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ABSTRACT

Puzzlehunts are a genre of complex, multi-step puzzles lacking well-defined prob-
lem definitions. In contrast to conventional reasoning benchmarks consisting
of tasks with clear instructions and constrained environments, puzzlehunts re-
quires discovering the underlying problem structure from multimodal evidence
and iterative reasoning, mirroring real-world domains such as scientific discov-
ery, exploratory data analysis, or investigative problem-solving. Despite progress
in foundation models, their performance on open-ended settings remains largely
untested. We introduce PUZZLEWORLD, a comprehensive benchmark of 667
puzzlehunt-style problems designed to assess step-by-step, open-ended, and cre-
ative multimodal reasoning. Each puzzle is annotated with the final solution, de-
tailed reasoning traces, and cognitive skill labels, enabling holistic benchmarking
and fine-grained diagnostic analysis. Most state-of-the-art models achieve only 1-
4% final answer accuracy. On PUZZLEWORLD, the best model solves only 14%
of puzzles and reaches 40% stepwise accuracy, matching human puzzle novices
but falling significantly behind puzzle enthusiasts. To demonstrate the value of
our reasoning annotations, we show that fine-tuning a small model on reasoning
traces boosts stepwise accuracy from 4% to 11%, which translates to improve-
ments in downstream visual reasoning tasks. Our detailed error analysis reveals
that current models exhibit myopic reasoning, are bottlenecked by the limitations
of language-based inference, and lack sketching capabilities crucial for visual and
spatial reasoning. We will publicly release PUZZLEWORLD to support future
work on building more general, open-ended, and creative reasoning systems.

1 INTRODUCTION

Recent advances in language and multimodal reasoning (Liang et al., 2024b) have enabled sig-
nificant progress in step-by-step problem-solving (Wei et al., 2022; Yao et al., 2023), transparent
reasoning (Creswell & Shanahan, 2022; Luo et al., 2023), and enhanced human-AI collaboration
(Wu et al., 2022; Chen et al., 2025b). Such progress has been fuelled by and evaluated on com-
prehensive benchmarks, particularly in domains like mathematics (Lu et al., 2024) and code (Jiang
et al., 2024). However, these benchmarks are largely confined to narrow, well-defined environments.
In coding, tasks are meticulously specified and validated within executable environments (Jimenez
et al., 2024). In geometry, models often rely on domain-specific languages to structure their rea-
soning (Chervonyi et al., 2025). While valuable, these benchmarks primarily test a model’s ability
within a pre-defined problem space, rather than its ability to discover the problem itself.

In contrast, human reasoning excels in open-ended environments, where the rules are unstated and
the objectives are ambiguous. We dynamically form hypotheses, adapt to implicit structures, and
reason creatively across modalities to solve problems ranging from deciphering an escape room to
novel scientific discovery. To build more generalist AI, we argue that the next frontier for evalu-
ation lies beyond the current constrained settings. It demands benchmarks that challenge models
to operate in less structured, discovery-driven environments that require more flexible and holistic
reasoning (Mondorf & Plank, 2024).

Puzzles are designed precisely to test these abilities. While some are rigidly formatted like Sudokus,
others, like puzzlehunts, are intentionally open-ended. In a puzzlehunt, solvers are not given a clear
task; they must first infer the nature of the problem from ambiguous clues embedded in text, images,
or cultural references before devising and executing a solution.
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Puzzle Input

text visual structured

Solve each clue to determine a word...

Place each answer in the circular diagram...

Read the words around the circle...

Read the letters...to get ROLL WITH IT

Human Annotation

logic knowledge spatial cryptic wordplaycommonsense

Answer: ROLL WITH IT

Evaluation

First, we'll need to answer the clues
...we can now place these words in the
spiral...now, pull the first letter of each
world...looking closely...

Answer: GET TO THE BOTTOM OF IT

Step 1: correct. 
Step 2: correct. 
Step 3: incorrect.
...

Final Answer Correct: False

Stepwise Accuracy: 2/7

Input Modality Reasoning Skills

Figure 1: Overview of PUZZLEWORLD: PUZZLEWORLD is a dataset of complex puzzles that
lack explicit instructions, requiring solvers to deduce the final answer from nuanced, multimodal
cues from the puzzle content as well as external domain-specific knowledge. The raw puzzles and
solutions are sourced from Puzzled Pint, and the solutions, which are PNG images, are transcribed
into a sequence of reasoning steps by human annotators. These annotations enable us to measure the
accuracy of the final answer and the step-by-step progress made towards the solution. Best-viewed
zoomed in and in color, high-resolution puzzles are in Appendix E.3.

Beyond their entertainment value, puzzlehunts model the essential challenges of real-world dis-
covery and analysis. They demand compositional thinking, lateral reasoning, and the resilience to
pursue leads, backtrack from dead ends, and manage uncertainty. Unlike current AI benchmarks
that present well-specified tasks, puzzlehunts compel solvers to discover both what the problem is
and how to solve it. This dual challenge makes them uniquely suited for evaluating general-purpose
reasoning systems under conditions that more closely resemble open-ended scenarios like scientific
investigation, intelligence analysis, or exploratory design.

To bridge this gap, we introduce PUZZLEWORLD, a benchmark of 667 real-world puzzlehunt prob-
lems curated from Puzzled Pint (Puzzled Pint, 2025), a monthly puzzlehunt event with content
released under a Creative Commons license. These puzzles offer an open-ended, compositional
challenge beyond prior benchmarks focused on instruction-following or task completion, and will
grow with new puzzle releases. For each puzzle, we provide fine-grained annotation of its solution,
input modalities, cognitive reasoning skills it exercises, and a manually curated step-by-step solution
trace. These rich annotations support diagnostic analysis, model training, and detailed evaluation of
models’ reasoning capabilities. An overview of PUZZLEWORLD is provided in Figure 1.

PUZZLEWORLD enables us to systematically study the multimodal and multi-step reasoning capa-
bilities of today’s best foundation models. Most state-of-the-art models achieve only 1-4% final
answer accuracy, with the best model solving only 14% of puzzles and reaching 40% stepwise
accuracy. We additionally find that detailed annotations are important, as fine-tuning a model on
annotated reasoning traces significantly improves a small model’s performance, both within PUZ-
ZLEWORLD and on other visual reasoning datasets. We also conduct detailed error analysis on
models’ performance on PUZZLEWORLD, yielding tangible directions for future work in improv-
ing multimodal open-ended reasoning in AI. Together, these elements position PUZZLEWORLD as
a rigorous resource for evaluating and improving general-purpose multimodal reasoning in AI sys-
tems. In the long run, we believe PUZZLEWORLD can catalyze more general and adaptable AI for
mathematical and logical reasoning, open-ended scientific discovery, and assistive agents.

2 RELATED WORK

Large Language Model (LLM) Reasoning. LLMs have demonstrated remarkable emergent ca-
pabilities, often matching or even surpassing human performance across a wide range of tasks (Street
et al., 2024). Notably, models such as GPT-4 (Achiam et al., 2023) and Claude (Anthropic, 2025)
have achieved strong results not only on traditional NLP benchmarks—like question answering,
summarization, and translation (Widyassari et al., 2022; Soares & Parreiras, 2020; Singh et al.,
2017), but also in more complex domains such as mathematical reasoning, programming, and log-
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Input Modality

Reasoning Skills

Input Modality

Reasoning Skills

Difficulty: Easy Difficulty: Medium Difficulty: Hard 

Text Text Text Visual StructuredVisual

Wordplay Knowledge Logic Spatial Wordplay

Cryptic

Logic Spatial Commonsense

Wordplay

Answer: THEY SAY 3S A CROWD!Answer: CHEESE PULL Answer: MOUSE

Puzzle Taxonomy
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Figure 2: Overview of samples from PUZZLEWORLD. Left: To gain a deeper understanding of
model performance on PUZZLEWORLD, each puzzle is annotated with the input modalities of the
puzzle content, the reasoning skills required to solve the puzzle, and step-by-step reasoning steps.
Right: Example modality and reasoning skill annotations on three puzzles. High-resolution puzzle
images are in Appendix E.3.

ical deduction (Ahn et al., 2024; Jiang et al., 2024; Lam et al., 2024). These abilities suggest that
LLMs are beginning to exhibit general-purpose reasoning skills, making them increasingly relevant
to both academic research and practical applications. However, despite these impressive capabili-
ties, understanding the full extent and limitations of LLM reasoning remains a crucial open question,
underscoring the need for benchmarks that rigorously assess their capability for flexible, holistic rea-
soning (Mondorf & Plank, 2024; Chang et al., 2024).

Reasoning Benchmarks. Numerous reasoning benchmarks have been proposed to evaluate vari-
ous cognitive skills, including visual mathematical reasoning (Lu et al., 2024), spatial understanding
(Wang et al., 2024a), analogical reasoning (Yiu et al., 2024), and social reasoning (Li et al., 2025;
Mathur et al., 2025). However, few have addressed abstract, open-ended problems that demand
holistic reasoning. HEMM (Liang et al., 2024a), SciBench (Wang et al., 2024b), MMMU (Yue
et al., 2024a), MMMU-Pro (Yue et al., 2024b), MMT-Bench (Ying et al., 2024), and Olympiad-
Bench (He et al., 2024) test multimodal reasoning across various disciplines in academic and real-
world contexts. While these tasks are broad and challenging, they typically involve well-defined
questions that closely resemble the training distributions of large models. As such, they primarily
assess in-distribution reasoning rather than creativity or adaptability. ARC-AGI (Chollet, 2019) tests
the ability to reason and adapt to new situations through abstract visual pattern recognition tasks that
require minimal prior knowledge, yet it lacks the open-ended, exploratory nature of real-world prob-
lem solving. In contrast, PUZZLEWORLD targets open-ended reasoning through puzzlehunts that
lack explicit instructions. Solving these tasks requires creatively piecing together subtle hints, often
across many modalities, into coherent multi-step reasoning chains.

Puzzle Benchmarks. A growing line of work has explored the use of puzzles to test the reasoning
capabilities of AI systems. PuzzleVQA (Chia et al., 2024) consists of 2,000 puzzles that require
abstracting patterns from visual puzzles to answer multiple-choice questions. AlgoVQA (Ghosal
et al., 2024) is a visual puzzle benchmark requiring algorithmic reasoning. PUZZLES (Estermann
et al., 2024) tests the ability of RL agents to perform algorithmic reasoning on a set of 40 puzzles.
While valuable for evaluating specific skills, these benchmarks focus on narrow domains with con-
strained task formats, and modern models generally perform well on these benchmarks (Chia et al.,
2024; Moskvichev et al., 2023; Yue et al., 2024a). On the other hand, the unstructured nature of
the puzzlehunt problems in PUZZLEWORLD requires models to interpret ambiguous cues, explore
creative strategies, and integrate information across diverse modalities and knowledge areas. In con-
trast to previous benchmarks that isolate strictly structured vertical reasoning (Chen et al., 2025a)
or narrative-based lateral thinking (Huang et al., 2024), puzzlehunt puzzles require an integrated
blend of lateral thinking, symbolic abstraction, and visual–spatial reasoning. The closest to our
benchmark is EnigmaEval (Wang et al., 2025), which also evaluates AI’s reasoning capabilities on
puzzlehunts. However, EnigmaEval is a closed-source evaluation-only dataset and does not include
manually annotated step-by-step solutions. The open-sourced puzzles and rich annotations in PUZ-
ZLEWORLD support fine-grained analysis of intermediate reasoning and failure modes, facilitating
the development and evaluation of more robust, general-purpose reasoning models.
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Raw Puzzles
and Solutions

Human
Annotation

Automatic
Verification

Manual Data
Cleaning

Statistic Value
Total # of puzzles 667

Avg. # of Reasoning Steps 5.4
Percent # of Visual Reasoning Steps 12.3%

Avg. Word Count per Reasoning Step 22.5
Correlation between Difficulty

and # of Reasoning Steps 0.24

Figure 3: Dataset construction procedure and statistics: Left: First, we source raw puzzles and
solutions from Puzzled Pint. As the Puzzled Pint solutions are often not correctly parsed by OCR,
each puzzle’s metadata and reasoning steps are human-annotated. We use GPT-4o to automatically
flag ambiguous and inconsistent annotations. Finally, two human verifiers perform a manual data
cleaning on the flagged puzzles to ensure a consistent annotation format. Right: We summarize the
statistics of our dataset. The average number of reasoning steps is high, and the steps are relatively
complex, as shown by the high average word count.

3 TAXONOMIZING MULTIMODAL REASONING IN PUZZLEHUNTS

To understand how solving puzzlehunts engages reasoning capabilities evaluated separately in
benchmarks like MMMU (Yue et al., 2024b), we analyze puzzle solutions and classify them along
two dimensions: input modality and reasoning mechanism. This taxonomy provides a comprehen-
sive evaluation framework that captures both the form in which information is presented and the
cognitive strategies required for reasoning.

3.1 PUZZLE INPUT MODALITIES

We consider three puzzle input modalities: Text, encompassing textual information such as instruc-
tions, narratives, or word puzzles, testing the model’s ability to extract relevant linguistic informa-
tion; Visual, which includes unstructured visuals like images, icons, and typography, challenging
the models to interpret visual semantics and patterns; and Structured, which refers to systematically
organized visual information, such as tables, graphs, grids, matrices, and charts. Table 1 shows the
distribution of puzzles across modality and difficulty.

3.2 PUZZLE REASONING MECHANISMS Table 1: Count of puzzles across modalities and
difficulties. Across all modalities, the distribution
of difficulties is similar.

Easy Medium Hard
Text 131 322 151

Visual 90 226 111
Structured 59 181 108

We identify six core cognitive abilities essen-
tial for effective puzzle-solving in PUZZLE-
WORLD. These include logic, which cov-
ers inferential reasoning such as deduction and
causal inference; wordplay, involving flexi-
ble linguistic interpretation through puns, ana-
grams, and homophones; spatial reasoning,
which tests an AI’s ability to mentally manip-
ulate objects and navigate structures; and cryptic decoding, which requires recognizing and apply-
ing transformations like ciphers and hidden encodings. In addition, knowledge-based reasoning
leverages domain-specific facts from areas such as science or history, while commonsense reason-
ing draws on implicit real-world expectations. This taxonomic approach enables targeted evaluation
and analysis of AI reasoning capabilities across different cognitive dimensions. By mapping specific
puzzles and reasoning tasks to combinations of modalities and mechanisms, we can identify areas of
strength and weakness in AI systems, track progress over time, and guide future development efforts
toward more balanced reasoning capabilities.

4 CREATING PUZZLEWORLD

4.1 DATA COLLECTION AND PRE-PROCESSING

We collected our puzzle corpus from Puzzled Pint (2025), an organization that publishes puzzles
under Creative Commons (CC BY-NC-SA Intl. 4.0). Their repository contains monthly puzzles
designed for collaborative solving, covering a diverse range of puzzle types and difficulties. This
allowed us to obtain more than 700 raw puzzles spanning from 2010 to 2025.

Each puzzle in our dataset consists of its original PDF containing the puzzle content, a single-phrase
answer, and a solution document. Unlike Wang et al. (2025), we deliberately preserved the origi-
nal puzzle format rather than transcribing content into separate text and images. This decision was
motivated by the importance of spatial relationships in puzzle layouts to the solving process. Fur-
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thermore, Wang et al. (2025) showed that the best foundation models are not primarily constrained
by OCR capabilities. Instead, we devote our manual effort to construct fine-grained annotations
of puzzle reasoning steps, ensuring that the annotations accurately capture the intended solution
pathways while maintaining the integrity of the original puzzle presentation.

4.2 DATA ANNOTATION

To facilitate AI’s reasoning capabilities, we designed a comprehensive annotation structure for PUZ-
ZLEWORLD. Each puzzle is represented by a standardized metadata and visual assets. To prevent
ambiguity, we discard puzzles that have incomplete solutions, multiple ground truth answers, or
require physical activity to solve the puzzles. This leaves us with 667 annotated puzzles.

4.2.1 METADATA SCHEMA

Title

Flavor  Text

Difficulty

Solution

Reasoning

Modality

Skills

Source

EROS’S ARROWS

Eros, the god of love, has...

Medium

AMOUR

text, visual, structured

logic, cryptic, spatial

https://puzzledpint.org/...

Recognize that...

Combine the letters...

Connect all dots...
[figure_1.jpg]

content.png metada.json

Figure 4: Illustration of metadata schema: All
puzzles are annotated with accompanying meta-
data, which includes the title, flavor text, diffi-
culty, final answer, reasoning steps, input modali-
ties, reasoning skills, and the link to the puzzle.

Each puzzle is annotated using a JSON schema
comprising several fields: a descriptive title;
flavor text providing narrative context; a dif-
ficulty label (easy, medium, or hard); solution
representing the canonical answer; a reasoning
field of an ordered sequence of steps leading to
the solution; a modality tag specifying the in-
put types involved; a list of skills capturing the
cognitive abilities required for solving; and a
source field attributing the data origin. Figure 4
illustrates an example annotation.

4.2.2 REASONING ANNOTATION

A key contribution of our annotations is the de-
composition of puzzle-solving into reasoning
steps. Each step is formalized as a tuple ⟨e, f⟩
where e represents the textual explanation and
f denotes an optional figure illustrating the rea-
soning. To ensure annotation consistency, we
loosely require each step to begin with an atomic operation, such as pattern discovery or sketch-
ing, followed by the intermediate outcome of that operation. This structured annotation enables
fine-grained analysis of an AI’s reasoning trajectory.

4.3 VERIFICATION OF ANNOTATIONS AND DATA CONTAMINATION

To ensure annotation quality and integrity, we implemented a two-stage verification protocol. First,
we used GPT-4o to flag each puzzle annotation for correctness and reasoning coherence. This auto-
mated screening identified reasoning steps exhibiting ambiguity or logical discontinuities that might
impede systematic analysis, which has flagged 12.11% of the dataset. Subsequently, two human ver-
ifiers independently reviewed all flagged annotations, applying corrections where necessary. This
verification process resulted in modifications to 10.93% of the initially annotated puzzles. As an
additional quality assurance measure, we conducted manual verification of a random subset com-
prising 5% of the dataset. In this evaluation, 96.5% of the verified annotations are marked as correct
by the verifiers, demonstrating the high reliability of our annotation methodology. Finally, we verify
whether frontier models has memorized any of the puzzles in PUZZLEWORLD. We describe our
procedure in E.1, where we find no evidence of data contamination.

4.4 DATASET STATISTICS

We summarize key statistics in Figure 3 (right). The average number of reasoning steps is above
5, and the average word count per reasoning step is above 20, demonstrating the complexity of the
reasoning traces. Additionally, 12.3% of the steps have a visual intermediate output, highlighting
the importance of sketching and spatial reasoning to solve puzzles. The correlation between puzzle
difficulty and # of reasoning steps is 0.24. While we expect difficulty and # of reasoning steps to
be positively correlated, the magnitude of the correlation is relatively low, as the difficulty of the
puzzles also stems from their open-ended nature. Figure 5 shows the distribution of puzzles by
modalities, reasoning skills, number of reasoning steps, and difficulty.
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Figure 5: PUZZLEWORLD dataset statistics. Distributions of modalities and reasoning skills are
balanced. While the majority of puzzles are of medium difficulty, there is significant number of
easy and hard puzzles. The number of reasoning steps follows a long-tail distribution, with many
solutions requiring more than 5 steps and some hard puzzles requiring up to 30 steps of reasoning.

5 EXPERIMENTS

In this section, we evaluate frontier closed and open-source multimodal LLMs on the PUZZLE-
WORLD dataset. We detail the evaluation setup, present quantitative results, and conduct qualitative
error analysis to understand model behavior in open-ended, multimodal puzzle reasoning.

5.1 EXPERIMENTAL SETUP

We evaluate frontier closed-source reasoning models on PUZZLEWORLD, including GPT-o3 (Ope-
nAI, 2025), GPT-4o (Achiam et al., 2023), Claude Opus 4 (Anthropic, 2025), Gemini-2.5-Pro (Co-
manici et al., 2025), Gemini-3-Pro (Google, 2025), and Grok 4 (xAI, 2025). We also evaluate open-
source models Qwen QVQ (Qwen, 2024), InternVL3 (Zhu et al., 2025), and Kimi VL A3B (Team
et al., 2025). We prompt each model with a comprehensive prompt as in Wang et al. (2025), followed
by the puzzle images and transcribed flavor text. See Appendix F for the evaluation prompt.

We also provide a human baseline on PUZZLEWORLD, considering three tiers of puzzlehunter ex-
pertise: Novice, with no prior puzzlehunt experience; Enthusiasts, who showed interest or have oc-
casionally participated (1-2 sessions) in puzzlehunts, and Experts among the top teams at monthly
Puzzled Pint meetings. We we gathered 9 Novices and 9 Enthusiasts across high school and college
ages. We sampled 5% puzzles from PUZZLEWORLDand assigned each participant to solve four
puzzles. Participants were given an hour to solve each puzzle, matching the usual expected time at
a live session, and were asked to provide paragraph explanations for their solution. For Experts, we
use statistics from Puzzled Pint sessions in Syracuse, New York, and Bangalore, India, dating from
January 2023 to June 2025. The statistics suggest that expert puzzlehunters consistently solve all five
puzzles within one to two hours, which is on average less than the time prescribed to our human par-
ticipants. We thus assume that human Experts achieve perfect accuracy on PUZZLEWORLD.

5.1.1 AUTOMATIC EVALUATION METRICS

Beyond final answer accuracy, we additionally evaluate the models’ stepwise accuracy by comparing
their solution with the annotated ground truth reasoning steps. Since puzzles can have multiple
solution pathways, we define the stepwise accuracy score of a candidate solution to be the last
annotated reasoning step it successfully executed out of all the reasoning steps. We implement an
LLM judge (Zheng et al., 2023) with GPT-4o to determine the stepwise score of each candidate
solution. For each reasoning step in the reference solution, the LLM judge determines if the step
is met by the candidate response. To evaluate LLM judge’s reliability, we compared its stepwise
evaluations on 20 random puzzles against human evaluations. The LLM judge achieved a Pearson
correlation of r = 0.829 (p = 6.3× 10−6) and a mean absolute error (MAE) of 0.083 with respect
to human scores, indicating strong alignment with human judgment.

5.2 RESULTS

5.2.1 OVERALL PERFORMANCE OF FRONTIER MODELS

We report the models’ performance in Table 2. All models exhibit extremely low final answer ac-
curacy on PUZZLEWORLD, with most achieving close to 1-4%. GPT-o3 attains the highest overall
accuracy at 14.22%, matching human Novice performance, while the best-performing open-source
model, QVQ-72B-Preview, reaches just 1.36%. All models perform significantly worse than hu-
man Enthusiasts and Experts. Although the uniformly low accuracy underscore our benchmark’s
difficulty, it offers limited insight into the models’ reasoning capabilities.
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Table 2: Model performance. Accuracy (Acc) and stepwise accuracy (Step) are reported overall
and per modality. Models struggle significantly on PUZZLEWORLD, most achieve only 1-4% an-
swer accuracy. The best model, GPT-o3, solves only 14% of puzzles and reaches 40% stepwise
accuracy, matching human Novice performance but falling behind Enthusiasts.

Overall Text Visual Structured
Model Acc Step Acc Step Acc Step Acc Step

O
pe

n QVQ-72B-Preview 1.36 30.23 1.33 29.25 0.63 27.96 1.18 32.40
InternVL3-78B 0.89 15.49 0.83 14.80 0.47 14.48 1.15 17.97
Kimi VL A3B 1.33 19.10 1.16 17.91 0.94 18.84 1.72 21.41

C
lo

se
d

GPT-o3 14.22 39.81 15.16 39.92 8.96 33.38 13.53 41.28
GPT-4o 1.83 22.09 1.92 20.00 0.73 20.20 2.77 28.09
Claude Opus 4 4.50 24.56 4.20 23.77 4.04 22.60 4.37 26.93
Gemini 2.5 Pro 7.65 31.61 8.07 31.09 4.99 29.06 6.71 32.34
Gemini 3 Pro 18.0 39.99 20.30 39.34 14.71 38.81 20.25 39.99
Grok 4 3.33 13.79 3.85 13.64 3.70 14.19 1.56 11.22

H
um

an Human Novice 13.89 23.10 16.98 25.32 11.00 22.70 16.67 24.92
Human Enthusiast 44.44 51.70 44.14 52.58 44.00 52.20 54.17 57.81
Human Expert 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

To address this, our stepwise evaluation metrics provide a more nuanced view of models’ reasoning
performance. These metrics reveal that models with poor final answer accuracy, such as InternVL3,
still demonstrate good intermediate reasoning, achieving up to 15.49% stepwise accuracy. Similarly,
while QVQ-72B-Preview lags behind closed-source models in final answer accuracy, it outperforms
many of them in stepwise accuracy (30.2%), reflecting more coherent reasoningdespite not reaching
the correct final output. These two metrics enable PUZZLEWORLD to remain highly challenging
while offering detailed diagnostics for model evaluation and development.

In terms of input modalities, models generally perform best on text-based puzzles, with significantly
lower accuracy on puzzles involving unstructured visual inputs. Interestingly, most models achieve
better performance on structured puzzles, such as crosswords where the spatial format constrained,
over unstructured visual puzzles. In contrast, puzzles involving free-form visuals remain difficult,
with models often achieving less than half their text puzzle accuracy on these inputs. These trends
highlight current models’ persistent weaknesses in visual grounding and spatial reasoning.

5.3 IMPROVING REASONING ON DOWNSTREAM TASKS WITH PUZZLEWORLD

Table 3: Fine-tuned model accuracy on PUZ-
ZLEWORLD. Stepwise accuracy improves when
fine-tuning Intern-VL3 on reasoning traces, while
final answer accuracy remains unchanged.

Model Acc. Step.
Base 0.76% 4.78%
Fine-tuned (Answer-only) 0.00% 2.96%
Fine-tuned (Reasoning) 0.76% 11.00%

To explore whether PUZZLEWORLD can sup-
port model improvement, we fine-tuned an 8B
Intern-VL3 model with supervised fine-tuning
on annotated reasoning traces from 80% of the
dataset, and evaluated performance on the 20%
held-out test set. As a control, we fine-tuned the
same model using only the final answers, with-
out access to reasoning traces. Full details are
provided in Appendix F.2.

Our results in Table 3 highlight the value of
PUZZLEWORLD’s annotations. Fine-tuning on reasoning traces doubles the model’s stepwise accu-
racy—from 4.78% (base model) to 11.00%. In contrast, fine-tuning on final answers alone impairs
performance, reducing stepwise accuracy to 2.96% and driving answer accuracy to zero. Despite
the improved stepwise accuracy, the fine-tuned model’s answer accuracy remained at 0.76%. This
suggests that while fine-tuning enhanced model’s intermediate reasoning, it was insufficient to solve
additional puzzles completely. This result underscores both the difficulty of PUZZLEWORLD and the
limitations of naive fine-tuning approaches in addressing such complex reasoning challenges.

We then explore PUZZLEWORLD’s detailed stepwise annotation can improve models on down-
stream reasoning tasks. We finetuned a model on 80% of PUZZLEWORLD and evaluated it on two
benchmarks: a Rebus puzzles dataset (Lee et al., 2025) involving visual metaphors without explicit
instructions, and the MathVista dataset (Lu et al., 2024), ranging from general visual question an-
swering to domain-specific geometry questions. Our results are shown in Table 4.
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Table 4: Fine-tuned model performance on downstream reasoning tasks. Finetuning on PUZ-
ZLEWORLD leads to performance gains, on visually-oriented tasks (Rebus puzzles, geometry, visual
question answering) but slightly reducing it on problems less dependent on pure visual knowledge.

Dataset Task Base Model Fine-tuned on PUZZLEWORLD

Rebus Puzzles Puzzle reasoning 3.2% 5.1%

MathVista

Geometry problem solving 65.87% 66.35%
Textbook question answering 63.92% 60.13%
Math word problem 62.37% 59.14%
Visual question answering 32.40% 39.11%

GPT-o3

Solution Solve the first line as binary, second as Morse
code, third as flag semaphore...

The title, the flavour text, and the fact that the
stave shows only two different lengths of “sound”
strongly suggest Morse code. Transcribe every
measure in Morse code...reading all the letters in
order spells...which is still nonsense...

...fill in the circles with the words, which gives you
the figure. [figure of correctly filled grids]

...filling the words gives the diagram shown below.
[incorrect text representation of four rings]

...read letters along the path BEST MAN TO ROMEO
NAMED NEITHER CAPULET NOR MONTAGUE ...

...letters encountered in order are FRIAR LAURENCE...

Myopic Reasoning Limitations of Language Lack Sketching Capabilities

GPT-o3

Solution

GPT-o3

Solution

Figure 6: Example puzzle errors. Left: (myopic reasoning) The model is unable to backtrack when
it hits a dead end. Middle: (language bottleneck) The model misrepresents the visual contents due
to inherent limitations of texts. Right: (sketching errors) The model fails to execute the visual
sketching steps to obtain correct intermediate outputs. High-resolution images are in Appendix E.3.

Finetuning on PUZZLEWORLD yields notable performance gains on Rebus puzzles, where the
model’s accuracy increased from 3.2% to 5.1%. On MathVista, the model shows significant im-
provement in geometry problem solving and visual question answering, but its performance slightly
decreased on tasks outside of PUZZLEWORLD’s reasoning skills, such as textbook question answer-
ing and math word problems. This performance improvement suggests that the skills learned from
PUZZLEWORLD are not merely task-specific. They represent transferable, general-purpose reason-
ing capabilities, making our dataset a valuable tool for enhancing models’ capabilities.

5.4 DETAILED ERROR ANALYSIS

We highlight the main sources of errors by the best reasoning multimodal LLMs on PUZZLE-
WORLD, focusing on GPT-o3. See Figure 6 for example errors from each category.

Figure 7: Stepwise accuracy distribution of
GPT-o3. GPT-o3 receives stepwise accuracy of 0
for most puzzles, highlighting the model’s myopic
reasoning tendencies and its inability to backtrack
after committing to an incorrect first step.

Myopic reasoning. Despite strong perfor-
mance on conventional benchmarks, frontier
models often exhibit myopic commitment in
their reasoning. Rather than exploring alterna-
tives or revisiting prior steps, models tend to
fixate on early, surface-level hypotheses, result-
ing in reasoning trajectories that are locally co-
herent but globally misaligned with the puzzle.
For example, in Figure 6, solving the puzzle re-
quires interpreting musical notes using a mix
of binary, Morse code, and flag semaphores.
Instead, GPT-o3 identifies a Morse code ref-
erence early on and rigidly adheres to it–even
as contradictions arise–demonstrating a lack of
backtracking and verification.
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To further examine this behavior, we analyze the stepwise accuracy distribution of GPT-o3 (Fig-
ure 7). We find that, on most puzzles, the model receive a score of 0, meaning the model often
fails to correctly identify even the first step of the solution. Once committed to an incorrect path,
the model rarely recovers, highlighting its brittle reasoning and a lack of dynamic self-correction,
especially when it cannot rely on external environments for verification.

Ground Truth Annotation AI Text Representation

```
            O C T A L
          L           E

        G               N
      A                   T R O J A N S

    G                       Y         Y
  A                           C A N O E S

L                               O
I   S K I I N G   G A L I L E O   N

N                               X
G                           I     I

  E N T E R S             T      C
    L O D G E           S        S
      D O L L       S P H I N X

        O           P
          Z I N G   H
            G E C K O

              O       G O S S I P
                W A G O N

                  I
                S O R R O W

              N A M E S     W I T H D R A W
```

Figure 8: Limitations of text. An example failure
case where GPT-o3 fails to represent a complex
structured puzzle into text.

Limitations of language. Modern multi-
modal models rely heavily on language-based
reasoning strategies, such as chain-of-thought
and code generation. However, this dependence
becomes a bottleneck in puzzles with complex
visual structure. In Figure 6, the puzzle is com-
posed of four interlocking loops arranged in a
clover-like pattern. This layout is visually intu-
itive, but difficult to represent in text.

While GPT-o3 correctly solves the word clues,
it fails to capture the layout when converting the
puzzle into text, as shown in Figure 8. This ul-
timately leads the model to derive an incorrect
answer. This example highlights a broader lim-
itation: when faced with highly complex struc-
tured inputs, models that default to textual reasoning often lose critical spatial information. This
inherent mismatch between visual intuition and language-centric inference poses a fundamental
challenge to models, especially those that depend on textual or code-based reasoning chains.

Figure 9: Reasoning skills of failed
steps. We annotated the bottleneck
steps with their reasoning skills.

Multimodal reasoning needs sketching. While fron-
tier models have made notable progress in logical deduc-
tion and arithmetic reasoning, they consistently underper-
form on spatial tasks that require sketching, drawing, and
manipulating visual structure, such as decoding based on
spatial arrangements or tracing paths through grids and
mazes. In Figure 6, the model correctly solves the indi-
vidual clues in a grid-based puzzle but fails to trace the
intended path, resulting in an incorrect final answer. Hu-
mans naturally rely on sketching or mental imagery to
reason through such spatial challenges, using external or
internal visualizations to keep track of evolving structure.
The absence of such capabilities in current models reveals
a critical gap: without the ability to sketch and update a
persistent visual representation, models are prone to fail-
ure in tasks that depend on spatial coherence.

To understand the impact of sketching to model performance, we manually analyzed 30 puzzles
where GPT-o3 produced incorrect answers. For each failure, we annotated the reasoning step re-
sponsible for the error with its corresponding reasoning skill. As shown in Figure 9, we found that
53.33% of these bottleneck steps involved spatial reasoning or sketching-related capabilities. This
highlights a gap in models’ ability to manipulate visual structure during inference. Incorporating
sketch-like visual memory and reasoning (Wu et al., 2024; Hu et al., 2024; Chen et al., 2025b) may
offer a promising direction toward more robust and spatially grounded reasoning AI.

6 CONCLUSION
This paper presents PUZZLEWORLD, a large-scale benchmark of 667 puzzlehunt-style problems de-
signed to assess multi-step, open-ended multimodal reasoning. The diversity of puzzles and richly
annotated reasoning traces enable holistic benchmarking and fine-grained diagnostics. PUZZLE-
WORLD presents a unique challenge to modern multimodal reasoning, with the best model solv-
ing only 14% of puzzles. Our error analysis reveals that current models exhibit myopic reason-
ing, are bottlenecked by the limitations of language, and lack sketching capabilities. This makes
PUZZLEWORLD uniquely well-suited for evaluating general-purpose reasoning systems under con-
ditions that more closely resemble real-world open-ended scenarios, such as scientific discovery,
exploratory data analysis, or investigative problem-solving.
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ETHICS AND REPRODUCIBILITY STATEMENT

This research focuses on developing a benchmark to support the creation of models with robust open-
ended, multistep, multimodal reasoning. All data sources are cited and employed within the scope of
their intended use and applicable copyright licenses. To promote transparency and reproducibility,
we provide detailed data collection and annotation process in Section 4, evaluation setup in Section
5.1, and compute details in Section F of the appendix. We will publicly release the PUZZLEWORLD
benchmark and code to facilitate reproducibility and further research.
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A LIMITATIONS AND BROADER IMPACT

To ensure consistency and standardization across the dataset, we excluded puzzles involving under-
explored or difficult-to-represent modalities such as audio, video, or interactive file-based inputs. As
a result, PUZZLEWORLD may not fully capture the breadth of sensory and interaction-based reason-
ing found in some real-world, more challenging puzzlehunts. We discuss the potential incorporation
of more challenging puzzles in Appendix C. Additionally, unlike Wang et al. (2025) that uses human
annotators to transcribe textual and visual components separately, we preserve the puzzle content in
its original image format and focus annotation efforts on intermediate reasoning traces. While this
allows PUZZLEWORLD to provide richer annotation of the solution reasoning process, it may also
introduce variability in model performance depending on the quality of their OCR capabilities. We
discuss whether OCR is a limiting capability for frontier models in Appendix D.2.

Finally, our evaluation pipeline relies on LLM-based judges to automatically assess generated rea-
soning traces. To address this, we adopted careful prompting and cross-checking. For example, we
enforce that each individual annotated step is evaluated separately by the LLM judge to determine
whether it matches the model generated solution. We tested the alternative approach, where the
LLM judge is prompted with the full candidate solution and outputs the latest ground truth step that
the candidate response achieved. However this approach was more prone to hallucinations, as LLM
judge sometimes outputs a stepwise accuracy greater than 1. As such, our approach of running the
LLM judge to output a boolean on each ground truth step helps mitigate potential hallucination.
Nevertheless, we acknowledge that the use of LLM-based evaluations may be subject to instability
or bias, and the metrics should be taken with caution.

One possible concern with our grading scheme is that a model might ”hallucinate” the correct final
answer without engaging in proper reasoning. However, such a case is extremely rare in PUZ-
ZLEWORLD. The high-quality, human-designed puzzles are deliberately constructed to discourage
superficial guessing, and even experienced human solvers cannot easily infer the answer without
following the intended logic. In a thorough manual inspection of models’ puzzle responses, we did
not find any case where the model arrived at the final answer without demonstrating the necessary
reasoning. In Appendix D.3, we discuss whether our stepwise scoring mechanisms successfully
credit alternative solution paths.

Our goal in releasing PUZZLEWORLD is to advance research in general-purpose, multimodal rea-
soning systems. However, we recognize that increasingly capable AI models, especially those
skilled at complex reasoning, carry risks of misuse. These include the potential for externalizing
or replacing human reasoning in settings where authenticity or creativity is essential, such as ed-
ucation, scientific authorship, or collaborative problem-solving. While our dataset does not pose
direct risks on its own, we support future work that includes safeguards to mitigate misuse and
encourages the responsible deployment of reasoning-capable AI systems in alignment with human
values.

B USE OF LARGE LANGUAGE MODELS

This project used Large Language Models (LLMs) to assist dataset verification and model evalu-
ations. Details are described in the Sections 4.3 and 5.1. We also acknowledge the use of LLMs
to assist with correcting grammatical errors and improving clarity of the writing. This assistance
was limited to language refinement and did not affect the core methodology, scientific rigour, or
originality of the research. We confirm that no AI-generated content has been presented as our own
intellectual contribution.

C FUTURE DIRECTIONS

We note that some prior benchmarks (Chen et al., 2025a) adopt a structured reflective reasoning
paradigm, centered on structured, text-based puzzles with explicit rules, enabling precise state verifi-
cation and surgical analysis of multi-step logical reasoning. In contrast, PUZZLEWORLDemphasizes
multimodal, discovery-driven reasoning in which the puzzle rules are implicit and must be inferred
by the solver. This setting offers a more holistic evaluation of generalist reasoning capabilities that
requires a broader range of cognitive skills, though at the cost of less precise, LLM-approximated
intermediate state verification due to the absence of explicit rule structures.
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An exciting direction for future work is to extend PUZZLEWORLD with structured, verifiable
reflective-reasoning frameworks akin to those in Chen et al. (2025a). However, we caution that
PUZZLEWORLD’s open-ended and multimodal puzzles often involve diverse, creative reasoning
steps that are difficult to formalize as explicit rules, making it challenging to achieve the same level
of rule-based granularity as in more structured puzzle domains in Chen et al. (2025a). That said,
integrating reflective reasoning paradigms with PUZZLEWORLD could yield richer diagnostic tools
and may ultimately benefit the training and evaluation of frontier reasoning models.

We acknowledge that, beyond PuzzledPint, extensive puzzlehunt-style puzzle sources could be inte-
grated to expand PUZZLEWORLD, such as MIT Mystery Hunt (MIT, 1981–). While MIT Mystery
Hunt is an attractive source of challenging, high-quality puzzles, we note several considerations that
make it challenging to integrate it to PUZZLEWORLD’s initial release.

• Unlike PuzzledPint (released under Creative Commons), MIT Mystery Hunt puzzles do not
have a centralized copyright policy. Permissions would need to be obtained from individual
authors, which adds substantial overhead.

• Mystery Hunt puzzles frequently involve audio, video, interactive web tools, custom code,
and even physical components. These are exciting modalities for future generalist AI sys-
tems, but they are difficult to standardize under PUZZLEWORLD’s stepwise annotation
format and are not well supported by current frontier models.

• Mystery Hunt puzzles are intentionally designed to challenge top teams and often require
multiple people to solve each puzzle. Given that frontier models already struggle on the
entry-level PuzzledPint puzzles, including much harder Mystery Hunt puzzles would likely
provide limited practical diagnostic value at this stage.

Therefore, for the present, we prioritize the more accessible PuzzledPint puzzles, as they are both
suitably challenging and sufficiently structured to support reliable stepwise annotation and informa-
tive intermediate diagnostics. That said, as models and annotation tools improve, future work that
extends PUZZLEWORLD to incorporate more advanced modalities and higher-difficulty sources –
potentially including Mystery Hunt puzzles – would offer a richer evaluation suite.

D ADDITIONAL DISCUSSION

D.1 ON THE ABSTRACT NATURE OF PUZZLEHUNTS

We note that PUZZLEWORLD, like prior puzzle datasets (Chia et al., 2024; Ghosal et al., 2024;
Estermann et al., 2024), is abstract in nature rather than drawn from real-world tasks such as math-
ematics or physics. While this means that PUZZLEWORLD does not directly evaluate a model’s
ability on any specific application, this abstraction is intentionally designed to assess generalist,
open-ended reasoning while reducing pattern memorization. For example, prior work has shown
that symbolic variants of math datasets can reveal brittle reasoning behavior in models that oth-
erwise appear strong (Mirzadeh et al., 2025). PUZZLEWORLD’s abstraction thus helps isolate and
measure a model’s generalist and genuine reasoning ability beyond domain-specific patterns.

Existing reasoning benchmarks – ranging from math and coding tasks – typically operate in closed-
ended, well-defined environments. These datasets assess correctness under fixed rules, but they do
not require models to navigate underspecified or open-ended problem spaces. In contrast, many
real-world tasks (e.g., exploratory data analysis, investigative research, science discovery) involve
ambiguous signals, multiple possible solutions, and iterative hypothesis testing.

PUZZLEWORLD fills this gap in two ways that previous abstract reasoning benchmarks do not. First,
unlike traditional puzzle datasets (e.g. Sudoku) that evaluate within a limited rule set, our puzzle-
hunt puzzles require leveraging diverse reasoning competencies to dynamically form and evaluate
hypotheses from nuanced multimodal signals. Second, our manually annotated reasoning traces
enable systematic analysis of model behavior in these open-ended settings, revealing characteristic
failure modes of frontier models such as ”myopic commitment” (Section 5.4). Our transfer experi-
ments in Table 4 has also shown that capabilities exercised in PUZZLEWORLD transfer to real-world
benchmarks, suggesting that puzzlehunt-style reasoning is a useful proxy for generalist reasoning.
Nonetheless, we acknowledge that no single benchmark can represent all forms of reasoning.
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Add either “SC” or “AM” to each italicized word.

Visual Forgetting

GPT-o3 without transcribed text 

GPT-o3 with transcribed text 

Obtain FAMINE, CONTAINMENT, SPICE...

Index into the transformed words with the
situation label to get FEEDBACK.

Add either “SC” or “AM” to each italicized word.

Obtain FAMINE, CONTAINMENT, SPICE...

Reading the added “SC” and “AM” gives SCSCSC...
Based on the situation order this gives 12345...

The handbook tells an apprentice art-thief trying to
improve...12345678 spells out PROTEGE.

Figure 10: Example error of visual forgetting. GPT-o3 failed to correctly reference the text clues
in the puzzle image, but it solved the puzzle once the clues were provided in transcribed text form.

D.2 ARE REASONING MODELS BOTTLENECKED BY TEXT RECOGNITION?
We acknowledge that multimodal large language models may be bottlenecked by text recognition in
images. In the construction of PUZZLEWORLD, since Wang et al. (2025) has shown that today’s best
multimodal reasoning models are not primarily constrained by optical character recognition (OCR)
capabilities, we devoted our manual effort to construct fine-grained annotations. Although each
puzzle includes a human-transcribed “flavor text”, this may not capture all textual content.

We thus provide an analysis on whether OCR is limiting the performance of frontier models on
PUZZLEWORLD. We selected a 5% subset of strictly text-only puzzles, manually transcribed all
textual content, and compared GPT-o3’s performance with and without the full transcription. A
paired t-test showed no significant difference (t = 0.52, p > 0.1), suggesting that text recognition
limitations are not a major bottleneck for the frontier multimodal models.

That said, we did observe isolated cases where GPT-o3 improved from partial to full solutions
once transcription was provided. Upon examination, these instances appear to stem from model
hallucination in later stages of reasoning when relying only on images, whereas the transcription
helps anchor its reasoning more reliably. For example, in Figure 10, GPT-o3 solves the puzzle
correctly when given the transcribed text. When relying solely on the image, GPT-o3 can solve the
intermediate text clues but fails during extraction: it misreferences the visual text, as shown by its
inability to recover the added letters against the italicized words in the image, and hallucinates a
final answer only tangentially related to the flavor text. This aligns with patterns of visual forgetting
observed in prior works (Sun et al., 2025).

D.3 CAN PUZZLEWORLD’S STEPWISE SCORING CREDIT CREATIVE SOLUTIONS?
Due to the PUZZLEWORLD’s open-ended nature, a legitimate concern is whether PUZZLEWORLD’s
stepwise scoring mechanism can fairly credit creative, alternative reasoning paths, rather than being
limited to the annotated reference chain. In puzzlehunts, the solution steps are intentionally designed
to be interlocking and sequentially dependent. It is thus hard to reach the correct answer while
following a completely different solution path, and correct partial chains must partially converge
with the annotated ground-truth, even if the solver temporarily deviates or makes logic leaps.

That said, human puzzlehunters do commonly make educated guesses that skip over intermediate
steps. For example, after identifying three of the four final answer letters (”I L R”), a solver might
correctly infer ”ICLR” without fully completing the preceding clue. PUZZLEWORLD’s step-level
scoring explicitly accounts for this behavior: we identify the latest ground-truth step that appears in
the candidate solution. In this scenario, because the solver correctly arrives at the final answer, our
scoring grants full credit, even if several intermediate steps were omitted or approximated.
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Table 5: GPT-o3’s performance on PUZZLEWORLD by difficulty. GPT-o3’s accuracy monoton-
ically decreases as difficulty increases.

Difficulty Accuracy Stepwise
Easy 18.46% 40.58%
Medium 14.76% 39.38%
Hard 9.64% 39.71%

Table 6: GPT-o3’s accuracy on PUZZLEWORLD by difficulty and modality. Within each modal-
ity, GPT-o3’s accuracy consistency decreases with increased difficulty, with a relatively well perfor-
mance on easy structured puzzles.

Difficulty Text Visual Structured
Easy 19.5% 11.9% 20.4%
Medium 15.3% 8.9% 13.5%
Hard 10.6% 7.6% 9.6%

As a proxy for evaluating how robust our step-level crediting is to alternative partial chains, we
randomly sampled 10% of PUZZLEWORLD and automatically paraphrased GPT-o3’s solutions us-
ing GPT-5-mini. We then compared the LLM-judge’s step-level scores on the original and para-
phrased solutions. We observe strong positive correlation between the two sets of scores (r = 0.885,
p < 0.001) with a mean absolute error of 0.066, indicating a high degree of score stability across
semantically equivalent but structurally varied solutions. Although this does not exhaustively cover
all possible reasoning paths, it indicates that the LLM-judge can reliably credit alternative solutions.

E PUZZLEWORLD DETAILS

E.1 CHECKING FOR DATASET CONTAMINATION

To assess the possibility of data contamination, we test whether GPT-o3 (OpenAI, 2025) has memo-
rized any of the puzzles in our dataset. Specifically, inspired by prior work Tanzer et al. (2023); Chi
et al. (2024), we prompt the model to reconstruct the flavor text for 40 randomly sampled puzzles out
of the 84 that were answered correctly. We then use GPT-4o (Achiam et al., 2023) to automatically
evaluate the similarity between the reconstructed and original flavor texts. We find a reconstruction
accuracy of 0%, suggesting little to no evidence of data leakage. Furthermore, since Puzzled Pint
(Puzzled Pint, 2025) publishes new puzzles on a monthly basis, our dataset can be continuously
updated to mitigate the risk of model overfitting on released content.

E.2 DIFFICULTY LABEL ANALYSIS

We acknowledge that the difficulty labels in PUZZLEWORLD are obtained from the original Puz-
zledPint sources, without manual calibration. According to the PuzzledPint website (Puzzled Pint,
2025), all submitted puzzles undergo internal playtesting by an editorial team, where the difficulty
tags are revised and finalized by expert editors and reflect a community-standard difficulty assess-
ment. We thus treat them as expert annotations rather than ad-hoc metadata.

To understand whether the human-labelled difficulty labels meaningfully reflect task difficulty, we
inspect GPT-o3’s performance broken down by difficulty in Table 5. As expected, we observe that
GPT-o3’s accuracy decreases as difficulty level increases. Another valid concern is that human-
perceived difficulty and AI-perceived difficulty might not align. For example, certain diagram-
heavy puzzles may be straightforward for humans but require nontrivial spatial reasoning for AIs.
To investigate this, we further break down GPT-o3’s performance by modality and difficulty.

As observed in Table 6, within each modality, accuracy consistently decreases with difficulty. No-
tably, GPT-o3 performs relatively well on easy structured puzzles – likely due to their clean, regular
layouts – but its performance drops sharply on harder structured puzzles where the diagrams become
more irregular and visually complex. Overall, both aggregated and modality-level results show that
PuzzledPint’s difficulty labels provide a meaningful and consistent difficulty metric for AI models.
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E.3 PUZZLEWORLD IMAGE SAMPLES

We provide high-resolution images of puzzle samples used in this paper.
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F BENCHMARKING DETAILS

F.1 COMPUTE RESOURCES

All evaluations and experiments in this paper were conducted on a remote cluster equipped with
two NVIDIA H200 GPUs (each with 141 GB HBM3 memory). Runtime for each model evaluation
varied between 10–48 hours depending on the model size and architecture.

F.2 SUPERVISED FINETUNING

All fine-tuning experiments were conducted using the LLaMA Factory framework (Zheng et al.,
2024). For fine-tuning on the 8B InternVL3 model, we used LoRA fine-tuning with a rank of 8, a
learning rate of 1×10−6, and trained for 3 epochs on PUZZLEWORLD. For the transfer experiments,
we fine tune a Qwen2.5-VL-7B-Instruct model, using full parameter finetuning with a learning rate
of 1× 10−5 for 5 epochs on PUZZLEWORLD. We did not perform extensive hyperparameter tuning
for any of these experiments.

F.3 HUMAN BASELINE DETAILS

We provide additional context for the human baseline in Table 2. While the human baseline only
covers a subset of PUZZLEWORLD, the resulting baselines reveal clear separations between human
tiers and current models—for example, a >30% gap between human enthusiasts and GPT-o3. This
gap is substantially larger than the uncertainty introduced by the sample size, suggesting that the
current human results provide a reliable directional reference point.

Given our resource constraints, we prioritized depth and quality in the human evaluation rather
than exhaustiveness. To reduce individual variability in a task as open-ended as PuzzleWorld, each
sampled puzzle was solved by at least two independent participants, each allotted up to one hour
and asked to produce detailed reasoning traces. Since we assign multiple participants to each puzzle
to ensure consistency, each puzzle modality has more than 40 human attempts, which we consider
sufficient for a modality-level human baseline.

Finally, we note that the same LLM-judge protocol is applied to both human and model solutions,
ensuring that the comparison is fair and step-symmetric. We observe that, unlike AI models, visual
and structured modalities do not pose additional difficulty for human solvers, further highlighting
the multimodal limitations of current foundation models.

F.4 ROBUSTNESS OF LLM-JUDGE TO IMPERFECT ANNOTATIONS

PUZZLEWORLD contains extensive manual annotation to provide fine-grained analysis on models’
performance. In this section, we include an ablation on the impact of potential human annotation
noise on our step-level grading accuracy. To simulate annotation noise, we select 10% of PUZ-
ZLEWORLD and use GPT-5-mini to paraphrase each step of the ground truth annotation. Then, we
evaluate GPT-o3’s output on both the original and paraphrased ground truth. We observe strong pos-
itive correlation between the two sets of scores (r = 0.898, p < 0.001) with a mean absolute error
of 0.056. This indicates that PUZZLEWORLD’s stepwise evaluation pipeline is robust to moderate
noise in the stepwise annotations.

F.5 PROMPT FOR BENCHMARKING

Below is the system prompt template for benchmarking models on PUZZLEWORLD, which is
adapted from Wang et al. (2025).

You will be presented with a puzzle to solve. The puzzle may not have specific instructions,
but you know that the answer to the puzzle is a word or short phrase (or rarely, a number).

Do not ask any questions about how to proceed, just do your best to solve the puzzle.
Here are some tips for solving puzzles of this type:

General Tips:
- Puzzles will often have multiple steps to get to the answer word. You can usually tell you
are on the right track if the intermediate answers agree with the title, flavor, or theme
of the puzzle.
- You can usually find hints in the introductory text. For example references to "in the dark"
or "sight" are often hints something is encoded with braille.
- Puzzles often incorporate acrostics: a clue where the first letter, syllable, or word of
each line, paragraph, or other recurring feature spells out a word or message.
- If you end up with a garbled "alphabet soup", then look for a clue on how to order them.
- Indexing is one of the most common puzzle mechanisms. Try indexing when you have a list of
words or phrases and a corresponding list of numbers. Count into the word or phrase by the
given number and record the letter in that position. For example: "2 Cake, 6 Pudding, 5
Shortening" gives you "ant".
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- Alpha-numeric codes are also very common. If you end up with a list of numbers try replacing
the numbers with the corresponding letters like this: 1 = A, 2 = B, 3 = C... 26 = Z.
Occasionally, these types of codes will "wrap around", so don’t despair if you see a
number greater than 26. Just subtract 26 and try again. In this scenario 27 (27-26 = 1) =
A, 28 (28-26 = 2) = B etc. If you try this and it doesn’t work, try other numeric codes
such as ASCII.
- Often a puzzle repeats a strategy multiple times.

You will likely need to backtrack frequently, so make sure to write out your steps as you go.
If you get stuck, try to think of a new way to approach the puzzle. Try:
- Rereading the title and the flavor text. These are the most important hints about what type
of strategies, themes or cultural references might be used to solve the puzzle.
- Checking for pop culture references
- Checking for references to a song/poem/book/movie/TV show

For strings, examples of strategies you might try include:
- Alphabetizing
- Using leftover letters to spell something
- Rearranging the letters (aka anagrams or "transposing")
- Seeing if there are any acronyms
- Diagonalizing (taking the first letter of the first answer, the second letter of the second
answer, etc.)
- Looking for unusual letter frequencies
- Puns and homophones
- Shifting from letters to numbers

For numbers, try:
- Shifting from numbers to letters
- Using it as a phone number
- Treating numbers as dates
- Treating numbers as ASCII numbers
- Seeing if there are any strange sequences
- Seeing if prime numbers are involved

For images, try:
- Looking at it in a mirror
- Squinting at it from far away
- Tilting it
- Looking at it upside down
- Looking through it
- Transcribing it neatly

We additionally append the user prompt:
Your task is to solve the following puzzle. The attached images are presented in the order
they are referenced in the text.

The puzzle’s title is: {}
The puzzle’s flavor text is: {}

---
Write out a step-by-step solution to the puzzle. At the end of your solution, write your
answer in the following format:
Answer: <answer>

Below is the prompt for LLM judge:
Answer Equivalence Instructions:
Using the puzzle and the reference solution, grade the candidate solution as follows.

For every reasoning step of the reference solution, output True if the candidate solution both
includes
the step and achieves the same intermediate result of the step, otherwise False.
Explain why the candidate’s solution did or did not get the reasoning step correct.
Do not add more steps than there are in the reference solution and evaluate every step
in the reference solution.
There is a exception in scoring for the last reasoning step. Identify the candidate output
solution.
If the candiate output solution is the exact same as the reference solution answer of
\"{puzzle_solution}\",
then output final step as true.

G ANNOTATOR DETAILS

We employ university undergraduates to assist the human annotation process in PUZZLEWORLD.
All annotators are compensated at a rate of $16.00 per hour. Prior to annotation, annotators receive
detailed guidelines and participate in training sessions to ensure annotation consistency and task
understanding.

G.1 ANNOTATOR INSTRUCTIONS

We provide the instructions given to annotators below:
# Instructions for Submitting a Puzzle
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To submit a puzzle, fork this repository and create a new branch. Then, create a new folder
‘{puzzle_name}‘ in the ‘data/puzzles‘ folder, and place the following files in it:

- ‘metadata.json‘: A JSON file containing the metadata of the puzzle
- ‘content.png‘: The image of the puzzle content
- ‘figure_{N}.png‘: (Optional) Figures illustrating the reasoning steps

For an example puzzle, see the ‘data/puzzles/example‘ folder. After you are done, create a pull
request to merge your branch into the main repository.

Note, please replace any spaces in the puzzle name with ‘_‘ when creating the new folder!

## Metadata
The ‘metadata.json‘ file should contain a JSON object with the following fields:

| Field Name | Type | Description |
|--------------|------------|--------------------------------------------------|
| title | string | The title of the puzzle |
| flavor text | string | The flavor text of the puzzle, possibly empty |
| difficulty | string | The difficulty level of the puzzle (easy, medium, hard) |
| solution | string | The solution to the puzzle |
| reasoning | Step\[ \] | An ordered list of reasoning [steps](#reasoning-step) towards the
solution |
| modality | string\[ \] | A list of input [modalities](#a-list-of-input-modalities) the puzzle
contains |
| skills | string\[ \] | A list of [skills](#a-list-of-reasoning-skills) required to solve the
puzzle |
| source | url | Thel link to the puzzle |

### Reasoning Step
The ‘reasoning‘ field should contain a list of ‘Step‘ objects, which are represented as
dictionaries with the following fields:
| Field Name | Type | Description |
|--------------|-----------|--------------------------------------------------------|
| explanation | string | The textual explanation of the step |
| figure | file path | (Optional) File path to a figure illustrating the step |

Each of the explanation should begin with one of the following atomic actions:
- Pattern discovery: discover patterns / insights from current information
- E.g. discovering that current laser patterns are semaphores

- Sketching: sketching on or interacting with visual elements
- E.g. traversing through a maze
- E.g. connecting the dots

- Manipulation: manipulating or arranging a sequence of elements
- E.g. sorting alphabets in order
- E.g. applying cryptic encoding / decoding

- Combining / Chaining: combining or chaining multiple pieces of observations
- E.g. matching patterns in images with text segments

- Extraction: extracting information from one pattern or observation
- E.g. extracting letters from semaphore patterns

(Note: the exact wording of action is not important as long as it resembles one of the above
categories)

Each explanation step should consist of one action and the intermediate outcome of the action e.g.
Identify the pattern that (...), which is (...)

### A List of Input Modalities
| Keyword | Description |
|----------------|--------------------------------------------------------------------|
| ‘text‘ | Textual information |
| ‘visual‘ | Unstructued visual information e.g. images, icons, fonts, etc. |
| ‘structured‘ | Structured visual information e.g. tables, graphs, crosswords, etc.|

### A List of Reasoning Skills
| Keyword | Description |
|----------------|---------------------------------------------------------------------------------------|
| ‘logic‘ | Logic reasoning e.g. rule deduction or inferring conclusion given partial
information |
| ‘wordplay‘ | Manipulating words based on linguistic properties e.g. anagrams, homophones, etc. |
| ‘spatial‘ | Spatial or visual understanding, manipulation and navigation e.g. mazes, connecting
dots, etc. |
| ‘cryptic‘ | Encoding and decoding information e.g. ciphers, indexing, etc. |
| ‘knowledge‘ | Leverarging domain-specific knowledge e.g. history, science, etc. |
| ‘commonsense‘ | Applying common sense reasoning e.g. physical laws, social norms, etc. |
| ‘tool_use‘ | Searching through an external database for information unlikely in model’s training
data, such as Google Maps |
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