenever s < 0,∫ 1

0

h(t, θ) dt =

∫ 1

0

h(t, θ) + h(1− t, θ)

2
dt >

∫ 1

0

F (F−1(θ)) dt = θ.

That is, Bias(z) > 0. Other cases (s = F−1(θ) > 0 and s = F−1(θ) = 0) are similarly proved.

E.2 EMPIRICAL COMPARISON BETWEEN GUMBEL AND ICDF RE-PARAMETERIZATION

Extending the last experiment in Section 6, Table 4 summarizes the time and memory consumption
during the training of global models on the four data sets. The results indicate that our developed
ICDF re-parameterization is more economic than the Gumbel-Softmax approach.

Table 4: Time and memory consumption of F3 (five epochs) with respect to ICDF and Gumbel-
Softmax re-parameterization. Time is in seconds and memory is in MB.

METR-LA PEMS-BAY PMU-B PMU-C
Time Memory Time Memory Time Memory Time Memory

Gumbel-Softmax 87.89 832.38 270.52 1896.11 42.40 348.39 84.89 1119.13
ICDF 79.69 568.24 157.93 1167.19 30.16 322.59 54.07 894.63

F DATA SET DESCRIPTION AND PREPROCESSING

METR-LA and PEMS-BAY. These are traffic data sets (MIT licensed) used by Li et al. (2018).
The former was collected from loop detectors in the highway of Los Angles, CA (Jagadish et al.,
2014) and the latter was collected by the California Transportation Agencies Performance Measure
System. Both data sets recorded several months of data at the resolution of five minutes. The
network graphs are available, which were constructed by imposing a radial basis function on the
pairwise distance of sensors at a certain cutoff.

The data sets were originally prepared for forecasting tasks and hence no labeling information exists.
We adapt the data for classification. Specifically, we split the time series on the hour, forming hourly
windows. We label each window as whether or not it corresponds to rush hour. For proof of concept,
we specify 07:00–10:00 and 16:00–19:00 as rush hour and the others non-rush hour. We note that
in the original data sets, one of the attributes is time. We remove this attribute to avoid triviality and
retain only the speed attribute.

The specification of rush hours may not be highly accurate, but it is a sensible practice to cope with
the nonexistence of labeling information. Intuitively, the signal of rush hour comes from reduced
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traffic speed, but not every location of the network experiences traffic jam. Hence, the diverse traffic
patterns inside the same time window under a single label causes nontrivial challenges for local
models to discern. Therefore, the need of a global consensus model is justified and it fits well the
federated inference scenario.

PMU-B and PMU-C. These are proprietary data sets coordinately provided by multiple data owners
of the U.S. power grid. No personally identifiable information is present. The suffixes B and C
indicate the interconnects of the grid. The data sets come with thousands of annotated grid events
spanning a period of two years; they form the classification labels. Many variables (attributes) of
the grid condition are recorded; we select only the voltage magnitude and the current magnitude,
because they appear to be the strongest signals for event detection based on domain knowledge, and
also because more data are available for these two variables. The grid topology is not available.

For each event, we select a one-second window from the three-minute window that covers the ap-
proximate annotated event time, based on the largest z-score. We retain a sampling frequency of
30Hz, even though some data are 60Hz. Furthermore, a large amount of data are missing in the
raw data. We impute the series by using pandas.DataFrame.interpolate(method =
’linear’, limit direction = ’both’) from the Python pandas package. This way,
a windowed series is complete if it ever has raw data. Even so, many series are entirely empty, which
corresponds to the scenario illustrated by Figure 1. Classes in these two data sets are rather skewed.
For PMU-B, we remove a class that consists of only one data point and for PMU-C, we combine
classes that contain fewer than 24 data points into a single class.

G EXPERIMENT DETAILS

The experiments are conducted on one x86 node of a computing cluster with one a100 NVIDIA
GPU. The compute node has eight Intel cores and 128GB memory. For each data set, we perform a
70/10/20 random split for training, validation, and testing, respectively.

For local models, we use LSTM with the same hyperparameters: one hidden layer whose hidden
dimension is 16 and the maximum number of epochs = 200. We pre-train the local models and
freeze their parameters afterward. We train each global model for a maximum of 500 epochs and
use early stopping according to the validation loss, with a patience of 50 epochs. For the GNN
global model, we use a 2-layer GCN with skip connections. The hidden dimension is set at 8 and
we select the learning rate from {0.01, 0.001}. For missing data, we impute the node features by
using zero.

H SOFT AND HARD FEATURE ALIGNMENT

Feature alignment can be achieved in two manners. The first approach is a soft alignment, which
treats each P i a free parameter matrix to optimize. Such an alignment softens the one-to-one cor-
respondence in the permutation constraint; i.e., each feature in the source can have a weighted
correspondence to each of the features in the target. That is the way we used in the main paper.

An alternative approach is a hard alignment, which treats each P i a permutation matrix. Learning
permutation matrices is challenging, however, because they correspond to combinatorial structures
and are unsuitable for gradient-based training. We follow Mena et al. (2018); Emami & Ranka
(2018) and relax P i by a doubly stochastic matrix, which can be differentiably parameterized by
the Sinkhorn–Knopp algorithm Sinkhorn & Knopp (1967). Specifically, starting from a nonnegative
square matrix K0 and column vectors r0 = c0 = 1 of matching lengths, define the sequence

cj+1 = 1⊘ (KT
0 rj) and rj+1 = 1⊘ (K0cj), for j = 0, 1, . . . (20)

Then, under a mild condition, Kj := diag(rj)K0 diag(cj) converges to a doubly stochastic matrix.
We truncate the sequence at the T th step and treat KT as an approximation of P i.

Despite the advocation by Mena et al. (2018); Emami & Ranka (2018), we obtain the following
convergence result of Sinkhorn–Knopp, which reveals no free lunch.
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Table 5: Different approaches to feature alignment.

METR-LA PEMS-BAY PMU-B PMU-C
F1 AUC F1 AUC F1 AUC F1 AUC

soft alignment .835 .975 .860 .980 .390 .734 .451 .725
hard alignment .839 .973 .855 .976 .390 .737 .429 .721

(a) METR-LA (b) PEMS-BAY (c) PMU-B (d) PMU-C

Figure 4: Examples of learned permutation matrices (KT ). The plots clearly show patterns of a
permutation matrix: there is one and only one significant value per row and per column. Because of
the slow convergence, we attribute the desirable results of KT (at a small T ) to the success of the
learning of K0. Note also interestingly that a learned permutation may be the identity mapping.

Theorem 5 (informal). Under a condition of K0, there exists a positive integer J and a constant CJ

such that for all j ≥ J , ∥∥∥∥[KT
j 1

Kj1

]
−
[
1
1

]∥∥∥∥ ≤ CJ(1 + σ2
2)σ

2(j−J)
2 ,

where σ2 ≤ 1 is the second largest singular value of the limit of Kj .

Since this is not the focus of this paper, we omit the rigorous analysis of this theorem. The result
suggests that for a desirable limit being a permutation matrix, whose σ2 = 1, the error O(σ2j

2 ) does
not drop. In practice, to expect for an approximate permutation matrix, σ2 ≈ 1 and the convergence
is exceedingly slow. The practical usefulness of (20) depends on the learned quality of K0.

The soft and hard alignment approaches have pros and cons. The hard approach maintains the
correspondence of each feature dimension of the latent vectors while the soft approach . Maintaining
the dimension correspondence is an advantage, especially for local models that produce disentangled
latent representations Higgins et al. (2018), because each feature dimension is equipped with a
semantic meaning that controls a certain aspect of the data. On the other hand, the soft approach
is more straightforward and the hard approach is based on an algorithm that barely converges. In
practice, we observe that two approaches decisively similar performance. Due to space limitation
we took the simpler approach and presented only the soft version in the main paper, but here we list
the results for both approaches in Table 5, and we also visualize the hard alignment matrix learned
on each dataset to help readers understand the feature alignment (Figure 4).
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