

# 000 PUZZLEWORLD: A BENCHMARK FOR MULTIMODAL, 001 002 OPEN-ENDED REASONING IN PUZZLEHUNTS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

## 007 008 ABSTRACT 009

010 Puzzlehunts are a genre of complex, multi-step puzzles lacking well-defined prob-  
011 lem definitions. In contrast to conventional reasoning benchmarks consisting  
012 of tasks with clear instructions and constrained environments, puzzlehunts re-  
013 quires discovering the underlying problem structure from multimodal evidence  
014 and iterative reasoning, mirroring real-world domains such as scientific discov-  
015 ery, exploratory data analysis, or investigative problem-solving. Despite progress  
016 in foundation models, their performance on open-ended settings remains largely  
017 untested. We introduce PUZZLEWORLD, a comprehensive benchmark of 667  
018 puzzlehunt-style problems designed to assess step-by-step, open-ended, and cre-  
019 ative multimodal reasoning. Each puzzle is annotated with the final solution, de-  
020 tailed reasoning traces, and cognitive skill labels, enabling holistic benchmarking  
021 and fine-grained diagnostic analysis. Most state-of-the-art models achieve only 1-  
022 4% final answer accuracy. On PUZZLEWORLD, the best model solves only 14%  
023 of puzzles and reaches 40% stepwise accuracy, matching human puzzle novices  
024 but falling significantly behind puzzle enthusiasts. To demonstrate the value of  
025 our reasoning annotations, we show that fine-tuning a small model on reasoning  
026 traces boosts stepwise accuracy from 4% to 11%, which translates to improve-  
027 ments in downstream visual reasoning tasks. Our detailed error analysis reveals  
028 that current models exhibit myopic reasoning, are bottlenecked by the limitations  
029 of language-based inference, and lack sketching capabilities crucial for visual and  
030 spatial reasoning. We will publicly release PUZZLEWORLD to support future  
031 work on building more general, open-ended, and creative reasoning systems.

## 032 1 INTRODUCTION

033 Recent advances in language and multimodal reasoning (Liang et al., 2024b) have enabled sig-  
034 nificant progress in step-by-step problem-solving (Wei et al., 2022; Yao et al., 2023), transparent  
035 reasoning (Creswell & Shanahan, 2022; Luo et al., 2023), and enhanced human-AI collaboration  
036 (Wu et al., 2022; Chen et al., 2025b). Such progress has been fuelled by and evaluated on com-  
037 prehensive benchmarks, particularly in domains like mathematics (Lu et al., 2024) and code (Jiang  
038 et al., 2024). However, these benchmarks are largely confined to narrow, well-defined environments.  
039 In coding, tasks are meticulously specified and validated within executable environments (Jimenez  
040 et al., 2024). In geometry, models often rely on domain-specific languages to structure their rea-  
041 soning (Chervonyi et al., 2025). While valuable, these benchmarks primarily test a model’s ability  
042 within a pre-defined problem space, rather than its ability to *discover the problem itself*.

043 In contrast, human reasoning excels in open-ended environments, where the rules are unstated and  
044 the objectives are ambiguous. We dynamically form hypotheses, adapt to implicit structures, and  
045 reason creatively across modalities to solve problems ranging from deciphering an escape room to  
046 novel scientific discovery. To build more generalist AI, we argue that the next frontier for eval-  
047 uation lies beyond the current constrained settings. It demands benchmarks that challenge models  
048 to operate in less structured, discovery-driven environments that require more flexible and holistic  
049 reasoning (Mondorf & Plank, 2024).

050 Puzzles are designed precisely to test these abilities. While some are rigidly formatted like Sudokus,  
051 others, like *puzzlehunts*, are intentionally open-ended. In a puzzlehunt, solvers are not given a clear  
052 task; they must first infer the nature of the problem from ambiguous clues embedded in text, images,  
053 or cultural references before devising and executing a solution.



Figure 1: **Overview of PUZZLEWORLD:** PUZZLEWORLD is a dataset of complex puzzles that lack explicit instructions, requiring solvers to deduce the final answer from nuanced, multimodal cues from the puzzle content as well as external domain-specific knowledge. The raw puzzles and solutions are sourced from Puzzled Pint, and the solutions, which are PNG images, are transcribed into a sequence of reasoning steps by human annotators. These annotations enable us to measure the accuracy of the final answer and the step-by-step progress made towards the solution. Best-viewed zoomed in and in color, high-resolution puzzles are in Appendix E.3.

Beyond their entertainment value, puzzlehunts model the essential challenges of real-world discovery and analysis. They demand compositional thinking, lateral reasoning, and the resilience to pursue leads, backtrack from dead ends, and manage uncertainty. Unlike current AI benchmarks that present well-specified tasks, puzzlehunts compel solvers to discover both *what* the problem is and *how* to solve it. This dual challenge makes them uniquely suited for evaluating general-purpose reasoning systems under conditions that more closely resemble open-ended scenarios like scientific investigation, intelligence analysis, or exploratory design.

To bridge this gap, we introduce PUZZLEWORLD, a benchmark of 667 real-world puzzlehunt problems curated from Puzzled Pint (Puzzled Pint, 2025), a monthly puzzlehunt event with content released under a Creative Commons license. These puzzles offer an open-ended, compositional challenge beyond prior benchmarks focused on instruction-following or task completion, and will grow with new puzzle releases. For each puzzle, we provide fine-grained annotation of its solution, input modalities, cognitive reasoning skills it exercises, and a manually curated step-by-step solution trace. These rich annotations support diagnostic analysis, model training, and detailed evaluation of models’ reasoning capabilities. An overview of PUZZLEWORLD is provided in Figure 1.

PUZZLEWORLD enables us to systematically study the multimodal and multi-step reasoning capabilities of today’s best foundation models. Most state-of-the-art models achieve only 1-4% final answer accuracy, with the best model solving only 14% of puzzles and reaching 40% stepwise accuracy. We additionally find that detailed annotations are important, as fine-tuning a model on annotated reasoning traces significantly improves a small model’s performance, both within PUZZLEWORLD and on other visual reasoning datasets. We also conduct detailed error analysis on models’ performance on PUZZLEWORLD, yielding tangible directions for future work in improving multimodal open-ended reasoning in AI. Together, these elements position PUZZLEWORLD as a rigorous resource for evaluating and improving general-purpose multimodal reasoning in AI systems. In the long run, we believe PUZZLEWORLD can catalyze more general and adaptable AI for mathematical and logical reasoning, open-ended scientific discovery, and assistive agents.

## 2 RELATED WORK

**Large Language Model (LLM) Reasoning.** LLMs have demonstrated remarkable emergent capabilities, often matching or even surpassing human performance across a wide range of tasks (Street et al., 2024). Notably, models such as GPT-4 (Achiam et al., 2023) and Claude (Anthropic, 2025) have achieved strong results not only on traditional NLP benchmarks—like question answering, summarization, and translation (Widyassari et al., 2022; Soares & Parreira, 2020; Singh et al., 2017), but also in more complex domains such as mathematical reasoning, programming, and log-



Figure 2: **Overview of samples from PUZZLEWORLD.** **Left:** To gain a deeper understanding of model performance on PUZZLEWORLD, each puzzle is annotated with the input modalities of the puzzle content, the reasoning skills required to solve the puzzle, and step-by-step reasoning steps. **Right:** Example modality and reasoning skill annotations on three puzzles. High-resolution puzzle images are in Appendix E.3.

ical deduction (Ahn et al., 2024; Jiang et al., 2024; Lam et al., 2024). These abilities suggest that LLMs are beginning to exhibit general-purpose reasoning skills, making them increasingly relevant to both academic research and practical applications. However, despite these impressive capabilities, understanding the full extent and limitations of LLM reasoning remains a crucial open question, underscoring the need for benchmarks that rigorously assess their capability for flexible, holistic reasoning (Mondorf & Plank, 2024; Chang et al., 2024).

**Reasoning Benchmarks.** Numerous reasoning benchmarks have been proposed to evaluate various cognitive skills, including visual mathematical reasoning (Lu et al., 2024), spatial understanding (Wang et al., 2024a), analogical reasoning (Yiu et al., 2024), and social reasoning (Li et al., 2025; Mathur et al., 2025). However, few have addressed abstract, open-ended problems that demand holistic reasoning. HEMM (Liang et al., 2024a), SciBench (Wang et al., 2024b), MMMU (Yue et al., 2024a), MMMU-Pro (Yue et al., 2024b), MMT-Bench (Ying et al., 2024), and Olympiad-Bench (He et al., 2024) test multimodal reasoning across various disciplines in academic and real-world contexts. While these tasks are broad and challenging, they typically involve well-defined questions that closely resemble the training distributions of large models. As such, they primarily assess in-distribution reasoning rather than creativity or adaptability. ARC-AGI (Chollet, 2019) tests the ability to reason and adapt to new situations through abstract visual pattern recognition tasks that require minimal prior knowledge, yet it lacks the open-ended, exploratory nature of real-world problem solving. In contrast, PUZZLEWORLD targets open-ended reasoning through puzzlehunts that lack explicit instructions. Solving these tasks requires creatively piecing together subtle hints, often across many modalities, into coherent multi-step reasoning chains.

**Puzzle Benchmarks.** A growing line of work has explored the use of puzzles to test the reasoning capabilities of AI systems. PuzzleVQA (Chia et al., 2024) consists of 2,000 puzzles that require abstracting patterns from visual puzzles to answer multiple-choice questions. AlgoVQA (Ghosal et al., 2024) is a visual puzzle benchmark requiring algorithmic reasoning. PUZZLES (Estermann et al., 2024) tests the ability of RL agents to perform algorithmic reasoning on a set of 40 puzzles. While valuable for evaluating specific skills, these benchmarks focus on narrow domains with constrained task formats, and modern models generally perform well on these benchmarks (Chia et al., 2024; Moskvichev et al., 2023; Yue et al., 2024a). On the other hand, the unstructured nature of the puzzlehunt problems in PUZZLEWORLD requires models to interpret ambiguous cues, explore creative strategies, and integrate information across diverse modalities and knowledge areas. In contrast to previous benchmarks that isolate strictly structured vertical reasoning (Chen et al., 2025a) or narrative-based lateral thinking (Huang et al., 2024), puzzlehunt puzzles require an integrated blend of lateral thinking, symbolic abstraction, and visual–spatial reasoning. The closest to our benchmark is EnigmaEval (Wang et al., 2025), which also evaluates AI’s reasoning capabilities on puzzlehunts. However, EnigmaEval is a closed-source evaluation-only dataset and does not include manually annotated step-by-step solutions. The open-sourced puzzles and rich annotations in PUZZLEWORLD support fine-grained analysis of intermediate reasoning and failure modes, facilitating the development and evaluation of more robust, general-purpose reasoning models.



Figure 3: **Dataset construction procedure and statistics:** **Left:** First, we source raw puzzles and solutions from Puzzled Pint. As the Puzzled Pint solutions are often not correctly parsed by OCR, each puzzle’s metadata and reasoning steps are human-annotated. We use GPT-4o to automatically flag ambiguous and inconsistent annotations. Finally, two human verifiers perform a manual data cleaning on the flagged puzzles to ensure a consistent annotation format. **Right:** We summarize the statistics of our dataset. The average number of reasoning steps is high, and the steps are relatively complex, as shown by the high average word count.

### 3 TAXONOMIZING MULTIMODAL REASONING IN PUZZLEHUNTS

To understand how solving puzzlehunts engages reasoning capabilities evaluated separately in benchmarks like MMMU (Yue et al., 2024b), we analyze puzzle solutions and classify them along two dimensions: input modality and reasoning mechanism. This taxonomy provides a comprehensive evaluation framework that captures both the form in which information is presented and the cognitive strategies required for reasoning.

#### 3.1 PUZZLE INPUT MODALITIES

We consider three puzzle input modalities: **Text**, encompassing textual information such as instructions, narratives, or word puzzles, testing the model’s ability to extract relevant linguistic information; **Visual**, which includes unstructured visuals like images, icons, and typography, challenging the models to interpret visual semantics and patterns; and **Structured**, which refers to systematically organized visual information, such as tables, graphs, grids, matrices, and charts. Table 1 shows the distribution of puzzles across modality and difficulty.

#### 3.2 PUZZLE REASONING MECHANISMS

We identify six core cognitive abilities essential for effective puzzle-solving in PUZZLE-WORLD. These include **logic**, which covers inferential reasoning such as deduction and causal inference; **wordplay**, involving flexible linguistic interpretation through puns, anagrams, and homophones; **spatial reasoning**, which tests an AI’s ability to mentally manipulate objects and navigate structures; and **cryptic decoding**, which requires recognizing and applying transformations like ciphers and hidden encodings. In addition, **knowledge-based reasoning** leverages domain-specific facts from areas such as science or history, while **commonsense reasoning** draws on implicit real-world expectations. This taxonomic approach enables targeted evaluation and analysis of AI reasoning capabilities across different cognitive dimensions. By mapping specific puzzles and reasoning tasks to combinations of modalities and mechanisms, we can identify areas of strength and weakness in AI systems, track progress over time, and guide future development efforts toward more balanced reasoning capabilities.

## 4 CREATING PUZZLEWORLD

### 4.1 DATA COLLECTION AND PRE-PROCESSING

We collected our puzzle corpus from Puzzled Pint (2025), an organization that publishes puzzles under Creative Commons (CC BY-NC-SA Intl. 4.0). Their repository contains monthly puzzles designed for collaborative solving, covering a diverse range of puzzle types and difficulties. This allowed us to obtain more than 700 raw puzzles spanning from 2010 to 2025.

Each puzzle in our dataset consists of its original PDF containing the puzzle content, a single-phrase answer, and a solution document. Unlike Wang et al. (2025), we deliberately preserved the original puzzle format rather than transcribing content into separate text and images. This decision was motivated by the importance of spatial relationships in puzzle layouts to the solving process. Fur-

thermore, Wang et al. (2025) showed that the best foundation models are not primarily constrained by OCR capabilities. Instead, we devote our manual effort to construct fine-grained annotations of puzzle reasoning steps, ensuring that the annotations accurately capture the intended solution pathways while maintaining the integrity of the original puzzle presentation.

## 4.2 DATA ANNOTATION

To facilitate AI’s reasoning capabilities, we designed a comprehensive annotation structure for PUZZLEWORLD. Each puzzle is represented by a standardized metadata and visual assets. To prevent ambiguity, we discard puzzles that have incomplete solutions, multiple ground truth answers, or require physical activity to solve the puzzles. This leaves us with 667 annotated puzzles.

### 4.2.1 METADATA SCHEMA

Each puzzle is annotated using a JSON schema comprising several fields: a descriptive **title**; **flavor text** providing narrative context; a **difficulty** label (easy, medium, or hard); **solution** representing the canonical answer; a **reasoning** field of an ordered sequence of steps leading to the solution; a **modality** tag specifying the input types involved; a list of **skills** capturing the cognitive abilities required for solving; and a **source** field attributing the data origin. Figure 4 illustrates an example annotation.

### 4.2.2 REASONING ANNOTATION

A key contribution of our annotations is the decomposition of puzzle-solving into reasoning steps. Each step is formalized as a tuple  $\langle e, f \rangle$  where  $e$  represents the textual explanation and  $f$  denotes an optional figure illustrating the reasoning. To ensure annotation consistency, we loosely require each step to begin with an atomic operation, such as pattern discovery or sketching, followed by the intermediate outcome of that operation. This structured annotation enables fine-grained analysis of an AI’s reasoning trajectory.

## 4.3 VERIFICATION OF ANNOTATIONS AND DATA CONTAMINATION

To ensure annotation quality and integrity, we implemented a two-stage verification protocol. First, we used GPT-4o to flag each puzzle annotation for correctness and reasoning coherence. This automated screening identified reasoning steps exhibiting ambiguity or logical discontinuities that might impede systematic analysis, which has flagged 12.11% of the dataset. Subsequently, two human verifiers independently reviewed all flagged annotations, applying corrections where necessary. This verification process resulted in modifications to 10.93% of the initially annotated puzzles. As an additional quality assurance measure, we conducted manual verification of a random subset comprising 5% of the dataset. In this evaluation, 96.5% of the verified annotations are marked as correct by the verifiers, demonstrating the high reliability of our annotation methodology. Finally, we verify whether frontier models has memorized any of the puzzles in PUZZLEWORLD. We describe our procedure in E.1, where we find no evidence of data contamination.

## 4.4 DATASET STATISTICS

We summarize key statistics in Figure 3 (right). The average number of reasoning steps is above 5, and the average word count per reasoning step is above 20, demonstrating the complexity of the reasoning traces. Additionally, 12.3% of the steps have a visual intermediate output, highlighting the importance of sketching and spatial reasoning to solve puzzles. The correlation between puzzle difficulty and # of reasoning steps is 0.24. While we expect difficulty and # of reasoning steps to be positively correlated, the magnitude of the correlation is relatively low, as the difficulty of the puzzles also stems from their open-ended nature. Figure 5 shows the distribution of puzzles by modalities, reasoning skills, number of reasoning steps, and difficulty.



**Figure 4: Illustration of metadata schema:** All puzzles are annotated with accompanying metadata, which includes the title, flavor text, difficulty, final answer, reasoning steps, input modalities, reasoning skills, and the link to the puzzle.



Figure 5: **PUZZLEWORLD dataset statistics.** Distributions of modalities and reasoning skills are balanced. While the majority of puzzles are of medium difficulty, there is significant number of easy and hard puzzles. The number of reasoning steps follows a long-tail distribution, with many solutions requiring more than 5 steps and some hard puzzles requiring up to 30 steps of reasoning.

## 5 EXPERIMENTS

In this section, we evaluate frontier closed and open-source multimodal LLMs on the PUZZLEWORLD dataset. We detail the evaluation setup, present quantitative results, and conduct qualitative error analysis to understand model behavior in open-ended, multimodal puzzle reasoning.

### 5.1 EXPERIMENTAL SETUP

We evaluate frontier closed-source reasoning models on PUZZLEWORLD, including GPT-o3 (OpenAI, 2025), GPT-4o (Achiam et al., 2023), Claude Opus 4 (Anthropic, 2025), Gemini-2.5-Pro (Comanici et al., 2025), [Gemini-3-Pro \(Google, 2025\)](#), and Grok 4 (xAI, 2025). We also evaluate open-source models Qwen QVQ (Qwen, 2024), InternVL3 (Zhu et al., 2025), and Kimi VL A3B (Team et al., 2025). We prompt each model with a comprehensive prompt as in Wang et al. (2025), followed by the puzzle images and transcribed flavor text. See Appendix F for the evaluation prompt.

We also provide a human baseline on PUZZLEWORLD, considering three tiers of puzzlehunter expertise: **Novice**, with no prior puzzlehunt experience; **Enthusiasts**, who showed interest or have occasionally participated (1-2 sessions) in puzzlehunts, and **Experts** among the top teams at monthly Puzzled Pint meetings. We gathered 9 Novices and 9 Enthusiasts across high school and college ages. We sampled 5% puzzles from PUZZLEWORLD and assigned each participant to solve four puzzles. Participants were given an hour to solve each puzzle, matching the usual expected time at a live session, and were asked to provide paragraph explanations for their solution. For Experts, we use statistics from Puzzled Pint sessions in Syracuse, New York, and Bangalore, India, dating from January 2023 to June 2025. The statistics suggest that expert puzzlehunters consistently solve all five puzzles within one to two hours, which is on average less than the time prescribed to our human participants. We thus assume that human Experts achieve perfect accuracy on PUZZLEWORLD.

#### 5.1.1 AUTOMATIC EVALUATION METRICS

Beyond final answer accuracy, we additionally evaluate the models' *stepwise accuracy* by comparing their solution with the annotated ground truth reasoning steps. Since puzzles can have multiple solution pathways, we define the stepwise accuracy score of a candidate solution to be the *last* annotated reasoning step it successfully executed out of all the reasoning steps. We implement an LLM judge (Zheng et al., 2023) with GPT-4o to determine the stepwise score of each candidate solution. For each reasoning step in the reference solution, the LLM judge determines if the step is met by the candidate response. To evaluate LLM judge's reliability, we compared its stepwise evaluations on 20 random puzzles against human evaluations. The LLM judge achieved a Pearson correlation of  $r = 0.829$  ( $p = 6.3 \times 10^{-6}$ ) and a mean absolute error (MAE) of 0.083 with respect to human scores, indicating strong alignment with human judgment.

## 5.2 RESULTS

### 5.2.1 OVERALL PERFORMANCE OF FRONTIER MODELS

We report the models' performance in Table 2. All models exhibit extremely low final answer accuracy on PUZZLEWORLD, with most achieving close to 1-4%. GPT-o3 attains the highest overall accuracy at 14.22%, matching human Novice performance, while the best-performing open-source model, QVQ-72B-Preview, reaches just 1.36%. All models perform significantly worse than human Enthusiasts and Experts. Although the uniformly low accuracy underscore our benchmark's difficulty, it offers limited insight into the models' reasoning capabilities.

Table 2: **Model performance.** Accuracy (Acc) and stepwise accuracy (Step) are reported overall and per modality. Models struggle significantly on PUZZLEWORLD, most achieve only 1-4% answer accuracy. The best model, GPT-o3, solves only 14% of puzzles and reaches 40% stepwise accuracy, matching human Novice performance but falling behind Enthusiasts.

| Model  | Overall             |              | Text         |              | Visual       |              | Structured   |              |              |
|--------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|        | Acc                 | Step         | Acc          | Step         | Acc          | Step         | Acc          | Step         |              |
| Open   | QVQ-72B-Preview     | <b>1.36</b>  | <b>30.23</b> | <b>1.33</b>  | <b>29.25</b> | 0.63         | <b>27.96</b> | 1.18         | <b>32.40</b> |
|        | InternVL3-78B       | 0.89         | 15.49        | 0.83         | 14.80        | 0.47         | 14.48        | 1.15         | 17.97        |
|        | Kimi VL A3B         | 1.33         | 19.10        | 1.16         | 17.91        | <b>0.94</b>  | 18.84        | <b>1.72</b>  | 21.41        |
| Closed | GPT-o3              | <b>14.22</b> | <b>39.81</b> | <b>15.16</b> | <b>39.92</b> | <b>8.96</b>  | <b>33.38</b> | <b>13.53</b> | <b>41.28</b> |
|        | GPT-4o              | 1.83         | 22.09        | 1.92         | 20.00        | 0.73         | 20.20        | 2.77         | 28.09        |
|        | Claude Opus 4       | 4.50         | 24.56        | 4.20         | 23.77        | 4.04         | 22.60        | 4.37         | 26.93        |
|        | Gemini 2.5 Pro      | 7.65         | 31.61        | 8.07         | 31.09        | 4.99         | 29.06        | 6.71         | 32.34        |
|        | <b>Gemini 3 Pro</b> | <b>18.0</b>  | <b>39.99</b> | <b>20.30</b> | <b>39.34</b> | <b>14.71</b> | <b>38.81</b> | <b>20.25</b> | <b>39.99</b> |
|        | Grok 4              | 3.33         | 13.79        | 3.85         | 13.64        | 3.70         | 14.19        | 1.56         | 11.22        |
| Human  | Human Novice        | 13.89        | 23.10        | <b>16.98</b> | <b>25.32</b> | 11.00        | <b>22.70</b> | <b>16.67</b> | <b>24.92</b> |
|        | Human Enthusiast    | 44.44        | 51.70        | 44.14        | <b>52.58</b> | 44.00        | 52.20        | 54.17        | 57.81        |
|        | Human Expert        | <b>100.0</b> |

To address this, our stepwise evaluation metrics provide a more nuanced view of models’ reasoning performance. These metrics reveal that models with poor final answer accuracy, such as InternVL3, still demonstrate good intermediate reasoning, achieving up to 15.49% stepwise accuracy. Similarly, while QVQ-72B-Preview lags behind closed-source models in final answer accuracy, it outperforms many of them in stepwise accuracy (30.2%), reflecting more coherent reasoning despite not reaching the correct final output. These two metrics enable PUZZLEWORLD to remain highly challenging while offering detailed diagnostics for model evaluation and development.

In terms of input modalities, models generally perform best on text-based puzzles, with significantly lower accuracy on puzzles involving unstructured visual inputs. Interestingly, most models achieve better performance on structured puzzles, such as crosswords where the spatial format constrained, over unstructured visual puzzles. In contrast, puzzles involving free-form visuals remain difficult, with models often achieving less than half their text puzzle accuracy on these inputs. These trends highlight current models’ persistent weaknesses in visual grounding and spatial reasoning.

### 5.3 IMPROVING REASONING ON DOWNSTREAM TASKS WITH PUZZLEWORLD

To explore whether PUZZLEWORLD can support model improvement, we fine-tuned an 8B Intern-VL3 model with supervised fine-tuning on annotated reasoning traces from 80% of the dataset, and evaluated performance on the 20% held-out test set. As a control, we fine-tuned the same model using only the final answers, without access to reasoning traces. Full details are provided in Appendix F.2.

Our results in Table 3 highlight the value of PUZZLEWORLD’s annotations. Fine-tuning on reasoning traces doubles the model’s stepwise accuracy—from 4.78% (base model) to 11.00%. In contrast, fine-tuning on final answers alone impairs performance, reducing stepwise accuracy to 2.96% and driving answer accuracy to zero. Despite the improved stepwise accuracy, the fine-tuned model’s answer accuracy remained at 0.76%. This suggests that while fine-tuning enhanced model’s intermediate reasoning, it was insufficient to solve additional puzzles completely. This result underscores both the difficulty of PUZZLEWORLD and the limitations of naive fine-tuning approaches in addressing such complex reasoning challenges.

We then explore PUZZLEWORLD’s detailed stepwise annotation can improve models on downstream reasoning tasks. We finetuned a model on 80% of PUZZLEWORLD and evaluated it on two benchmarks: a Rebus puzzles dataset (Lee et al., 2025) involving visual metaphors without explicit instructions, and the MathVista dataset (Lu et al., 2024), ranging from general visual question answering to domain-specific geometry questions. Our results are shown in Table 4.

378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431

**Table 4: Fine-tuned model performance on downstream reasoning tasks.** Finetuning on PUZZLEWORLD leads to performance gains, on visually-oriented tasks (Rebus puzzles, geometry, visual question answering) but slightly reducing it on problems less dependent on pure visual knowledge.

| Dataset       | Task                        | Base Model    | Fine-tuned on PUZZLEWORLD |
|---------------|-----------------------------|---------------|---------------------------|
| Rebus Puzzles | Puzzle reasoning            | 3.2%          | <b>5.1%</b>               |
| MathVista     | Geometry problem solving    | 65.87%        | <b>66.35%</b>             |
|               | Textbook question answering | <b>63.92%</b> | 60.13%                    |
|               | Math word problem           | <b>62.37%</b> | 59.14%                    |
|               | Visual question answering   | 32.40%        | <b>39.11%</b>             |



**Figure 6: Example puzzle errors.** **Left:** (myopic reasoning) The model is unable to backtrack when it hits a dead end. **Middle:** (language bottleneck) The model misrepresents the visual contents due to inherent limitations of texts. **Right:** (sketching errors) The model fails to execute the visual sketching steps to obtain correct intermediate outputs. High-resolution images are in Appendix E.3.

Finetuning on PUZZLEWORLD yields notable performance gains on Rebus puzzles, where the model’s accuracy increased from 3.2% to 5.1%. On MathVista, the model shows significant improvement in geometry problem solving and visual question answering, but its performance slightly decreased on tasks outside of PUZZLEWORLD’s reasoning skills, such as textbook question answering and math word problems. This performance improvement suggests that the skills learned from PUZZLEWORLD are not merely task-specific. They represent transferable, general-purpose reasoning capabilities, making our dataset a valuable tool for enhancing models’ capabilities.

#### 5.4 DETAILED ERROR ANALYSIS

We highlight the main sources of errors by the best reasoning multimodal LLMs on PUZZLEWORLD, focusing on GPT-o3. See Figure 6 for example errors from each category.

**Myopic reasoning.** Despite strong performance on conventional benchmarks, frontier models often exhibit *myopic commitment* in their reasoning. Rather than exploring alternatives or revisiting prior steps, models tend to fixate on early, surface-level hypotheses, resulting in reasoning trajectories that are locally coherent but globally misaligned with the puzzle. For example, in Figure 6, solving the puzzle requires interpreting musical notes using a mix of binary, Morse code, and flag semaphores. Instead, GPT-o3 identifies a Morse code reference early on and rigidly adheres to it—even as contradictions arise—demonstrating a lack of backtracking and verification.



**Figure 7: Stepwise accuracy distribution of GPT-o3.** GPT-o3 receives stepwise accuracy of 0 for most puzzles, highlighting the model’s myopic reasoning tendencies and its inability to backtrack after committing to an incorrect first step.

432 To further examine this behavior, we analyze the stepwise accuracy distribution of GPT-o3 (Figure 7). We find that, on most puzzles, the model receive a score of 0, meaning the model often  
 433 fails to correctly identify even the first step of the solution. Once committed to an incorrect path,  
 434 the model rarely recovers, highlighting its brittle reasoning and a lack of dynamic self-correction,  
 435 especially when it cannot rely on external environments for verification.  
 436

437 **Limitations of language.** Modern multi-  
 438 modal models rely heavily on language-based  
 439 reasoning strategies, such as chain-of-thought  
 440 and code generation. However, this dependence  
 441 becomes a bottleneck in puzzles with complex  
 442 visual structure. In Figure 6, the puzzle is com-  
 443 posed of four interlocking loops arranged in a  
 444 clover-like pattern. This layout is visually intui-  
 445 tive, but difficult to represent in text.

446 While GPT-o3 correctly solves the word clues,  
 447 it fails to capture the layout when converting the  
 448 puzzle into text, as shown in Figure 8. This ul-  
 449 timately leads the model to derive an incorrect  
 450 answer. This example highlights a broader lim-  
 451 itation: when faced with highly complex struc-  
 452 tured inputs, models that default to textual reasoning often lose critical spatial information. This  
 453 inherent mismatch between visual intuition and language-centric inference poses a fundamental  
 454 challenge to models, especially those that depend on textual or code-based reasoning chains.

455 **Multimodal reasoning needs sketching.** While fron-  
 456 tier models have made notable progress in logical deduc-  
 457 tion and arithmetic reasoning, they consistently underper-  
 458 form on spatial tasks that require sketching, drawing, and  
 459 manipulating visual structure, such as decoding based on  
 460 spatial arrangements or tracing paths through grids and  
 461 mazes. In Figure 6, the model correctly solves the indi-  
 462 vidual clues in a grid-based puzzle but fails to trace the  
 463 intended path, resulting in an incorrect final answer. Hu-  
 464 mans naturally rely on sketching or mental imagery to  
 465 reason through such spatial challenges, using external or  
 466 internal visualizations to keep track of evolving structure.  
 467 The absence of such capabilities in current models reveals  
 468 a critical gap: without the ability to sketch and update a  
 469 persistent visual representation, models are prone to fail-  
 ure in tasks that depend on spatial coherence.

470 To understand the impact of sketching to model performance, we manually analyzed 30 puzzles  
 471 where GPT-o3 produced incorrect answers. For each failure, we annotated the reasoning step re-  
 472 sponsible for the error with its corresponding reasoning skill. As shown in Figure 9, we found that  
 473 53.33% of these bottleneck steps involved spatial reasoning or sketching-related capabilities. This  
 474 highlights a gap in models’ ability to manipulate visual structure during inference. Incorporating  
 475 sketch-like visual memory and reasoning (Wu et al., 2024; Hu et al., 2024; Chen et al., 2025b) may  
 476 offer a promising direction toward more robust and spatially grounded reasoning AI.

## 477 6 CONCLUSION

478 This paper presents PUZZLEWORLD, a large-scale benchmark of 667 puzzlehunt-style problems de-  
 479 signed to assess multi-step, open-ended multimodal reasoning. The diversity of puzzles and richly  
 480 annotated reasoning traces enable holistic benchmarking and fine-grained diagnostics. PUZZLE-  
 481 WORLD presents a unique challenge to modern multimodal reasoning, with the best model solv-  
 482 ing only 14% of puzzles. Our error analysis reveals that current models exhibit myopic reason-  
 483 ing, are bottlenecked by the limitations of language, and lack sketching capabilities. This makes  
 484 PUZZLEWORLD uniquely well-suited for evaluating general-purpose reasoning systems under con-  
 485 ditions that more closely resemble real-world open-ended scenarios, such as scientific discovery,  
 exploratory data analysis, or investigative problem-solving.



Figure 8: **Limitations of text.** An example failure case where GPT-o3 fails to represent a complex structured puzzle into text.



Figure 9: **Reasoning skills of failed steps.** We annotated the bottleneck steps with their reasoning skills.

486 ETHICS AND REPRODUCIBILITY STATEMENT  
487

488 This research focuses on developing a benchmark to support the creation of models with robust open-  
489 ended, multistep, multimodal reasoning. All data sources are cited and employed within the scope of  
490 their intended use and applicable copyright licenses. To promote transparency and reproducibility,  
491 we provide detailed data collection and annotation process in Section 4, evaluation setup in Section  
492 5.1, and compute details in Section F of the appendix. We will publicly release the PUZZLEWORLD  
493 benchmark and code to facilitate reproducibility and further research.

494 REFERENCES  
495

496 Mit mystery hunt. <https://web.mit.edu/puzzle/www/>, 1981–.

497 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo  
498 Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint*  
499 *arXiv:2303.08774*, 2023.

500 Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models for  
501 mathematical reasoning: Progresses and challenges, 2024. URL <https://arxiv.org/abs/2402.00157>.

502 Anthropic. Introducing claude 4. 2025. URL <https://www.anthropic.com/news/claude-4>.

503 Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang  
504 Wang, Yidong Wang, et al. A survey on evaluation of large language models. *ACM transactions on intelligent*  
505 *systems and technology*, 15(3):1–45, 2024.

506 Guizhen Chen, Weiwen Xu, Hao Zhang, Hou Pong Chan, Chaoqun Liu, Lidong Bing, Deli Zhao, Anh Tuan  
507 Luu, and Yu Rong. FineReason: Evaluating and improving LLMs’ deliberate reasoning through reflective  
508 puzzle solving. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar  
509 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume*  
510 *1: Long Papers)*, pp. 6685–6715, Vienna, Austria, July 2025a. Association for Computational Linguistics.  
511 ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.333. URL [https://aclanthology.org/2025.acl-long.333/](https://aclanthology.org/2025.acl-long.333).

512 Steven-Shine Chen, Jimin Lee, and Paul Pu Liang. Interactive sketchpad: A multimodal tutoring system for  
513 collaborative, visual problem-solving. *arXiv preprint arXiv:2503.16434*, 2025b.

514 Yuri Chervonyi, Trieu H Trinh, Miroslav Olšák, Xiaomeng Yang, Hoang Nguyen, Marcelo Menegali, June-  
515 hyuk Jung, Vikas Verma, Quoc V Le, and Thang Luong. Gold-medalist performance in solving olympiad  
516 geometry with alphageometry2. *arXiv preprint arXiv:2502.03544*, 2025.

517 Nathan A Chi, Teodor Malchev, Riley Kong, Ryan A Chi, Lucas Huang, Ethan A Chi, R Thomas McCoy, and  
518 Dragomir Radev. Modeling: A novel dataset for testing linguistic reasoning in language models. *arXiv*  
519 *preprint arXiv:2406.17038*, 2024.

520 Yew Ken Chia, Vernon Toh Yan Han, Deepanway Ghosal, Lidong Bing, and Soujanya Poria. PuzzleVQA:  
521 Diagnosing Multimodal Reasoning Challenges of Language Models with Abstract Visual Patterns, 2024.  
522 URL <http://arxiv.org/abs/2403.13315>.

523 François Chollet. On the measure of intelligence. *arXiv preprint arXiv:1911.01547*, 2019.

524 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel  
525 Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning,  
526 multimodality, long context, and next generation agentic capabilities. *arXiv preprint arXiv:2507.06261*,  
527 2025.

528 Antonia Creswell and Murray Shanahan. Faithful reasoning using large language models. *arXiv preprint*  
529 *arXiv:2208.14271*, 2022.

530 Benjamin Estermann, Luca A. Lanzendorfer, Yannick Niedermayr, and Roger Wattenhofer. PUZZLES: A  
531 Benchmark for Neural Algorithmic Reasoning. *Advances in Neural Information Processing Systems*, 37:  
532 127059–127098, December 2024.

533 Deepanway Ghosal, Vernon Toh Yan Han, Chia Yew Ken, and Soujanya Poria. Are Language Models Puzzle  
534 Prodigies? Algorithmic Puzzles Unveil Serious Challenges in Multimodal Reasoning, 2024. URL <http://arxiv.org/abs/2403.03864>.

540 Google. Gemini 3 Developer Guide. <https://ai.google.dev/gemini-api/docs/gemini-3>,  
 541 2025.

542

543 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie  
 544 Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiadbench: A challenging  
 545 benchmark for promoting agi with olympiad-level bilingual multimodal scientific problems, 2024.

546

547 Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, and Ranjay  
 548 Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal language models. *arXiv*  
 549 preprint *arXiv:2406.09403*, 2024.

550

551 Shulin Huang, Shirong Ma, Yinghui Li, Mengzuo Huang, Wuhe Zou, Weidong Zhang, and Haitao Zheng. Late-  
 552 val: An interactive llms evaluation benchmark with incomplete information from lateral thinking puzzles. In  
 553 *Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources*  
 554 and *Evaluation (LREC-COLING 2024)*, pp. 10186–10197, 2024.

555

556 Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language models for  
 557 code generation, 2024. URL <https://arxiv.org/abs/2406.00515>.

558

559 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R Narasimhan.  
 560 Swe-bench: Can language models resolve real-world github issues? In *The Twelfth International Conference*  
 561 on *Learning Representations*, 2024.

562

563 Long Hei Matthew Lam, Ramya Keerthy Thatikonda, and Ehsan Shareghi. A closer look at logical reasoning  
 564 with llms: The choice of tool matters, 2024. URL <https://arxiv.org/abs/2406.00284>.

565

566 Heekyung Lee, Jiaxin Ge, Tsung-Han Wu, Minwoo Kang, Trevor Darrell, and David M Chan. Puzzled by  
 567 puzzles: When vision-language models can't take a hint. *arXiv preprint arXiv:2505.23759*, 2025.

568

569 Hengzhi Li, Megan Tjandrasuwita, Yi R Fung, Armando Solar-Lezama, and Paul Pu Liang. Mimeqa: Towards  
 570 socially-intelligent nonverbal foundation models. *arXiv preprint arXiv:2502.16671*, 2025.

571

572 Paul Pu Liang, Akshay Goindani, Talha Chafekar, Leena Mathur, Haofei Yu, Ruslan Salakhutdinov, and Louis-  
 573 Philippe Morency. Hemm: Holistic evaluation of multimodal foundation models. In *The Thirty-eight Con-  
 574 ference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024a.

575

576 Paul Pu Liang, Amir Zadeh, and Louis-Philippe Morency. Foundations & trends in multimodal machine learn-  
 577 ing: Principles, challenges, and open questions. *ACM Computing Surveys*, 56(10):1–42, 2024b.

578

579 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei  
 580 Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of foundation  
 581 models in visual contexts. In *International Conference on Learning Representations (ICLR)*, 2024.

582

583 Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful and inter-  
 584 pretable large language model reasoning. *arXiv preprint arXiv:2310.01061*, 2023.

585

586 Leena Mathur, Marian Qian, Paul Pu Liang, and Louis-Philippe Morency. Social genome: Grounded social  
 587 reasoning abilities of multimodal models. *arXiv preprint arXiv:2502.15109*, 2025.

588

589 Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad Fara-  
 590 jtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large language models.  
 591 In *The Thirteenth International Conference on Learning Representations*, 2025.

592

593 Philipp Mondorf and Barbara Plank. Beyond accuracy: Evaluating the reasoning behavior of large language  
 594 models—a survey. *arXiv preprint arXiv:2404.01869*, 2024.

595

596 Arseny Moskvichev, Victor Vikram Odouard, and Melanie Mitchell. The ConceptARC Benchmark: Evaluating  
 597 Understanding and Generalization in the ARC Domain. 2023. doi: 10.48550/ARXIV.2305.07141.

598

599 OpenAI. Openai o3 and o4-mini system card. <https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf>,  
 600 2025. Accessed: 2025-05-16.

601

602 Puzzled Pint. Puzzled pint. <https://puzzledpint.org/>, 2025. CC BY-NC-SA Intl. 4.0.

603

604 Qwen. Qvq: To see the world with wisdom, December 2024. URL <https://qwenlm.github.io/blog/qvq-72b-preview/>.

594 Shashi Pal Singh, Ajai Kumar, Hemant Darbari, Lenali Singh, Anshika Rastogi, and Shikha Jain. Machine  
 595 translation using deep learning: An overview. In *2017 international conference on computer, communications  
 596 and electronics (comptelix)*, pp. 162–167. IEEE, 2017.

597 Marco Antonio Calijorne Soares and Fernando Silva Parreiras. A literature review on question answering  
 598 techniques, paradigms and systems. *Journal of King Saud University-Computer and Information Sciences*,  
 599 32(6):635–646, 2020.

600 Winnie Street, John Oliver Siy, Geoff Keeling, Adrien Baranes, Benjamin Barnett, Michael McKibben, Tatenda  
 601 Kanyere, Alison Lentz, Blaise Aguera y Arcas, and Robin I. M. Dunbar. Llms achieve adult human perfor-  
 602 mance on higher-order theory of mind tasks, 2024. URL <https://arxiv.org/abs/2405.18870>.

603 Hai-Long Sun, Zhun Sun, Houwen Peng, and Han-Jia Ye. Mitigating visual forgetting via take-along visual  
 604 conditioning for multi-modal long CoT reasoning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,  
 605 and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Com-  
 606 putational Linguistics (Volume 1: Long Papers)*, pp. 5158–5171, Vienna, Austria, July 2025. Association  
 607 for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.257. URL  
 608 <https://aclanthology.org/2025.acl-long.257/>.

609 Garrett Tanzer, Mirac Suzgun, Eline Visser, Dan Jurafsky, and Luke Melas-Kyriazi. A benchmark for learning  
 610 to translate a new language from one grammar book. *arXiv preprint arXiv:2309.16575*, 2023.

611 Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin Zhang,  
 612 Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. *arXiv preprint arXiv:2504.07491*, 2025.

613 Clinton J Wang, Dean Lee, Cristina Menghini, Johannes Mols, Jack Doughty, Adam Khoja, Jayson Lynch,  
 614 Sean Hendryx, Summer Yue, and Dan Hendrycks. Enigmaeval: A benchmark of long multimodal reasoning  
 615 challenges. *arXiv preprint arXiv:2502.08859*, 2025.

616 Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, Yixuan Li, and Neel Joshi. Is a picture worth  
 617 a thousand words? delving into spatial reasoning for vision language models. In *The Thirty-Eighth Annual  
 618 Conference on Neural Information Processing Systems*, 2024a.

619 Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R. Loomba,  
 620 Shichang Zhang, Yizhou Sun, and Wei Wang. SciBench: Evaluating College-Level Scientific Problem-  
 621 Solving Abilities of Large Language Models. In *Proceedings of the Forty-First International Conference on  
 622 Machine Learning*, 2024b.

623 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.  
 624 Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information  
 625 processing systems*, 35:24824–24837, 2022.

626 Adhika Pramita Widjassari, Supriadi Rustad, Guruh Fajar Shidik, Edi Noersasongko, Abdul Syukur, Affandy  
 627 Affandy, and De Rosal Ignatius Moses Setiadi. Review of automatic text summarization techniques &  
 628 methods. *Journal of King Saud University-Computer and Information Sciences*, 34(4):1029–1046, 2022.

629 Tongshuang Wu, Michael Terry, and Carrie Jun Cai. Ai chains: Transparent and controllable human-ai inter-  
 630 action by chaining large language model prompts. In *Proceedings of the 2022 CHI conference on human  
 631 factors in computing systems*, pp. 1–22, 2022.

632 Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan Xia, Li Dong, Lei Cui, and Furu Wei. Mind’s eye of llms:  
 633 Visualization-of-thought elicits spatial reasoning in large language models. In *The Thirty-eighth Annual  
 634 Conference on Neural Information Processing Systems*, 2024.

635 xAI. Grok-4. <https://x.ai/news/grok-4>, 2025. Accessed: 2025-09-23.

636 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of  
 637 thoughts: Deliberate problem solving with large language models. *Advances in neural information process-  
 638 ing systems*, 36:11809–11822, 2023.

639 Kaining Ying, Fanqing Meng, Jin Wang, Zhiqian Li, Han Lin, Yue Yang, Hao Zhang, Wenbo Zhang, Yuqi Lin,  
 640 Shuo Liu, Jiayi Lei, Quanfeng Lu, Runjian Chen, Peng Xu, Renrui Zhang, Haozhe Zhang, Peng Gao, Yali  
 641 Wang, Yu Qiao, Ping Luo, Kaipeng Zhang, and Wenqi Shao. Mmt-bench: A comprehensive multimodal  
 642 benchmark for evaluating large vision-language models towards multitask agi, 2024.

643 Eunice Yiu, Maan Qraitem, Anisa Noor Majhi, Charlie Wong, Yutong Bai, Shiry Ginosar, Alison Gopnik,  
 644 and Kate Saenko. Kiva: Kid-inspired visual analogies for testing large multimodal models. *arXiv preprint  
 645 arXiv:2407.17773*, 2024.

648 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,  
 649 Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan Zheng,  
 650 Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen. Mmmu: A massive multi-  
 651 discipline multimodal understanding and reasoning benchmark for expert agi. In *Proceedings of CVPR*,  
 652 2024a.

653 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,  
 654 Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal understanding and rea-  
 655 soning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*  
 656 *Pattern Recognition*, pp. 9556–9567, 2024b.

657 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuo-  
 658 han Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. *Advances in*  
 659 *Neural Information Processing Systems*, 36:46595–46623, 2023.

660 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and Yongqiang Ma.  
 661 Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Proceedings of the 62nd Annual*  
 662 *Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)*, Bangkok,  
 663 Thailand, 2024. Association for Computational Linguistics. URL <http://arxiv.org/abs/2403.13372>.

665 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Yuchen Duan, Hao Tian, Weijie  
 666 Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for open-source multimodal  
 667 models. *arXiv preprint arXiv:2504.10479*, 2025.

668  
 669  
 670  
 671  
 672  
 673  
 674  
 675  
 676  
 677  
 678  
 679  
 680  
 681  
 682  
 683  
 684  
 685  
 686  
 687  
 688  
 689  
 690  
 691  
 692  
 693  
 694  
 695  
 696  
 697  
 698  
 699  
 700  
 701

702 **A LIMITATIONS AND BROADER IMPACT**  
703

704 To ensure consistency and standardization across the dataset, we excluded puzzles involving under-  
 705 explored or difficult-to-represent modalities such as audio, video, or interactive file-based inputs. As  
 706 a result, PUZZLEWORLD may not fully capture the breadth of sensory and interaction-based reasoning  
 707 found in some real-world, more challenging puzzlehunts. **We discuss the potential incorporation**  
 708 **of more challenging puzzles in Appendix C.** Additionally, unlike Wang et al. (2025) that uses human  
 709 annotators to transcribe textual and visual components separately, we preserve the puzzle content in  
 710 its original image format and focus annotation efforts on intermediate reasoning traces. While this  
 711 allows PUZZLEWORLD to provide richer annotation of the solution reasoning process, it may also  
 712 introduce variability in model performance depending on the quality of their OCR capabilities. **We**  
 713 **discuss whether OCR is a limiting capability for frontier models in Appendix D.2.**

714 Finally, our evaluation pipeline relies on LLM-based judges to automatically assess generated reasoning  
 715 traces. To address this, we adopted careful prompting and cross-checking. For example, we  
 716 enforce that each individual annotated step is evaluated separately by the LLM judge to determine  
 717 whether it matches the model generated solution. We tested the alternative approach, where the  
 718 LLM judge is prompted with the full candidate solution and outputs the latest ground truth step that  
 719 the candidate response achieved. However this approach was more prone to hallucinations, as LLM  
 720 judge sometimes outputs a stepwise accuracy greater than 1. As such, our approach of running the  
 721 LLM judge to output a boolean on each ground truth step helps mitigate potential hallucination.  
 722 Nevertheless, we acknowledge that the use of LLM-based evaluations may be subject to instability  
 723 or bias, and the metrics should be taken with caution.

724 One possible concern with our grading scheme is that a model might "hallucinate" the correct final  
 725 answer without engaging in proper reasoning. However, such a case is extremely rare in PUZ-  
 726 ZLEWORLD. The high-quality, human-designed puzzles are deliberately constructed to discourage  
 727 superficial guessing, and even experienced human solvers cannot easily infer the answer without  
 728 following the intended logic. In a thorough manual inspection of models' puzzle responses, we did  
 729 not find any case where the model arrived at the final answer without demonstrating the necessary  
 730 reasoning. **In Appendix D.3, we discuss whether our stepwise scoring mechanisms successfully**  
 731 **credit alternative solution paths.**

732 Our goal in releasing PUZZLEWORLD is to advance research in general-purpose, multimodal rea-  
 733 soning systems. However, we recognize that increasingly capable AI models, especially those  
 734 skilled at complex reasoning, carry risks of misuse. These include the potential for externalizing  
 735 or replacing human reasoning in settings where authenticity or creativity is essential, such as ed-  
 736 ucation, scientific authorship, or collaborative problem-solving. While our dataset does not pose  
 737 direct risks on its own, we support future work that includes safeguards to mitigate misuse and  
 738 encourages the responsible deployment of reasoning-capable AI systems in alignment with human  
 739 values.

740 **B USE OF LARGE LANGUAGE MODELS**  
741

742 This project used Large Language Models (LLMs) to assist dataset verification and model evalua-  
 743 tions. Details are described in the Sections 4.3 and 5.1. We also acknowledge the use of LLMs  
 744 to assist with correcting grammatical errors and improving clarity of the writing. This assistance  
 745 was limited to language refinement and did not affect the core methodology, scientific rigour, or  
 746 originality of the research. We confirm that no AI-generated content has been presented as our own  
 747 intellectual contribution.

748 **C FUTURE DIRECTIONS**  
749

750 We note that some prior benchmarks (Chen et al., 2025a) adopt a *structured reflective reasoning*  
 751 paradigm, centered on structured, text-based puzzles with explicit rules, enabling precise state verifi-  
 752 cation and surgical analysis of multi-step logical reasoning. In contrast, PUZZLEWORLDemphasizes  
 753 multimodal, discovery-driven reasoning in which the puzzle rules are implicit and must be inferred  
 754 by the solver. This setting offers a more holistic evaluation of generalist reasoning capabilities that  
 755 requires a broader range of cognitive skills, though at the cost of less precise, LLM-approximated  
 intermediate state verification due to the absence of explicit rule structures.

756 An exciting direction for future work is to extend PUZZLEWORLD with structured, verifiable  
 757 reflective-reasoning frameworks akin to those in Chen et al. (2025a). However, we caution that  
 758 PUZZLEWORLD’s open-ended and multimodal puzzles often involve diverse, creative reasoning  
 759 steps that are difficult to formalize as explicit rules, making it challenging to achieve the same level  
 760 of rule-based granularity as in more structured puzzle domains in Chen et al. (2025a). That said,  
 761 integrating reflective reasoning paradigms with PUZZLEWORLD could yield richer diagnostic tools  
 762 and may ultimately benefit the training and evaluation of frontier reasoning models.

763 We acknowledge that, beyond PuzzledPint, extensive puzzlehunt-style puzzle sources could be inte-  
 764 grated to expand PUZZLEWORLD, such as MIT Mystery Hunt (MIT, 1981–). While MIT Mystery  
 765 Hunt is an attractive source of challenging, high-quality puzzles, we note several considerations that  
 766 make it challenging to integrate it to PUZZLEWORLD’s initial release.

- 768 • Unlike PuzzledPint (released under Creative Commons), MIT Mystery Hunt puzzles do not  
 769 have a centralized copyright policy. Permissions would need to be obtained from individual  
 770 authors, which adds substantial overhead.
- 771 • Mystery Hunt puzzles frequently involve audio, video, interactive web tools, custom code,  
 772 and even physical components. These are exciting modalities for future generalist AI sys-  
 773 tems, but they are difficult to standardize under PUZZLEWORLD’s stepwise annotation  
 774 format and are not well supported by current frontier models.
- 775 • Mystery Hunt puzzles are intentionally designed to challenge top teams and often require  
 776 multiple people to solve each puzzle. Given that frontier models already struggle on the  
 777 entry-level PuzzledPint puzzles, including much harder Mystery Hunt puzzles would likely  
 778 provide limited practical diagnostic value at this stage.

780 Therefore, for the present, we prioritize the more accessible PuzzledPint puzzles, as they are both  
 781 suitably challenging and sufficiently structured to support reliable stepwise annotation and informa-  
 782 tive intermediate diagnostics. That said, as models and annotation tools improve, future work that  
 783 extends PUZZLEWORLD to incorporate more advanced modalities and higher-difficulty sources –  
 784 potentially including Mystery Hunt puzzles – would offer a richer evaluation suite.

## 785 D ADDITIONAL DISCUSSION

### 786 D.1 ON THE ABSTRACT NATURE OF PUZZLEHUNTS

787 We note that PUZZLEWORLD, like prior puzzle datasets (Chia et al., 2024; Ghosal et al., 2024;  
 788 Estermann et al., 2024), is abstract in nature rather than drawn from real-world tasks such as math-  
 789 ematics or physics. While this means that PUZZLEWORLD does not directly evaluate a model’s  
 790 ability on any specific application, this abstraction is intentionally designed to assess generalist,  
 791 open-ended reasoning while reducing pattern memorization. For example, prior work has shown  
 792 that symbolic variants of math datasets can reveal brittle reasoning behavior in models that oth-  
 793 erwise appear strong (Mirzadeh et al., 2025). PUZZLEWORLD’s abstraction thus helps isolate and  
 794 measure a model’s generalist and genuine reasoning ability beyond domain-specific patterns.

795 Existing reasoning benchmarks – ranging from math and coding tasks – typically operate in closed-  
 796 ended, well-defined environments. These datasets assess correctness under fixed rules, but they do  
 797 not require models to navigate underspecified or open-ended problem spaces. In contrast, many  
 798 real-world tasks (e.g., exploratory data analysis, investigative research, science discovery) involve  
 799 ambiguous signals, multiple possible solutions, and iterative hypothesis testing.

800 PUZZLEWORLD fills this gap in two ways that previous abstract reasoning benchmarks do not. First,  
 801 unlike traditional puzzle datasets (e.g. Sudoku) that evaluate within a limited rule set, our puzzle-  
 802 hunt puzzles require leveraging diverse reasoning competencies to dynamically form and evaluate  
 803 hypotheses from nuanced multimodal signals. Second, our manually annotated reasoning traces  
 804 enable systematic analysis of model behavior in these open-ended settings, revealing characteristic  
 805 failure modes of frontier models such as “myopic commitment” (Section 5.4). Our transfer experi-  
 806 ments in Table 4 has also shown that capabilities exercised in PUZZLEWORLD transfer to real-world  
 807 benchmarks, suggesting that puzzlehunt-style reasoning is a useful proxy for generalist reasoning.  
 808 Nonetheless, we acknowledge that no single benchmark can represent all forms of reasoning.



Figure 10: **Example error of visual forgetting.** GPT-o3 failed to correctly reference the text clues in the puzzle image, but it solved the puzzle once the clues were provided in transcribed text form.

## D.2 ARE REASONING MODELS BOTTLENECKED BY TEXT RECOGNITION?

We acknowledge that multimodal large language models may be bottlenecked by text recognition in images. In the construction of PUZZLEWORLD, since Wang et al. (2025) has shown that today’s best multimodal reasoning models are not primarily constrained by optical character recognition (OCR) capabilities, we devoted our manual effort to construct fine-grained annotations. Although each puzzle includes a human-transcribed “flavor text”, this may not capture all textual content.

We thus provide an analysis on whether OCR is limiting the performance of frontier models on PUZZLEWORLD. We selected a 5% subset of strictly text-only puzzles, manually transcribed all textual content, and compared GPT-o3’s performance with and without the full transcription. A paired t-test showed no significant difference ( $t = 0.52, p > 0.1$ ), suggesting that text recognition limitations are not a major bottleneck for the frontier multimodal models.

That said, we did observe isolated cases where GPT-o3 improved from partial to full solutions once transcription was provided. Upon examination, these instances appear to stem from model hallucination in later stages of reasoning when relying only on images, whereas the transcription helps anchor its reasoning more reliably. For example, in Figure 10, GPT-o3 solves the puzzle correctly when given the transcribed text. When relying solely on the image, GPT-o3 can solve the intermediate text clues but fails during extraction: it misreferences the visual text, as shown by its inability to recover the added letters against the italicized words in the image, and hallucinates a final answer only tangentially related to the flavor text. This aligns with patterns of visual forgetting observed in prior works (Sun et al., 2025).

## D.3 CAN PUZZLEWORLD’S STEPWISE SCORING CREDIT CREATIVE SOLUTIONS?

Due to the PUZZLEWORLD’s open-ended nature, a legitimate concern is whether PUZZLEWORLD’s stepwise scoring mechanism can fairly credit creative, alternative reasoning paths, rather than being limited to the annotated reference chain. In puzzlehunts, the solution steps are intentionally designed to be interlocking and sequentially dependent. It is thus hard to reach the correct answer while following a completely different solution path, and correct partial chains must partially converge with the annotated ground-truth, even if the solver temporarily deviates or makes logic leaps.

That said, human puzzlehunters do commonly make educated guesses that skip over intermediate steps. For example, after identifying three of the four final answer letters (“I \_ L R”), a solver might correctly infer “ICLR” without fully completing the preceding clue. PUZZLEWORLD’s step-level scoring explicitly accounts for this behavior: we identify the latest ground-truth step that appears in the candidate solution. In this scenario, because the solver correctly arrives at the final answer, our scoring grants full credit, even if several intermediate steps were omitted or approximated.

864 Table 5: **GPT-o3’s performance on PUZZLEWORLD by difficulty.** GPT-o3’s accuracy monoton-  
 865 ically decreases as difficulty increases.

|     | Difficulty | Accuracy      | Stepwise      |
|-----|------------|---------------|---------------|
| 866 | Easy       | <b>18.46%</b> | <b>40.58%</b> |
| 867 | Medium     | 14.76%        | 39.38%        |
| 868 | Hard       | 9.64%         | 39.71%        |
| 869 |            |               |               |
| 870 |            |               |               |
| 871 |            |               |               |

872 Table 6: **GPT-o3’s accuracy on PUZZLEWORLD by difficulty and modality.** Within each modal-  
 873 ity, GPT-o3’s accuracy consistency decreases with increased difficulty, with a relatively well per-  
 874 formance on easy structured puzzles.

|     | Difficulty | Text         | Visual       | Structured   |
|-----|------------|--------------|--------------|--------------|
| 875 | Easy       | <b>19.5%</b> | <b>11.9%</b> | <b>20.4%</b> |
| 876 | Medium     | 15.3%        | 8.9%         | 13.5%        |
| 877 | Hard       | 10.6%        | 7.6%         | 9.6%         |
| 878 |            |              |              |              |
| 879 |            |              |              |              |
| 880 |            |              |              |              |

881 As a proxy for evaluating how robust our step-level crediting is to alternative partial chains, we  
 882 randomly sampled 10% of PUZZLEWORLD and automatically paraphrased GPT-o3’s solutions us-  
 883 ing GPT-5-mini. We then compared the LLM-judge’s step-level scores on the original and para-  
 884 phrased solutions. We observe strong positive correlation between the two sets of scores ( $r = 0.885$ ,  
 885  $p < 0.001$ ) with a mean absolute error of 0.066, indicating a high degree of score stability across  
 886 semantically equivalent but structurally varied solutions. Although this does not exhaustively cover  
 887 all possible reasoning paths, it indicates that the LLM-judge can reliably credit alternative solutions.

## E PUZZLEWORLD DETAILS

### E.1 CHECKING FOR DATASET CONTAMINATION

893 To assess the possibility of data contamination, we test whether GPT-o3 (OpenAI, 2025) has memo-  
 894 rized any of the puzzles in our dataset. Specifically, inspired by prior work Tanzer et al. (2023); Chi  
 895 et al. (2024), we prompt the model to reconstruct the flavor text for 40 randomly sampled puzzles out  
 896 of the 84 that were answered correctly. We then use GPT-4o (Achiam et al., 2023) to automatically  
 897 evaluate the similarity between the reconstructed and original flavor texts. We find a reconstruction  
 898 accuracy of 0%, suggesting little to no evidence of data leakage. Furthermore, since Puzzled Pint  
 899 (Puzzled Pint, 2025) publishes new puzzles on a monthly basis, our dataset can be continuously  
 900 updated to mitigate the risk of model overfitting on released content.

### E.2 DIFFICULTY LABEL ANALYSIS

902 We acknowledge that the difficulty labels in PUZZLEWORLD are obtained from the original Puz-  
 903 zledPint sources, without manual calibration. According to the PuzzledPint website (Puzzled Pint,  
 904 2025), all submitted puzzles undergo internal playtesting by an editorial team, where the difficulty  
 905 tags are revised and finalized by expert editors and reflect a community-standard difficulty assess-  
 906 ment. We thus treat them as expert annotations rather than ad-hoc metadata.

907 To understand whether the human-labelled difficulty labels meaningfully reflect task difficulty, we  
 908 inspect GPT-o3’s performance broken down by difficulty in Table 5. As expected, we observe that  
 909 GPT-o3’s accuracy decreases as difficulty level increases. Another valid concern is that human-  
 910 perceived difficulty and AI-perceived difficulty might not align. For example, certain diagram-  
 911 heavy puzzles may be straightforward for humans but require nontrivial spatial reasoning for AIs.  
 912 To investigate this, we further break down GPT-o3’s performance by modality and difficulty.

913 As observed in Table 6, within each modality, accuracy consistently decreases with difficulty. No-  
 914 tably, GPT-o3 performs relatively well on easy structured puzzles – likely due to their clean, regular  
 915 layouts – but its performance drops sharply on harder structured puzzles where the diagrams become  
 916 more irregular and visually complex. Overall, both aggregated and modality-level results show that  
 917 PuzzledPint’s difficulty labels provide a meaningful and consistent difficulty metric for AI models.

918  
919

## E.3 PUZZLEWORLD IMAGE SAMPLES

920

We provide high-resolution images of puzzle samples used in this paper.

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971



MAKI



*Location recap: Stephanie mentioned to her roommate Katie that she didn't know there were multiple types of sushi. Upon hearing this, Katie decided to teach Stephanie about the many different forms that sushi can take!*

At a sushi restaurant, Katie continued Stephanie's crash course in sushi.

"We'll start with the basics," Katie said. "You mentioned you have only had California rolls before. Those fall into the category of *maki*, or sushi rolls. There's seaweed and rice on the outside of the maki sushi, and the filling is in the center. To make maki, chefs lay out all the components on top of each other so that they **overlap** to an extent, and then tightly roll them into a circle."

"Wow, I see!" Stephanie said. "This particular piece of maki is enormous... Here, let's split it **down the middle** and share it. Say, do you know why this maki is so large?"

"I'm not sure," Katie replied. "But we'll \_\_\_\_\_!"

Clues:

1. Former bride
2. Sworn allegiance
3. Descriptor for blood
4. Pluckable flower part
5. A Greek letter
6. A feeling more intense than distress
7. Psychic communicator, e.g., Professor X
8. Considerate
9. "Pen" follower
10. One of three from a famous trio
11. Group of musicians led by a conductor
12. Poe bird
13. E.g., sun-grid, combustion, or Unity
14. E.g., optic or tibial
15. In geometry, a point where two or more lines meet
16. For \_\_\_\_\_ (as an illustration)
17. Folkloric Irish creature
18. Rally around a common cause
19. Maryland's state reptile
20. Shorter alternative to a signature

© 2024 CC BY-NC-SA Intl. 4.0  
Stephanie Yang (Boston, MA)



QUESABIRRIA



More akin to quesadillas than tacos, quesabirria tacos feature stewed, shredded beef, goat, or jackfruit melted together with cheese inside of a tortilla. The tortilla is folded with two **nearly identical halves** pressed together. These tacos are often served with **a** broth or consomme for dipping each taco. In fact, you'd be hard-pressed to find a more important part of the quesabirria experience than the long-simmered, **well-reduced** broth.

Assertive and reckless (5)

Assistance (3)

Attempt to overfill (4)

Bountiful celebratory meal (5)

Classification of vinegar or citrus juice (4)

Currency in London (5)

Euphemism for ocean (4)

Ground covering that is greener where you aren't (5)

High fat dairy liquid (5)

Kind and polite (4)

Launderer's woe (5)

Man who wrote about a raven (3)

Noted Vatican resident (4)

Okie doke (3)

Quick (4)

Russian dictator (6)

Second word of a celebration in New Orleans (4)

Sibling's daughter (5)

Site for restaurant reviews (4)

Support garments (4)

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025



Archimedes and Benjamin Banneker are sitting on a bench, having a discussion.  
 Archie: Tell me old friend, when you're drawing angles, don't you just feel amazing – like your mind is the willing subject of a kidnapping to another dimension?  
 Benjie: Wow, Archie, I never thought of it that way. I just know they always seem to make fizzy feelings inside of me. You could say that I am one hopeless lover when it comes to angles!  
 Archie: You might not realize it at first glance, but if you look really closely, you'll realize it always takes three points to define an angle, and I've always liked threes: Three musketeers, three-legged races, three-syllable words.  
 Benjie: I just feel angles make so many awesome connections: they are what all the other shapes we draw depend on.  
 Archie: I know, from acute to obtuse, angles have always seemed larger than life!  
 Carl Friedrich Gauss walks up and tries to join the discussion.  
 Carl: Hey I like drawing angles too.  
 Archie: Um, excuse you! This was an A conversation, so you can C your way out!



© 2024 CC BY-NC-SA Intl. 4.0 Robert Becker (St. Louis, MO)



Mittens



Mittens has been forcefully relocated by his hoomans to a new mansion. He now faces the daunting task of exploring his new home. To further complicate matters, the mansion has four levels, and his perspective will have to keep shifting with each new level. Along the way, Mittens will discover the shortest path that leads him to his true heart's desire, for which he will have to make his way all the way up onto the roof.

---  
©2022 CC BY-NC-SA Intl. 4.0 Ben Zoon (Boise, ID)

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079



Eros, the god of love, has shown up at a speed-dating session. Each person at this speed-dating session is assigned a **number**. Eros used his arrows to make each person fall in love with someone on the other side. Eros is mischievous: he caused everyone to fall in love with one person, everyone, to be loved by one person, but no one's love to be reciprocated.

Eros has many arrows, but only five different arrowheads; each arrowhead does something different. Additionally, Eros may shoot up to three arrows **from** each person to get the job done, even repeating a type if required.

Can you figure out who fell in love with whom?

**Possible arrowhead effects:**

- Add the number of letters in the person's name
- Divide by 3
- Multiply by 2
- Subtract 2
- Subtract 5



|            |                            |   |   |   |   |             |                         |                         |                      |
|------------|----------------------------|---|---|---|---|-------------|-------------------------|-------------------------|----------------------|
| 1. Blake   | $\Delta \bowtie$           | • | X | A | C | • 6. Leslie | $\square \bowtie \circ$ |                         |                      |
| 2. Charlie | $\bowtie \circ \Delta$     | • | E | B | D | F           | • 7. Jesse              | $\circ$                 |                      |
| 3. Avery   | $\Delta \Delta \heartsuit$ | • | G | H | Z | T           | • 8. Emerson            | $\heartsuit \heartsuit$ |                      |
| 4. Kerry   | $\Delta \circ \Delta$      | • | J | K | W | O           | N                       | • 9. Jamie              | $\square \heartsuit$ |
| 5. Parker  | $\bowtie \heartsuit$       | • | P | U | Q | Y           | S                       | • 10. Alex              | $\circ$              |
|            |                            |   | V | R | I |             |                         |                         |                      |

(C) 2021 CC BY-NC-SA Int. 4.0 by Stephanie Yang (Rockville, MD)



© 2020 CC BY-NC-SA Int. 4.0 Jimmy Chang and Chelsea Cullen

(Los Angeles, CA USA)



Add another critie to the Christmas croak's wrongs:  
the hoot's gone and roared all of Whoo-ville's songs!  
These crities are off-beat, off-beat and off-key.  
It's a critie and off-beat, off-beat and off-key.  
Mark through the tones to hear the sounds underneath.  
And burn the lines of note taken by the thief!

Legend:  
 $\frac{1}{2}$  = 1 count rest  
 $\frac{1}{4}$  = whole measure rest  
 $\frac{1}{8}$  = 1 count note  
 $\frac{1}{16}$  = 2 count note

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133



## MISSING LINKS



You turn to another page in Nicolas' journal and begin to read.

Every magician needs a good pseudonym. After coming up with several tricks of my own, I thought taking the name of an inventor I admired would be fitting. Here's a trick I designed to honor him that is based on the famous linking rings act. The gimmick this time is that instead of metal I've linked words into four rings, and even managed to entwine those.

Each highlighted link is the start and end of a word.



© 2020 CC BY-NC-SA Int'l. 4.0 by James Mahoney (Columbia, MO, USA)

Can you figure out who my stage-names was?

4.4 18.2 1.5 1.2 5.1 4.2 9.4 12.3 19.1  
13.2 17.3 7.1 10.3 15.1 19.4 13.4 3.3 9.2 20.3 21.5 21.3 20.1



## The Venue in Verona ★★★★★

The Capulets and Montagues have each claimed half of each city block as their territory. They have divided each with a wall, corner to corner. This makes getting to the wedding venue like traversing a maze. Help our couple find a path that crosses the city, from one side to the other, to find out who awaits them there.

- In **every square**, draw a diagonal line between two of its opposing corners, in one of the two possible directions, as shown in the upper-left.
- Each numbered circle shows exactly how many lines connect to that point.
- Unnumbered points can have any number of lines meeting at them.
- No area can be completely walled off. The entire grid must be reachable from at least one of the sides (i.e. do not create any complete squares or rectangles with your lines).
- Paths will form between the lines you draw, making a maze.



Puzzle by Neal Tibrewala (Austin, TX)

1134

## F BENCHMARKING DETAILS

1135

1136

### F.1 COMPUTE RESOURCES

1137

1138

1139

All evaluations and experiments in this paper were conducted on a remote cluster equipped with two NVIDIA H200 GPUs (each with 141 GB HBM3 memory). Runtime for each model evaluation varied between 10–48 hours depending on the model size and architecture.

1140

1141

### F.2 SUPERVISED FINETUNING

1142

1143

1144

1145

1146

1147

All fine-tuning experiments were conducted using the LLaMA Factory framework (Zheng et al., 2024). For fine-tuning on the 8B InternVL3 model, we used LoRA fine-tuning with a rank of 8, a learning rate of  $1 \times 10^{-6}$ , and trained for 3 epochs on PUZZLEWORLD. For the transfer experiments, we fine tune a Qwen2.5-VL-7B-Instruct model, using full parameter finetuning with a learning rate of  $1 \times 10^{-5}$  for 5 epochs on PUZZLEWORLD. We did not perform extensive hyperparameter tuning for any of these experiments.

1148

### F.3 HUMAN BASELINE DETAILS

1149

1150

1151

1152

1153

We provide additional context for the human baseline in Table 2. While the human baseline only covers a subset of PUZZLEWORLD, the resulting baselines reveal clear separations between human tiers and current models—for example, a >30% gap between human enthusiasts and GPT-o3. This gap is substantially larger than the uncertainty introduced by the sample size, suggesting that the current human results provide a reliable directional reference point.

1154

1155

1156

1157

1158

1159

Given our resource constraints, we prioritized depth and quality in the human evaluation rather than exhaustiveness. To reduce individual variability in a task as open-ended as PuzzleWorld, each sampled puzzle was solved by at least two independent participants, each allotted up to one hour and asked to produce detailed reasoning traces. Since we assign multiple participants to each puzzle to ensure consistency, each puzzle modality has more than 40 human attempts, which we consider sufficient for a modality-level human baseline.

1160

1161

1162

1163

Finally, we note that the same LLM-judge protocol is applied to both human and model solutions, ensuring that the comparison is fair and step-symmetric. We observe that, unlike AI models, visual and structured modalities do not pose additional difficulty for human solvers, further highlighting the multimodal limitations of current foundation models.

1164

1165

### F.4 ROBUSTNESS OF LLM-JUDGE TO IMPERFECT ANNOTATIONS

1166

1167

1168

1169

1170

1171

1172

1173

PUZZLEWORLD contains extensive manual annotation to provide fine-grained analysis on models' performance. In this section, we include an ablation on the impact of potential human annotation noise on our step-level grading accuracy. To simulate annotation noise, we select 10% of PUZZLEWORLD and use GPT-5-mini to paraphrase each step of the ground truth annotation. Then, we evaluate GPT-o3's output on both the original and paraphrased ground truth. We observe strong positive correlation between the two sets of scores ( $r = 0.898, p < 0.001$ ) with a mean absolute error of 0.056. This indicates that PUZZLEWORLD's stepwise evaluation pipeline is robust to moderate noise in the stepwise annotations.

1174

### F.5 PROMPT FOR BENCHMARKING

1175

1176

Below is the system prompt template for benchmarking models on PUZZLEWORLD, which is adapted from Wang et al. (2025).

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

You will be presented with a puzzle to solve. The puzzle may not have specific instructions, but you know that the answer to the puzzle is a word or short phrase (or rarely, a number).

Do not ask any questions about how to proceed, just do your best to solve the puzzle. Here are some tips for solving puzzles of this type:

General Tips:

- Puzzles will often have multiple steps to get to the answer word. You can usually tell you are on the right track if the intermediate answers agree with the title, flavor, or theme of the puzzle.
- You can usually find hints in the introductory text. For example references to "in the dark" or "sight" are often hints something is encoded with braille.
- Puzzles often incorporate acrostics: a clue where the first letter, syllable, or word of each line, paragraph, or other recurring feature spells out a word or message.
- If you end up with a garbled "alphabet soup", then look for a clue on how to order them.
- Indexing is one of the most common puzzle mechanisms. Try indexing when you have a list of words or phrases and a corresponding list of numbers. Count into the word or phrase by the given number and record the letter in that position. For example: "2 Cake, 6 Pudding, 5 Shortening" gives you "ant".

1188 - Alpha-numeric codes are also very common. If you end up with a list of numbers try replacing  
 1189 the numbers with the corresponding letters like this: 1 = A, 2 = B, 3 = C... 26 = Z.  
 1190 Occasionally, these types of codes will "wrap around", so don't despair if you see a  
 1191 number greater than 26. Just subtract 26 and try again. In this scenario 27 (27-26 = 1) =  
 1192 A, 28 (28-26 = 2) = B etc. If you try this and it doesn't work, try other numeric codes  
 1193 such as ASCII.  
 1194 - Often a puzzle repeats a strategy multiple times.  
 1195 You will likely need to backtrack frequently, so make sure to write out your steps as you go.  
 1196 If you get stuck, try to think of a new way to approach the puzzle. Try:  
 1197 - Rereading the title and the flavor text. These are the most important hints about what type  
 1198 of strategies, themes or cultural references might be used to solve the puzzle.  
 1199 - Checking for pop culture references  
 1200 - Checking for references to a song/poem/book/movie/TV show  
 1201 For strings, examples of strategies you might try include:  
 1202 - Alphabetizing  
 1203 - Using leftover letters to spell something  
 1204 - Rearranging the letters (aka anagrams or "transposing")  
 1205 - Seeing if there are any acronyms  
 1206 - Diagonalizing (taking the first letter of the first answer, the second letter of the second  
 1207 answer, etc.)  
 1208 - Looking for unusual letter frequencies  
 1209 - Puns and homophones  
 1210 - Shifting from letters to numbers  
 1211 For numbers, try:  
 1212 - Shifting from numbers to letters  
 1213 - Using it as a phone number  
 1214 - Treating numbers as dates  
 1215 - Treating numbers as ASCII numbers  
 1216 - Seeing if there are any strange sequences  
 1217 - Seeing if prime numbers are involved  
 1218 For images, try:  
 1219 - Looking at it in a mirror  
 1220 - Squinting at it from far away  
 1221 - Tilting it  
 1222 - Looking at it upside down  
 1223 - Looking through it  
 1224 - Transcribing it neatly

1213 We additionally append the user prompt:

1214 Your task is to solve the following puzzle. The attached images are presented in the order  
 1215 they are referenced in the text.  
 1216  
 1217 The puzzle's title is: {}  
 1218 The puzzle's flavor text is: {}  
 1219 ---  
 1220 Write out a step-by-step solution to the puzzle. At the end of your solution, write your  
 1221 answer in the following format:  
 1222 Answer: <answer>

1222 Below is the prompt for LLM judge:

1223 Answer Equivalence Instructions:  
 1224 Using the puzzle and the reference solution, grade the candidate solution as follows.  
 1225 For every reasoning step of the reference solution, output True if the candidate solution both  
 1226 includes  
 1227 the step and achieves the same intermediate result of the step, otherwise False.  
 1228 Explain why the candidate's solution did or did not get the reasoning step correct.  
 1229 Do not add more steps than there are in the reference solution and evaluate every step  
 1230 in the reference solution.  
 1231 There is a exception in scoring for the last reasoning step. Identify the candidate output  
 1232 solution.  
 1233 If the candidate output solution is the exact same as the reference solution answer of  
 1234 \'{puzzle\\_solution}\',  
 1235 then output final step as true.

## 1233 G ANNOTATOR DETAILS

1234 We employ university undergraduates to assist the human annotation process in PUZZLEWORLD.  
 1235 All annotators are compensated at a rate of \$16.00 per hour. Prior to annotation, annotators receive  
 1236 detailed guidelines and participate in training sessions to ensure annotation consistency and task  
 1237 understanding.

### 1238 G.1 ANNOTATOR INSTRUCTIONS

1239 We provide the instructions given to annotators below:

1240 # Instructions for Submitting a Puzzle

1242 To submit a puzzle, fork this repository and create a new branch. Then, create a new folder  
 1243 '{puzzle\_name}' in the 'data/puzzles' folder, and place the following files in it:  
 1244 - 'metadata.json': A JSON file containing the metadata of the puzzle  
 1245 - 'content.png': The image of the puzzle content  
 1246 - 'figure\_(N).png': (Optional) Figures illustrating the reasoning steps  
 1247 For an example puzzle, see the 'data/puzzles/example' folder. After you are done, create a pull  
 1248 request to merge your branch into the main repository.  
 1249 Note, please replace any spaces in the puzzle name with '\_' when creating the new folder!  
 1250 ## Metadata  
 1251 The 'metadata.json' file should contain a JSON object with the following fields:  
 1252 | Field Name | Type | Description |  
 1253 |-----|-----|-----|  
 1254 | title | string | The title of the puzzle |  
 1255 | flavor text | string | The flavor text of the puzzle, possibly empty |  
 1256 | difficulty | string | The difficulty level of the puzzle (easy, medium, hard) |  
 1257 | solution | string | The solution to the puzzle |  
 1258 | reasoning | Step\[\] | An ordered list of reasoning [steps](#reasoning-step) towards the  
 1259 solution |  
 1260 | modality | string\[\] | A list of input [modalities](#a-list-of-input-modalities) the puzzle  
 1261 contains |  
 1262 | skills | string\[\] | A list of [skills](#a-list-of-reasoning-skills) required to solve the  
 1263 puzzle |  
 1264 | source | url | The link to the puzzle |  
 1265 ### Reasoning Step  
 1266 The 'reasoning' field should contain a list of 'Step' objects, which are represented as  
 1267 dictionaries with the following fields:  
 1268 | Field Name | Type | Description |  
 1269 |-----|-----|-----|  
 1270 | explanation | string | The textual explanation of the step |  
 1271 | figure | file path | (Optional) File path to a figure illustrating the step |  
 1272 Each of the explanation should begin with one of the following atomic actions:  
 1273 - Pattern discovery: discover patterns / insights from current information  
 1274 - E.g. discovering that current laser patterns are semaphores  
 1275 - Sketching: sketching on or interacting with visual elements  
 1276 - E.g. traversing through a maze  
 1277 - E.g. connecting the dots  
 1278 - Manipulation: manipulating or arranging a sequence of elements  
 1279 - E.g. sorting alphabets in order  
 1280 - E.g. applying cryptic encoding / decoding  
 1281 - Combining / Chaining: combining or chaining multiple pieces of observations  
 1282 - E.g. matching patterns in images with text segments  
 1283 - Extraction: extracting information from one pattern or observation  
 1284 - E.g. extracting letters from semaphore patterns  
 1285 (Note: the exact wording of action is not important as long as it resembles one of the above  
 1286 categories)  
 1287 Each explanation step should consist of one action and the intermediate outcome of the action e.g.  
 1288 Identify the pattern that (...), which is (...)  
 1289 ## A List of Input Modalities  
 1290 | Keyword | Description |  
 1291 |-----|-----|  
 1292 | 'text' | Textual information |  
 1293 | 'visual' | Unstructured visual information e.g. images, icons, fonts, etc. |  
 1294 | 'structured' | Structured visual information e.g. tables, graphs, crosswords, etc. |  
 1295  
 1296 ## A List of Reasoning Skills  
 1297 | Keyword | Description |  
 1298 |-----|-----|  
 1299 | 'logic' | Logic reasoning e.g. rule deduction or inferring conclusion given partial  
 1300 information |  
 1301 | 'wordplay' | Manipulating words based on linguistic properties e.g. anagrams, homophones, etc. |  
 1302 | 'spatial' | Spatial or visual understanding, manipulation and navigation e.g. mazes, connecting  
 1303 dots, etc. |  
 1304 | 'cryptic' | Encoding and decoding information e.g. ciphers, indexing, etc. |  
 1305 | 'knowledge' | Leveraging domain-specific knowledge e.g. history, science, etc. |  
 1306 | 'commonsense' | Applying common sense reasoning e.g. physical laws, social norms, etc. |  
 1307 | 'tool\_use' | Searching through an external database for information unlikely in model's training  
 1308 data, such as Google Maps |  
 1309  
 1310  
 1311  
 1312  
 1313  
 1314  
 1315  
 1316  
 1317  
 1318  
 1319  
 1320  
 1321  
 1322  
 1323  
 1324  
 1325  
 1326  
 1327  
 1328  
 1329  
 1330  
 1331  
 1332  
 1333  
 1334  
 1335  
 1336  
 1337  
 1338  
 1339  
 1340  
 1341  
 1342  
 1343  
 1344  
 1345  
 1346  
 1347  
 1348  
 1349  
 1350  
 1351  
 1352  
 1353  
 1354  
 1355  
 1356  
 1357  
 1358  
 1359  
 1360  
 1361  
 1362  
 1363  
 1364  
 1365  
 1366  
 1367  
 1368  
 1369  
 1370  
 1371  
 1372  
 1373  
 1374  
 1375  
 1376  
 1377  
 1378  
 1379  
 1380  
 1381  
 1382  
 1383  
 1384  
 1385  
 1386  
 1387  
 1388  
 1389  
 1390  
 1391  
 1392  
 1393  
 1394  
 1395  
 1396  
 1397  
 1398  
 1399  
 1400  
 1401  
 1402  
 1403  
 1404  
 1405  
 1406  
 1407  
 1408  
 1409  
 1410  
 1411  
 1412  
 1413  
 1414  
 1415  
 1416  
 1417  
 1418  
 1419  
 1420  
 1421  
 1422  
 1423  
 1424  
 1425  
 1426  
 1427  
 1428  
 1429  
 1430  
 1431  
 1432  
 1433  
 1434  
 1435  
 1436  
 1437  
 1438  
 1439  
 1440  
 1441  
 1442  
 1443  
 1444  
 1445  
 1446  
 1447  
 1448  
 1449  
 1450  
 1451  
 1452  
 1453  
 1454  
 1455  
 1456  
 1457  
 1458  
 1459  
 1460  
 1461  
 1462  
 1463  
 1464  
 1465  
 1466  
 1467  
 1468  
 1469  
 1470  
 1471  
 1472  
 1473  
 1474  
 1475  
 1476  
 1477  
 1478  
 1479  
 1480  
 1481  
 1482  
 1483  
 1484  
 1485  
 1486  
 1487  
 1488  
 1489  
 1490  
 1491  
 1492  
 1493  
 1494  
 1495  
 1496  
 1497  
 1498  
 1499  
 1500  
 1501  
 1502  
 1503  
 1504  
 1505  
 1506  
 1507  
 1508  
 1509  
 1510  
 1511  
 1512  
 1513  
 1514  
 1515  
 1516  
 1517  
 1518  
 1519  
 1520  
 1521  
 1522  
 1523  
 1524  
 1525  
 1526  
 1527  
 1528  
 1529  
 1530  
 1531  
 1532  
 1533  
 1534  
 1535  
 1536  
 1537  
 1538  
 1539  
 1540  
 1541  
 1542  
 1543  
 1544  
 1545  
 1546  
 1547  
 1548  
 1549  
 1550  
 1551  
 1552  
 1553  
 1554  
 1555  
 1556  
 1557  
 1558  
 1559  
 1560  
 1561  
 1562  
 1563  
 1564  
 1565  
 1566  
 1567  
 1568  
 1569  
 1570  
 1571  
 1572  
 1573  
 1574  
 1575  
 1576  
 1577  
 1578  
 1579  
 1580  
 1581  
 1582  
 1583  
 1584  
 1585  
 1586  
 1587  
 1588  
 1589  
 1590  
 1591  
 1592  
 1593  
 1594  
 1595  
 1596  
 1597  
 1598  
 1599  
 1600  
 1601  
 1602  
 1603  
 1604  
 1605  
 1606  
 1607  
 1608  
 1609  
 1610  
 1611  
 1612  
 1613  
 1614  
 1615  
 1616  
 1617  
 1618  
 1619  
 1620  
 1621  
 1622  
 1623  
 1624  
 1625  
 1626  
 1627  
 1628  
 1629  
 1630  
 1631  
 1632  
 1633  
 1634  
 1635  
 1636  
 1637  
 1638  
 1639  
 1640  
 1641  
 1642  
 1643  
 1644  
 1645  
 1646  
 1647  
 1648  
 1649  
 1650  
 1651  
 1652  
 1653  
 1654  
 1655  
 1656  
 1657  
 1658  
 1659  
 1660  
 1661  
 1662  
 1663  
 1664  
 1665  
 1666  
 1667  
 1668  
 1669  
 1670  
 1671  
 1672  
 1673  
 1674  
 1675  
 1676  
 1677  
 1678  
 1679  
 1680  
 1681  
 1682  
 1683  
 1684  
 1685  
 1686  
 1687  
 1688  
 1689  
 1690  
 1691  
 1692  
 1693  
 1694  
 1695  
 1696  
 1697  
 1698  
 1699  
 1700  
 1701  
 1702  
 1703  
 1704  
 1705  
 1706  
 1707  
 1708  
 1709  
 1710  
 1711  
 1712  
 1713  
 1714  
 1715  
 1716  
 1717  
 1718  
 1719  
 1720  
 1721  
 1722  
 1723  
 1724  
 1725  
 1726  
 1727  
 1728  
 1729  
 1730  
 1731  
 1732  
 1733  
 1734  
 1735  
 1736  
 1737  
 1738  
 1739  
 1740  
 1741  
 1742  
 1743  
 1744  
 1745  
 1746  
 1747  
 1748  
 1749  
 1750  
 1751  
 1752  
 1753  
 1754  
 1755  
 1756  
 1757  
 1758  
 1759  
 1760  
 1761  
 1762  
 1763  
 1764  
 1765  
 1766  
 1767  
 1768  
 1769  
 1770  
 1771  
 1772  
 1773  
 1774  
 1775  
 1776  
 1777  
 1778  
 1779  
 1780  
 1781  
 1782  
 1783  
 1784  
 1785  
 1786  
 1787  
 1788  
 1789  
 1790  
 1791  
 1792  
 1793  
 1794  
 1795  
 1796  
 1797  
 1798  
 1799  
 1800  
 1801  
 1802  
 1803  
 1804  
 1805  
 1806  
 1807  
 1808  
 1809  
 1810  
 1811  
 1812  
 1813  
 1814  
 1815  
 1816  
 1817  
 1818  
 1819  
 1820  
 1821  
 1822  
 1823  
 1824  
 1825  
 1826  
 1827  
 1828  
 1829  
 1830  
 1831  
 1832  
 1833  
 1834  
 1835  
 1836  
 1837  
 1838  
 1839  
 1840  
 1841  
 1842  
 1843  
 1844  
 1845  
 1846  
 1847  
 1848  
 1849  
 1850  
 1851  
 1852  
 1853  
 1854  
 1855  
 1856  
 1857  
 1858  
 1859  
 1860  
 1861  
 1862  
 1863  
 1864  
 1865  
 1866  
 1867  
 1868  
 1869  
 1870  
 1871  
 1872  
 1873  
 1874  
 1875  
 1876  
 1877  
 1878  
 1879  
 1880  
 1881  
 1882  
 1883  
 1884  
 1885  
 1886  
 1887  
 1888  
 1889  
 1890  
 1891  
 1892  
 1893  
 1894  
 1895  
 1896  
 1897  
 1898  
 1899  
 1900  
 1901  
 1902  
 1903  
 1904  
 1905  
 1906  
 1907  
 1908  
 1909  
 1910  
 1911  
 1912  
 1913  
 1914  
 1915  
 1916  
 1917  
 1918  
 1919  
 1920  
 1921  
 1922  
 1923  
 1924  
 1925  
 1926  
 1927  
 1928  
 1929  
 1930  
 1931  
 1932  
 1933  
 1934  
 1935  
 1936  
 1937  
 1938  
 1939  
 1940  
 1941  
 1942  
 1943  
 1944  
 1945  
 1946  
 1947  
 1948  
 1949  
 1950  
 1951  
 1952  
 1953  
 1954  
 1955  
 1956  
 1957  
 1958  
 1959  
 1960  
 1961  
 1962  
 1963  
 1964  
 1965  
 1966  
 1967  
 1968  
 1969  
 1970  
 1971  
 1972  
 1973  
 1974  
 1975  
 1976  
 1977  
 1978  
 1979  
 1980  
 1981  
 1982  
 1983  
 1984  
 1985  
 1986  
 1987  
 1988  
 1989  
 1990  
 1991  
 1992  
 1993  
 1994  
 1995  
 1996  
 1997  
 1998  
 1999  
 2000  
 2001  
 2002  
 2003  
 2004  
 2005  
 2006  
 2007  
 2008  
 2009  
 2010  
 2011  
 2012  
 2013  
 2014  
 2015  
 2016  
 2017  
 2018  
 2019  
 2020  
 2021  
 2022  
 2023  
 2024  
 2025  
 2026  
 2027  
 2028  
 2029  
 2030  
 2031  
 2032  
 2033  
 2034  
 2035  
 2036  
 2037  
 2038  
 2039  
 2040  
 2041  
 2042  
 2043  
 2044  
 2045  
 2046  
 2047  
 2048  
 2049  
 2050  
 2051  
 2052  
 2053  
 2054  
 2055  
 2056  
 2057  
 2058  
 2059  
 2060  
 2061  
 2062  
 2063  
 2064  
 2065  
 2066  
 2067  
 2068  
 2069  
 2070  
 2071  
 2072  
 2073  
 2074  
 2075  
 2076  
 2077  
 2078  
 2079  
 2080  
 2081  
 2082  
 2083  
 2084  
 2085  
 2086  
 2087  
 2088  
 2089  
 2090  
 2091  
 2092  
 2093  
 2094  
 2095  
 2096  
 2097  
 2098  
 2099  
 2100  
 2101  
 2102  
 2103  
 2104  
 2105  
 2106  
 2107  
 2108  
 2109  
 2110  
 2111  
 2112  
 2113  
 2114  
 2115  
 2116  
 2117  
 2118  
 2119  
 2120  
 2121  
 2122  
 2123  
 2124  
 2125  
 2126  
 2127  
 2128  
 2129  
 2130  
 2131  
 2132  
 2133  
 2134  
 2135  
 2136  
 2137  
 2138  
 2139  
 2140  
 2141  
 2142  
 2143  
 2144  
 2145  
 2146  
 2147  
 2148  
 2149  
 2150  
 2151  
 2152  
 2153  
 2154  
 2155  
 2156  
 2157  
 2158  
 2159  
 2160  
 2161  
 2162  
 2163  
 2164  
 2165  
 2166  
 2167  
 2168  
 2169  
 2170  
 2171  
 2172  
 2173  
 2174  
 2175  
 2176  
 2177  
 2178  
 2179  
 2180  
 2181  
 2182  
 2183  
 2184  
 2185  
 2186  
 2187  
 2188  
 2189  
 2190  
 2191  
 2192  
 2193  
 2194  
 2195  
 2196  
 2197  
 2198  
 2199  
 2200  
 2201  
 2202  
 2203  
 2204  
 2205  
 2206  
 2207  
 2208  
 2209  
 2210  
 2211  
 2212  
 2213  
 2214  
 2215  
 2216  
 2217  
 2218  
 2219  
 2220  
 2221  
 2222  
 2223  
 2224  
 2225  
 2226  
 2227  
 2228  
 2229  
 2230  
 2231  
 2232  
 2233  
 2234  
 2235  
 2236  
 2237  
 2238  
 2239  
 2240  
 2241  
 2242  
 2243  
 2244  
 2245  
 2246  
 2247  
 2248  
 2249  
 2250  
 2251  
 2252  
 2253  
 2254  
 2255  
 2256  
 2257  
 2258  
 2259  
 2260  
 2261  
 2262  
 2263  
 2264  
 2265  
 2266  
 2267  
 2268  
 2269  
 2270  
 2271  
 2272  
 2273  
 2274  
 2275  
 2276  
 2277  
 2278  
 2279  
 2280  
 2281  
 2282  
 2283  
 2284  
 2285  
 2286  
 2287  
 2288  
 2289  
 2290  
 2291  
 2292  
 2293  
 2294  
 2295  
 2296  
 2297  
 2298  
 2299  
 2300  
 2301  
 2302  
 2303  
 2304  
 2305  
 2306  
 2307  
 2308  
 2309  
 2310  
 2311  
 2312  
 2313  
 2314  
 2315  
 2316  
 2317  
 2318  
 2319  
 2320  
 2321  
 2322  
 2323  
 2324  
 2325  
 2326  
 2327  
 2328  
 2329  
 2330  
 2331  
 2332  
 2333  
 2334  
 2335  
 2336  
 2337  
 2338  
 2339  
 2340  
 2341  
 2342  
 2343  
 2344  
 2345  
 2346  
 2347  
 2348  
 2349  
 2350  
 2351  
 2352  
 2353  
 2354  
 2355  
 2356  
 2357  
 2358  
 2359  
 2360  
 2361  
 2362  
 2363  
 2364  
 2365  
 2366  
 2367  
 2368  
 2369  
 2370  
 2371  
 2372  
 2373  
 2374  
 2375  
 2376  
 2377  
 2378  
 2379  
 2380  
 2381  
 2382  
 2383  
 2384  
 2385  
 2386  
 2387  
 2388  
 2389  
 2390  
 2391  
 2392  
 2393  
 2394  
 2395  
 2396  
 2397  
 2398  
 2399  
 2400  
 2401  
 2402  
 2403  
 2404  
 2405  
 2406  
 2407  
 2408  
 2409  
 2410  
 2411  
 2412  
 2413  
 2414  
 2415  
 2416  
 2417  
 2418  
 2419  
 2420  
 2421  
 2422  
 2423  
 2424  
 2425  
 2426  
 2427  
 2428  
 2429  
 2430  
 2431  
 2432  
 2433  
 2434  
 2435  
 2436  
 2437  
 2438  
 2439  
 2440  
 2441  
 2442  
 2443  
 2444  
 2445  
 2446  
 2447  
 2448  
 2449  
 2450  
 2451  
 2452  
 2453  
 2454  
 2455  
 2456  
 2457  
 2458  
 2459  
 2460  
 2461  
 2462  
 2463  
 2464  
 2465  
 2466  
 2467  
 2468  
 2469  
 2470  
 2471  
 2472  
 2473  
 2474  
 2475  
 2476  
 2477  
 2478  
 2479  
 2480  
 2481  
 2482  
 2483  
 2484  
 2485  
 2486  
 2487  
 2488  
 2489  
 2490  
 2491  
 2492  
 2493  
 2494  
 2495  
 2496  
 2497  
 2498  
 2499  
 2500  
 2501  
 2502  
 2503  
 2504  
 2505  
 2506  
 2507  
 2508  
 2509  
 2510  
 2511  
 2512  
 2513  
 2514  
 2515  
 2516  
 2517  
 2518  
 2519  
 2520  
 2521  
 2522  
 2523  
 2524  
 2525  
 2526  
 2527  
 2528  
 2529  
 2530  
 2531  
 2532  
 2533  
 2534  
 2535  
 2536  
 2537  
 2538  
 2539  
 2540  
 2541  
 2542  
 2543  
 2544  
 2545  
 2546  
 2547  
 2548  
 2549