Reasoning in Token Economies: Budget-Aware Evaluation of LLM
Reasoning Strategies

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have ushered
in a diverse array of reasoning strategies, each
with unique computational requirements. Tra-
ditional evaluations that focus solely on perfor-
mance metrics miss a key factor: the increased
effectiveness due to scale. By overlooking this
aspect, a skewed view of strategy efficiency
is often presented. This paper introduces a
framework that incorporates the compute bud-
get into the evaluation process, providing a
more informative comparison that takes into
account both performance metrics and compu-
tational cost. Our scale-aware investigation
reveals a strong correlation between perfor-
mance and compute budget, showing that sim-
ple strategies like Self-Consistency (SC) can
outperform more complex methods when scale
is considered. We further explore the impact
of two specific types of budgets: answer gen-
eration and evaluation, highlighting the signifi-
cant role of self-evaluation in performance en-
hancement for certain reasoning strategies. We
also propose Self-Confidence-weighted Self-
Consistency (SC?) as a new baseline and iden-
tify a correlation between model calibration
and success in self-evaluation-based strategies.
These findings open doors for more efficient
budget utilization and may spur the develop-
ment of more robust and cost-effective reason-
ing strategies and LLM applications.

1 Introduction

The arena of large language models (LLMs) such
as GPT-4 (OpenAl, 2023) has seen a proliferation
of diverse reasoning strategies. However, com-
paring these strategies fairly and comprehensively
has proven to be a challenging task due to their
varied computational requirements. For instance,
strategies like the Tree of Thoughts (ToT) neces-
sitate branching out into multiple sequences and
incorporating self-evaluation, making them more
compute-intensive than others. Therefore, an eval-

uation framework that only accounts for perfor-
mance metrics may miss crucial practical factors
such as computational cost.

In this paper, we propose the inclusion of the
compute budget into the performance measurement
of different reasoning strategies. This budget-aware
comparison yields a more balanced perspective on
the effectiveness of reasoning strategies, account-
ing for both the quality of the output and the com-
putational resources expended.

Our empirical research uncovers a significant
correlation between the performance and the com-
pute budget. We find that a straightforward baseline
strategy, the chain of thought reasoning coupled
with Self-Consistency, can be remarkably competi-
tive. When scaled to match the compute resources
of more sophisticated methods such as multi-agent
debate and self-reflection, this baseline strategy of-
ten outperforms them in achieving the best trade-off
between performance and budget.

We further scrutinize the influence of two spe-
cific types of budgets on performance: (1) the
answer generation budget, and (2) the evaluation
budget. Our findings indicate that for a robust
model like GPT-4, investing more resources into
self-evaluation—i.e., increasing the evaluation bud-
get—contributes to a substantial improvement in
performance. This emphasizes the integral role
of self-evaluation in certain reasoning strategies
such as the tree of thought. This also highlights
the importance of training models to be better at
self-evaluation as part of their pretraining. On the
other hand, LLMs with less capable self-evaluation
features, like GPT-3.5, do not benefit compara-
bly from these strategies. Based on this, we also
propose Self-Confidence-weighted self-evaluation
SC? as another simple yet strong baseline for math
reasoning tasks. Moreover, we identify a strong
correlation between the calibration via a correct-
ness prediction proxy and the success of reasoning
strategies that leverage self-evaluation. By approx-

Scale-agnostic
performance

* Multi-agent debate

Majority vote with
the same inference budget

O Majority vote (intermediate
budget, reported baseline)

D Single agent

GsMBK GsMBK

0.525

0.500

0475

0.450

0.425

0.400

0.375

0.350

0.325

7

ol
o //
50

Scale-aware
performance

GSM8K

—— CoTsC
—— MAD 6 agents 3 rounds SC
—— Reflexion SC

123 456 7 8 91011121314 1516 17 18
Number of Queries

HotpotQA

HotpotQA 500 Examples Total Tokens

50000 100000 150000 200000 250000 300000
Number of Queries Total Tokens

— corsc MAD 3.2 5C mean | — cotsc

(a) MAD with GSM8k

MAD 3 agents 2 founds SC

(b) Reflexion with HotpotQA

Figure 1: (1) Comparison of reasoning approaches multi-agent debate (MAD) against the SC baseline, considering
both scale-agnostic and scale-aware evaluation, with published scores and our reproductions on the GSM8K dataset.
The scale-aware evaluation furnishes more comprehensive insights into the influence of scale on reasoning strategies
and offers a fairer method of comparison. (2) The scale-aware comparison between Reflexion and SC on HotpotQA
also illustrates the artifact of scale on performance. In both (a) and (b), we show both budgets, the number of total
tokens, and the number of queries. All results were obtained from GPT-3.5.

imating the model’s confidence in its answers, we
observe that well-calibrated models are more likely
to excel in self-evaluation-based reasoning strate-
gies.

Through this research, we offer a more nuanced
understanding of reasoning strategies in LLMs by
considering both their performance and computa-
tional costs. Our results are agnostic in regard to
the architecture or training of the models. This
work provides a robust framework for comparing a
wide array of reasoning strategies and illuminates
the significance of self-evaluation in these models.
We hope this sets the stage for more focused re-
search on efficient budget utilization and paves the
way for the development of even more effective
reasoning strategies.

Concretely, our contributions are

* We present a comprehensive head-to-head
evaluation of multiple LLM reasoning strate-
gies on multiple types of datasets using GPT-
3.5, and GPT-4.

* We evaluate the performance of the strate-
gies on a novel dimension — performance w.r.t.
budget. Specifically, we propose 3 types of
metrics: performance @number of queries,

performance @number of tokens, and perfo-
mance @monetary cost and find that SC is the
strongest compared to all other strategies for
most models and datasets except for ToT with
GPT-4.

* We provide a theoretical analysis of why SC is
strong. We also delve into the effectiveness of
the evaluator of ToT in a budget-aware manner
and found that self-evaluation is required for
optimal performance.

* We then incorporate this self-evaluation into
SC itself and present a new variant - Self-
Confident Self-Consistency (SC?) - which
shows improvement over SC for math reason-
ing tasks while being on par for other tasks.

2 Related Work

2.1 Reasoning strategies for LLMs

There has been a flurry of activity to use language
models for generating effective reasoning and plan-
ning strategies. An early work in the area was to
prompt the language model to generate its chain-
of-thought (CoT) (Wei et al., 2022) when solving
a problem which lead to significant improvements

Chain of Thought with Self-Consistency

‘Tree of Thought

At each depth, pick top K branches to continue and stop the rest.

Multi-Agent Debate

A

nswer, including intermediate reasonin

Self-evaluation or critique (e.g. yes ure/likely/impossible)

oeom

Candidate step leading up to the final answer

Figure 2: Overview of reasoning strategies. Green cell indicates question prompt, including system prompt and
few-shot prompting. The orange cell indicates the answer. Blue cell indicates evaluation or critique.

in the model’s problem solving abilities. Later
work has involved prompting the language model
to come up with its plan for solving the problem
before trying to solve it (Jiang et al., 2023), us-
ing CoT to solve a problem and then asking the
model to critique and revise its solution (feed-
back) (Madaan et al., 2023; Scheurer et al., 2023;
Chen et al., 2023a; Bai et al., 2022; Kim et al.,
2023; Shinn et al., 2023), generating multiple CoT
and combining them using the LLM (Yoran et al.,
2023), setting up a tree search for CoT instead of
sampling a single linear CoT (Tree of Thoughts -
ToT) (Yao et al., 2023), aggregating LLM gener-
ated feedback for multiple prompts and their solu-
tions into guidelines that can improve future gen-
eration (Chen et al., 2023b), and using multiple
LLMs as debating agents to refine feedback for a
solution (Du et al., 2023; Liang et al., 2023). How-
ever, they are all evaluated on different datasets
and whether the baselines are computed or cost-
matched is rarely considered. Notable exceptions
are Shinn et al. (2023) where they consider perfor-
mance as a function of the number of queries to the
language model and Olausson et al. (2023) which
evaluates the performance of a self-debug strategy
for code generation as a function of the number of
tokens generated.

2.2 LLM output evaluation

There has been considerable work on evaluating
the output of LLMs — both via training custom
models as well as using the LLMs themselves
for self-evaluation. For trained verifiers/rerankers,
in Cobbe et al. (2021), they train a verifier to rerank

outputs of language models for math word prob-
lems and show strong improvements. In Inala et al.
(2022), they do the same except for code genera-
tion. In Uesato et al. (2022); Yang et al. (2022),
they train an evaluator for each step in a chain of
thought and rerank using the combined score for
each step in the chain. In Li et al. (2023), they
weight the Self-Consistency by the trained verifier
confidence. There has also been work recently on
using the LLMs themselves to evaluate their own
generations. In Bai et al. (2022), they use LLMs
to do pairwise comparisons between generations
achieving high accuracy. In Ling et al. (2023), self-
consistency for every step is used to evaluate how
correct a deductive step is. While they can obtain
high accuracy as to whether a step is valid or not,
they are unable to improve the overall accuracy
of answer generation using that. Tian et al. (2023)
examine multiple strategies for eliciting LLM self-
evaluation that is as calibrated as possible. The
Self-Refine (Madaan et al., 2023) approach uses
LLMs to get detailed self-evaluation which is used
to improve the next round of generation. The Tree-
of-Thoughts (Yao et al., 2023) paper uses LLM
self-evaluation to rank which node to explore next.

3 Inference Budget of Reasoning
Strategies

While the raw performance of different prompt-
ing or reasoning strategies for LLMs is a com-
mon topic, how different strategies perform when
budget-constrained is less well-studied (with the
notable exception of Olausson et al. (2023)). How-
ever taking budget into account can be critical when

using LLMs. In this section we describe different
usage scenarios that a user could be interested in
and what budgetary metrics would be relevant to
those scenarios. We furthermore describe how dif-
ferent reasoning strategies can scale in terms of
each budget.

3.1 Budget

We examine various budgetary metrics for LLMs.
Given that the number of input and output tokens
often feature prominently across these metrics, we
designate them as n; and no respectively.

1) API Monetary cost is generally represented
as ¢ = aq - ny + ag - no. Here, ny and np
correspond to the number of input and output
tokens. The coefficients «; and o are spe-
cific to the LLM API in use. It’s worth noting
that in scenarios involving parallel sampling
of multiple outputs with a singular input, ny is
counted once, whereas no is tallied based on
the sample count.

ii) Total number of tokens, a straightforward
metric, is described by ¢ = n; + no. This
becomes pertinent when a; = a9, which is
true for many LLM APIs and is also reflective
of the compute cost. Its simplicity ensures it
doesn’t inherently favor any specific model or
API provider.

iii) Number of queries of planned API calls can
a rough proxy for budget. Such number can be
determined before inference, which can give
us a rough guidance before actually perform-
ing each reasoning strategies. Note that in case
we want to sample multiple outputs from the
LLM, we count those as separate queries

3.2 Reasoning Strategies

In this section, we give a brief overview of different
reasoning strategies in the literature, illustrated in
Figure 2 and how each can scale with budget. A
detailed description is given in the Supplement.

a) Self-Consistency uses parallel sampling to gen-
erate multiple answers and select the answer
that is generated most often. We can increase
the budget by increasing the number of samples.

b) Multi-agent debate uses multiple agents to de-
bate the previous answer and debate in rounds.
We can increase the budget by either increasing
the number of agents or rounds.

¢) Reflexion alternates between answer generation
and self-critique. We can increase the budget
by using higher number of rounds of generation
and critique.

d) Tree of thoughts alternates between thought
generation (in a chain of thought) and self-
critique, including branching out to multiple
thoughts or multiple critiques via parallel de-
coding at each step. We can increase budget
by increasing the breath and/or the depth of the
tree. An answer is the collection of thoughts
from the root to a leaf of the tree.

4 A Critical Evaluation in Budget-Aware
Environments

This section aims to explore key components that
can make reasoning strategies successful from the
scale-aware perspective. First, we show that the
inference scale is often overlooked but is one of
the primary indicators of the success of a rea-
soning strategy. We claim that using a simple
Self-Consistency baseline will, in many cases, out-
perform more complex reasoning strategies pro-
posed in the literature. We use existing reason-
ing strategies in literature to perform this study,
namely Multi-Agent Debate (MAD) (Liang et al.,
2023), Reflexion (Shinn et al., 2023), and Tree-of-
Thoughts (Yao et al., 2023). We conducted our
experiments across a diverse range of reasoning
tasks, utilizing math reasoning datasets such as
GSMS8k (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021), and (Chen et al., 2023c), along with
the commonsense reasoning task CSQA (Talmor
et al., 2019), and the multi-hop reasoning task Hot-
potQA (Yang et al., 2018) (see Appendix A.1). Ad-
ditionally, we performed an in-depth analysis of the
puzzle game Game24 (Yao et al., 2023) to further
our investigation on budget-aware evaluation. We
use GPT-3.5 and GPT-4 for our experiments.

4.1 Importance of Inference Scale

In this section, we explore how the observed im-
provements in performance for various reasoning
methods may be strongly influenced by the use of
a higher inference budget, rather than the intrinsic
merit of the techniques themselves.

Results in Figure 1 and 3 elucidate the efficacy of
reasoning techniques, including multi-agent debate
and Reflexion, in contrast with the SC baseline. A
more comprehensive result is shown in Figure 3
with more queries and datasets. We keep the budget

1 5 10 15 1 5

Accuracy

HotpotQA

Performance@Number of Queries
MATH

TheoremQA

— coTsC
~==- CoT SC oracle

MAD 6 agents 3 rounds SC

MAD 6 agents 3 rounds SC oracle
—— Reflexion 10 trials SC
-~ Reflexion 10 trals oracle

10 15

5
Number of Queries

(@)

Accuracy

Performance@Number of Tokens
MATH

TheoremQA

— coTsC
=== CoT SCoracle

MAD 6 agents 3 rounds SC

MAD 6 agents 3 rounds SC oracle
—— Reflexion 10 trials SC
-~ Reflexion 10 trials SC oracle

2 4 6
1e7 Number of Tokens 1e6

(b)

Figure 3: (a) Performance @ Number of Queries Plots for all 5 datasets. (b) Performance @ Number of Tokens for all
5 datasets. All three methods CoT SC, MAD, and Reflexion are plotted. All experiments here are done with 18
queries for all three reasoning strategies to be comparable. The solid lines are regular performances and the dashed
lines are oracle performances (If any candidate solution is correct, then we count it as correct). The MAD result is
shown non-round-wise. All results are obtained from GPT-3.5.

for each question to 18 queries. This means for CoT
SC, we would sample 18 times. For MAD, we set
the number of agents to 6 and the number of rounds
to 3 which result in exactly 18 queries. For Reflx-
ion, we set it to reflect a maximum of 10 trials (s10
proposals 9 reflections for a total of 19 queries). We
demonstrate two budgetary metrics which were dis-
cussed in (Section 3.1): a) Performance @ Number
of Queries b) Performance @ Number of Tokens.
As illustrated in Figure 1 and 3, when the inference
budget of the baseline is aligned with that of each
reasoning approach, the perceived benefits of the
innovative strategies no longer apply. The SC base-
line regularly outperforms more complex strategies
when given equivalent budgets. Relying solely on
scale-independent assessments, as is sometimes
done in prior works, might lead to incomplete or
potentially misleading interpretations.

In subsequent sections, we analyze various com-
ponents that can affect LLM reasoning abilities.

4.2 Does a higher inference budget always
lead to better reasoning?

The scale-conscious perspective of reasoning strat-
egy performance offers clear a guideline to what
reasoning strategies make sense. That is, higher
inference budget of a proposed reasoning strategy
should lead to increased performance compared to
a baseline; otherwise, the incurred cost could not
be justified since the baseline with comparable cost
performs better (in terms of FLOPs, latency, mon-
etary cost, or any cost we care about). A question
arises whether we can keep increasing the budget
to obtain the best possible abilities.

As seen in Figure 3, we find that the SC baseline
exhibits a smooth increase in scores with respect

to scale. However, such a trend does not always
hold for other reasoning strategies. For instance,
in multi-agent debate (MAD), an augmented infer-
ence budget eventually experiences a performance
plateau. For the MAD setting with 6 agents, the
graph for MAD and SD overlaps up to 6 queries
since they correspond to the exact same strategy
up to that point. After 6 queries, the MAD strat-
egy switches to the second round where the per-
formance gain noticeably lessens compared to SC.
The lowered performance compared to the SC base-
line may arise because subsequent rounds of MAD
may incite a cascading effect of cumulative mis-
takes, or snowballed hallucinations suggested in
Zhang et al. (2023).

4.2.1 Complex reasoning strategies can hurt
response diversity

To show this, we compared — the entropy of the
solutions generated at each round for MAD vs. SC.
The results are in Figure 15 (Appendix). The en-
tropy consistently declines for MAD as we move
to the next round suggesting exactly the kind of
cascading effect we hypothesized. By contrast, the
SC does not suffer such negative consequences
and even increases its solution diversity since the
responses are generated independently without af-
fecting one another.

4.2.2 Effectiveness of independent sampling
with CoT prompt

Next, we outline a framework that helps explain
what makes self-consistency successful. We model
the answer generation process by LLLM as a bino-
mial distribution where each problem has an inher-
ent probability p; of being answered correctly. This
analysis reveals several insights:

1. Convergence: The probability of a correct SC
converges to 0 or 1 as the number of trials in-
creases, depending on whether the probability
of a correct answer p; is less or greater than
0.5.

2. Speed of Convergence: Convergence is fast
for extreme values of p; (closer to 1 or 0), but
slow if p; is near 0.5.

3. Distribution of Correctness: By placing a
prior on p; (for instance, with a beta distri-
bution), the aggregate scores over the entire
dataset converge to non-extreme values, re-
sembling the behavior observed in our results.

Our findings indicate that the model’s perfor-
mance improves with the number of trials if the
distribution of p; has a mean greater than 0.5. If
the mean is lower than 0.5, then performance can
degrade over time. ! This finding suggests that the
reason SC performance increases smoothly over
time is due to the artifact of a model consistently
answering plausible answers that tend to be more
correct than not. In Appendix C, we detail the
analysis with extension to multinomial setting with
Dirichlet prior.

QA Problems

Figure 4: SC making things worse.

4.3 Tree-of-thoughts Strategy

We also evaluated Tree-of-Thoughts strategy in the
scale-aware manner on the logical game Game of
24. QOur findings mirrored the above conclusions
when GPT-3.5 is used, where the integration of CoT
coupled with Self-Consistency exhibited improved
performance with reduced computational resources.
However, notable discrepancies emerged in the be-
havior of the model when transitioning to GPT-4.

4.3.1 Tree-of-thoughts needs a strong model
to be competitive

In Figure 5, we show the performance of GPT-
3.5 with the Tree-of-Thoughts reasoning strategy
on Game of 24>, The performance of Tree-of-
Thoughts lags that of a simple SC by a consider-
able margin. This is in stark contrast to the GPT-4
results with Tree-of-thoughts where all other strate-
gies plateau very early and Tree-of-Thoughts beats
all of them by a big margin. This remains the case
even when we account for the budget (query or
token budget) as the other strategies have a low
performance ceiling. However, note that Tree-of-
Thoughts requires a significant budget commitment
to deliver such a performance. On weaker models
than GPT-4, it is still better to use simpler strategies

"We confirmed this possibility by finding a subset of prob-
lems where the performance decreases shown in Figure 4

>We used a modified thought evaluation prompt for GPT-
3.5 that gave much better results than the default one

like SC which outperforms ToT by a considerable
margin (Figure 5).

Game of 24 Total Tokens

./.\<

Game of 24 100 Queries/Nodes Visisted

ﬁ

mnz mﬂ)
.

— GPT4 CoT 100
—e— GPT-3.5 ToT 3-5hot b=1,3,

2 3 a
Total Tokens. 166

— crra oT 100 GPT-3.5 CoT 100
—o GPT4 =135 foT 3-Shot b5 GPT-3.5 ToT 3-5hot bS

(a) Queries/Nodes Visited (b) Total Tokens

Figure 5: ToT vs. CoT SC for both GPT-3.5 and GPT-4.
The dotted lines represent the performance of ToT with
different settings. For ToT using GPT-4 (blue), results
for three settings are included.

4.3.2 Tree-of-Thought Ablation Study

In this section, we delve deeper into the factors that
contribute to the enhanced performance of the ToT
strategy when compared to the robust baseline of
CoT with SC while being budget-aware. ToT strat-
egy mainly has two components: a proposer and a
self-evaluator. The proposer proposes intermediate
steps or answers and the evaluator decides whether
to prune or continue on current branches. Hence
we further divide the budget into the proposer bud-
get and the evaluator budget. We aim to answer
questions like how much of the performance can
be attributed to self-evaluation ability.

For the ablation study, we compare four setups
for Tree-of-Thoughts on the Game of 24 —

1. The standard Tree-of-Thoughts strategy where
we use GPT-4 to evaluate the new thoughts.

2. The standard Tree-of-Thoughts strategy ex-
cept we now do an evaluation of a thought
only once as opposed to 3 times.

3. Using a weaker model (GPT-3.5) as the evalu-
ator while using GPT-4 as the thought genera-
tor.

4. Random evaluator, where we randomly select
the subset of thoughts to prune.

As observed in Figure 6, a random evaluator
leads to a very steep performance drop for ToT for
both best@k as well as total accuracy. We found
similar results in a similar experiment conducted
on Reflexion shown in Figure 14. Both results im-
ply that an evaluator does matter. Evaluation done

only once per thought as opposed to multiple times
also leads to significant performance drops. How-
ever, if we use a weaker evaluator like GPT-3.5, we
can maintain most of the performance while being
very cost-efficient. For example, running Tree-of-
Thoughts (with beam width set to 5) with GPT-4 as
thought proposer and GPT-3.5 as evaluator on 100
Game of 24 instances costs $33.53 while getting
an accuracy of 72%. Using GPT-4 as the evaluator
on the other hand increases the cost almost 5x to
$159.87 while only improving accuracy to 76%.
Even if we restrict ourselves to b = 1 with GPT-4
as an evaluator, we still get a higher cost of $49.9
while getting a worse performance of 65%.

We also found that the proposer has a greater im-
pact than the evaluator on the performance, you can
find more ablation results in the Appendix Table?2.
We refrain from delving extensively into this aspect
here, as virtually all reasoning strategies inherently
necessitate some form of a proposer. Our primary
focus lies in assessing the extent of the advantages
conferred by the unique self-evaluator component.

4.4 Self-Confident Self-Consistency (SC?)

Although the self-evaluation incurs additional costs
to the reasoning strategy, plenty of evidence includ-
ing some past work demonstrates the usefulness
of self-evaluation (Olausson et al., 2023; Li et al.,
2023). We thus propose to leverage that ability
by weighting the SC by the confidence the model
has in its answer, derived via the Binary evalua-
tion strategy. We call this score the Self-Confident
Self-Consistency (SC?) score. We take the answer
which has the highest SC score as the predicted
answer. Formally the definition is

SC? = Z confidence(a;) (1)

oy 10=Yey
where confidence(a;) = Z](U#

denotes the number of Binary evaluations v; sam-
pled. We apply this strategy to the MATH, Theo-
remQA (integer answer subset), TheoremQA (ran-
dom subset), and HotpotQA datasets. SC? is con-
sistently on par or better than a simple majority
vote. The results are in Figure 7. SC? achieves
non-trivial gain for math reasoning tasks but the
overall costs increase quite a bit. This prompts us
to inquire whether the achieved performance boost
justifies the additional costs incurred. However,
if we have the option to cache, then during self-
evaluation, previous questions and answers can be
cached and don’t need to be encoded again. This

where m

Accuracy vs Proposer Budget

08 Accuracy vs Evaluation Budget

0.8
0.7 x
07 *

Accuracy

0.0 *
0 10 20 30 20 50 0.0

x

/\‘ e
0.6

Best K vs. Cost

° ° °
2 & &

Best out of K accuracy

°
N

Proposer Cost$ 0 20 40 60
4 GPT-4ToTb=1,3,5 —% GPT-3.5 as Evaluator
GPT-4 CoTb=100 —@— GPT-3.5 ToT b=5
—— Eval Once —— GPT-3.5 CoT b=100

> Random

Eval Once
—% Random

(a) Proposer Budget

Evaluator Cost$
— GPT-4ToTb=1,3,5 —% GPT-3.5 as Evaluator
~®~ GPT-35 ToT b=5

(b) Evaluator Budget

80 100 120

°

°
S
IS
&

60 80 100
Costs.

X Using GPT-3.5 Evaluator
X Using Random Evaluator

120 140

ToT b=1,35
% Eval Once

(c) All Budget

Figure 6: Separate proposer budget and evaluation budget on the dataset of game24. ToT with different generator
and evaluator permutations. For cost computation, we assumed the prices OpenAl had as of Aug 14, 2023 which
were $0.002 per 1K tokens for GPT-3.5 (encoding or decoding), $0.03 per 1K encoded tokens and $0.06 per 1K

decoded tokens for GPT-4.

can save a lot of budget and the new results would
look like Figure 8. We see non-trivial gains for the
math reasoning datasets. However, for TheoremQA
we see markedly smaller gains. We hypothesize
that the reason for this is that TheoremQA is a
harder dataset for the model. As we showed in the
previous section, self-evaluation ability decreases
as problem difficulty increases. GPT-4 shows a
self-evaluation ability of no better than random for
TheoremQA and thus we observe very small gains.

4.4.1 Budget-efficiency

The strategy requires only a handful of extra tokens
(" additional tokens per answer corresponding to
the Yes/No) to execute. However, it does require
more encoded tokens (We can sample all of the m
additional tokens as part of a single query). Thus if
one is self-hosting the model, this strategy has only
marginal additional cost.

Dataset Correct Accuracy Incorrect Accuracy Total Accuracy

GSMBK 0.992 0.156 0.937
MATH 0.911 0.461 0.707
TheoremQA 0.945 0.232 0.547
HotpotQA 0.994 0.029 0.675
CSQA 0.987 0.06 0.901

Table 1: Self-evaluation accuracy on 5 datasets. Correct
accuracy denotes self-evaluation accuracy for answers
that turn out to be correct. Incorrect accuracy is the self-
evaluation accuracy of incorrect answers. All numbers
are done with GPT-4-0613

4.4.2 Self-evaluation ability is dataset and
model dependent

Table 1 shows the self-evaluation accuracy for both
GPT-3.5 and GPT-4 for multiple datasets. The

self-evaluation accuracy turns out to be heavily
dependent on the dataset. We dove deeper and
examined the individual self-evaluations that GPT-
3.5 made for HotpotQA and that GPT-4 made for
TheoremQA. It is possible that for problems that
are too hard for the model, it ends up weighing the
writing style of the answer much more heavily than
the correctness of all the intermediate steps when
doing the evaluation. We examine this in more
detail in the appendix D, which will also include
how we specifically do self-evaluation and how
well-calibrated they are.

5 Conclusion

In this paper, we examined the performance of
four reasoning strategies — SC, reflexion, multi-
agent debate, and tree of thoughts with respect
to the oft-overlooked metric of budget. We used
budget metrics of number of queries and number of
tokens to reflect the different ways LLMs are used
(querying LLM APIs and self-hosting models). We
identified self-evaluation as an important aspect of
multiple reasoning strategies and analyzed different
prompting strategies to have the model evaluate its
generations. We then introduced a new variant of
SC weighted by the confidence of the model in
its own answer after self-evaluation which showed
gains for the MATH dataset. We also analyzed the
answer generation and evaluation budget separately
finding that in budget-constrained situations, it can
be sometimes beneficial to use a weaker evaluator
and still be able to obtain most of the performance
one would get with a stronger evaluator.

6 Limitations

Our goal in the paper was to highlight the impor-
tance of different aspects of the generation bud-
get for LLMs that are often ignored in the recent
spate of reasoning strategies for LLMs. To that end,
we chose some representative reasoning strategies
and evaluated them on some common reasoning
tasks. However due to both monetary and time con-
straints, we could not include even more reasoning
strategies or tasks. A more exhaustive evaluation
might reveal additional nuances which would be
interesting to explore.

References

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Angelica Chen, Jérémy Scheurer, Tomasz Korbak,
Jon Ander Campos, Jun Shern Chan, Samuel R Bow-
man, Kyunghyun Cho, and Ethan Perez. 2023a. Im-
proving code generation by training with natural lan-
guage feedback. arXiv preprint arXiv:2303.16749.

Liting Chen, Lu Wang, Hang Dong, Yali Du, Jie Yan,
Fangkai Yang, Shuang Li, Pu Zhao, Si Qin, Saravan
Rajmohan, et al. 2023b. Introspective tips: Large lan-
guage model for in-context decision making. arXiv
preprint arXiv:2305.11598.

Wenhu Chen, Ming Yin, Max Ku, Yixin Wan, Xueguang
Ma, Jianyu Xu, Tony Xia, Xinyi Wang, and Pan Lu.
2023c. Theoremqa: A theorem-driven question an-
swering dataset. Conference on Empirical Methods
in Natural Language Processing.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, D. Song, and
J. Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. NeurIPS Datasets
and Benchmarks.

Jeevana Priya Inala, Chenglong Wang, Mei Yang, An-
dres Codas, Mark Encarnacién, Shuvendu Lahiri,
Madanlal Musuvathi, and Jianfeng Gao. 2022. Fault-
aware neural code rankers. Advances in Neural In-
formation Processing Systems, 35:13419-13432.

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei
Shang, and Ge Li. 2023. Self-planning code gen-
eration with large language model. arXiv preprint
arXiv:2303.06689.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5315-5333.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and
Shuming Shi. 2023. Encouraging divergent thinking
in large language models through multi-agent debate.
arXiv preprint arXiv:2305.19118.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang,
Mingu Lee, Roland Memisevic, and Hao Su. 2023.
Deductive verification of chain-of-thought reasoning.
arXiv preprint arXiv:2306.03872.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Theo X Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2023. Demystifying gpt self-repair for code genera-
tion. arXiv preprint arXiv:2306.09896.

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak,
Jun Shern Chan, Angelica Chen, Kyunghyun Cho,
and Ethan Perez. 2023. Training language mod-
els with language feedback at scale. arXiv preprint
arXiv:2303.16755.

Noah Shinn, Federico Cassano, Beck Labash, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu
Yao. 2023. Reflexion: Language agents with
verbal reinforcement learning. arXiv preprint
arXiv:2303.11366.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149-4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit
Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,

https://doi.org/10.48550/arXiv.2305.12524
https://doi.org/10.48550/arXiv.2305.12524
https://doi.org/10.48550/arXiv.2305.12524
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421

and Christopher D Manning. 2023. Just ask for cali-
bration: Strategies for eliciting calibrated confidence
scores from language models fine-tuned with human
feedback. arXiv preprint arXiv:2305.14975.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Kaiyu Yang, Jia Deng, and Danqi Chen. 2022. Gen-
erating natural language proofs with verifier-guided
search. arXiv preprint arXiv:2205.12443.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369-2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel
Deutch, and Jonathan Berant. 2023. Answering
questions by meta-reasoning over multiple chains
of thought. arXiv preprint arXiv:2304.13007.

Muru Zhang, Ofir Press, William Merrill, Alisa Liu,
and Noah A. Smith. 2023. How language model
hallucinations can snowball. CoRR, abs/2305.13534.

10

https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.48550/arXiv.2305.13534
https://doi.org/10.48550/arXiv.2305.13534
https://doi.org/10.48550/arXiv.2305.13534

A Model/Dataset Details

A.1 Datasets

Here we describe the datasets we used in our ex-
periments.

GSMSBK GSMSK consists of 8.5K grade school
math problems. There are 7.5K examples in the
training set and 1K in the testing set. Each prob-
lem is expressed in natural language and usually
involves multi-hop reasoning.

MATH MATH dataset collects 12.5K (7.5K
training, 5K testing) high-school level competitive
math problems in natural languages. This dataset
is considerably harder than GSM8K.

TheoremQA Theorem QA annotated 800 QA
pairs covering over 300 theorems spanning across
Math, EE&CS, Physics and Finance. We focus on
math reasoning hence we only used the subset that
covers math problems which contains 442 ques-
tions. This dataset is even harder than GSM8K
since these questions are college-level and involve
using theorems.

CSQA CSQA sourced commonsense reasoning
questions from crowd workers based on Concept-
Net. It has a total of 12,247 examples (9741,
1140,1140 for the size of train, dev, and test set
respectively).

HotpotQA HotpotQA collects 113K question-
answer pairs that require multi-hop reasoning.
There are 7,405 pairs in the test set.

Game of 24 Game of 24 is a mathematical
reasoning challenge, where the goal is to use 4
numbers and 4 arithmetic operations (+-*/) to
obtain 24. (Yao et al., 2023) collects 100 problems
from 4num.com which are ranked 901-1000 (it
is ranked from easy to hard, so these 100 are
relatively hard).

For each dataset above, we randomly sampled
100 samples from the test set for all of our experi-
ments. For Game of 24, since there are exactly 100
problems, we just use the same 100 problems as in
(Yao et al., 2023).

A.2 Model Hyperparameters

Since we want to maintain the diversity of reason-
ing processes, most of the results are obtained with
a temperature of 1 for GPT-3.5 and GPT-4.

11

B Additional Result for Budget-aware
Performance Metrics

B.1 Budget Metrics on All Datasets

Budget metrics on all datasets are shown in Figure
10 and 3

B.2 Detailed description of Reasoning
strategies

1. Tree of thoughts generates a search tree to
search through possible chains of thought. It
maintains a chain of thought. At each node
in the tree, it generates a list of candidate
thoughts to be added to the chain and does
an evaluation to select the next thought to add.
It concludes by generating an answer at a leaf
node of the tree. The path in the tree from the
root to the leaf node forms a single chain of
thought, with each node corresponding to a
single thought. If the answer is deemed incor-
rect (as per another evaluator), it backtracks
to a previous node of the tree (unwinding the
chain of thought along the way) and selects
the next thought out of the candidate list of
thoughts to add to the chain of thought.

B.3 Self-Evaluation with CoT

All of our self-evaluations are done without CoT.
For both evaluation calibration and weighted con-
fidence self-consistency, we only generated one
token "yes" or "no" or one number. One may be
interested in whether CoT can improve the self-
evaluation performance and further boost the re-
sults. We tested this by extracting 160 CoT an-
swers from 80 questions from GPT-3.5, where
each question we extract 1 correct CoT answer
and 1 incorrect CoT answer. We then compared
the performance of direct evaluation versus CoT
then evaluation. For GPT-3.5-turbo-0301, the ac-
curacy increased from 50.625% to 54.375%. For
GPT-4-0613, the accuracy increased from 78.75%
to 79.375%. For GPT-4 the benefit from CoT is
very mariginal and we concluded that it is not worth
the extract cost from CoT. Hence we use the direct
evaluation for all of our self-evaluations.

Figure 1b that investigates the Reflexion tech-
nique (Shinn et al., 2023) reveals a similar trend
compared to the multi-agent debate with respect to
inference scale. We find that Reflexion relies heav-
ily on the oracle that helps the model determine
when the correct answer is encountered and stops
the generation early and returns that answer. This

GSM8K SC~2 (GPT-3.5 CoTs, GPT-4 Evaluators)

GSMBK SC*~2 (GPT-3.5 CoTs, GPT-4 Evaluators)

MATH SC~2

—— GPT-3.5 CoT SC

Weighted Confidence with GPT-4 Evaluator

o
/_/—

—— GPT-4 CoTSC

—— GPT-4 CoT SC

SC*2 with GPT-4 Evaluator SC™2 with GPT-4 Evaluator

0.0 02 0.4

Total Tokens 1e6

TheoremQA SC~2

06
Total Tokens 1e6

HotpotQA SC~2

08 10 000 025 050 075 100 125 150 175 200
1e6

Total Tokens

CSQASC~2

—— GPT-4 CoTSC
SC~2 with GPT-4 Evaluator

—— GPT-4 CoTSC

—

—— GPT-4 CoT SC

SC~2 with GPT-4 Evaluator SC~2 with GPT-4 Evaluator

00 02 04 06 08 10

Total Tokens

Figure 7: SC? with total tokens being the budget. There are sizable improvements in using our method SC? on

math reasoning tasks.

is in contrast to strategies like SC We demonstrate
the performance of Reflexion including baselines
that have access to oracle and without. For direct
comparison, it is more fair to compare strategies
within the group with access to an oracle, or with-
out. We find that in each group, inference scale is
a strong prediction on the performance.

C Mathematical Framework for
Self-Consistency

In many real-world reasoning tasks and decision-
making processes, the use of SC has emerged as a
powerful and often robust technique. Whether it’s
human experts forming a consensus or ensemble
methods in machine learning, the idea of aggregat-
ing multiple opinions to reach a final decision has
proven to be effective. The empirical success of
SC in various domains, such as classification, re-
gression, and human-driven decision-making, mo-
tivates a deeper examination into the underlying
principles that make it work so well.

For instance, in complex reasoning tasks where
individual models or experts might be uncertain,
the wisdom of the crowd often leads to improved
accuracy. SC can act as a regularization method,
mitigating the effects of overfitting or biases that
might be present in individual models. By combin-
ing multiple models or opinions, SC captures the
common patterns among them, enhancing general-
ization to unseen data.

In this work, we seek to understand what makes
SC an effective strategy, especially in the context

12

of reasoning tasks. We aim to analyze the mathe-
matical properties and probabilistic behavior that
underlie this mechanism, considering various sce-
narios such as binary choices or multi-choice prob-
lems. Through rigorous analysis, simulations, and
real-world datasets, we hope to derive insights that
explain why SC often leads to consistent improve-
ment and under what conditions it might fail.

The following section explores the mathemat-
ical explanation of SC, beginning with a simple
binomial distribution model and gradually extend-
ing to more complex multinomial and Dirichlet
distributions. By understanding the mathematical
characteristics of these distributions, we hope to
explain the empirical results observed in real-world
reasoning tasks, thereby contributing to the ongo-
ing efforts to harness the power of SC in a wide
range of applications.

C.1 Self-Consistency Results on Reasoning
Tasks

In our exploration of SC strategies applied to rea-
soning tasks, we conducted several experiments
to analyze the effectiveness and behavior of differ-
ent approaches. Figure 10 illustrates our findings,
including the results for different tasks.

The convergence patterns and the improvement
as the number of trials increases are shown for each
task, highlighting the impact of SC.

These visualizations demonstrate the potential of
SC in enhancing reasoning tasks, leading to more
robust and accurate solutions. In this section, we

GSM8K SC~2 (GPT-3.5 CoTs, GPT-4 Evaluators)

GSMBK SC*~2 (GPT-3.5 CoTs, GPT-4 Evaluators)

MATH SC~2

—— GPT-3.5 CoTSC

Weighted Confidence with GPT-4 Evaluator

—— GPT-4 CoTSC

—— GPT-4 CoT SC

SC*2 with GPT-4 Evaluator SC™2 with GPT-4 Evaluator

4 100000 200000 300000 400000 500000 600000 0
Total Tokens with Cache

TheoremQA SC~2

100000 200000 300000 400000 500000 600000
Total Tokens with Cache

HotpotQA SC~2

0.0 02 0.4 06

Total Tokens with Cache

08 10

1e6

CSQASC~2

—— GPT-4 CoTSC
SC~2 with GPT-4 Evaluator

L 045 075
< b
0.40 0.70

7

—— GPT-4 CoTSC

—— GPT-4 CoT SC

SC~2 with GPT-4 Evaluator SC~2 with GPT-4 Evaluator

I
o~

0.
0 100000 200000 300000 400000 500000 600000 700000 800000
Total Tokens with Cache

02 04 06

08

Total Tokens with Cache

10 12 1a

1e6

00 02 04 06 08 10

Total Tokens with Cache

12

Figure 8: SC? with total tokens being the budget if caching is enabled.

will provide a theoretical framework that could
explain the gains from SC. Note that we use Self-
Consistency (SC) and Majority-Vote (MV) inter-
changeably.

C.2 Binomial

We seek to analyze the behavior of parallel sam-
pling with n trials with self-consistency or SC. In
this setup, given a set of problems {z; }, each prob-
lem’s answer prediction (whether it is correct or
not) can be modeled as a binomial distribution, as-
suming two choices (yes or no). Mathematically,
the probability mass function for each problem’s
answer is given by:

J(X;

k) = <Z> A=)t @

where X; corresponds to the correct answer of the
binomial distribution and p; represents the proba-
bility of a correct answer for the ¢-th problem.

We can calculate the probability that SC yields
the correct solution over n trials by calculating the
probability that X; yields a value that is at least

n/2. This is expressed as:
n _
<k>p§“(1 —pi)" "

(3)

By plotting the probability of MV being correct
as a function of n, we observe that as n increases,
P(MV correct|z;) either goes to 0 or 1, depending
on whether p; > 0.5 or p; < 0.5 for this particular

P(MV correct|z;) = Z
k=[n/2]

13

problem. This is evident in the synthetic experi-
ment shown in Figure 11.

If p; is extreme (closer to 1 or 0), then the con-
vergence is fast, and the probability function can
be described as:

1
0

if p;, > 0.5
BP0
if p; < 0.5.

lim P(MV correct|x;)
n—oo

On the other hand, if p; is close to 0.5, the conver-
gence is slow, reflecting the uncertainty associated
with an answer that is nearly equally likely to be
correct or incorrect.

Over the set of all problems we consider, we
place a beta distribution over p; and integrate
P(MV correct|z;) over the set of all problems
to obtain P(MYV correct). This can be expressed
mathematically as:

P(MV correct)

1
/0 P(MV correctlpy) - f(pilev, 8) dpi, (5)

where f(p;|c, 3) is the probability density function
of the beta distribution with parameters « and f3.
If we select a beta distribution where the mode
peaks beyond 0.5, then we find that P(MV correct)
increases as a function of n, albeit to a value less
than 1 as you can see in Figure 12. This behavior
explains our observation in real datasets directly.
This also implies that for datasets where major-
ity vote leads to consistent improvement, the dis-
tribution of p; needs to be peaked greater than 0.5.

MATH 500 examples

0.525

0.500

0.475

0.450

0.425

0.400

0.375 4

0.350

0.325

— CoTsC
MAD 6 agents 3 rounds SC
—— MAD 6 agents 3 rounds SC2

T T T
0.0 0.5 1.0

Tokens Encoded

T
15

T T T
2.0 2.5 3.0
1le6

(a) Performance @Tokens Encoded

MATH 500 examples

MATH 500 examples

0.7

0.6

0.5

0.4 —— CoT sC
CoT best at k
—— MAD 6 agents 3 rounds SC

—— MAD 6 agents 3 rounds SC2

0.3 1

0.7 4

0.6

0.5

0.4 1 CoT SC
CoT Best at k
MAD 6 agents 3 rounds SC

Reflexion Oracle at k

0.3 1

10 15 2.0 2.5

Tokens Generated

0.0 0.5
le6

(b) Performance @Tokens Generated

1 23 456 7 8 9101112131415 16 17 18 19 20
Number of Queries

(c) Performance @ Number of Queries

Figure 9: Reasoning strategies performance versus different types of budgets. Here we demonstrate perfor-
mance @Tokens Encoded, performance @Tokens Generated, performance @ Number of Queries.

There would also exist a set of problems where self-
consistency leads to lowered performance, specifi-
cally for the set of problems where p; < 0.5.

By carefully selecting the parameters of the beta
distribution, we can control the characteristics of
the majority voting process and gain insights into
the behavior of parallel sampling across various
datasets. This mathematical framework provides a
powerful tool for understanding and optimizing the
majority vote process in practical applications.

C.3 Generalization to multinomial

We can further generalize this setup by considering
each problem as being modeled by a multinomial
distribution with K choices. In this more general-
ized scenario, the distribution of probabilities over
problems can also be modeled by a Dirichlet distri-
bution.

Let p

(p1,p2,...,pK) be the probabili-

ties associated with the K choices, and let o
(1,9, ...,ax) be the parameters of the corre-
sponding Dirichlet distribution. The probability
of obtaining a correct majority vote for a given
problem is then:

n
P(MV correct|p) = Z multinomial (k; n, p),
k=[n/2]
(6)
where the sum is taken over all combinations of k
votes that would result in a majority for the correct
choice.
The overall probability of obtaining a correct
majority vote, integrating over all problems, can be
expressed as:

P(MYV correct) = /P(MV correct|p)- f (p|a) dp,
@)

14

GSMBK MATH TheoremQA
1 10 08
— coTsC — coTsC
-~ CoT oracle - CoTSC oracle
09 MAD 6 agents 3 rounds round-wise SC mean 07 MAD 6 3 round-wise SC mean
MAD 6 agents 3 rounds round-wise oracle mean MAD 6 3 round-wise oracle mean
08 -~ Reflexion oracle 06 —— Reflexion SC
— Reflexion SC -~ Reflexion oracle
2 Zo7
< 206

— coTsC

070 === CoT SC oracle 05
MAD 6 3 round wise SC mean
MAD 6 3 round wise oracle mean
0.65 04
—— Reflexion 10 trials SC
-~ Reflexion 10 trials oracle
o 03
12345676 010111213141516171819 1234567 80910111213141516171819 12345676 9510111213141516171819
Number of Queries Number of Queries Number of Queries
HotpotQA CSQA
1o 0.925 =
— cotsc — coTsc e
-~ CoToracle -~ CoT Bestatk
09 MAD 6 3 round-wise SC 0.900 MAD 6 3 round-wise SC mean
MAD 6 3 round-wise oracle MAD 6 3 round-wise oracle B
-~ Reflexion oracle 0.875{ ==~ Reflexion oracle =TT
—— Reflexion SC — Reflexion SC
08 =
N . 0850 -
3 g o825
gor §
0.800
06
0775
05 0.750
12345678 010111213141516171819 12345676 910111213141516171819
Number of Queries Number of Queries
GSMsk MATH TheoremQA
1 10 08
— coTsC — coTsc
- ~==- CoT Bestatk === CoTBestatk
095 09 07
*********** MAD 6 3 round wise SC mean MAD 6 agents 3 rounds-wise SC mean
MAD 6 3 round wise SC oracle mean MAD 6 agents 3 rounds-wise SC mean oracle
0.90 08 —— Reflexion SC at k. 06 — Reflexion SC at k
-~ Reflexion Oracle at k -~ Reflexion Oracle at k
085
> Z07 zos
S 0s0 s H
g Sos B Sos B
075
— coTsc
070 === CoT Best at k 05 03
MAD 6 agents 3 rounds round-wise SC
MAD 6 agents 3 rounds round-wise SC oracle ! I
065 - 04 02 .
Reflexion SC at k 1
-~ Reflexion Oracle at k
o 03 01
00 o5 10 20 oo 02 04 06 08 10 12 14 16 000 025 050 075 125 150 175
Total Tokens 166 Total Tokens 167 Total Tokens 167

HotpotQA 500 Examples Total Tokens

085
— coTsC

080 --- CoTBestatk
MAD 6 agents 3 rounds-wise SC
MAD 6 agents 3 rounds-wise oracle

075 —— Reflexion SCat k

/ - Reflexion Oracle at k
0701

Accuracy

Accuracy

(b)

CSQA

0.925 7
09004 |

T —
0.875 ! sammmetTT

§ =

i — coTsc
08507 -~ CoT Bestatk

{ MAD 6 3 5C
0825 MAD 6 3 SC oracle

—— Reflexion SCatk
Reflexion Oracle at k

0.800

0775

0750

2
Total Tokens

Figure 10: (a)Performance @ Number of Queries Plots for all 5 datasets. (b)Performance @ Number of Tokens for all
5 datasets. All three methods CoT SC, MAD, and Reflexion are plotted. The solid lines are regular performances
and the dashed lines are oracle performances (If any candidate solution is correct, then we count it as correct).

where f(p|a) is the probability density function,
which can be modeled by the Dirichlet distribution.

Following a similar simulation to the binary
case, we find that the conclusions hold (see Fig-
ure 13). Specifically, if the mode of the Dirichlet
distribution is biased towards the correct choices,
the probability of the majority vote being correct
increases with n, and the set of problems where
self-consistency leads to lowered performance can
be characterized by the subset where the correct
choice probabilities are below certain thresholds.

This generalization to multinomial and Dirichlet
distributions adds complexity but also additional

15

flexibility in modeling the majority voting process,
making it applicable to a broader range of practical
scenarios.

D Self-Evaluation
D.1 Self-Evaluation Method

Given an answer, there are multiple ways we can
prompt the LLM to evaluate that answer . Here we
examine 3 possibilities for self-evaluation

1. Binary’ - we ask the model to output Yes/No
as to whether the answer is correct. We do this

3We also investigate a variant where we ask the model to
think step by step before evaluating. While we see a small

Majority Vote Given Binomial Distribution

10+

0.8 1

p=01
p=03
p=05
p=07
p=09

0.6 4

0.4+

0.24

Probability of Majority Vote Being Correct

0.0+

T T T T
15 20 25 30

Number of Trials (n)

T
10

Figure 11: Probability of majority voting being correct
for a given problem with varying p.

Method Topl Bestoutofall Total Accuracy
ToT b=5 (GPT-4,GPT-4) 0.74 0.76 0.4
ToT b=3 (GPT-4,GPT-4) 0.77 0.77 0.49
ToT b=1 (GPT-4,GPT-4) 0.65 0.65 0.65
ToT eval once (GPT-4,GPT-4) 0.73 0.75 0.352
CoT 100 times (GPT-4) 0.17 0.56 0.0756
ToT Random Eval (GPT-4) 0.0 0.04 0.008
ToT b=5 (GPT-3.5,GPT-3.5) 0.25 0.35 0.11
CoT 100 times (GPT-3.5) 0.04 0.46 0.0252
ToT b=5 (GPT-4,GPT-3.5) 0.68 0.72 0.302
ToT b=5 (GPT-3.5,GPT-4) 0.3 0.38 0.156

Table 2: Various results on Game of 24. ToT refers
to Tree-of-Thoughts. For ToT, the first model name in
the parenthesis refers to the model used to generate the
candidate thoughts, while the second model name refers
to the model used to evaluate the candidate thoughts.

multiple times and take the fraction of times
the model answers Yes as the confidence of
the model in the answer.

Numerical confidence - we ask the model to
output a score between 1 and 10 to indicate its
confidence in the answer. We do this multiple
times and take the average as the confidence
of the model in the answer.

Confidence probability - similar to the previ-
ous strategy except now we prompt the model
to output a confidence between 0.0 and 1.0
and average it.

D.2 Accuracy and Calibration of
Self-Evaluation

In Table 3, we show the accuracy of self-evaluation
of GPT-4 on the MATH dataset as a function of the
number of samples, and in Figure 17 we show the
increase in performance for such a strategy, it also necessitates

a big increase in the token budget. Further analysis is in the
Supplement.

16

calibration plots. The binary strategy performs the
best by far in terms of both accuracy and calibration.
The numerical confidence strategy is worse with
the confidence probability strategy being the worst
by far. One hypothesis as to why this might be the
case is that the pretraining or RLHF data may be
much more likely to have evaluations of various
thoughts and answers where the evaluation consists
of a binary (or multi-valued) sentiment compared to
a numerical confidence rating or even less likely, a
confidence probability. We also plotted calibration
based on answer popularity in Figure 18.

Method Correct Accuracy Incorrect Accuracy Total Accuracy

Yes or NO 0911 0.461 0.707
Score 1-10 0.995 0.149 0.613
Probability 0.0-1.0 0.886 0.115 0.537

Table 3: Self-evaluation accuracy on MATH with differ-
ent methods

D.3 Self-evaluation is correlated with problem
difficulty

To get an understanding of whether models found
it easier to evaluate answers to easier problems, we
computed the following metric for a 100 problem
subset of the GSMS8K dataset. For each problem
i, let a;; be the jth answer. We had 20 sampled
answers per problem. We computed the fraction c;
of answers that were correct. Our assumption was
that c; indicates the difficulty of the problem — the
higher the value, the easier the problem. For each
answer a;;, we obtained the binary self-evaluation
confidence as described in the beginning of this
section (we sampled the evaluation 5 times). We
then computed the correlation p; between the self-
evaluation confidence for the answers a;; and the
binary vector indicating whether the answers were
correct or not. We then computed the correlation
between p; and c;. We obtained a correlation of
0.347 with a p-value of 0.00026 — a clear indication
that an increase in the problem difficulty results in
the self-evaluation becoming more noisy. We re-
peated this experiment for MATH and TheoremQA
and obtained correlations of 0.31 and 0.42 with
p-values of 0.02 and 0.0025 respectively.

E Terms and Licenses

GSMS8K, MATH, TheoremQA, CSQA are under
the MIT license. HotpotQA is under the CC BY-
SA 4.0 License. All the datasets and models are
used for their intended use.

Beta Distribution for Different Alpha and Beta

Binomial with Beta Distribution (7,3) Binomial with Beta Distribution (2,5)

0.900 1
g T 0275 254
£ 0875 4 2
E e 0.250 4
2 0.850 4 3 2.0
S S g
B 4 B 02259 2
§ 0825 E é 15 —— alpha=2, beta=5
> 0800 | S 0200 | z ~—— alpha=7, beta=3
s s I —— alpha=5, beta=5
] 2 =
3 07759 2 01754 £ 104
5 5
> 0.750 >
£ Z 0150 0.5
8 0725 =
8 8
4 & 01254

0.700 + 0.04

6 Zb 4b ﬁb Bb 160 6 Zb 4:0 Eb Eb 160 0.0 0.2 0.4 0.6 0.8 10
Number of Trials (n) Number of Trials (n) P
(@) (b) ©
Figure 12: Convergence of majority vote under different beta distributions
Dirichlet(5,3,3) Dirichlet(1,3,3)
0.675

0650

°
2
b

°
2
g
g

1

o
a
g

0525

0.500

Probability of Correct Bin Being Encountered Most Often

0475

0.08

0.07

0.06

0.05

0.04

0.03

Probability of Correct Bin Being Encountered Most Often

5 10 15 20 25 30 5 10 15 20 25 30
Number of Trials (n) Number of Trials (n)
(@) (b)
Dirichlet Distribution with alpha = [5, 3, 3] Dirichlet Distribution with alpha = [1, 3, 3]

(©) ()

Figure 13: Convergence of majority vote under different Dirichlet distributions with K = 3

17

Figure 14: Ablation Study of the effect of Evaluator on Reflexion with GPT-4. Having an oracle evaluator still

0.70

0.65

MATH dataset

—— GPT-4 Reflexion SC [
~-- GPT-4 Reflexion Oracle e

~— Random Stops e

—— GPT-4 Evaluator Stops |~

°
Y
g

Accuracy
°
a
5

0.50

Number of Queries

underperforms SC. However, it is better than having no evaluator.

Figure 15: The diversity measure of the answers proposed on GPT-3.5. Dashed lines indicate CoT samples. Solid

Diversity Measure by Entropy

e 0 1
Number of Queries

1 o2 1w ow o1 1w v o

—— GSM8k
—— MATH

—— TheoremQA

—— HotpoiQA
CSQA

lines indicate the entropy of MAD with 6 agents and 3 rounds at each round.

Figure 17: Calibration result for the math reasoning datasets. Three different self-evaluation methods are calibrated

here.

Accuracy vs Proposer Budget MATH

Accuracy vs Evaluator Budget MATH

— GPT-4 CoT SC
~—— GPT-4 Weighted Confidence SC

x

3 a
Evaluator Budget$.

Accuracy

Accuracy vs Total Budget MATH

—— GPT-4 CoT SC
—— GPT-4 Weighted Confidence SC

20 30
Total Budgets

Figure 16: Separate proposer budget and evaluation budget on the dataset of MATH.

008 Gera corsc o068

0.66] — GPT Weighted Confidence SC 06

064 064

062 062

z 3

£ 060 £ 060

<os8 “oss

056 056

054 054

052 052

5 1o 15 20 25 30 35 40
Proposer Budgets
) MATH Expected Calibration 1o
’ == Weighted Confidence ’

08 08

508 508

<04 <04

02 02
00 0o

2 6 08 10
Confidence Computed via Yes or No

MATH Expected Calibration

MATH Expected Calibration

00 01 02 03 04 05 06 07 08
Confidence Scores.

18

== Score

09 10

Accuracy

= Probability

00 01 02 03 04 05 O
Probaility

07 08 09 10

Accuracy

MATH Calibration by Answer Percentage TheoremQA Calibration by Answer Percentage
== probability of Correctness

GSMBK Calibration by Answer Percentage

= probability of Correctness

1.0 = Probability of Correctness,

=

S

03 04 05 06 07 04 05 06
Answer Percentage Answer Percentage

04 05 06 07
Answer Percentage

06

HotpotQA Calibration by Answer Percentage CSQA Calibration by Answer Percentage

=== probability of Correctness === Probability of Correctness

°

Accuracy
=
Accuracy
°

02

00

04 05 06
Answer Percentage

04 0
Answer Percentage

Figure 18: Calibration result binned by answer percentages.

19

