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Abstract
We consider a setting in which the agent aims to
maximize the expected cumulative reward, sub-
ject to a constraint that the entropic risk of the
total utility exceeds a given threshold. Unlike
the risk-neutral case, standard primal-dual ap-
proaches fail to directly yield regret and viola-
tion bounds, as value iteration with respect to a
combined state-action value function is not ap-
plicable in the risk-sensitive setting. To address
this, we adopt the Optimized Certainty Equiv-
alent (OCE) representation of the entropic risk
measure and reformulate the problem by aug-
menting the state space with a continuous budget
variable. We then propose a primal-dual algo-
rithm tailored to this augmented formulation. In
contrast to the standard approach for risk-neutral
CMDPs, our method incorporates a truncated
dual update to account for the possible absence
of strong duality. We show that the proposed
algorithm achieves regret of Õ

(
Vg,maxK

3/4 +√
H4S2A log(1/δ)K3/4

)
and constraint viola-

tion of Õ
(
Vg,max

√
H3S2A log(1/δ)K3/4

)
with

probability at least 1− δ, where S and A denote
the cardinalities of the state and action spaces,
respectively, H is the episode length, K is the
number of episodes, α < 0 is the risk-aversion
parameter, and Vg,max = 1

|α| (exp(|α|H) − 1).
To the best of our knowledge, this is the first
result establishing sublinear regret and violation
bounds for the risk-sensitive CMDP problem.

1. Introduction
Reinforcement Learning (RL) has achieved remarkable
breakthroughs across a wide range of domains, in-
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cluding human-level performance on classic Atari 2600
games (Mnih et al., 2015), mastering complex board games
such as Go and Chess (Silver et al., 2016; 2017), tack-
ling challenging robotic manipulation tasks (Levine et al.,
2016; Haarnoja et al., 2018), optimizing control systems
for autonomous vehicles (Sallab et al., 2017), advancing
drug discovery by designing molecules with desired proper-
ties (Popova et al., 2018), and enhancing the capabilities of
Large Language Models to achieve human-level decision-
making in natural language understanding and generation
tasks (Ouyang et al., 2022; Guo et al., 2025). These suc-
cesses underscore the versatility of RL in high-dimensional,
sequential decision-making problems. However, most of
these methods focus on maximizing a single reward sig-
nal without regard to auxiliary performance or safety con-
straints, which are often critical in real-world applications.

Constrained Markov Decision Processes (CMDPs) provide
a principled way to incorporate such additional constraints
into the decision-making process (Altman, 1999b). By ex-
tending the standard RL objective to include one or more
cost functions, CMDPs enable practitioners to balance pri-
mary performance goals against other considerations such
as safety (Garcıa & Fernández, 2015), resource alloca-
tion (Zhao et al., 2022), or fairness (Jabbari et al., 2017).
Various techniques have been proposed to solve CMDPs,
including primal-dual methods (Efroni et al., 2020) and
Lagrangian relaxation (Altman, 1999b; Borkar, 2005).

More recently, it has been shown that CMDPs has zero du-
ality gap under certain conditions (Paternain et al., 2019),
and this result has been leveraged in a series of papers to
derive regret bounds for model-free CMDPs (Ghosh et al.,
2022; Ding et al., 2021). While these methods are effective
for constraints that are linear in cost (e.g., requiring that
the expected sum of certain costs remains below a thresh-
old), many real-world tasks demand handling nonlinear,
risk-sensitive constraints that capture higher-order statistics
or worst-case scenarios (Chow et al., 2018). Such con-
straints are paramount in domains where even a single catas-
trophic event is unacceptable, such as in healthcare (Gottes-
man et al., 2019). However, incorporating risk-sensitive
constraints into CMDPs introduces significant challenges,
as the resulting problem often becomes highly nonlinear,
and the strong duality properties that simplify solution meth-
ods for CMDPs may fail to hold. Motivated by this, we are
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interested in the following question:

Can we achieve a provably efficient learning algorithm for
CMDP problem with risk-sensitive constraints?

In this work, we study a finite-horizon CMDP with an en-
tropic risk-sensitive constraint. In particular, we consider
that the agent seeks to maximize the expected cumulative
reward subject to the constraint that the risk-sensitive utility
associated with a policy remains above a prescribed thresh-
old in an online learning setup. Solving this problem exactly
is notoriously difficult due to its nonlinear nature and the
potential failure of strong duality.

Our Contributions:

• We show that the proposed algorithm, with probability at
least 1− δ, achieves a regret bound of Õ

(
Vg,maxK

3/4 +√
H4S2A log(1/δ)K3/4

)
and a constraint violation

bound of Õ
(
Vg,max

√
H3S2A log(1/δ)K3/4

)
, where S

and A denote the cardinalities of the state and action
spaces, H the episode length, K the number of episodes,
α < 0 the risk-aversion parameter, and Vg,max =
1
|α| (exp(|α|H)−1). To the best of our knowledge, this is
the first result establishing sublinear regret and violation
bounds for the risk-sensitive CMDP problem.

• The standard primal-dual approach may not apply in
this setting, as the exponential Bellman equation for
the composite state-action value function is invalid due
to the non-linearity of the entropic risk measure where
markovian policy is optimal. Moreover, we show that
a Markovian policy might be suboptimal unlike the un-
constraned entropic risk measure setting. To address
this, we introduce an augmented state space by extending
the original state-space with a continuous budget vari-
able. We show that, in the risk-averse case (α < 0),
the entropic risk associated with a policy π can be ex-
pressed as maxτ (τ + E[u(G(π)− τ)]), where u(t) =
1
α (exp(αt)− 1) and G(π) denotes the total utility under
policy π. By reformulating the problem in the augmented
state space, we can apply a value-iteration-based approach
to compute the composite state-action value function.

• We then apply a primal-dual-based approach. However,
since the entropic risk measure is not linear in the state-
action occupancy measure, strong duality may not hold.
As a result, standard techniques used in the risk-neutral
CMDP setting for bounding constraint violation (Ghosh
et al., 2022; Efroni et al., 2020; Ding et al., 2021) are
not directly applicable. To address this, we introduce
a truncation variable ξ and show that it is crucial for
controlling both regret and constraint violation.

1.1. Related Works

In this section, we provide a brief overview of the most rele-
vant related work. Specifically, we focus on risk-sensitive
MDPs and constrained MDPs, as the use of entropic risk
measures in constrained MDPs remains largely unexplored.

Risk Sensitive RL: The study of risk sensitive RL traces
its origins to economic theory, where risk was incorporated
into utility functions to better capture decision-making un-
der uncertainty (Hardy, 1923; von Neumann & Morgenstern,
1944; Luce & Raiffa, 1957; Arrow, 1965). Risk sensitive
Markov decision processes were first introduced in (Howard
& Matheson, 1972), where the standard cost function was
replaced by an exponential transformation involving a risk
sensitive parameter. This framework is closely aligned with
the concepts of robustness (Dai Pra et al., 1996; Hernandez-
Hernández & Marcus, 1996), as it balances utility maximiza-
tion while accounting for the variance of returns (Whittle,
2002). The use of exponential utility functions effectively
penalizes variability in outcomes, thereby mitigating risk in
decision-making.

Risk sensitivity entered the control and reinforcement learn-
ing literature in the early 2000s (Borkar, 2001; Borkar &
Meyn, 2002; Borkar, 2002). Since then, significant efforts
have been made to understand the behavior of exponential
risk sensitive reinforcement learning, with notable recent
contributions including (Fei et al., 2020; Murthy et al., 2023;
Fei et al., 2024; Moharrami et al., 2024). Simultaneously,
alternative risk measures such as Conditional Value-at-Risk
(CVaR) gained traction (Artzner et al., 1999; Rockafellar
& Uryasev, 2000; Wang et al., 2023; 2024). CVaR has
become particularly valuable in reinforcement learning ap-
plications, as it focuses on optimizing expected rewards in
worst case scenarios (Tamar et al., 2015; Zhao et al., 2024).
In this work, we focus on solving the problem where the
objective is to maximize the cumulative reward subject to
the constraint the entropic risk measure associated with the
utility value function is above a certain threshold. Hence, it
is fundamentally different from the above work.

Constrained RL: Constrained RL is one of the most active
fields at the intersection of constraint optimization, MDPs,
and RL. The earliest attempts to integrate constraints into
MDP formulations date back to the 1970s (Kolesar, 1970),
with more rigorous treatments appearing in the 1990s (Ross,
1989; Altman, 1999a). Optimization techniques for solving
constraint problems, such as Lagrangian relaxation (Ev-
erett, 1963; Shapiro, 1979), and primal-dual (Efroni et al.,
2020) approach have been used to address these challenges,
often by converting the constrained problem into an uncon-
strained one through the use of Lagrange multipliers (Alt-
man, 1998; Bertsekas, 2016). This framework was later
adapted to RL (Geibel & Wysotzki, 2005; Uchibe & Doya,
2007; Zheng & Ratliff, 2020; Tessler et al., 2019; Ding

2



Online Learning in Risk Sensitive constrained MDP

et al., 2020; Ying et al., 2022). Since then, numerous stud-
ies have explored different formulations of constrained ob-
jectives within the RL framework, including constraints
with auxiliary cost/reward functions (Achiam et al., 2017;
Tessler et al., 2019; Ghosh et al., 2022), constraints on
the quantile and distribution of returns (Jung et al., 2024),
and constraints on risk measures (Borkar & Jain, 2014;
Zhang et al., 2024). Compared to the risk-neutral constraints,
we consider risk-sensitive constraints. Furthermore, to the
best of our knowledge, this is the first work that provides
the sub-linear regret and violation bound for risk-sensitive
constraints setup.

2. Problem Formulation
We consider the risk-sensitive CMDP within an episodic
framework. The CMDP is defined as (S,A,P, H, r, g),
where S (|S| = S) is the finite state space, A (|A| = A) is
the finite action space, and H is the fixed episode length.
The transition dynamics are governed by a set of transition
probabilitiesP = {Ph}Hh=1, wherePh(s

′ | s, a) represents
the probability of transitioning to state s′ from state s at
time step h, upon taking action a. The reward and utility
functions are denoted by r = {rh}Hh=1 and g = {gh}Hh=1,
respectively, defined for each time step of the episode and
assumed to be deterministic and in [0, 1].

Each episode k ≥ 0 starts at a fixed state s1. At each
time step h, the agent observes the state skh ∈ S and se-
lects an action akh ∈ A. The agent then receives a re-
ward rh(s

k
h, a

k
h) and a utility gh(s

k
h, a

k
h). Finally, the MDP

evolves to skh+1 drawn from Ph(·|skh, akh). The episode
terminates at step H + 1. Without loss of generality, we
assume that rH+1 = gH+1 = 0. In this paper, we con-
sider the challenging scenario where the agent only observes
rh(s

k
h, a

k
h) and gh(s

k
h, a

k
h) at the visited state-action pairs.

The agent’s history-dependent policy space is denoted by

ΠHD =

{
π = {πh(· | ·)}Hh=1 :

πh(· | sh, {sh′ , ah′}h−1
h′=1) ∈ ∆(A), ∀h ∈ [H]

}
,

where ∆(A) denotes the probability simplex over the action
space. We consider a total of K episodes. For each k ≤ K
and h ≤ H , let πk

h denote the policy at time step h of
episode k.

The reward value function is the expected total reward
V π
r,1(s) = Eπ[

∑H+1
h=1 rh(sh, ah)|s1 = s]. The constraint

is based on the risk associated with the utility function.
For risk-sensitive RL with the risk factor α, we denote the
risk-sensitive state-action value function for the utility as
Qπ

g,1 : S ×A → R. This function represents the expected
cumulative utility, assessed using the entropic risk measure,

under a policy π ∈ ΠHD, starting from the state-action pair
(s, a), i.e.,

Qπ
g,1(s, a) =

1

α
log
(
Eπ

[
eα

∑H+1

h′=1
gh′ (sh′ ,ah′ )

∣∣∣s1 = s, a1 = a
])

.

Similarly, the risk-sensitive value function for the utility
associated with policy π, starting from state s is given by

V π
g,1(s) =

1

α
log
{
Eπ[e

α
∑H+1

h′=1
gh′ (sh′ ,ah′ )|s1 = s]

}
For a Markov policy π, the state-action value function and
the utility-based value function satisfy the following dy-
namic programming relations:

Qπ
g,h(s, a) = gh(s, a) +

1

α
log
(
Phe

αV π
g,h+1(s, a)

)
,

V π
g,h(s) =

1

α
log
(
⟨eαQ

π
g,h(s,·), π(·|s)⟩

)
.

Our objective is to solve the following risk-sensitive con-
strained problem:

max
π∈ΠHD

V π
r,1(s1), subject to V π

g,1(s1) ≥ B, (1)

where B ∈ R is the lower bound on acceptable utility. The
goal is to ensure that the entropic risk measure associated
with the utility value function is above a certain threshold.
We consider the setting where α < 0, indicating that the
agent is risk-averse. Here, α denotes the agent’s risk toler-
ance. As α ↑ 0, the agent approaches risk-neutral behavior
and seeks policies whose expected cumulative utility is at
least B. Conversely, as α ↓ −∞, the agent becomes increas-
ingly risk-averse and favors policies that yield outcomes
with lower volatility and a greater certainty of meeting or
exceeding the threshold B. Problems of this type are essen-
tial in various applications, including autonomous driving,
financial investment, and modeling human behavior.

Learning Metric: In this setting, we assume the agent
does not have access to the transition probabilities and must
learn in an online manner. The agent aims to minimize the
following performance metrics:

Regret(K) =

K∑
k=1

V π∗

r,1 (s1)− V πk

r,1 (s1),

Violation(K) =

K∑
k=1

(B − V πk

g,1 (s1))

where πk ∈ ΠHD is the policy deployed at episode k, and π∗

represents the optimal feasible policy. The regret quantifies
the sub-optimality gap, while the violation measures the
extent of constraint violations.
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3. Solution Methodology
We begin by highlighting the challenges in solving the risk-
sensitive CMDP compared to the standard CMDP. In the
standard CMDP, which corresponds to the risk-neutral sce-
nario (α = 0), the Lagrangian is solved to derive a bound
on the learning metric (Ghosh et al., 2022):

min
λ≥0

max
π

V π
r,1(x) + λ(V π

g,1(x)− b) (2)

Challenge in applying value iteration: In the standard
CMDP setting, for a fixed λ, the optimal Markov policy
π can be obtained using a standard dynamic programming
approach as the problem reduces to an unconstrained MDP
with a modified per-step reward of r + λg. Hence, a value-
based method can be applied to compute the composite
value function. This approach is then used to iteratively
update both the policy π and the dual variable λ.

However, in the risk-sensitive setting, expanding the La-
grangian yields:

rh(x, a) + PhV
π
r,h+1(x, a) + λgh(x, a)+

λ

α
log
(
Phe

αV π
g,h+1(s, a)

)
which prevents the use of standard dynamic programming
to solve for the optimal policy at a fixed λ. Unlike the
risk-neutral case, the Lagrangian here does not reduce to a
problem with a simple modified reward r + λg.

Lack of strong duality: For the standard CMDP, it has
been shown that strong duality holds if a strict feasible
policy (a.k.a. Slater’s condition) (Paternain et al., 2019)
exists. Thus, one can solve in the dual-domain. For stan-
dard CMDP problems, (Ghosh et al., 2022) demonstrate
that primal-dual based approaches can achieve a O(

√
K)

regret and violation using the strong duality result. The key
to obtain strong duality result in (Paternain et al., 2019) is
that the value function is linear in the state-action occupancy
measure. However, the risk-sensitive state-action value func-
tion is not linear with respect to the occupancy measure, and
the risk-sensitive CMDPs may not satisfy strong duality.
Consequently, traditional primal-dual-based algorithms are
inadequate for obtaining the desired results.

Absence of a Markov Optimal Policy: In contrast to stan-
dard CMDPs, the lack of strong duality in the risk-sensitive
setting means that one cannot guarantee the existence of
a Markov policy that solves the CMDP. The existence of
such a policy is crucial for deriving finite-time bounds. In
Appendix A, we present an example demonstrating that the
optimal policy for a CMDP with a entropic risk constraint
may not be even Markovian.

3.1. Certainty-Equivalence Representation

To address these issues, we leverage the certainty-
equivalence representation of the entropic risk mea-
sure (Ben-Tal & Teboulle, 2007). Specifically, for a func-
tion u(·), the Optimized Certainty Equivalent (OCE) as-
sociated with a π ∈ ΠHD is defined as OCEu(π, s) =

maxτ

{
τ + E

[
u
(∑H

h=1 gh(sh, ah)− τ
) ∣∣∣ s1 = s

]}
In the risk-averse case (α < 0), the entropic risk measure
can be recovered by setting u(t) = 1

α (e
αt − 1). For nota-

tional convenience, we use OCE(π) from this point onward,
as the function u(·) and the initial state s1 is fixed.
Lemma 3.1. For α < 0, we have OCE(π) = V π

g,1(s1).

Unlike the entropic risk measure, the OCE does not ad-
mit a dynamic programming formulation. As a result, the
optimal policy that maximizes OCE(π) is generally history-
dependent. The solution is to consider an augmented MDP
that extends the state space by introducing a scalar budget
variable, which intuitively tracks the cumulative utility over
time. This technique enables a reformulation of the prob-
lem into a state-based representation that is amenable to
dynamic programming. This approach has been employed
in the context of CVaR and spectral risk measures, and has
more recently extended to the OCE framework (Bäuerle &
Ott, 2011; Wang et al., 2024). We build on this formulation
and extend it to our CMDP state-space.

3.2. Augmented CMDP

Consider an augmented CMDP (Saug,A,Paug, H, r, gaug)
by appending a budget variable to the state and modifying
the underlying utility function (Bäuerle & Ott, 2011; Wang
et al., 2024). More specifically, we augment the state space
with a budget variable ch at horizon h defined by ch =

τ −
∑h−1

h′=1 gh′(sh′ , ah′), where c1 = τ ∈ [0, H] is the
initial budget provided by the algorithm, and ch denotes the
remaining budget at time step h. Note that ch ∈ [−H,H].

The budget transition is known and deterministic: ch+1 =
ch − gh(sh, ah). We define the augmented utility function
gaug
h by gaug

h (s, c, a) = 0 for h ≤ H , and gaug
H+1(s, c, a) =

u(−c), where u(t) = 1
α (e

αt − 1). The choice of u(t) is
dictated by the entropic risk measure. Note that the transi-
tion probability for the augmented CMDP problem is given
by Paug

h (·, c′|s, c, a) = Ph(·|s, a) for c′ = c− gh(s, a), and
Paug
h (·, c′|s, c, a) = 0, otherwise, as gh is deterministic.

The agent focuses on Markov policies defined over the aug-
mented state space, denoted by

Πaug
M =

{
π = {πh(· | ·)}Hh=1 : πh(· | sh, ch) ∈ ∆(A),

∀h ∈ [H] and c ∈ [−H,H]

}
.
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For a Markov policy π in the augmented state space, abus-
ing the notation, let Qπ

g,h and V π
g,h denote the augmented

state-action value function and the augmented state-value
function, respectively. The distinction between the risk-
sensitive MDP and the augmented MDP is evident from the
difference in the size of their state spaces. By definition,

Qπ
g,h(s, c, a)=

E
[ H+1∑
h′=h

gaug
h′ (sh′ , ch′ , ah′)

∣∣sh = s, ch = c, ah = a
]
,

V π
g,h(sh, ch)=E

[ H+1∑
h′=h

gaug
h′ (sh′ , ch′ , ah′)

∣∣sh = s, ch = c
]
.

Note that for a Markov policy π in the augmented state
space, the augmented CMDP admits a linear state-action
value function with respect to the utility function gaug

h , in
contrast to the risk-sensitive value functions Qπ

g,h(s, a) and
V π
g,h(s) defined for a Markov policy π in the original state

space S. This is achieved by shifting the utility to the
terminal time step, i.e., V π

g,H+1(sH , cH) = u(−cH+1). The
resulting additive structure is the key property that enables
the analysis of Lagrangian relaxation.

Furthermore, the function Vg,h(s, ·) is bounded above by
Vg,max = 1

|α| (exp(|α|H) − 1). Finally, for a Markov pol-
icy π in the augmented MDP, the functions Qπ

g,h and V π
g,h

satisfy standard dynamic programming equations:

Qπ
g,h(sh, ch, ah) = E

[
V π
g,h+1(sh+1, ch+1) | sh, ch, ah

]
,

V π
g,h(sh, ch) =

∑
a∈A

π(a | sh, ch)Qπ
g,h(sh, ch, a).

Note that OCE selects the optimal trade-off between the ini-
tial budget and the value function of the augmented CMDP:
OCE(π) = maxτ

(
τ+V π

g,1(s1, τ)
)
. Given this relationship,

we present the augmented risk-sensitive CMDP formulation,
which is equivalent to the original problem (1). Since poli-
cies are defined over the augmented state space, we denote
the reward value function as V π

r,1(s1, τ).

max
π

V π
r,1(s1, τ̂)

subject to τ̂ = argmax{(τ + V π
g,1(s1, τ))}

(τ̂ + V π
g,1(s1, τ̂)) ≥ B.

(3)

(Wang et al., 2024) studied an augmented formulation in the
unconstrained setting for various risk measures. However, to
the best of our knowledge, our work is the first to extend the
augmented CMDP framework to the constrained setting. Un-
like the unconstrained case, the constrained setting requires
controlling both regret and constraint violation. We make
the following assumption, which, in the risk-neutral CMDP
setting, follows by Slater’s condition (Paternain et al., 2019).
Deriving an analogous condition for the augmented CMDP
is left for future work.

Assumption 3.2. There exists a Markov policy in the aug-
mented state space that solves the augmented CMDP.

Note that a complete history-dependent policy will be com-
putationally more challenging, hence, we focus on Marko-
vian policy class on the augmented state space.

4. Algorithm
Considering a Lagrangian relaxation of (3), our goal is to
solve the following optimization problem:

min
λ≥0

max
π

max
τ

V π
r,1(s1, τ)+λ

(
(τ + V π

g,1(s1, τ))−B
)
. (4)

Note that the order of maximization in the above formula-
tion is interchangeable. Since the augmented value function
V π
g,1(s1, τ) satisfies a linear Bellman equation, the inner

maximization, for a fixed τ and λ ≥ 0, can be efficiently
solved using standard value iteration algorithms. In particu-
lar, for a fixed τ and λ ≥ 0, one can find the optimal policy
that maximizes the composite state-action value function.

The above approach addresses the primary challenge faced
by the original risk-sensitive CMDP. However, the absence
of strong duality remains a fundamental challenge. Specif-
ically, the key issue is determining an appropriate tuning
strategy for λ to ensure a bounded trade-off between policy
regret and constraint violation.

A natural approach to updating the Lagrange multiplier
λ ≥ 0 is to use gradient descent. However, due to the lack
of strong duality, the argument from (Ghosh et al., 2022)
cannot be directly applied to establish its boundedness. In
particular, the value function is still non-convex in terms
of the augmented state-action occupancy measure. Hence,
one can not apply the tool used in (Paternain et al., 2019) to
prove strong duality. To address this issue, we consider a
truncated dual update, capped at a threshold ξ to be specified
later. This truncation is crucial for achieving both the regret
and constraint violation bounds.

Algorithm Description: We now describe our proposed Al-
gorithm 1. The algorithm maintains an empirical estimate of
the transition probabilities, which is updated as new data is
observed (line 6). At each episode, this estimate is then used
to compute an optimistic estimate of the reward state-action
value function and the utility state-action value function,
using a bonus term for every augmented state-action pair
(lines 8–11). This bonus term enforces exploration.

Next, the policy is updated via a greedy algorithm with re-
spect to the estimated composite state-action value function
given by the Lagrangian relaxation (line 13). We then up-
date the reward and utility value functions using standard
dynamic programming equations (line 14), which effectively
solves the inner maximization of the Lagrangian relaxation
for any budget c in the discretized budget space C and a fixed
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λk > 0. Subsequently, we obtain the optimal initial budget
τ̂k using the current estimate of V πk

g,1 (s1, τ̂) and V πk

r,1 (s1, τ̂)
to solve the inner maximization of (4) (line 16). Finally, we
tune the dual variable via a gradient-descent update on λ:

λk+1=Proj[0,ξ] (λk + η(B − (τ̂k + Vg,1(s1, τ̂k))))

where Proj[0,ξ] denotes the projection operator onto the
interval [0, ξ]. In line 19, we execute the updated policy πk

h

using the optimized τ̂k as the initial budget. We track the
evolution of the budget while executing the policy.

Computational Challenge: One key challenge in optimiz-
ing τ is that the objective function is not concave in τ . To
address this, we discretize the budget variable with reso-
lution ϵ0, where ϵ0 is chosen to ensure polynomial-time
complexity while preserving regret and violation guarantees.
We denote the resulting discretized set of feasible budget val-
ues by C. Note that C ⊆ [−H,H] and that |C| = ⌈2H/ϵ0⌉.

5. Analysis
5.1. Main Result

We now present our main theoretical contribution, which
establishes high-probability sublinear bounds on both regret
and constraint violation for Algorithm 1. Our analysis ex-
tends existing frameworks in risk-sensitive and constrained
reinforcement learning.

Theorem 5.1. With probability 1− δ, Algorithm 1 returns
the policies {πk}Kk=1 such that

Regret(K)≤Õ
(
Vg,maxK

3/4+
√
H4S2A log(1/δ)K3/4

)
,

Violation(K)≤Õ
(
Vg,maxK

3/4
√
H3S2A log(1/δ)

)
,

where Vg,max = 1
|α| (exp(|α|H)− 1), and Õ(·) hides loga-

rithmic factors in S, A, H , and K.

This is the first sublinear regret and violation result for
the risk-sensitive constrained MDP setting. In the uncon-
strained, risk-neutral setting, the best known regret bound
is Õ(

√
H3SAK log(1/δ)) (Azar et al., 2017). The addi-

tional
√
HS factor in our bound arises from the use of an

augmented state space; specifically, we must apply uniform,
value-aware concentration bounds over the discretized aug-
mented state space. The additional K1/4 factor arises from
carefully balancing the discretization error with the size of
the discretized budget set C.

For the unconstrained risk-sensitive MDP setting, the
regret bound is O(Vg,max

√
H2S2AK log(1/δ)), which

is known to be tight (Fei et al., 2021). In our
constrained setting, we achieve a violation bound
of Õ

(
Vg,max

√
H3S2A log(1/δ)K3/4

)
. The additional

√
HK1/4 factor arises from the use of a discretized aug-

mented state space and the introduction of the truncation
threshold ξ, as strong duality may not hold.

5.2. Proof Outline

We first derive the regret and constraint violation associated
with the problem formulation in the augmented CMDP. We
then discuss the relationship between the regret and viola-
tion in the augmented state space and those in the original
CMDP. Note that the policy πk depends on the discretized
initial budget τ̂k and the discretized utilities observed:

Regretaug(K) =
∑
k

(V π∗

r,1 (s1, τ∗)− V πk

r,1 (s1, τ̂k)),

Violationaug(K) =
∑
k

(B − (τ̂k + V πk

g,1 (s1, τ̂k))),
(5)

where π∗ is the optimal feasible policy for the original
risk-sensitive CMDP, τ̂k is given by Algorithm 1, and
τ∗ = argmaxτ (τ + V π∗

g,1 (s1, τ)). Note that the value of
τ̂k determines the policy πk.

Step 1: Let V k
g,1 and V k

r,1 denote the optimistic estimates of
V πk

g,1 and V πk

r,1 , respectively, as computed by Algorithm 1 on
line 12. We begin with the following observation:

∑
k

(
V π∗

r,1 (x, τ∗)−V πk

r,1 (x, τ̂k))+λ(B−(τ̂k+V πk

g,1 (x, τ̂k))

)
≤
∑
k

(V k
r,1(x, τ̂k)− V πk

r,1 (x, τ̂k))︸ ︷︷ ︸
T1

+
∑
k

(V π∗

r,1 (x, τ∗)− V k
r,1(x, τ̂k))+︸

λk((τ∗+V π∗

g,1 (x, τ∗))−(τ̂k+V k
g,1(x, τ̂k)))︷︷ ︸

T2

+
∑
k

(λ− λk)(B − (τ̂k + V k
g,1(x, τ̂k)))︸ ︷︷ ︸

T3

+ λ
∑
k

((τ̂k + V k
g,1(x, τ̂k))− (τ̂k + V πk

g,1 (x, τ̂k)))︸ ︷︷ ︸
T4

where the inequality follows from the fact that (τ∗ +
V π∗

g,1 )(x) ≥ B. Note that when λ = 0, the above expression
reduces to the regret. This same expression also suffices for
bounding the violation, as we explain later.

Step 2: We bound T3 by analyzing the truncated dual update
for constraint violation.
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Algorithm 1 Constraint Risk Sensitive Value Iteration Algorithm
Input: Number of episodes K ∈ Z+, discretized budget space C, confidence level δ ∈ (0, 1], risk parameter α < 0, utility
lower bound B, learning rate η, initial policy π0, truncation threshold ξ, and Vg,max = 1

|α| (exp(|α|H)− 1).

1: λ1 ← 0
2: For all (s, ĉ, a) ∈ S × C ×A, initialize Vg,H+1(s, ĉ)← u(−ĉ) and Vr,H+1(s, ĉ)← 0
3: For all (h, s, ĉ, a) ∈ [H]× S × C ×A, set Qr,h(s, ĉ, a)← H , Qg,h(s, ĉ, a)← Vg,max

4: For all h ∈ [H], initialize dataset Dh ← ∅
5: for episode k = 1 to K do
6: For each h ∈ [H], compute counts and empirical transitions: Nh(s, a, s

′) ←
∑k−1

i=1 1[(s
i
h, a

i
h, s

i
h+1) = (s, a, s′)],

Nh(s, a)← max{1,
∑

s′ Nh(s, a, s
′)}, and P k

h (s
′ | s, a)← Nh(s,a,s

′)
Nh(s,a)

7: for step h = H to 1 do
8: for all (s, ĉ, a) ∈ S × C ×A do

9: Bonr,h(s, a)← 9H

√√√√√√√S|C| log (HSAK|C|/δ)
Nh(s, a)

, Bong,h(s, a)← 6Vg,max

√√√√√√√S|C| log (HSAK|C|Vg,max/δ)

Nh(s, a)

10: Qg,h(s, ĉ, a)← min
{
Es′∼Pk

h (·|s,a) [Vg,h+1(s
′, ĉ− ϕ(gh(s, a)))] +Bong,h(s, a), Vg,max

}
11: Qr,h(s, ĉ, a)← min

{
rh(s, a) + Es′∼Pk

h (·|s,a) [Vr,h+1(s
′, ĉ− ϕ(gh(s, a))] +Bonr,h(s, a), H

}
12: end for
13: For all (s, ĉ) ∈ S × C, set πk

h(a | s, ĉ) = 1 for some a ∈ argmaxa′∈A (Qr,h(s, ĉ, a
′) + λkQg,h(s, ĉ, a

′)).
14: For all (s, ĉ) ∈ S × C, update Vr,h(s, ĉ)← ⟨Qr,h(s, ĉ, ·), πk

h(·|s, ĉ)⟩, Vg,h(s, ĉ)← ⟨Qg,h(s, ĉ, ·), πk
h(·|s, ĉ)⟩.

15: end for
16: τ̂k = argmaxĉ∈C [Vr,1(s1, ĉ) + λk (ĉ+ Vg,1(s1, ĉ))].
17: λk+1 = Proj[0,ξ] (λk + η(B − (τ̂k + Vg,1(s1, τ̂k))))
18: for step h = 1 to H do
19: Take action akh according to the greedy policy πk

h starting from initial augmented state (s1, τ̂k).
20: Insert (skh, a

k
h, s

k
h+1) into Dh

21: end for
22: end for

Lemma 5.2. For any λ ∈ [0, ξ], we have

K∑
k=1

(λ− λk)(B − (τ̂k + V k
g,1(x, τ̂k))) ≤

λ2

2η
+

ηV 2
g,maxK

2
.

Step 3: We use optimistic estimates to bound T2.

Lemma 5.3. With probability at least 1− δ,∑
k

(V π∗

r,1 (x, τ∗)− V k
r,1(x, τ̂k))+

λk((τ∗ + V π∗

g,1 (x, τ∗))− (τ̂k + V k
g,1(x, τ̂k))) ≤ ϵ0Kξ.

Proving the optimism is challenging due to the continuity of
the initial budget τ . In the augmented MDP for the uncon-
strained CVaR problem, (Wang et al., 2023) leverages the
fact that the greedy policy is optimal for the reward value
function. In the unconstrained setting, one can bound the
term |(P k

h (s, a) − Ph(s, a))
TV π∗

r,h (·, c − gh)| by showing
that value function class on the greedy policy has small
covering, as the Bellman operator is a contraction under the
max operator. However, in the constrained setting consid-
ered here, the optimal policy is not necessarily greedy with

respect to the composite state-action value function. As a
result, this approach does not apply.

Instead, we bound |(P k
h (s, a) − Ph(s, a))

TV k
j,h(·, ĉ)| for

j ∈ {g, r} using the uniform concentration bound from (Jin
et al., 2020), and a discretization of the budget variable at
resolution ϵ0, denoted by C (see Lemma D.1). The size of C
appears in the uniform concentration bound and is reflected
in the bonus term in line 8 of Algorithm 1. Specifically,
given the boundedness of both the reward and utility value
functions, we apply a standard ε-covering number argument
to show that with high probability, at episode k, the compos-
ite value function of the optimal policy is bounded above by
the optimistic estimate, up to a discretization gap of ϵ0λk.

Step 4: The upper bound for T1 is established by leverag-
ing the uniform concentration bound, applying Azuma’s
inequality, and invoking the Elliptical Potential Lemma.

Lemma 5.4. With probability at least 1− δ,∑
k

(V k
r,1(x, τ̂k)− V πk

r,1 (x, τ̂k))

≤ 20HS
√
HAK|C| log(K) log (HSAK|C|/δ).

7
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Step 5: We bound T4 using a similar argument to the one
used for bounding T1.

Lemma 5.5. With probability at least 1− δ,

∑
k

((τ̂k + V k
g,1(x, τ̂k))− (τ̂k + V πk

g,1 (x, τ̂k)))

≤14Vg,maxS
√
HAK|C| log(K) log (HSA|C|Vg,max/δ)

+ 14Vg,maxS log(K)
√
HAK|C|+Kϵ0He|α|H .

Note that the learned policy πk is Markovian with respect to
the discretized augmented state space, as it depends on the
accumulated discretized utility rather than the exact cumula-
tive utility. Consequently, πk is not Markovian with respect
to the augmented state space which lies in the continuous
space. This discrepancy is captured by the additional term
in the upper bound of Lemma 5.5.

Regret Bound: We derive the regret bound by combin-
ing the bounds for T1, T2, and T3, and by setting the pa-
rameters as λ = 0, η = K−1/4/Vg,max , ϵ0 = K−1/2,
and ξ = K1/4. More specifically, the regret associated
with the augmented CMDP is bounded by Õ

(
Vg,maxK

3/4+√
H4S2A log(1/δ)K3/4

)
.

Violation Bound: To bound the violation, we combine the
bounds for T1, T2, and T3 for a fixed λ, by setting λ = K1/4,
η = K−1/4/Vg,max , ϵ0 = K−1/2, and ξ = K1/4. In
particular, for any fixed λ ∈ [0, ξ], we have

∑
k

(V π∗

r,1 (x, τ∗)−V πk

r,1 (x, τ̂k))+λ(B−(τ̂k+V πk

g,1 (x, τ̂k)))

≤ Õ
(
Vg,max

√
H3S2A log(1/δ)K

)

Note that
∣∣∑

k(V
π∗

r,1 (x, τ∗) − V πk

r,1 (x, τ̂k))
∣∣ is trivially

bounded by HK. Setting λ = ξ = K1/4, the viola-
tion associated with the augmented CMDP is bounded by
Õ
(
Vg,max

√
H3S2A log(1/δ)K3/4

)
.

From Augmented CMDP to Original CMDP: As noted
earlier, the policy πk, together with the initial budget τ̂k,
can be interpreted as a history-dependent policy in the orig-
inal CMDP. This policy depends on the current state and
the accumulated discretized utility. To highlight the depen-
dence of πk on τ̂k, we denote it by πk(τ̂k). Consequently,
the reward associated with the policy πk(τ̂k) is given by
V πk

r,1 (s1, τ̂k) in both the original and the augmented CMDP.

However, the entropic risk measure corresponding to this

Figure 1. Evolution of the empirical reward V k
r,1(s1, τ̂k), the em-

pirical risk measure for utility τ̂k + V k
g,1(s1, τ̂k), and the dual

variable λ across iterations for α = −0.0001. Here, B = 2.2. All
values are averaged over the most recent 100 episodes.

policy, by Lemma 3.1, is given by

max
τ

(
τ + Eπk(τ̂k)

[
u

(
H∑

h=1

gh(sh, ah)− τ

∣∣∣∣ s1
)])

≥ τ̂k + Eπk(τ̂k)

[
u

(
H∑

h=1

gh(sh, ah)− τ̂k

∣∣∣∣ s1
)]

= τ̂k + V πk

g,1 (s1, τ̂k).

Therefore, we have Regretaug(K) = Regret(K) and
Violation(K) ≤ Violationaug(K).

6. Simulation Results
We simulate our proposed approach on a 5× 5 Grid-World
with two actions: → and ↓. In all simulations, we use K =
15, 000, ξ = K−1/4, and η = cK−1/4/Vg,max, where the
coefficient c is linearly scaled down from 100 to 1 across
episodes to improve the convergence rate (i.e., a larger η
in earlier episodes). Further details of the simulation setup,
including the reward, utility, and transition probabilities, are
provided in Appendix I.

Figure 1 illustrates the behavior of the algorithm for α =
−0.0001 as a function of k. Initially, the policy violates
the risk constraint and also underperforms in terms of re-
ward. As the number of iterations increases, the empirical
risk associated with the cumulative utility rises and even-
tually meets the threshold B = 2.2. The dual variable λ
increases rapidly in the early stages to penalize constraint
violations, then grows more slowly once the policy becomes
feasible. Additionally, we observe that the optimistic es-
timates V k

r,1(s1, τ̂k) and V k
g,1(s1, τ̂k) are initially inflated

due to exploration bonuses. As more data is gathered, these
estimates converge to their empirical counterparts, and the
gap between the estimated and empirical values gradually
narrows.

Table 1 presents the empirical reward values V emp
r,1 (s1) and

empirical risk values V emp
g,1 (s1) for the average policy in-

duced by the final 20 episodes after K = 15,000 iterations,

8



Online Learning in Risk Sensitive constrained MDP

Table 1. Empirical reward and risk from the average policy over the last 20 episodes after K = 15,000 iterations for various (α,B) pairs.
(−10−2, 2.2) (−10−4, 2.2) (−10−2, 2.6) (−10−4, 2.6) (−10−2, 2.9) (−10−4, 2.9)

V emp
r,1 (s0) 1.95 2.80 1.90 2.24 1.92 1.88

V emp
g,1 (s0) 2.76 2.20 2.80 2.57 2.78 2.80

across various choices of α and B. Decreasing B enlarges
the feasible set, enabling the algorithm to attain higher re-
wards while satisfying the constraint. Conversely, for fixed
B, decreasing α shrinks the feasible set, resulting in lower
achievable rewards. Figure 3 (Appendix I) shows that as α
decreases how the policy selects less risky actions compro-
mising the reward. When |α| and B are large, the algorithm
may fail to find a feasible policy, leading to constraint vi-
olations. Moreover, as |α| increases, the value of Vg,max

also grows, which may impact both regret and constraint
satisfaction. Thus, larger values of |α| may require more
episodes (K) for a reliable performance evaluation.

7. Extension
As noted, this is the first work to establish theoretical bounds
for online learning in a CMDP with a risk-sensitive con-
straint. Our analysis naturally extends to several related
settings, some of which we outline below.

Extension to other risk constraints: In this paper, we
consider a constraint requiring the entropic risk measure
of the utility value function to exceed a specified thresh-
old. Our analysis can be extended to other risk-sensitive
constraints, such as Conditional Value at Risk (CVaR) with
a hard threshold, by adopting a similar augmented formu-
lation as in the unconstrained setting (Wang et al., 2024;
Liang & Luo, 2024). A complete characterization of regret
and constraint violation in these cases is left for future work.

Extension to risk-sensitive objective: In this paper, we fo-
cus on the objective of maximizing the expected cumulative
reward. However, our analysis can be extended to settings
where the goal is to maximize the entropic risk measure
of the reward value function. This extension requires aug-
menting the state space with two budget variables: τr for
the reward and τg for the utility. The optimization proceeds
in two stages: first, for each τr, we optimize over τg to
evaluate the entropic risk of the utility; then, we optimize
over τr to bound the entropic risk of the reward. A full
characterization of this framework is left for future work.

Extension to Multiple constraints: Our framework can
be extended to accommodate multiple risk-sensitive con-
straints. Specifically, we augment the state space with multi-
ple budget variables (τ1, . . . , τI), where I denotes the num-
ber of constraints. For the resulting augmented state space,
we first compute the value functions associated with each
budget, and then jointly optimize over the initial budgets
(τ1, . . . , τI). However, this extension influences the regret

and violation bounds, which will scale with the number of
constraints. A complete characterization of this extended
framework is left for future work.

8. Conclusion and Future Work
In this work, we study the problem of maximizing cumula-
tive reward subject to the constraint that the entropic risk
measure of the utility function remains above a specified
threshold. This formulation is particularly relevant in safety-
critical applications. We consider an online learning setting
in which an agent interacts with the environment over K
episodes, aiming to minimize both regret and constraint
violation. The problem presents significant challenges due
to the non-linearity of the entropic risk value, which ren-
ders standard primal-dual methods difficult to analyze. To
overcome this, we reformulate the problem by augmenting
the state space with a budget variable. By optimizing over
the initial budget, we show that the value function in the
augmented formulation exactly recovers the entropic risk
measure, allowing us to recast the problem into a structure
amenable to value-based methods.

Since strong duality may not hold in this setting, we in-
troduce a truncated dual update. We prove that the result-
ing algorithm achieves a regret bound of Õ

(
Vg,maxK

3/4 +√
H4S2A log(1/δ)K3/4

)
and a constraint violation bound

of Õ
(
Vg,max

√
H3S2A log(1/δ)K3/4

)
, with probability at

least 1 − δ. To the best of our knowledge, this is the first
result establishing theoretical bounds for the entropic risk-
constrained MDP problem.

An important direction for future work is determining
whether tighter violation bounds, particularly with improved
dependence on K, can be achieved. Recent approaches
(Jiang & Ye, 2024; Dalal et al., 2018) to improve the sam-
ple complexity bound for risk-neutral CMDP setting can
be useful in reducing the dependency. Extending the anal-
ysis to settings with infinite state spaces remains an open
challenge. Another promising avenue is to consider envi-
ronments where utilities and rewards are drawn from un-
known distributions, introducing additional complexity in
both learning and generalization. Another important future
direction is to consider a stricter violation bound, such as no
cancellation violation bound as considered in risk-neutral
CMDP setting (Ghosh et al., 2024). Empirical evaluations
for larger state-space, and for a more practical setup have
been left for the future.
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Impact Statement
This paper is theoretical in nature. The goal of this work
is to advance the safe decision making using RL. We do
not foresee any immediate or unique ethical concerns that
require specific attention in this context.
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A. Limitations of Markov Policies under Entropic Risk Constraint
Here, we present a simple example that illustrates the limitations of Markov policies in a CMDP with an entropic risk
measure. In particular, the optimal policy in this example does not lie within the class of Markov policies. This demonstrates
that Markov policies can be suboptimal, underscoring the need to extend the policy search to history-dependent policies in
our framework.

Consider a CMDP (S,A,P, H, r, g), where the state space is S = {s1, s2, s′2, s3}, the action space is A = {a, b}, and the
horizon is H = 3. The transition probabilities are depicted in Figure 2 and are independent of the actions taken at the states.
The reward and utility functions are zero everywhere except at the following state-action pairs:

r(s2, ·) = 1, g(s′2, ·) = 1, r(s3, a) = 1, g(s3, b) = 1.

Notice that action a maximizes the expected reward, while action b maximizes the entropic risk measure. Let the lower
bound on acceptable utility be B = 1 in (1). Consider a history-dependent policy that selects action b if and only if the state
at h = 1 is s1. It is easy to verify that this policy is feasible, and the resulting expected reward is 1.

s1

s2

s′2

s3

1
2

1
2

1

1

Figure 2. Transition diagram for the CMDP.

Next, we show that any Markov policy is suboptimal. Let π = (π0, π1, π2) denote a Markov policy. Observe that the only
relevant components are π2(a | s2) and π2(b | s2). Define p = π2(a | s2). Then we have:

V π
r,1(s1) =

1

2
+ p,

V π
g,1(s1) =

1

α
log

(
p

2
+

p

2
eα +

1− p

2
eα +

1− p

2
e2α
)

<
3

2
− p.

where α < 0 is the risk factor, and the last inequality follows by Jensen’s inequality. Observe that for any p < 1
2 , the

resulting policy is suboptimal since V π
r,1(s1) < 1. On the other hand, for any p ≥ 1

2 , we have V π
g,1(s1) < 1, and thus the

resulting policy is infeasible.

B. Proof of Lemma 3.1
From the definition, OCE(π) = maxτ

(
τ + E

[
u
(∑H

h=1 gh(sh, ah)− τ
)])

, where u(t) = 1
α (e

αt − 1). Note that for
α < 0, the function u(t) is strictly concave, hence, the unique maximizer can be found using the first order condition:

τ∗ =
1

α
log

(
E
[
exp

(
α

H∑
h=1

gh(sh, ah)
)])

.

The result follows by substituting τ∗ in the definition of OCE(π).
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C. Proof of Lemma 5.2
Note that for λ ∈ [0, ξ], we have

|λk+1 − λ|2 = |Proj[0,ξ](λk + η(B − (τ̂k + Vg,1(s1, τ̂k))))− Proj(λ)|2

≤ |λk + η(B − (τ̂k + Vg,1(s1, τ̂k)))− λ|2

≤ |λ− λk|2 − 2η(B − (τ̂k + Vg,1(s1, τ̂k)))(λ− λk) + η2V 2
g,max

where the first inequality follows from the non-expansiveness of the projection operator, and the second from the fact that
|B − (τ̂k + Vg,1(s1, τ̂k))| ≤ Vg,max. Summing over k then yields

0 ≤ |λK+1 − λ|2 ≤ |λ1 − λ|2 −
∑
k

2η(B − (τ̂k + Vg,1(s1, τ̂k)))(λ− λk) +Kη2V 2
g,max

Since λ1 = 0, it follows that

K∑
k=1

(λ− λk)(B − (τ̂k + V k
g,1(x, τ̂k))) ≤

λ2

2η
+

ηV 2
g,maxK

2

D. Proof of Lemma 5.3
Recall that π∗ = {π∗

h}Hh=1 denotes the optimal feasible policy that solves the optimization problem (1). By assumption,
there exists a corresponding Markovian policy in the augmented state space that solves the optimization problem (3). With
slight abuse of notation, we also denote this Markovian policy by π∗ = {π∗

h}Hh=1, where each π∗
h : S × [−H,H]→ A. As

noted earlier, the budget variable ch in the augmented MDP at time h ≥ 1 lies in the interval [−H,H].

To improve computational efficiency and address the challenge of optimizing the initial budget τ̂k, we discretize both the
initial budget and the utility values received at each state. Consequently, the learned policy πk = {πk

h}Hh=1 depends on the
accumulated discretized utility rather than the exact cumulative utility. As a result, πk is not Markovian with respect to the
augmented state space, but instead is Markovian with respect to the discretized augmented state space, where all utility
values are replaced by their discretized counterparts.

Specifically, the budget variable in the discretized augmented state space is restricted to a finite set C, which is an ϵ0-resolution
discretization of the interval [−H,H]. Thus, the cardinality of C is given by

|C| =
⌈
2H

ϵ0

⌉
.

Finer discretization improves the approximation accuracy at the cost of increased computational complexity. The discretiza-
tion operator ϕ : [−H,H]→ C projects a real-valued budget onto the nearest larger discretized value:

ϕ(c) = argmin
ĉ∈C, ĉ≥c

|ĉ− c|.

For notational consistency, all hatted symbols denote discretized values. In particular, we use ĝh(s, a) as a shorthand for
ϕ(gh(s, a)).

Lemma D.1. For all (s, a) ∈ S ×A, ĉ ∈ C, h ≤ H , k ≤ K, and j ∈ {r, g}∣∣∣(P k
h (·|s, a)− Ph(·|s, a)

)T
V k
j,h(·, ĉ)

∣∣∣ ≤ Bonkj,h(s, a)

with probability at least 1 − δ, where Bonkj,h(s, a) = 6Vj,max

√
S|C| log (HSAK|C|Vj,max/δ)/Nk

h (s, a), Vr,max = H,

and Vg,max =
exp(|α|H)− 1

|α|
.
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Lemma D.2. For all (s, a) ∈ S × A, c ∈ [−H,H], ĉ ∈ C, h ≤ H , and k ≤ K, and j ∈ {r, g}, the following holds with
probability at least 1− δ:

Qπ∗

j,h(s, c, a)−Qk
j,h(s, ĉ, a) ≤ (Ph(· | s, a))T

(
V π∗

j,h+1 (·, c− gh(s, a))− V k
j,h+1 (·, ĉ− ĝh(s, a))

)
.

Proof.

Qπ∗

j,h(s, c, a)−Qk
j,h(s, ĉ, a) = (Ph(· | s, a))T V π∗

j,h+1 (·, c− gh(s, a))

− Bonk
j,h(s, a)−

(
P k
h (· | s, a)

)T
V k
j,h+1 (·, ĉ− ĝh(s, a))

= (Ph(· | s, a))T
(
V π∗

j,h+1 (·, c− gh(s, a))− V k
j,h+1 (·, ĉ− ĝh(s, a))

)
− Bonk

j,h(s, a)−
(
P k
h (· | s, a)− Ph(· | s, a)

)T
V k
j,h+1 (·, ĉ− ĝh(s, a))

≤ (Ph(· | s, a))T
(
V π∗

j,h+1 (·, c− gh(s, a))− V k
j,h+1 (·, ĉ− ĝh(s, a))

)
− Bonk

j,h(s, a) + Bonk
j,h(s, a),

where the last inequality follows by Lemma D.1.

Lemma D.3. For all (s, a) ∈ S × A, c ∈ [−H,H], ĉ ∈ C with ĉ ≤ c, h ≤ H , and k ≤ K, the following holds with
probability at least 1− δ:

Qπ∗

r,h(s, c, a) + λkQ
π∗

g,h(s, c, a)−Qk
r,h(s, ĉ, a)− λkQ

k
g,h(s, ĉ, a) ≤ 0

Proof. We prove the claim by induction. The base case holds trivially for h = H + 1, since Qπ∗

r,H+1(s, c, a) =

Qk
r,H+1(s, ĉ, a) = 0 and Qπ∗

g,H+1(s, c, a) = u(−c) ≤ u(−ĉ) = Qk
g,H+1(s, ĉ, a), where the inequality follows from

the monotonicity of u(·). For the induction step, assuming the statement holds for horizon h + 1, we will verify it for
horizon h:

Qπ∗

r,h(s, c, a) + λkQ
π∗

g,h(s, c, a)−Qk
r,h(s, ĉ, a)− λkQ

k
g,h(s, ĉ, a)

≤ (Ph(· | s, a))T
(
V π∗

r,h+1(·, c− gh(s, a))− V k
r,h+1(·, ĉ− ĝh(s, a))

)
+ λk (Ph(· | s, a))T

(
V π∗

g,h+1 (·, c− gh(s, a))− V k
g,h+1 (·, ĉ− ĝh(s, a))

)
≤ 0

where the first inequality follows from Lemma D.2, and the last inequality follows from the induction hypothesis, the
assumption that ĉ ≤ c, and the inequality ĝh(s, a) ≥ gh(s, a). Notice that by the definition of πk,

V π∗

r,h+1 (s, c) + λkV
π∗

g,h+1 (s, c)− (V k
r,h+1 (s, ĉ) + λkV

k
g,h+1 (s, ĉ))

≤
∑
a∈A

π∗(a|s, c)
(
Qπ∗

r,h+1(s, c, a) + λkQ
π∗

g,h+1(s, c, a)−Qk
r,h+1(s, ĉ, a)− λkQ

k
g,h+1(s, ĉ, a)

)
.

As an immediate corollary of Lemma D.3, the following inequality holds with probability at least 1− δ:

V π∗

r,1 (s1, τ∗) + λk

(
τ∗ + V π∗

g,1 (s1, τ∗)
)
− V k

r,1(s1, τ̂k)− λk

(
τ̂k + V k

g,1(s1, τ̂k)
)

≤ V π∗

r,1 (s1, τ∗) + λk

(
τ∗ + V π∗

g,1 (s1, τ∗)
)
− V k

r,1(s1, ϕ(τ∗)− ϵ0)− λk

(
ϕ(τ∗)− ϵ0 + V k

g,1(s1, ϕ(τ∗)− ϵ0)
)

≤ λkϵ0

where we use the fact that the initial budget at episode k is given by τ̂k = argmaxĉ∈C
[
V k
r,1(s1, ĉ) + λk

(
ĉ+ V k

g,1(s1, ĉ)
)]

,
and the inequality ϕ(τ∗)− ϵ0 < τ∗ ≤ ϕ(τ∗). Finally, observe that λk ≤ ξ.
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E. Proof of Lemma 5.4 and Lemma 5.5
As noted earlier, the policy πk = {πk

h} is Markovian with respect to the discretized augmented state space, but history-
dependent with respect to the augmented state space. However, note that V πk

g,H+1 depends on the cumulative utility, while
V k
g,H+1 depends on the cumulative discretized utility. More specifically,

πk
h(· | sh, ch, {sh′ , ah′ , ch′}h−1

h′=1) = πk
h

(
· | sh,

h∑
h′=1

ϕ(gh′(sh′ , ah′))

)
,

V k
g,H+1({sh′ , ah′ , ch′}Hh′=1) = u

(
−ϕ(c1) +

H∑
h′=1

ϕ(gh′(sh′ , ah′))

)
,

V πk

g,H+1({sh′ , ah′ , ch′}Hh′=1) = u

(
−c1 +

H∑
h′=1

gh′(sh′ , ah′)

)
.

In particular, the value of V πk

g,h depends on both the cumulative discretized utility (since the policy πk depends on it) and

the cumulative utility (since V πk

g,H+1 depends on it). For notational simplicity, we retain only the cumulative discretized

utility in the notation and explicitly acknowledge the dependence on the cumulative utility when referring to V πk

g,H+1. In
what follows, we adopt the convention of reserving the “ˆ” symbol exclusively for discretized values.

Lemma E.1. The following inequality hold with probability at least 1− δ:

V k
r,1(s, τ̂k)− V πk

r,1 (s, τ̂k) ≤ 2

H∑
h=1

Eπk [Bonkr,h(sh, ah) | s1 = s, ĉ1 = τ̂k,Hk]

V k
g,1(s, τ̂k)− V πk

g,1 (s, τ̂k) ≤ 2

H∑
h=1

Eπk [Bonk
g,h(sh, ah) | s1 = s, ĉ1 = τ̂k,Hk] + ϵ0He|α|H

Proof. For all s ∈ S, ĉ ∈ C, h ≤ H , k ≤ K, and j ∈ {r, g} the following holds with probability at least 1− δ:

V k
j,h(s, ĉ)− V πk

j,h (s, ĉ) =
∑
a∈A

πk(a|s, ĉ)
(
Qk

j,h(s, ĉ, a)−Qπk

j,h(s, ĉ, a)
)

=
∑
a∈A

πk(a|s, ĉ)
(

Bonk
j,h(s, a) +

(
P k
h (·|s, a)

)T
V k
j,h+1(·, ĉ− ĝh(s, a))−Qπk

j,h(s, ĉ, a)
)

= Ea∼πk(·|s,ĉ)

[
Bonk

j,h(s, a) +
(
P k
h (·|s, a)− Ph(·|s, a)

)T
V k
j,h+1(·, ĉ− ĝh(s, a))

]
+
∑
a∈A

πk(a|s, ĉ) (Ph(·|s, a))T
(
V k
j,h+1(·, ĉ− ĝh(s, a))− V πk

j,h+1(·, ĉ− ĝh(s, a))
)

≤ 2Ea∼πk(·|s,ĉ)
[
Bonk

j,h(s, a)
]
+Eπk

[
V k
j,h+1(sh+1, ĉh+1)− V πk

j,h+1(sh+1, ĉh+1)
∣∣sh = s, ĉh = ĉ

]
,

where we used the fact that πk is Markovian with respect to the discretized augmented state space. Hence, we have

V k
r,1(s, τ̂k)− V πk

r,1 (s, τ̂k) ≤ 2

H∑
h=1

Eπk [Bonk
r,h(sh, ah) | s1 = s, c1 = τ̂k,Hk],

V k
g,1(s, τ̂k)− V πk

g,1 (s, τ̂k) ≤ 2

H∑
h=1

Eπk [Bonk
g,h(sh, ah) | s1 = s, c1 = τ̂k,Hk]

+ Eπk

[
u

(
−τ̂k +

H∑
h′=1

ĝh′(sh′ , ah′)

)
−u

(
−τ̂k +

H∑
h′=1

gh′(sh′ , ah′)

)∣∣∣∣s1 = s, c1 = τ̂k,Hk

]
,

whereHk is the trajectory from episodes 1, 2, · · · , k − 1. The result follows from the fact that u(t), for t ∈ [−H,H], is a
Lipschitz function with Lipschitz constant e|α|H .
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Combining Lemma E.1 with Elliptical Potential Lemma, we have

K∑
k=1

V k
r,1(s, τ̂k)− V πk

r,1 (s, τ̂k) ≤ 2

K∑
k=1

H∑
h=1

Eπk [Bonkr,h(sh, ah) | s1 = s, ĉ1 = τ̂k] + 2H
√
HK log(1/δ)

= 2

K∑
k=1

H∑
h=1

Eπk

[
9H

√√√√√√√S|C| log (HSAK|C|/δ)
Nh(skh, a

k
h)

∣∣∣∣ s1 = s, ĉ1 = τ̂k

]
+ 2H

√
HK log(1/δ)

≤ 20HS
√
HAK|C| log(K) log (HSAK|C|/δ)

Using a similar argument,

K∑
k=1

V k
g,1(s, τ̂k)− V πk

g,1 (s, τ̂k) ≤ 2

K∑
k=1

H∑
h=1

Eπk [Bonkg,h(sh, ah) | s1 = s, ĉ1 = τ̂k] +Kϵ0He|α|H + 2Vg,max

√
HK log(1/δ)

≤ 14Vg,maxS
√
HAK|C| log(K) log (HSAK|C|Vg,max/δ) +Kϵ0He|α|H

F. Bounding the Regret and Violation
Bounding the Regret: We bound the regret by combining Lemmas 5.2, 5.3, and 5.4, and by setting λ = 0, η =
K−1/4/Vg,max , ϵ0 = K−1/2, and ξ = K1/4:

Regretaug(K) ≤ ηV 2
g,maxK + ϵ0K

5/4 + 20HS
√

HAK|C| log(K) log (HSAK|C|/δ)

= Õ
((

e|α|H − 1

|α|H

)
HK3/4 +

√
H4S2A log(1/δ)K3/4

)
.

Bounding the Violation: We bound the violation by combining Lemmas 5.2, 5.3, 5.4, and 5.5 and by setting λ = 0,
η = K−1/4/Vg,max , ϵ0 = K−1/2, and ξ = K1/4. Note that for a fixed λ ∈ [0, ξ], we have

∑
k

(
V π∗

r,1 (x, τ∗)−V πk

r,1 (x, τ̂k))+λ(B−(τ̂k+V πk

g,1 (x, τ̂k))

)
≤ ηV 2

g,maxK +
ξ2

2η
+ ϵ0Kξ + 20HS

√
HAK|C| log(K) log (HSAK|C|/δ)

+ 14ξVg,maxS
√
HAK|C| log(K) log (HSAK|C|Vg,max/δ) +Kϵ0He|α|H

≤ Vg,maxK
3/4 +

Vg,max

2
K3/4 +K3/4 + 60K3/4

√
S2H4A log(K) log (HSAK/δ)

+ 42Vg,maxK
√

S2H3A log(K) log (HSAK/δ) +K1/2He|α|H

≤ Õ
(
Vg,maxK

√
S2H3A log (1/δ)

)
.

Trivially bounding
∑

k(V
πk
r,1 (x, τ̂k)− V π∗

r,1 (x, τ
∗)) ≤ HK, we have

λ
∑
K

(
B−(τ̂k+V πk

g,1 (x, τ̂k))
)
≤ HK + Õ

(
Vg,maxK

√
S2H3A log (1/δ)

)

Setting λ = ξ = K1/4 and dividing both sides by K1/4, we have

∑
k

(
B−(τ̂k+V πk

g,1 (x, τ̂k))
)
≤ Õ

((
e|α|H − 1

|α|H

)
K3/4

√
S2H5A log (1/δ)

)
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G. Proof of Lemma D.1
Consider the value function classes Vj = {V (·, ·) | V : S × C → [0, Vj,max]} for j ∈ {r, g}, where Vr,max = H and

Vg,max =
exp(|α|H)− 1

|α|
. The ε-covering numbers of Vj under the ℓ∞ norm is bounded by

N (Vj , ε, ∥ · ∥∞) ≤
(
1 +

Vj,max

ε

)S|C|

,

where S is the state space, S = |S|, and C is the discretized budget space. We provide a uniform concentration bound.

Fix j ∈ {r, g}, (s, a) ∈ S × A, ĉ ∈ C, h ≤ H , and k ≤ K. Pick a function V ∈ Vj . Applying Azuma-Hoeffding’s
inequality, we obtain

P
(∣∣∣(P k

h (·|s, a)− Ph(·|s, a)
)T

V (·, ĉ)
∣∣∣ > ϵ

)
≤ 2 exp

(
−Nk

h (s, a)ϵ
2

2V 2
j,max

)
,

where Nk
h (s, a) denotes the number of visits to (s, a) at time h up to episode k. Hence, with probability at least 1− δ,

∣∣∣(P k
h (·|s, a)− Ph(·|s, a)

)T
V (·, ĉ)

∣∣∣ < 2Vj,max

√
log(1/δ)

Nk
h (s, a)

.

Let Vε ⊂ Vj denote an ε-covering set. Applying a union bound together with a standard covering argument, with probability
at least 1− δ/2, for all (s, a) ∈ S ×A, ĉ ∈ C, h ≤ H , k ≤ K, and V ∈ Vj , we have

∣∣∣(P k
h (·|s, a)− Ph(·|s, a)

)T
V (·, ĉ)

∣∣∣ ≤ 2ε+ 2Vj,max

√
log (2HSAK|C|N (Vj , ε, ∥ · ∥∞)/δ)

Nk
h (s, a)

≤ 2ε+ 2Vj,max

√
S|C| log (2HSAK|C|(1 + Vj,max/ε)/δ)

Nk
h (s, a)

≤ 6Vj,max

√
S|C| log (HSAK|C|Vj,max/δ)

Nk
h (s, a)

,

where the last inequality uses ε = 1/K and the fact that Nk
h (s, a) ≤ K. The final result follows by applying a union bound

over Vg and Vr. See (Agarwal et al., 2022)[Lemma 7.2] for a similar argument.

H. Auxiliary Lemmas
We adopt the following results from (Wang et al., 2023).

Lemma H.1 (Azuma). Let {Xi}i∈[N ] be a sequence of random variables supported on [0, 1], adapted to the filtration
{Fi}i∈[N ]. For any δ ∈ (0, 1), we have with probability at least 1− δ,

N∑
t=1

E[Xt|Ft−1] =

N∑
t=1

Xt +
√
N log(2/δ) (6)

Lemma H.2 (Elliptical Potential). For any sequence of states and actions {sh,k, ah,k}h∈[H],k∈[K], we have

K∑
k=1

H∑
h=1

1

Nk(sh,k, ah,k)
≤ SA log(K),

K∑
k=1

H∑
h=1

1√
Nk(sh,k, ah,k)

≤
√
HSAK log(K).
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Figure 3. Frequency of actions for the average policy over the last 20 episodes after 15,000 iterations. Left: α = −0.01, Right:
α = −0.0001, with B = 2.2.

I. Simulation Environment
The reward function is given in Table 2, utility values in Table 3, and transition probabilities in Table 4. Both rewards
and utilities depend on the state. The transition probability p specifies the chance of successfully moving in the intended
direction (e.g., choosing the→ action attempts to move the agent to the right neighboring cell with probability p). If the
intended move is invalid (e.g., outside the grid), an alternative action is executed. Consequently, in the fourth row and
column, the choice of action becomes inconsequential. The total horizon is H = 9, and a state at position (i, j) is only
reachable at time step h = i+ j + 1.

The environment presents several interesting features. For instance, the state at position (1, 2) offers a high reward. However,
it is surrounded by states with transition probabilities close to 0.5 and low utility, making it risky. While it may appear
attractive to visit (1, 2), the agent might instead end up in one of the neighboring low-utility states. Consequently, as α
becomes more negative, the agent may learn to avoid this region in order to mitigate risk which may lead to a smaller
cumulative reward. The environment is deterministic across the terminal rows and columns. The code is available at:
https://github.com/mmoharami/Risk-Sensitive-CMDP.

Table 2. Reward matrix r(i, j) for state (i, j)

Row \ Col 0 1 2 3 4

0 0.0 0.1 0.2 0.2 0.1
1 0.5 0.1 1.5 0.5 0.3
2 0.1 0.1 0.4 0.3 0.2
3 0.1 0.1 0.3 0.1 0.6
4 0.1 0.2 0.3 0.1 0.0

For a faster convergence, we use the bonus terms Bonk
r,h(s, a) = 0.5H log(K)/Nk

h (s, a), and Bonk
g,h(s, a) =

0.005Vg,max log(K)/Nk
h (s, a) instead of the values for which we obtain the regret and the violation bound across all

the values of α. We use the discretized budget space with precision K−1/2, and δ = 0.05. The initial policy π0 is uniform
across the two actions for every augmented state.

Figure 3 illustrates the frequency of selecting each action (→ or ↓) at every state for α = −0.01 and α = −0.0001,
respectively, with B = 2.2. The displayed policies are the average policies over the last 20 episodes after running the
algorithm for 15,000 iterations.
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Table 3. Utility matrix u(i, j) for state (i, j).

Row \ Col 0 1 2 3 4

0 0.1 0.1 0.2 0.1 0.1
1 0.4 0.2 0.1 0.0 0.0
2 0.3 0.4 1.0 0.0 0.1
3 0.2 0.5 0.4 0.2 0.1
4 0.1 0.1 0.4 0.2 0.0

Table 4. Probability matrix p(i, j) representing the likelihood that the action taken in state (i, j) will occur.

Row \ Col 0 1 2 3 4

0 0.9 0.9 0.7 0.5 1.0
1 0.9 0.9 0.5 0.5 1.0
2 0.7 0.9 0.9 0.6 1.0
3 0.9 0.8 0.8 0.5 1.0
4 1.0 1.0 1.0 1.0 1.0

Observe that under the more risk-averse setting α = −0.01, the algorithm tends to avoid the risky state (1, 2) to satisfy
the constraint. In contrast, in the more risk-neutral scenario α = −0.0001, the algorithm chooses to visit state (1, 2) more
frequently by taking appropriate actions, thereby increasing the reward while still adhering to the constraint.
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