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Abstract

Speakers of unwritten languages have the po-001
tential to benefit from speech-based automatic002
information retrieval systems. This paper pro-003
poses a speech embedding technique that facil-004
itates such a system that we can be used in a005
zero-shot manner on the target language. After006
conducting development experiments on sev-007
eral written Indic languages, we evaluate our008
method on a corpus of Gormati – an unwritten009
language – that was previously collected in part-010
nership with an agrarian Banjara community011
in Maharashtra State, India, specifically for the012
purposes of information retrieval. Our system013
achieves a Top 5 retrieval rate of 87.9% on this014
data, giving the hope that it may be useable by015
unwritten language speakers worldwide.016

1 Introduction017

Introducing and integrating well-designed digital018

systems into communities, particularly those with019

low digital participation, such as oral communities,020

can enhance their exposure to digital technologies021

and could reduce inequalities arising from their022

limited digital use or presence (Deumert, 2014;023

Gorman et al., 2011).024

One application of advancements in language025

technology is in the application of speech-based026

search and information retrieval (IR). This task,027

commonly known as Spoken Document Retrieval028

(SDR) has been investigated over several decades,029

mostly notably in DARPA and IARPA programmes030

such as BOLT, GALE and Babel (Griffitt and031

Strassel, 2016; Olive et al., 2011; Hartmann et al.,032

2017) . Early work, e.g., (Weintraub, 1993) took033

the form of simple keyword-spotting tasks (some-034

times referred to as Spoken Term Detection), but035

more sophisticated search capabilities have also036

been developed (Coden et al., 2002).037

In a standard setting, SDR operates over spoken038

documents (i.e., audio and video files containing039

speech) but input queries remain text-based. How- 040

ever, in an alternative setting the input query may 041

be in the form as speech as well. It is this lat- 042

ter formulation that is of course, most relevant to 043

unwritten languages. Whilst SDR systems are typi- 044

cally developed for a specific target language, often 045

using significant quantities of transcribed speech 046

data for model training, this is not possible for an 047

unwritten language. In this case, work to date has 048

adopted a significant simplification of the IR task to 049

that of Query-by-example (QbE), essentially a form 050

of keyword-spotting in which spoken documents 051

are ranked based on the estimated occurrence of an 052

arbitrary spoken input phrase. 053

QbE systems have been developed in a zero-shot 054

manner (Zhang et al., 2013), meaning that no tran- 055

scribed data from the target language is required. A 056

simple approach is to perform pattern matching at 057

the acoustic level, usually requiring a variant of dy- 058

namic time warping (DTW). However, the advent 059

of unsupervised methods for neural network based 060

acoustic word embedding raises the potential that 061

such embeddings could be used for QbE, or even 062

more sophisticated IR tasks for languages without 063

a written form, or even for languages whose speak- 064

ers would benefit from voice interfaces but where 065

speech transcription tools are unreliable. 066

In this paper, we propose a speech embedding 067

technique that we have designed specifically for 068

IR; we find that existing embedding methods such 069

as (Pasad et al., 2024; Sanabria et al., 2023b) are 070

unsuitable for this purpose. We conduct a compre- 071

hensive set of development experiments in which 072

we compared the technique to common compet- 073

ing methods – including both DTW and a discrete 074

string search – on a QbE proxy task that we create 075

for several Indic languages. We go on to evalu- 076

ate the method on a recently-collected corpus of 077

Gormati (Reitmaier et al., 2024), an actual unwrit- 078

ten language. This data was collected specifically 079

with IR in mind, and enables us to evaluate the 080
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performance of our method against metrics that081

are directly relevant for the community in question.082

The main contributions of the this work are that to083

our knowledge, this is the first successful approach084

on a real-world IR task for an unwritten language;085

and our method is the first to develop speech em-086

beddings for a new language in a zero-resource087

setting targetted specifically to SDR.088

2 Prior work089

2.1 Spoken Document Retrieval090

The key challenges of SDR are how to represent091

spoken queries and documents, and how to per-092

form search using those representations. Most ap-093

proaches use large vocabulary continuous speech094

recognition (LVCSR) to transcribe both queries095

and documents into text, followed by standard text096

IR methods (Chelba et al., 2008). In cases where097

high recall is required, lattices containing alterna-098

tive candidate transcriptions can been used in place099

of a single 1-best transcription (James and Young,100

1994; Richardson et al., 1995).101

Historically, SDR was performed without the102

need for word-based transcription by using pho-103

netic transcriptions instead (Amir et al., 2001; Ng104

and Zue, 2000). This approach was commonly105

termed “phonetic search”. When both queries and106

documents are transcribed into sequences of dis-107

crete phoneme-like symbols, it is possible to use108

string-matching algorithms to perform keyword109

search. However, the matching must be robust to110

the high error rates typically seen in phone recog-111

nition, requiring methods such as Buzo et al.’s112

(2013) windowed string search method – which113

calculates string distances between queries and seg-114

ments of documents – or retrieval with the vector115

space model (VSM), using phone n-grams as terms116

(Moreau et al., 2004). It should be noted that pho-117

netic search methods often exhibit very high false118

positive rates.119

When performing QbE or another form of fully120

speech-speech retrieval, it is also possible to per-121

form matching with continuous representations in122

the acoustic domain. In this case, it is essential to123

perform dynamic time warping to account for the124

differing term lengths between query and document125

audio. Early work used standard signal processing126

features such as mel-frequency cepstral coefficients127

(MFCCs) (Park and Glass, 2008), but such features128

are not robust to variation in speaker charactertis-129

tics or acoustic environment (Sudhakar et al., 2023).130

Subsequently many alternative neural-network fea- 131

tures have been tested, including phone posterior- 132

grams (Hazen et al., 2009) and multilingual bottle- 133

neck features (BNFs) (van der Westhuizen et al., 134

2022). San et al. (2021) found that self-supervised 135

features from wav2vec 2.0 and XLSR-53 can out- 136

perform MFCCs and BNFs using DTW. 137

For low-resource languages, LVCSR systems 138

may suffer from unacceptably high error rates, or 139

may not be available at all; and of course, for un- 140

written languages it simply may not be possible to 141

produce word-like output. In such cases, it may be 142

necessary to use phonetic search methods or acous- 143

tic domain matching. We compare both of these 144

approaches in our experiments. 145

2.2 Acoustic word embeddings 146

Acoustic Word Embeddings (AWEs) are embed- 147

dings of speech that aim to capture word-like prop- 148

erties. In theory, they may be able to use contextual 149

information to learn semantic information, in a 150

manner to text-based word embeddings. Compared 151

to text, however, speech data has a much higher 152

time resolution; contains additional nuisance fac- 153

tors that are unrelated to word identity; and is gen- 154

erally available in more limited quantities. Fur- 155

thermore, word boundaries are generally unknown. 156

However, since they can be trained in an unsuper- 157

vised manner on a target language – or trained on 158

related languages – AWEs can be useful for untran- 159

scribed languages (Sanabria et al., 2023a; Jacobs 160

and Kamper, 2021). 161

The extent to which AWEs are able to capture se- 162

mantic information is still a current research topic. 163

Pasad et al. (2024) demonstrate that self-supervised 164

representations (e.g., HuBERT vectors) do contain 165

some level of semantic information, useful for dis- 166

criminating words. They additionally show that 167

when these features are used as inputs to down- 168

stream models, they perform much better at word 169

discrimination than with other more standard fea- 170

tures - e.g., MFCCs. 171

Pasad et al. (2024) show that pooling self- 172

supervised representations (e.g., from wav2vec2 173

or HuBERT) can produce effective AWEs, and 174

Sanabria et al. (2023b) find HuBERT to be the best 175

for English word discrimination. Although, since 176

HuBERT is only trained on English, the quality de- 177

grades when it is applied to other languages. How- 178

ever, the recent release of mHuBERT, a compact 179

model with the same architecture as HuBERT-Base, 180

trained on 147 languages, could enable generating 181
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high-quality AWEs for languages beyond English182

(Boito et al., 2024; Hsu et al., 2021).183

Instead of pooling, one can train a model that184

uses self-supervised representations to produce185

AWEs. Sanabria et al. (2023a) describe a sim-186

ple method of producing AWEs using a learned187

pooling layer trained on at least one hour of target188

language speech. They use a multilingual phone189

recogniser (MPR) to transcribe the recordings and190

then train the model contrastively to embed speech191

segments with the same transcription similarly. The192

limitations of this method are that it is not clear how193

to apply it to a QbE task and it requires at least one194

hour of target language training data plus an MPR.195

In contrast, Hu et al. (2021) and Jacobs and Kamper196

(2021) explored the performance of transfer learn-197

ing with AWE models on a QbE task by training on198

well-resourced languages and applying the models199

to low-resource target languages without finetuning.200

Both studies embedded the entire query, segmented201

the search collection with a sliding window and202

embedded these segments. Jacobs and Kamper203

(2021) found that training using languages that are204

closely related to the target language improves per-205

formance, and when adding training languages, the206

largest improvement is gained from adding a single207

related language. We hypothesise that adopting208

this approach with a learned pooling model, with209

its lower data requirements, could allow for the210

development of an effective QbE system using an211

AWE model trained with only a small amount of212

related language training data.213

3 Data214

3.1 Gormati Dataset215

Our primary task was IR for Gormati, an unwritten216

language spoken by the Banjara farming commu-217

nity in India. This dataset was recently collected218

by Reitmaier et al. (2024). Community members219

were asked to provide a natural spoken description220

of images of various crops. The dataset contains221

302 recordings (3.8 hours) split over 32 different222

classes/images.223

To select Gormati queries, we removed silent224

recordings and those longer than 3 minutes to avoid225

memory issues. Any classes with only 1 record-226

ing were removed from the corpus. The remain-227

ing recordings were divided into queries and doc-228

uments. We used 99 queries as Reitmaier et al.229

(2024). The queries were unmodified recordings230

randomly selected from a given class, and the num-231

Language # Queries Corpus Size

Gormati 99 288

Gujarati 896 23,255
Hindi 163 4,686
Marathi 89 2,550
Odia 30 873
Tamil 983 28,321
Telugu 984 28,504

Table 1: Data corpus sizes and number of queries.

ber of queries in each class was proportional to the 232

number of recordings in that class. We ensured that 233

classes with only 2 recordings had at least 1 query. 234

This left 288 documents and 99 queries consisting 235

of natural spoken descriptions. Since these descrip- 236

tions might discuss a topic indirectly rather than 237

directly naming the subject, there is no assurance 238

of any lexical or phonetic overlap between a query 239

and its corresponding documents. 240

Our processed data had small discrepancies with 241

the data described in Reitmaier et al. (2024). De- 242

spite our best efforts we could not reconcile these 243

discrepancies. However, their search collection 244

was restricted to only include high volume classes, 245

while ours has no such restriction, including classes 246

with as few as two recordings. Hence, our formula- 247

tion should be more difficult and realistic. 248

3.2 Indic Datasets 249

Given the limited Gormati data, we used higher- 250

resource Indic language data during the develop- 251

ment of our models. We used data for Gujarati, 252

Hindi, Marathi, Odia, Tamil, and Telugu from the 253

2021 Interspeech Multilingual and Code-Switching 254

(MUCS) challenge (Diwan et al., 2021). For each 255

language, we combined the training and test sets to 256

form the search corpus, we filtered out short utter- 257

ances under 4 words, and we sampled one example 258

of each repeated sentence. 259

For QbE, we extracted single-word queries us- 260

ing tf-idf weighting. We imposed a minimum doc- 261

ument frequency of 2 and a maximum of 6. We 262

ranked each word by its maximum tf-idf value and 263

selected the top scorers as queries, such that the 264

ratio of queries to corpus size was 0.03-0.04, as 265

in Table 1. For each keyword, we selected one 266

recording as the query source, while the remain- 267

ing recordings containing the keyword were the 268

corresponding gold standard matches. 269
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4 Methods270

4.1 DTW Baseline271

Our baseline was motivated by San et al.’s (2021)272

use of self-supervised features in low-resource273

DTW-based QbE. For each query, we ranked rele-274

vant recordings based on normalised subsequence275

DTW (Giorgino, 2009; Tormene et al., 2009) with276

Euclidean local distance over mHuBERT-147 rep-277

resentations (3rd iteration, final layer) (Boito et al.,278

2024).1 We extracted query representations by em-279

bedding the entire recording, and using gold stan-280

dard timings to clip the vectors corresponding to281

the query. This method allowed for better query282

representations than clipping queries first, which283

was problematic because of issues related to short284

audio length and discontinuities at the audio edges.285

4.2 Phone Recognition Baseline286

We also performed baseline experiments with287

phone-based ASR. We used the MPR from Re-288

itmaier et al. (2024) to transcribe both queries and289

documents, then performed string-based search on290

these transcriptions. We experimented with phone291

transcriptions from Allosaurus (Li et al., 2020), but292

found that these led to poor retrieval results. We293

also tried using discrete mHuBERT codes instead294

of phone sequences, but found that there were too295

many distinct codes for retrieval to be effective.296

As in Moreau et al. (2004), we used vector-space297

model (VSM) retrieval on these phone transcrip-298

tions. Queries and documents were represented as299

vectors of tf-idf weighted terms and scored based300

on their cosine similarity. We used all phone n-301

grams from 1-grams to 8-grams as terms.302

We also implemented a simple approximate303

string search method, similar to Buzo et al. (2013).304

For each query, we slid a window over each doc-305

ument transcription, calculating the edit distance306

between the window and query phones. Documents307

were given the score of the window with the small-308

est edit distance, and documents with the lowest309

scores were returned as best matches. We used a310

window size of 1.2 times the query length.311

4.3 mHuBERT model312

We used mHuBERT model to convert documents313

and queries recordings into a sequence of vectors.314

Then, we compute cosine similarity between all315

1We piloted DTW experiments with MFCCs, but found
that they were unable to cope with speaker variation, leading
to poor results.

Figure 1: Example of calculating the final similarity
value between a query and a document from the cosine
similarity matrix. Darker cells indicate higher similarity.

extracted vectors for a given query and document. 316

Finally, for each query vector, the maximum sim- 317

ilarity over the document vectors is taken and the 318

similarities are averaged over the query vectors to 319

get a single similarity value between a query and 320

a document, illustrated by Figure 1. This is done 321

for all combinations of queries and documents and 322

for each query, the documents are ranked based on 323

their similarity scores. 324

4.4 AWE model 325

We obtained AWEs by learning a pooling function 326

over mHuBERT features. The architecture of the 327

pooling function is the same as in Sanabria et al. 328

(2023a) and Algayres et al. (2022), with a layer 329

norm followed by a 1D convolution, then by a 330

transformer layer with positional embeddings, and 331

finally by a max pooling layer through time (total: 332

6.8M params). The pooling function is trained us- 333

ing the NTXent contrastive loss as in Sanabria et al. 334

(2023a). As input, this loss takes a batch consisting 335

of several pairs, each from a different class. Within 336

each pair, the two examples serve as positive ex- 337

amples for each other, while examples from other 338

pairs act as negatives, and vice versa for the other 339

pairs. Samples are selected based on their pho- 340

netic transcriptions – segments that share the same 341

transcription are considered positive samples. We 342

train using gold phone transcriptions as the training 343

language can be higher resource than the target lan- 344

guage and so may have gold transcriptions. When 345

gold labels are unavailable, we experiment with 346

MPR transcriptions in Section 5.6. 347

We train three models separately on Tamil, Tel- 348

ugu and Gujarati.2 During training, we test the 349

2We choose these languages since they are sampled at 16
kHz, the required sample rate for mHuBERT.
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multilingual search performance of models at each350

epoch by testing on a Marathi search task. We351

early stop when performance does not improve for352

2 epochs. We use the Adam optimiser with learning353

rate, l = 10−4 and we set the NTXent temperature354

τ = 0.15. Training takes under 5 hours on an355

NVIDIA V100 16GB (Volta).356

We present two inference methods for SDR with357

AWEs based on a sliding window approach, similar358

to those discussed in Section 2.2. However, here we359

window both the document and the query because360

for Gormati, the queries can be just as long or361

longer than many of the documents.362

The first method, Phone Window Inference (Fig-363

ures 2 and 4), relies on the phone timings from364

MPR to divide recordings into segments of contin-365

uous, non-silent phones.3 The min/max length of366

these segments is specified in phones. For example,367

for 2-4 phones, all segments containing 2 continu-368

ous, non-silent phones are extracted first, followed369

by extracting segments with 3, and 4 phones. These370

segments are then embedded using the AWE model,371

and queries and documents are compared using the372

cosine distance method, described in Section 4.3.373

The second method, Time Window Inference374

(Figures 3 and 4), does not require phone timing375

knowledge. Instead, an average phone length of376

80 ms is assumed and the window is applied as a377

standard sliding window with 50% overlap. In this378

case, 2-4 phones would correspond to windows of379

160 ms, 240 ms, and 320 ms.380

We anticipate that phone window inference with381

gold labels will outperform time window inference382

and phone window inference with an MPR, be-383

cause of the additional noise from silences and384

partial phones in the time window and from incor-385

rect transcriptions with the MPR. However, as we386

are unlikely to have gold labels for inference we387

treat it as a top line system.388

4.5 Evaluation Metrics389

Reitmaier et al. (2024) evaluated their Gormati390

voice search system with a Top 5 metric, which391

is the percentage of queries that had at least one392

correct document in their top 5 returns. They used393

this metric because their voice search app displayed394

5 images per page and users could reliably identify395

a single correct image among them. We use this396

metric, not just for consistency but also because our397

3Note that, for training and inference, recordings are first
passed through mHuBERT before they are split up into differ-
ent segments.

Figure 2: Example phone window inference with a
length of 3.

Figure 3: Example of time window inference.

Figure 4: Example AWE representation for a recording
using either phone or time window inference with a
length of 2-4.

systems are designed for Gormati. Consequently, 398

they could be integrated into the existing app, and 399

should be evaluated accordingly. However, the Top 400

5 metric is quite coarse - it does not consider the 401

number of results in the top 5 or their order. Like- 402

wise, it does not indicate how the system performs 403

across all returns. Hence, in addition to the Top 404

5 metric, we use Mean Average Precision (MAP) 405

and Mean Average Precision at 5 (MAP@5). 406

5 Results 407

5.1 MPR Quality 408

We first evaluated the quality of the MPR on Tamil. 409

We transcribed all Tamil queries with the MPR and 410

treated these as “reference" transcriptions. Then, 411

we transcribed all instances of query words within 412
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Language mHuBERT DTW MPR VSM MPR String Search
Top 5 MAP@5 MAP Top 5 MAP@5 MAP Top 5 MAP@5 MAP

Gujarati 44.0% 0.332 0.312 22.8% 0.163 0.148 19.9% 0.143 0.138
Hindi 43.6% 0.328 0.333 24.5% 0.167 0.177 27.0% 0.190 0.196
Marathi 61.8% 0.484 0.401 34.8% 0.265 0.201 28.1% 0.214 0.184
Odia 73.3% 0.517 0.432 30.0% 0.232 0.196 53.3% 0.367 0.304
Tamil 46.6% 0.357 0.340 12.7% 0.090 0.085 13.6% 0.089 0.086
Telugu 40.7% 0.307 0.286 18.9% 0.133 0.118 20.0% 0.142 0.131

Average 51.7% 0.388 0.351 24.0% 0.175 0.154 27.0% 0.191 0.173

Table 2: Baseline results for all MUCS languages.

Layer Top 5 MAP@5 MAP

7 53.3% 0.282 0.237
8 57.2% 0.313 0.261
9 59.3% 0.316 0.265

10 50.4% 0.264 0.216
11 39.8% 0.207 0.163

Table 3: Average metrics for the mHuBERT model for
all languages (MUCS and Gormati), for various layers.

documents and quantified the mismatch between413

these and the “references" using phone mismatch414

rate (PMR).4 The results highlighted the MPR’s415

poor performance, revealing a PMR of 54%.416

We also examined how well the MPR can detect417

voice activity. Using the 2 hours of Tamil training418

data and comparing it to the gold labels, we de-419

termined there were 89 minutes of voice activity.420

However, the MPR only detected 63 minutes.421

5.2 Baseline DTW and MPR Results422

We found that DTW consistently outperformed423

both types of retrieval using the MPR transcrip-424

tions, see Table 2. These results suggest that the425

MPR transcriptions were too inconsistent for our426

approximate string retrieval methods. Nevertheless,427

we use these results as baselines for comparison to428

our subsequent model results.429

5.3 mHuBERT Results430

The most important consideration for mHuBERT is431

what layer to extract the representations from. We432

hypothesised that representations from layers 8-10433

would be most effective, due to results by Pasad434

et al. (2024). Average results per layer are shown in435

Table 3. We found that layer 9 was optimal across436

all languages. Table 4 shows results for all lan-437

guages, for layer 9. For all following experiments,438

we use mHuBERT features from layer 9.439

4Phone mismatch rate is similar to phone error rate.

Language Top 5 MAP@5 MAP

Gormati 68.7% 0.496 0.228

Gujarati 48.1% 0.214 0.215
Hindi 50.3% 0.226 0.242
Marathi 64.0% 0.308 0.274
Odia 86.7% 0.367 0.324
Tamil 51.2% 0.401 0.377
Telugu 45.8% 0.199 0.196

Average (MUCS) 57.7% 0.286 0.271

Table 4: Results using the layer 9 of mHuBERT.

5.4 AWE Model 440

After a series of initial experiments, we determined 441

an optimal inference length of 3-9 phones for both 442

time and phone (gold and MPR) window inference 443

for the MUCS languages. We additionally found 444

optimal values of: 9, 0.07 and 10−4, for layer, tem- 445

perature and learning rate, respectively. 446

Note that the optimal inference length of 3-9 447

phones varied slightly with training language and 448

test language, although, 3-9 phones was either opti- 449

mal or very near it. Also, for the MUCS languages, 450

phone window (MPR) inference performed slightly 451

better than time window inference. We use MPR 452

inference with 3-9 phones on the MUCS languages 453

for all following experiments. Results for these 454

initial experiments are included in Appendix A. 455

We hypothesised the optimal inference length for 456

Gormati to differ with that for the MUCS languages 457

due to differences in the data and search task. For 458

Gormati, our results indicated optimal lengths of 459

4-13 phones and 3-7 phones for time window and 460

phone window (MPR), respectively. The time win- 461

dow length is much longer than that for the MUCS 462

languages. This could be because Gormati queries 463

are generally much longer (average 34 s) than our 464

MUCS language queries (average <1 s), meaning 465

longer phone sequences occur more frequently and 466

therefore may be more discriminative. In contrast, 467

the phone window (MPR) length is similar to that 468
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Language Inference Top 5 MAP@5 MAP

Gormati MPR 73.7% 0.566 0.252
Time 88.9% 0.670 0.310

MUCS Average
Gold 75.1% 0.393 0.388
MPR 67.2% 0.345 0.335
Time 64.7% 0.338 0.329

Table 5: Results for Gormati for the Tamil-trained model
and MUCS for the ensemble model with time and phone
(Gold, MPR) window inference.

for the MUCS languages. This could be since the469

MPR is inaccurate, regularly deletes phones and470

inserts silences, meaning long phone sequences471

are less likely to occur and those that do occur are472

unlikely to be transcribed correctly.473

Table 5 shows that on Gormati, time window in-474

ference performs much better than phone window475

(MPR) inference. We tested with the Tamil-trained476

model but results are similar for the other models.477

This is in contrast to the MUCS languages, where478

phone window (MPR) inference slightly outper-479

forms time window inference. This could indicate480

that the MPR performs much worse on Gormati481

than other languages. For all subsequent experi-482

ments, Gormati inference is done with a time win-483

dow with length 4-13 phones.484

5.5 Ensemble Models485

We hypothesized that by ensembling models486

trained on different languages we may produce a487

model that performs well over all metrics and over488

all languages. To ensemble models, we simply489

averaged the scores for each document, for each490

query, over all models. Results in Table 6 show that491

the ensemble model performs well over all metrics.492

Considering inference methods again, Table 5493

shows that for the ensemble model, phone window494

(MPR) inference performs on average slightly bet-495

ter than time window inference for the MUCS lan-496

guages, matching our initial results. A full break-497

down is in appendix B.498

Table 5 shows that the performance of phone499

window (MPR) inference is much lower than the500

top-line results with the gold labels. This highlights501

the importance of a good MPR and demonstrates502

that performance can still be greatly enhanced by503

improving the MPR.504

5.6 Training with MPR Labels505

Training with MPR-predicted phone timings re-506

moves the requirement for labelled training data,507

Language Top 5 MAP@5 MAP

Gormati 87.9% 0.683 0.336

Gujarati 62.9% 0.286 0.291
Hindi 60.1% 0.268 0.284
Marathi 69.7% 0.357 0.333
Odia 90.0% 0.410 0.371
Tamil 61.5% 0.479 0.465
Telugu 59.0% 0.270 0.265

Average (MUCS) 67.2% 0.345 0.335

Table 6: Results using the ensemble AWE model. For
the MUCS languages, MPR phone window inference is
used and for Gormati, time window is used.

Language Labels Top 5 MAP@5 MAP

Gormati Gold 87.9% 0.683 0.336
MPR 82.8% 0.660 0.315

MUCS Average Gold 67.2% 0.345 0.335
MPR 62.2% 0.325 0.314

Table 7: Results with the ensemble model, training
using MPR or Gold labels.

which is useful as low-resource languages often 508

lack labelled data. We expect that training using 509

MPR-predicted phone timings will produce a worse 510

model than using gold timings, due to the added 511

noise from the MPR. However, as the MPR is rea- 512

sonably effective for inference, we expect that a 513

model trained with MPR-timings could still be rea- 514

sonably effective. To test this, we retrained our 515

models using the MPR-predicted timings and com- 516

pared it to our previous models trained on gold 517

labels. Table 7 shows that the ensembled MPR- 518

trained models are clearly worse than the gold label- 519

trained models, as expected. However, they still 520

perform reasonably well, with metrics that are only 521

at most 7% lower than those of the gold labelled 522

models. These results show that labels are not 523

necessary for building a strong model, and a fully 524

unsupervised transfer learning approach using an 525

MPR can be effective. 526

5.7 Training with Gormati Data 527

We hypothesised that training with Gormati (us- 528

ing MPR-predicted labels) could improve perfor- 529

mance as we train with the same language we test 530

on. However, based on the results in Section 5.6, 531

it seems like the MPR may not perform well on 532

Gormati. To test this, we finetuned our gold label 533

trained Tamil model on Gormati using files previ- 534

ously excluded from the search collection, totalling 535

around 30 minutes of audio. We used Tamil since 536

7



it had the highest Top 5 score on Gormati.537

We found that finetuning with Gormati degrades538

model performance. We could have potentially539

tested further by partitioning additional Gormati540

data from the search collection and finetuning the541

model’s hyperparameters. However, we chose not542

to do this since the initial results were very poor and543

indicated that this method would be unsuccessful.544

5.8 Amount of Data545

In low-resource contexts, it is useful to know how546

much data is necessary to train a model effectively.547

Lower data requirements could enable the use of548

data from languages that are more closely related to549

the target language, even if they have less data than550

other higher-resource but less related languages.551

All previous models were trained using 2 hours552

of data. Here we tested the effect of training using553

half and quarter that amount. We tested using the554

Tamil model since it had the best Top 5 score on555

Gormati. We found that reducing the training data556

to 1 hour produces a very similar model to 2 hours.557

Further reducing the data to 0.5 hours noticeably558

impacts performance, though not too drastically.559

Therefore, in general, increasing the training data560

increases performance, with the greatest increase561

between 0.5 to 1 hour of data.562

6 Discussion563

The best results for each model on the MUCS lan-564

guages are shown in Table 8. The AWE model has565

the best average Top 5 score with 67.2%, though566

it has a slightly worse MAP and MAP@5 score567

compared to the mHuBERT DTW baseline. This568

suggests that the AWE model is much better at pro-569

ducing at least one correct response per query than570

the mHuBERT DTW model but it is slightly worse571

when it comes to the overall ranking. Combining572

these two models could produce a model with high573

scores over all metrics.574

On Gormati, the AWE model performs the best575

with a Top 5 score of 88.9%, exceeding the best576

score of 74% from Reitmaier et al. (2024). note577

that the mHuBERT DTW model cannot readily be578

applied to the more complex Gormati document579

retrieval task. Unlike Reitmaier et al. (2024), our580

model requires no target language training data581

and thus can operate on classes that have just one582

document. Similarly, the success of our transfer583

learning approach shows that this method can be ex-584

tended to other low-resource languages using only585

Model Top 5 MAP@5 MAP

AWE Ensemble 67.2% 0.345 0.335
mHuBERT 57.7% 0.286 0.271
mHuBERT DTW 52% 0.39 0.35

Table 8: Average MUCS language results with a selec-
tion of the best-performing models.

one hour of data from a related higher-resource 586

language. For best performance, this data must be 587

labelled. However, we showed that a good model 588

can be trained using MPR labels. This shows that 589

a successful model can be produced without any 590

supervised data from the target language, a critical 591

requirement for an unwritten language. 592

The success of the transfer learning approach 593

suggests that the AWEs are mainly capturing pho- 594

netic information, as semantic information is un- 595

likely to generalise well across languages. A 596

method that captures more semantic information 597

might produce better results given the nature of the 598

Gormati data. Jacobs and Kamper (2024) present 599

such a method, but it requires knowledge of word 600

boundaries, making it unsuitable for unwritten lan- 601

guages. In the future, adapting this or similar meth- 602

ods to unwritten languages could increase the se- 603

mantic content of the AWEs, potentially improving 604

information retrieval further. 605

In a case where there is no data from related 606

languages or resources are unavailable for training, 607

then the mHuBERT or mHuBERT DTW models 608

could be used. They perform worse than the AWE 609

model, but require no training and so can be applied 610

directly to the target language. 611

7 Conclusion 612

We have presented a successful unsupervised 613

method for developing a purely speech-based IR 614

system. However, there remain several avenues for 615

future work. Improving our inference method by 616

experimenting with window lengths, strides and 617

overlaps could be valuable. Optimising model ar- 618

chitectures could also lead to improvements, as 619

might combining the AWE model with the mHu- 620

BERT DTW model. Our model development with 621

the MUCS data was geared towards the specific 622

task of returning documents that directly contained 623

a single-word query. This type of retrieval is in- 624

sufficient when it is necessary to return semanti- 625

cally similar results to the query, or for multi-word 626

queries that might benefit from partial matching. 627
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8 Limitations628

There are several limitations to this study, all of629

which can be addressed with further work. First,630

we only experimented with training using Tamil,631

Telugu and Gujarati, as these were the only re-632

lated languages where we had approximately simi-633

lar speech data. However, with additional data, it634

would be possible to train using other languages635

more closely related to Gormati, such as Marathi636

and Hindi. We did not experiment with multilin-637

gual training, which could enhance the models’638

ability to generalise to other languages; neither639

did we train mHuBERT on related languages to640

improve the quality of its representations. Our doc-641

ument ranking system was not tuned to the Gormati642

search task; in future, we could experiment with643

different similarity metrics and different methods644

to compare queries and documents. We only ex-645

perimented with mHuBERT representations but646

we could experiment with a wider range of self-647

supervised representations to better determine the648

optimal representation. We used a somewhat lim-649

ited number of documents and queries for testing650

on Odia, Hindi and Marathi; increasing the number651

of queries and documents would increase our con-652

fidence of our results with these languages. Finally,653

the Gormati dataset used in this work was designed654

with IR in mind, and was collected collaboratively655

with members of the Banjara community. When ap-656

plying methods from this work to other languages,657

especially low-resource languages, it is important658

to keep in mind the community being served. This659

could take the form of catering the system towards660

a specific application or domain that is most use-661

ful to speakers of the target language, or involving662

speakers in the evaluation process.663
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A Single System AWE Results843

We trained our AWE models on three languages:844

Tamil, Telugu, and Gujarati. Table 9 shows results845

for each test languages using MPR phone inference846

for MUCS languages and time window inference847

for Gormati.848

B AWE Ensemble Model Results849

Table 10 contains a breakdown of the results for the850

ensemble model, trained on gold labels over differ-851

ent inference methods and MUCS test languages.852
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Language Tamil training Telugu training Gujarati training
Top 5 MAP@5 MAP Top 5 MAP@5 MAP Top 5 MAP@5 MAP

Gormati 88.9% 0.670 0.310 85.9% 0.696 0.336 85.9% 0.686 0.343

Gujarati 57.7% 0.261 0.265 58.4% 0.261 0.268 63.5% 0.286 0.289
Hindi 55.2% 0.244 0.260 56.4% 0.251 0.267 62.0% 0.274 0.286
Marathi 65.2% 0.334 0.314 65.2% 0.333 0.314 66.3% 0.340 0.307
Odia 80.0% 0.383 0.350 80.0% 0.376 0.339 73.3% 0.368 0.350
Tamil 59.7% 0.456 0.442 59.4% 0.451 0.436 59.8% 0.454 0.439
Telugu 54.3% 0.251 0.246 57.3% 0.263 0.259 55.8% 0.257 0.252

Average (MUCS) 62.0% 0.332 0.313 62.8% 0.323 0.314 63.5% 0.330 0.321

Table 9: Results on each test language (using MPR phone inference for MUCS languages and time window inference
for Gormati) for AWE models with different training languages. The average is only shown over MUCS languages.

Phone Window (Gold) Phone Window (MPR) Time WindowLanguage Top 5 MAP@5 MAP Top 5 MAP@5 MAP Top 5 MAP@5 MAP

Gujarati 69.8% 0.315 0.319 62.9% 0.286 0.291 60.6% 0.274 0.277
Hindi 70.6% 0.315 0.332 60.1% 0.268 0.284 59.5% 0.277 0.289
Marathi 79.8% 0.397 0.377 69.7% 0.357 0.333 70.8% 0.352 0.337
Odia 93.3% 0.473 0.450 90.0% 0.410 0.371 76.7% 0.388 0.362
Tamil 71.1% 0.562 0.553 61.5% 0.479 0.465 61.2% 0.469 0.452
Telugu 66.1% 0.293 0.296 59.0% 0.270 0.265 59.2% 0.266 0.259

Average 75.1% 0.393 0.388 67.2% 0.345 0.335 64.7% 0.338 0.329

Table 10: Results for ensemble model for different inference methods.
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