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Abstract
In this paper, we propose a novel method for joint
entity and relation extract from unstructured text
by framing it as a conditional sequence generation
problem. In contrast to conventional generative
information extraction models that generate text
as output, our approach generates a linearized
graph where nodes represent text spans while
the edges/relation of the graph represent relation
triples. For that, our method employs a trans-
former encoder-decoder architecture with point-
ing mechanism on a dynamic vocabulary of spans
and relation types. Particularly, our model can
capture the structural characteristics and bound-
aries of entities and relations through span rep-
resentation, while simultaneously grounding the
generated output in the original text thanks to
pointer mechanism. Evaluation on benchmark
datasets validates the effectiveness of our ap-
proach, demonstrating state-of-the-art results in
entity and relation extraction tasks.

1. Introduction
Joint entity and relation extraction is a fundamental task in
Natural Language Processing (NLP), serving as the basis for
various high-level applications such as building Knowledge
Graphs. Traditionally, this task was tackled via pipeline
models that independently trained and implemented entity
recognition and relation extraction, often leading to error
propagation (Brin, 1999; Nadeau and Sekine, 2007). Deep
learning brought about the development of end-to-end mod-
els for this task, enabling shared representations and joint
optimization of losses for both tasks (Wadden et al., 2019;
Wang and Lu, 2020; Zhong and Chen, 2021; Yan et al.,
2021). Despite this advancement, these models essentially
remain pipeline-based, with entity and relation predictions
executed by separate classification heads, thereby ignoring

1LIPN, CNRS UMR 7030, France 2FI Group, France. Corre-
spondence to: Urchade Zaratiana <zaratiana@lipn.fr>.

Accepted to ICML workshop on Structured Probabilistic Inference
Generative Modeling

potential interactions between these tasks.

Recent advancements have seen a shift towards ”real” end-
to-end solutions, where the prediction of entities and rela-
tions is intertwined, accomplished through autoregressive
models. These models treat the joint entity-relation task as
a process of generating plain text, employing augmented
languages to encode and decode structured information
(Paolini et al., 2021; Lu et al., 2022; Liu et al., 2022; Fei
et al., 2022). While these models have achieved remark-
able performance, we argue that they also expose room for
improvement, especially in terms of grounding.

In this paper, we present an autoregressive transformer
encoder-decoder model that generates a linearized graph
instead of generating plain text. This approach allows us
to capture a more granular interaction between entities and
relations and thereby enhances the understanding of their
interdependencies. Our model makes use of a pointing
mechanism (Vinyals et al., 2017) on a dynamic vocabulary
of spans and relations, providing robust grounding in the
original text. In fact, without grounding, models can gener-
ate outputs that are semantically coherent but contextually
detached from the input. Our pointing mechanism mitigates
this issue by ensuring that the model’s outputs, specifically
the entity spans, are directly tied to the input text. Further-
more, by generating spans and relations directly from the
text, rather than producing standalone plain text, our model
manages to capture the structural characteristics and bound-
aries of entities and relations more accurately, which can
be missed by previous generative information extraction
models.

We evaluated our model on three benchmark datasets for
joint entity and relation extraction: CoNLL 2004, SciERC,
and ACE 05. Our model demonstrated state-of-the-art per-
formance on SciERC and CoNLL 2004 and competitive re-
sults on ACE 05. Notably, we achieved a Relation F1 score
of 78.5 on the CoNLL 2004 dataset, surpassing the previous
best model that scored 76.3. In addition, we also achieved
state-of-the-art results on the SciERC dataset. Specifically,
our model achieved an Entity F1 score of 69.7 and a Re-
lation F1 score of 38.6 on SciERC, surpassing previous
best-performing models by 2.9 and 0.2, respectively.
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Figure 1. Illustration of the linearization approach for the task of information graph generation. The input text is mapped into an
information extraction graph. The graph consists of entities and relation triples, which are generated sequentially by first producing entity
spans (represented by start word, end word, and entity type) followed by relation triples (head entity, tail entity, and relation type). Two
different ordering approaches are compared: Sorted and Random. The Sorted approach sorts nodes and edges by the first endpoint of the
span and tail entities, respectively. The Random approach randomly orders nodes and edges during training.

2. Model
2.1. Task definition

In this paper, we address the task of joint entity and rela-
tion extraction from text as a graph generation approach.
Our proposed model generates nodes and edges as a single
sequence, effectively integrating both entity and relation
extraction into a unified framework.

Formally, the task can be defined as follows: Given an input
text sequence x = x1, x2, ..., xL, where xi represents the
i-th token in the sequence, our objective is to generate a
linearized graph representation y = y1, y2, ..., yM , where
yj represents a token in the generated sequence. Each token
yj can take one of three forms:

• Entity Span: The token yj represents an entity span,
defined by (sj , ej , tj), where sj and ej denote the start-
ing and ending positions of the entity span, and tj
denotes the type of the entity.

• Relation Type: The token yj represents a relation type
between two entities, such as Based In relation.

• Special Token: The token yj represents special tokens
used in the generation process, such as <SEP> to sep-
arate entities and relations or the <END> to stop the
generation.

The template employed in our model adheres to a precise
sequence generation process, as depicted in Figure 1. Our
output sequence consists of the nodes representing the en-
tities, followed by a <SEP> token, and ends with the re-
lation triples, each consisting of head node, tail node and
edge/relation type. Additionally, we incorporate two distinct

approaches for linearization: sorted and random. The sorted
linearization organizes entities and relations based on their
positions in the original text, while the random linearization
randomly shuffles entities and relations during each training
iteration.

2.2. Architecture

Layers Our model utilizes a transformer encoder-decoder
architecture to process the input text sequence and generate
the desired output sequence. The encoder transforms the
input sequence x into token representations H ∈ RL×D,
where D is the embedding model dimension. The decoder
is trained to predict the subsequent token in the sequence,
similar to language modeling. The generation process is
conditioned on the previously generated tokens y<j through
self-attention and the input token representations H through
cross-attention. The objective of training is to maximize the
following conditional probability:

maximize
M∏
j=1

p(yj |y<j ,H)

During inference, the model generates the output sequence
in an autoregressive manner, one token at a time, using, for
instance, greedy sampling or nucleus sampling.

Vocabulary construction Our model uses a pointing
mechanism to generate tokens from a dynamic matrix E,
which includes spans, special tokens, and relation type
embeddings. The latter two are randomly initialized and
updated during training. The span embedding, however,
is dynamically computed. The embedding of a span



An Autoregressive Text-to-Graph Framework for Joint Entity and Relation Extraction

Input tokens  
X = {x1, …, xL}

…

Transformer 
Encoder

…

Span 
Representation 

Layer

…

All span embeddings  
K is the maximum span size and  

C is the number of classes

S ∈ ℝ(L×K×C)×D

The vocabulary matrix of our 
decoder E ∈ ℝ(L×K×C+R+T )×D

…

Span 
embeddings

…

Relation types 
embeddings

Special tokens 
embeddings

Target sequence  
(Shifted right)

y

…

Lookup Embedding 
using E

…

…

De-embedding 
using E

Transformer 
Decoder

+ pos & struct embeddings

…

Cross-attention

Share weight

Share weight

- Span embeddings are computed using the 
Span Representation Layer 

- Relations types and special tokens 
(<START>, <SEP>, <END>) embeddings are 
learned during training

H ∈ ℝL×D

Figure 2. Illustration of the architecture of our model. (left) The Encoder takes in the input sequence X and generates representations
of the tokens H and spans S. (middle) The Decoder then generates the next token conditioned on the previous tokens and the input
representation H . (right) The vocabulary matrix used for decoding consists of the concatenation of span embeddings S, learned relation
type embeddings, and special token embeddings. This embedding is shared between the input and output embeddings of the Decoder.

(start, end, type) is computed as follows:

S[start, end, type] = WT
type[hstart ⊙ hend] (1)

In this expression, [⊙] represents a concatenation operation,
while hstart and hend denote the representations of tokens at
the start and end positions, respectively. Finally, Wtype ∈
R2D×D is a weight associated with the entity type. The
vocabulary embedding matrix E is formed by stacking all
the span embeddings S, special token embeddings T, and
relation type embeddings R.

Vocabulary Size The size of the vocabulary matrix E ∈
RV×D is V = L×K×C+R+T , where L represents the
sequence length, K the maximum span size, C the number
of entity types, R the number of relations, and T the number
of special tokens (<START>, <END>, and <SEP>). Let’s
take the CoNLL 2004 dataset as an example to illustrate
this. In this dataset, we have the following characteristics:
K = 12, C = 4, R = 5, and T = 3. Considering a
sentence of length 114 (which is the maximum length in the
training set), the resulting vocabulary size would be 5480.
This size is considerably smaller when compared with the
vocabulary size of a typical language model, which usually
hovers around 30,000 distinct tokens.

Decoder modelling We first embed the previous decoder
outputs y1, . . . , yi−1, using the embedding matrix E (we
also add positional and structural embedding, see figure 3):

z1, . . . ,zi−1 = E[y1, . . . , yi−1] (2)

We define z̃i as the hidden state at the last position of the
decoder output sequence obtained by feeding the previous
output embedding and the memory H (for cross-attention)
to the decoder:

z̃i = Decoder(z1, . . . ,zi−1;H)[-1] (3)

Then, to compute the probability distribution over the vo-
cabulary for generating the next token, yi, we employ the
softmax function on the dot product between the dynamic
vocabulary embedding matrix E and zi:

p(yi|y<i,H) =
expET z̃i∑V

k=1(expE
T z̃i)k

(4)

The probabilities generated by this formulation allow the
model to select the appropriate token from the vocabulary
for generating a span, special token, or relation type.

Constrained decoding During inference, we employ con-
strained decoding by enforcing constraints that preserve the
well-formedness of the output sequence and ensure its ad-
herence to the original sequence template. To achieve this,
we apply masking techniques that restrict the generation of
certain tokens during the decoding process.

3. Experiments setup
Datasets We evaluated our models on three benchmark
datasets for joint entity-relation extraction, namely SciERC
(Luan et al., 2018), CoNLL 2004 (Carreras and Màrquez,
2004), and ACE 05 (Walker et al., 2006).
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Models
SciERC ACE 05 CoNLL 2004

ENT REL REL+ ENT REL REL+ ENT REL REL+

DYGIE++ (Wadden et al., 2019) 67.5 48.4 - 88.6 63.4 - - - -

Tab-Seq (Wang and Lu, 2020) - - - 89.5 - 64.3 90.1 73.8 73.6

PURE (Zhong and Chen, 2021) 66.6 48.2 35.6 88.7 66.7 63.9 - - -

PFN (Yan et al., 2021) 66.8 - 38.4 89.0 - 66.8 - - -

TablERT (Ma et al., 2022) - - - 87.8 65.0 61.8 90.5 73.2 72.2

GENERATIVE

HySPA (Ren et al., 2021) - - - 88.9 68.2 - - - -

TANL (Paolini et al., 2021) - - - 89.0 - 63.7 90.3 - 70.0

ASP (Liu et al., 2022) - - - 91.3 72.7 70.5 90.3 - 76.3

UIE (Lu et al., 2022) - - 36.5 - - 66.6 - 75.0 -

LasUIE (Fei et al., 2022) - - - - - 66.4 - 75.3 -

Our model 69.7 51.1 38.6 90.1 68.7 66.2 90.5 78.5 78.5

Table 1. Comparison of our proposed model with state-of-the-art methods on SciERC, ACE 05, and CoNLL 2004 datasets. Results are
reported in terms of Entity (ENT) F1, Relation (REL) F1, and Strict Relation (REL+) F1 scores. The best scores are shown in bold, and
the second-best scores are underlined.

Evaluation metrics Following previous works (Wadden
et al., 2019; Fei et al., 2022), for the NER task, we adopt
a span-level evaluation requiring precise entity boundaries
and type predictions. To evaluate relations, we use two
metrics: (1) Boundaries evaluation (REL) necessitates the
correct prediction of entity boundaries and relations; (2)
Strict evaluation (REL+) additionally demands accurate
entity type prediction. Following previous works, we report
the micro-averaged F1 score.

Hyperparameters Our model employs an encoder-
decoder architecture. We train it for a maximum of 70k steps
using AdamW optimizer. We use learning rate warmup for
the first 10% of training and then decay to 0. The base learn-
ing rates are 3e-5 for the encoder, 7e-5 for the decoder, and
1e-4 for other projecton layers. Our encoders are initialized
with pre-trained transformers (Deberta for general domain
and SciBERT for scientific datasets). The decoder is ran-
domly initialized with 6 layers, 512 model dimension, and
8 attention heads. We apply sentence augmentation by ran-
domly concatenating sentences from the training set. This
allows the model to observe diverse sequence lengths dur-
ing training and avoids premature generation of the <SEP>
token during inference (see Figure 5).

4. Results
Our model demonstrates superior results in the Entity
and REL+ metrics across the SciERC and CoNLL 2004

datasets. In the Entity recognition task for SciERC, our
model achieves the top score of 69.7, surpassing the nearest
contender DYGIE++ by 2.2 points. In the strict evalua-
tion (REL+) on the same dataset, our model again leads
with a score of 38.6, outstripping the next best model, PFN,
by 0.2 points. On CoNLL 2004 dataset, our model excels
once more, achieving an Entity recognition score of 90.5.
This score is the highest, tied with TablERT, indicating the
robustness of our model in identifying and classifying en-
tities accurately. In the more rigorous REL+ metric, our
model dominates with a score of 78.5, marking a significant
lead over the next best score of 76.3 held by ASP. On the
ACE 05 dataset, despite a large parameter model like ASP
scoring higher in REL+, our model exhibits comparable
performance with an Entity recognition score of 90.1, only
1.2 points behind ASP, and a REL+ score of 66.2.

5. Related Works
Joint entity and relation extraction in NLP has tradition-
ally been addressed using pipeline models, leading to error
propagation (Brin, 1999; Nadeau and Sekine, 2007). End-to-
end models have been developed to jointly optimize entity
recognition and relation extraction (Wadden et al., 2019;
Wang and Lu, 2020; Zhong and Chen, 2021). However,
these models still operate as pipelines, overlooking task
interactions.

Recent approaches employ autoregressive models to gen-
erate entities and relations as text (Paolini et al., 2021; Lu
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et al., 2022; Liu et al., 2022; Fei et al., 2022). We propose
an autoregressive transformer encoder-decoder model that
generates a linearized graph instead of plain text, captur-
ing fine-grained entity-relation interactions (Vinyals et al.,
2017). Our model provides robust grounding in the original
text, avoids context detachment, and accurately captures
structural characteristics.

6. Conclusion
In conclusion, our autoregressive text-to-graph framework
for joint entity and relation extraction achieved state-of-
the-art results on benchmark datasets. By generating a lin-
earized graph representation instead of plain text, our model
accurately captured the structural characteristics and bound-
aries of entities and relations. The pointing mechanism
and dynamic vocabulary provided robust grounding in the
original text. The model’s superior performance on entity
recognition and relation extraction metrics demonstrated its
effectiveness in capturing fine-grained interactions.

Limitations
Autoregressive Generation The complexity due to the
autoregressive nature of our model can pose problem in term
of efficiency, which might make it less suitable for real-time
applications.

Scaling Our model might struggle to scale to very long
sequences, especially with datasets that contain a large num-
ber of entity types. This would lead to a substantial increase
in vocabulary size.
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Figure 3. Illustration of our autoregressive generation process for nodes and edges. The process starts with the special token
<START> and continues until the <END> token is generated. To separate the generation of nodes and edges, a special token <SEP>
is used. At each position, the decoder takes in the sum of the embedding of the current token, an absolute position embedding, and a
structure embedding.

A. Appendix
A.1. Ablation studies

Decoder Input embeddings As shown in Figure 3, the decoder of our model takes as input the sum of the current token
embedding, absolute positional embedding, and structural embedding. The absolute positional embedding is randomly
initialized and learned during training. Its goal is to provide positional information to the decoder. The structural embedding
tells the model whether it should generate a node (ENode), a head entity (EHead), a tail entity (ETail), or a relation token
(ERelation). Similarly to absolute position encoding, the structural embedding is randomly initialized and updated during
training.

SciERC ACE 05 CoNLL 2004

Full 38.6 66.2 78.5

- Pos 36.4 66.0 78.3

- Struct 36.1 65.8 78.4

- Both 35.4 65.4 78.0

Table 2. Effect of positional and structural encoding on Relation F1.

The table above (Table 2) shows the ablation of the positional and structural embeddings’ effects. When either or both
types of encoding are removed, performance drops across all datasets, demonstrating their importance. The effect is most
pronounced on the SciERC dataset.

Sequence Ordering Our experimental analysis reveals that the sequence ordering of entity and relation tokens significantly
impacts the performance of our model in generating output sequences for entity and relation extraction. Preserving the
sorted order of these tokens generally leads to improved performance on the SciERC and ACE 05 datasets. However, the
influence of sequence ordering is less pronounced on the CoNLL 2004 dataset.
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Figure 4. Impact of sequence ordering (Ordered and Random) on F1 Relation performance
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Figure 5. Sentence Augmentation
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Figure 6. Nucleus Sampling Top-p
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Figure 7. Number of decoder layers
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