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ABSTRACT

The rapid advancement of large language models (LLMs) has increased the need
for effective task-specific adaptation. Fine-tuning remains the primary approach,
but it often suffers from redundant parameter updates. Existing methods miti-
gate these issues using gradient masks to constrain parameter updates, yet they
largely ignore the interactions among neurons. We observe neuron collabora-
tion, the phenomenon where groups of neurons are more likely to be co-activated
to perform specific tasks. Leveraging this concept, we propose CollabMask
(Collaborative Neuron Mask Fine-tuning), which constructs a co-activation hy-
pergraph to capture neuron collaboration, clusters neurons into functional groups,
and generates dynamic, collaboration- and function-aware gradient masks. By
preserving collaborative patterns and prioritizing functionally important neurons,
CollabMask improves task adaptation while retaining pretrained knowledge.
Experiments on math, coding, and medical benchmarks show up to a 2.4% im-
provement over representative baselines, which demonstrates CollabMask ’s
ability to filter gradient noise and highlights the interpretability value of neuron
collaboration groups.

1 INTRODUCTION

Large language models (LLMs) have advanced rapidly in recent years and are increasingly adapted
to diverse application domains (Bubeck et al., 2023; Achiam et al., 2023; Thirunavukarasu et al.,
2023; Wen et al., 2024). Fine-tuning pretrained models is commonly the dominant strategy for task
specialization and thus remains a central focus of current research (Wang et al., 2024; Hu et al.,
2021).

However, the increasing scale of pretrained models, coupled with the limited size of downstream
datasets, poses significant challenges for fine-tuning (Zhang et al., 2024). The process of updating
billions of parameters with gradients derived from batches of a limited training dataset can introduce
noisy and redundant parameter updates, hindering the model’s fine-tuning performance (Xu et al.,
2021; Zhong et al., 2022; Li et al., 2025).

To mitigate these challenges, recent work has explored constraining parameter updates during fine-
tuning. For instance, Child-Tuning (Xu et al., 2021) and HMT (Hui et al., 2024) apply random
gradient masks to selectively update parameters in MLP layers, while GMT (Li et al., 2025) se-
lects gradient masks based on the average gradient across several batches. LoRA (Hu et al., 2021)
takes a different approach by restricting updates to low-dimensional parameter subspaces. The core
principle of these approaches is to regularize the hypothesis space, thereby reducing overfitting and
preserving pretrained knowledge.

Nevertheless, existing methods have two primary drawbacks. First, they use random masks (Hui
et al., 2024; Xu et al., 2021) or rely on gradient saliency for selecting task-specific gradient masks
(Li et al., 2025). Second, they ignore the explainability of neurons’ behaviors from the base model
(Choi et al., 2024). Consequently, their redundancy reduction strategies remain less task-sensitive
and risk discarding important gradient information. For example, relying solely on high-gradient
signals at the batch level can fail to capture neurons that are not gradient-salient but functionally
relevant to the downstream task in the pretrained model.
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Figure 1: Illustration of our proposed method, CollabMask. First, in the forward pass (top-right
block), we perform explainable neuron clustering based on co-activation patterns. Training samples
are fed into the LLM, and the co-activation of neurons in MLP modules is measured for each layer.
These co-activations are used to construct a hypergraph, which is then projected and clustered into
explainable neuron groups. Then, in the backward pass during fine-tuning, the parameter gradi-
ents ∇wt are combined with clustering results to compute the CollabScore, which quantifies the
relevance of parameters at the current step t. The top-p% entries of CollabScore are selected via
a gradient mask M . Applying the mask enables CollabMask to selectively update functionally
relevant parameters, reducing redundancy compared to the vanilla SFT.

In this paper, we propose CollabMask (Neuron Collaboration Gradient Mask Fine-tuning), a
novel fine-tuning framework that tackles continual learning challenges from an explainability per-
spective. CollabMask measures neuron co-activation triggered by samples from the training
dataset to capture the functional and semantic similarity among neurons, which reflects their
collaborative roles in the downstream task. Based on this task-dependent similarity structure,
CollabMask applies dynamic gradient masks that adapt to each training batch, constraining pa-
rameter updates accordingly. By integrating explainability with dynamic masking, CollabMask
enables targeted fine-tuning ,which more precisely reduces redundant parameter updates.

In detail, CollabMask operates in two phases. In the explainable neuron clustering phase, data
from the downstream task are used to construct co-activation hypergraphs for MLP layers, which
are then projected into collaboration graphs—weighted graphs where vertices represent neurons and
edge weights reflect their tendency to be co-activated. Clustering these graphs yields groups of
neurons with shared semantic roles, describing the spatial locality of neurons, i.e., subsets that are
likely to be useful together for the task. These clusters define task-specific subspaces for fine-tuning.
In the masked tuning phase, CollabMask dynamically combines collaboration relationships with
gradient information to generate batch-specific gradient masks. These masks suppress updates to
less relevant neurons while preserving pretrained collaboration patterns, ensuring that functionally
important but non-gradient-salient neurons are still updated. Together, these two phases improve
fine-tuning by concentrating updates on functionally meaningful neurons.

We conduct extensive experiments on several popular tasks, including medical QA, math, and cod-
ing. CollabMask is evaluated against multiple baselines—vanilla fine-tuning, LoRA, random
masking, highest-gradient masking, and GMT—across three LLMs. On math tasks, CollabMask
improves accuracy by 4.4% over standard SFT and 2.4% over the previous best method. For coding
tasks, it achieves an average improvement of up to 10.5% compared to normal SFT. These results
demonstrate that CollabMask effectively filters gradient noise during fine-tuning and preserves
functionally important neurons, enabling more efficient task adaptation.

Our contribution can be summarized as:
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1. We reveal that existing fine-tuning methods fail to effectively leverage the collaborative
behavior of neurons, leading to inefficient parameter updates during fine-tuning.

2. We propose CollabMask, a method that clusters neurons into functional groups and uses
their collaborative behavior to guide gradient masking. This approach reduces unneces-
sary parameter updates while maintaining neuron collaboration after fine-tuning. We also
provide theoretical insights into the effectiveness of this method.

3. We conduct extensive experiments on multiple benchmarks, demonstrating that our method
outperforms or competes with representative baselines in various tasks. Additionally, we
show that neuron clusters serve as a meaningful explainable unit, opening up potential
avenues for future research through cluster evaluations.

2 RELATED WORK

Finetuning strategy A number of fine-tuning strategies have been proposed to reduce parameter
redundancy in LLMs. LoRA (Hu et al., 2021) applies low-rank adaptation to parameters, effectively
constraining the hypothesis space to a lower-dimensional subspace. In addition, several gradient
masking methods have been developed to restrict gradient updates during training. For example,
Child-Tuning (Xu et al., 2021) and HFT (Hui et al., 2024) assign each parameter a fixed probability
of being updated in each step, while GMT (Li et al., 2025) accumulates gradients and updates only
the top-p% parameters with the largest absolute gradient values.

Neuron-level explainability A major line of research in LLM explainability focuses on understand-
ing the functions and semantics of individual neurons, as well as their influence on model outputs
(Sajjad et al., 2022; Zhao et al., 2023). Neuron attribution methods aim to identify critical neurons
responsible for specific tasks or knowledge retrieval (Yu & Ananiadou, 2024; Lan et al., 2023; Wang
et al., 2022). Another direction is mechanistic interpretability, which studies how groups of neurons
across layers form circuits that explain model behavior or specific decisions (Conmy et al., 2023;
He et al., 2024). Some works attempt to assign global functional explanations. Examples include
linear explanation approaches (Oikarinen & Weng, 2024), neuron graph explanation (Foote et al.,
2023), and using LLMs to describe the semantic functions of neurons (Choi et al., 2024). In addi-
tion, La Rosa et al. (2023) extends single-neuron analysis beyond high-activation cases, proposing
multi-level activation explanations to capture a richer picture of individual neuron behavior.

Model partitioning Several researchers have explored partitioning deep neural networks into clus-
ters. For example, Zhang et al. (2022) cluster the MLP layers of large language models (LLMs)
and transform the architecture into a Mixture-of-Experts (MoE) structure (Shazeer et al., 2017) to
improve inference efficiency. In addition, a line of work has investigated network partitioning to
support distributed training, deployment, and scalability (Ranjan et al., 2025; Akintoye et al., 2022;
Karadag & Topaloglu, 2025).

3 METHODOLOGY

In this section, we provide a comprehensive explanation and the underlying principle of
CollabMask, as shown in Figure 1. First, we measure the co-activation relation among neu-
rons in MLP layers and construct a co-activation hypergraph. Then, the co-activation hypergraph is
projected to the collaboration graph and clustered into neuron groups. Finally, we utilize the clus-
tering result of MLP neurons and the gradient from the backward pass to predict the gradient mask
for parameter updates.

3.1 OVERVIEW OF COLLABMASK

We begin the introduction of CollabMask from the standard stochastic gradient descent (SGD)
algorithm and the masked tuning technique, used in Hui et al. (2024); Xu et al. (2021); Li et al.
(2025). In SGD, parameters are updated in the negative direction of the gradient, under the assump-
tion that the gradient of the batch-wise local gradient approximates the global loss function. Let
wt denote the parameters at step t, L(Bt, wt) as the loss function on batch Bt, and η the learning

3
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rate.The update rule can be described as follows:

wt+1 = wt − η
∂L(batcht, wt)

∂wt
. (1)

Masked optimization methods such as child-tuning (Xu et al., 2021) and GMT (Li et al., 2025) use
a parameter-wise mask M to restrict gradient updates:

wt+1 = wt − η
∂L(batcht, wt)

∂wt
⊙M , (2)

where the mask M is binary,M ∈ {0, 1}|wt|,with |wt| denoting the shape of parameters.

The key advantage of CollabMask lies in its explainable mask selection mechanism that considers
neuron collaboration. Comparing with previous methods, CollabMask adapts gradient selection
by incorporating both batch-level parameter gradients and the collaboration behavior of neuron ac-
tivations. This allows fine-tuning to focus on functionally relevant parameters, thereby reducing the
redundancy in parameter updates more precisely.

3.2 EXPLAINABLE NEURON CLUSTERING

To guide fine-tuning with an interpretable neuron collaboration structure, CollabMask partitions
neurons in each MLP layer into functional clusters based on their co-activation in the base model.
This process consists of three steps: (i) constructing a co-activation hypergraph, (ii) projecting the
hypergraph into a weighted collaboration graph, and (iii) applying spectral clustering. Additionally,
we define a metric evaluating how well the resulting clusters reflect the true co-activation structure.

3.2.1 CO-ACTIVATION HYPERGRAPH CONSTRUCTION

Consider an MLP layer ℓ with Nℓ neurons. For an input token x from the downstream dataset D, let
zℓ,n(x) denote the activation value after the nonlinear activation function (e.g., SiLU in LLaMA) of
neuron n. A binary indicator is defined as

Iℓ,n(x) = 1
[
zℓ,n(x) > 0

]
, Iℓ,n(x) ∈ {0, 1}. (3)

The set of activated neurons for token x forms a hyperedgeE(h)
ℓ (x):

E
(h)
ℓ (x) = {n | Iℓ,n(x) = 1}. (4)

Collecting all such hyperedges yields a co-activation hypergraphHℓ = (Vℓ, Eℓ),where the vertex set
Vℓ = {1, 2, . . . , Nℓ} is the set of neurons and the hyperedge setEℓ = {E(h)

ℓ (x) | x ∈ D} is the set
of hyperedges.

3.2.2 PROJECTION TO COLLABORATION GRAPH

Following Li & Milenkovic (2017), we project the hypergraph Hℓ onto a weighted undirected graph
Gℓ = (Vℓ, Eℓ), referred to as the collaboration graph. For a pair of neurons i and j, the edge weight
is defined as:

Eℓ(i, j) =
∑

i,j∈E
(h)
ℓ (x)∈Eℓ

1

|E(h)
ℓ (x)|α

R(x), (5)

where E(h)
ℓ (x) is the hyperedge induced by token x, |E(h)

ℓ (x)| denotes its cardinality, α is a scaling
parameter, and R(x) is a token reweighting factor. Intuitively, Eℓ(i, j) measures the strength of col-
laboration between neurons i and j, adjusted for the size of co-activation and token informativeness.

The parameter α is used to control the relative contribution of hyperedges of different sizes. When
0 < α < 2, the method emphasizes high-degree hyperedges that represent widespread co-activation
patterns, while α > 2 gives greater weight to low-degree hyperedges. In our experiments, we set
α = 2.5 to strike a balance: prioritizing tighter co-activation patterns while also retaining informa-
tion from broader contexts. More detailed reasoning for this choice is provided in A.1.
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Token-frequency reweighting A naive projection tends to overemphasize frequent tokens (e.g.,
special tokens such as eos token), which often dominate the co-activation hypergraph yet contribute
minimally to task-specific semantics. To mitigate this bias, we introduce a rank-based reweighting
factor R(x). Specifically, we first compute token frequencies over the training dataset and rank
tokens in ascending order of frequency. Each token x is then assigned a rank rank(x), and the
reweighting factor is defined as R(x) = rank(x)β . In the following experiments, we set β = 1.3.
This formulation ensures that medium-frequency tokens, which are typically more informative for
the downstream task, have a proportionally greater influence on the construction of the collaboration
graph. Details explained at A.2

3.2.3 SPECTRAL CLUSTERING

We then apply spectral clustering to the collaboration graph Gℓ. Let Aℓ be the adjacency matrix of
Gℓ with entries Eℓ(i, j), and let Dℓ be the corresponding diagonal degree matrix. The normalized
Laplacian of Gℓis

Lℓ = I −D
− 1

2

ℓ AℓD
− 1

2

ℓ . (6)

Following the spectral clustering procedure, we compute the K leading eigenvectors of Lℓ to embed
the neurons into a low-dimensional space. The resulting embeddings are then clustered by recur-
sively calling the k-means algorithm until the desired effectiveness of clustering is reached. The
resulting partition of neurons,

Cℓ = {C1,ℓ, C2,ℓ, . . . , Ckℓ,ℓ},
⋃
c

Cc,ℓ = Vℓ, (7)

defines clusters of neurons that tend to co-activate. Equivalently, the clustering result can be ex-
pressed in the co-cluster relation matrix C ∈ {0, 1}Nℓ×Nℓ , where

Cℓ(i, j) =

{
1, if ∃Cm,ℓ ∈ Cℓ, i, j ∈ Cm,ℓ

0, otherwise
, (8)

This matrix explicitly encodes whether a pair of neurons belongs to the same cluster. Example
results and analysis in A.3.

3.3 GRADIENT MASK SELECTION

At each optimization step, we construct a binary mask for each parameter block in MLP layers,
where the mask has a pass rate of p%. The mask determines which parameters are updated in the
current step. 1 To guide mask selection, we define the CollabScore Collab-S(wt) that measures the
relevance of parameters wt at step t,

Collab-S(wt) = (1− λ) · |∇wt
L|+ λ ·A(wt), (9)

where A(wt) is the collaboration activation, and λ is the factor that controls the contribution of
collaboration activation. It measures the average activation level of neuron clusters and is defined as

A(wt) = |∇wtL| ·Norm(Cℓ), (10)

where Norm is the row-wise normalizing operation. Finally, the top p% of Collab-S(wt) scores
are assigned a mask value of 1, with the rest set to 0. This procedure yields an explainable, dynamic,
and collaboration-aware gradient mask for parameter updates.

4 EXPERIMENTS

We conduct extensive experiments to demonstrate that CollabMask effectively filters out gradient
noise and enhances overall fine-tuning performance.

1By parameter block, we refer to weight matrices such as up proj, down proj, and gate proj in LLaMA.
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4.1 EXPERIMENT SETTING

Datasets. To evaluate the effectiveness of CollabMask, we consider three representative down-
stream tasks: mathematics, coding, and medical question answering. For the mathematics task, we
fine-tune and evaluate on GSM8K (Cobbe et al., 2021). For the coding task, we use CodeAlpaca
(Chaudhary, 2023) for fine-tuning and evaluate with the toolkit Liu et al. (2023) on HumanEval
(Chen et al., 2021) and MBPP (Austin et al., 2021). For the medical question answering task, we
fine-tune on Medical-o1-Reasoning-SFT (Chen et al., 2024) and evaluate on PubMedQA (Jin et al.,
2019).

Base models. We select large language models from three different families: DeepSeek
(DeepSeek-AI, 2025), Mistral (Jiang et al., 2023), and Qwen (Team, 2025). Specifically, we use
DeepSeek-R1-distill-llama-8B, Mistral-v0.1-7B, and Qwen3-8B. All models are base versions with-
out prior task-specific fine-tuning.

Baselines. To assess the effectiveness of CollabMask, we compare it against the following fine-
tuning methods:

1. SFT: Standard supervised fine-tuning.

2. LoRA: fine-tuning with LoRA (Hu et al., 2021).

3. Random: child-tuning (Xu et al., 2021) and half fine-tuning (Hui et al., 2024). Random
gradient masking.

4. Highest: Updating only the top p% of gradients in each step.

5. GMT: Gradient-Masked Fine-Tuning (Li et al., 2025), which accumulates gradients over
batches and updates only the top p%.

For fairness and breadth, we fine-tune all models on all tasks under two mask-ratio p settings. For
CollabMask, we additionally evaluate different combinations of mask ratio p and cluster activa-
tion weight λ.

4.1.1 EXPERIMENT RESULTS

Table 1 shows the performance of three models under various fine-tuning and gradient-mask-
selection strategies on medical QA and math tasks, while Figure 2 presents the results of the same
fine-tuning techniques applied to two of the models on coding tasks.

Medical QA. For the Medical QA task, our proposed CollabMask consistently outperforms
naive neuron-selection strategies and achieves competitive performance against GMT across three
distinct LLMs. At λ = 0.5, CollabMask achieves 81.5 on Deepseek-llama-8B, 77.5 on Mistral-7B,
and 85.5 on Qwen3-8B, yielding an average of 82, which surpasses both SFT (80.0) and LoRA
(81.2) as well as random and highest-activation selection (79.3 and 79.2). Increasing λ to 0.7 pro-
vides marginal gains for some models (e.g., Mistral-7B) but slightly reduces performance on others
(e.g., Deepseek-llama-8B), indicating that moderate collaboration-based neuron selection achieves
the best balance. Overall, these results highlight that CollabMask effectively leverages co-activation
patterns to improve model performance, approaching the performance of GMT.

Math. In math tasks, CollabMask consistently demonstrates superior performance across dif-
ferent LLMs. As shown in the table, with λ = 0.5, CollabMask achieves the highest scores
on Deepseek-llama-8B (47.3) and Qwen3-8B (61.3), while remaining competitive on Mistral-7B
(45). Compared to standard SFT and LoRA baselines, which achieve 45/40.7 on Deepseek-llama-
8B, 37/35.3 on Mistral-7B, and 58.3/51.3 on Qwen3-8B, CollabMask consistently improves re-
sults. Against other benchmarks, including Random, Highest, and GMT, CollabMask shows
notable gains: for example, it surpasses GMT by 3.4% on average across models. When varying
λ to 0.7, performance remains stable, indicating robustness to hyperparameter changes. Overall,
CollabMask achieves an average score of 51.2 across the three models, reflecting its ability to
effectively leverage collaborative masking to enhance mathematical reasoning in LLMs.
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Table 1: Accuracy results (%) of fine-tuned models in medical QA and math tasks. The best results
are bold, and best in CollabMask is underlined. |θ| denotes the total number of parameters, a
measure of the model’s size. p is the gradient mask pass rate, and λ is the collaboration activation
contribution factor, both defined in 3.3

Medical QA

Model |θ| SFT LoRA p Random Highest GMT CollabMask
λ = 0.5 λ = 0.7

Deepseek-llama 8B 81.0 77.5 0.5 79.0 80.0 80.0 81.5 79.0
0.7 79.5 79.0 82.0 79.0 79.0

Mistral 7B 72.5 79.5 0.5 71.0 72.5 77.0 77.5 77.5
0.7 72.0 69.0 79.0 78.0 76.0

Qwen3 8B 86.5 86.5 0.5 86.5 82.5 88.0 85.5 85.0
0.7 85.0 85.0 87.0 85.0 85.0

Average – 80.0 81.2 – 79.3 79.2 83.0 82.0

MATH

Model |θ| SFT LoRA p Random Highest GMT CollabMask
λ = 0.5 λ = 0.7

Deepseek-llama 8B 45.0 40.7 0.5 44.5 40.0 40.0 47.3 47.3
0.7 44.7 43.7 35.7 45.3 44.0

Mistral 7B 37.0 35.3 0.5 41.3 38.3 46.3 45.0 42.7
0.7 44.7 38.3 50.7 43.0 39.3

Qwen3 8B 58.3 51.3 0.5 53.0 52.0 57.0 57.0 57.3
0.7 57.0 55.3 46.7 61.3 60.3

Average – 46.8 42.4 – 48.8 45.8 47.8 51.2

Coding. In coding tasks, CollabMask demonstrates model-dependent improvements. On
DeepSeek-R1-distill-llama-8B, all methods—including normal SFT, Random, Highest, GMT, and
CollabMask with λ = 0.5 or 0.7—achieve performance similar to SFT, with minor gains
observed on HumanEval (0.6) and HumanEval+ (1.2), while mbpp and mbpp+ show negligible
changes. In contrast, on Mistral-7B, CollabMask consistently outperforms normal SFT across
all benchmarks, with notable gains on mbpp (12.7/13.5) and mbpp+ (7.0/11.4), yielding an average
improvement of 10.5%. Although GMT sometimes attains slightly higher scores, CollabMask
achieves comparable performance while maintaining robustness across different λ values, highlight-
ing its effectiveness in enhancing coding ability.

5 DISCUSSION

5.1 TASK-SPECIFICITY OF COLLABORATION GRAPH.

We evaluate the task specificity of neuron clustering by measuring the similarity between different
clusterings of the same LLM. Clustering on the same dataset, even across different subsets, pro-
duces highly consistent results across all layers, demonstrating the stability of explainable neuron
clustering in capturing semantic features. In contrast, clustering across different datasets yields sim-
ilar results only in the early layers but diverges in the later ones, suggesting that shallow layers
primarily encode general syntactic functions, whereas deeper layers capture task-specific semantic
features, consistent with findings from the layer-wise explainability research (Chuang et al., 2024).
Evaluation metric and detailed results stated in A.4.2.

5.2 LIMITATIONS

The inconsistent performance of CollabMask compared to prior methods may stem from sev-
eral factors. First, similar to previous methods, CollabMask still heavily uses gradient saliency
in mask selection, even though with neuron collaboration relation to enhance it. Second, the co-
activation behavior of neurons is measured at the token level, while the loss function is optimized at
the batch level. This mismatch may reduce the effectiveness of the collaboration graph in guiding the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

51.2
45.1 43.4

37

52.4
46.3 44.7

38.1

53.7
47.6 47.1

40.7

50
45.1 45.8

38.9

53.7

46.3 43.9
37.3

51.8
46.3 43.4

36.5

0

10

20

30

40

50

60

Human Eval Human Eval + mbpp mbpp+

DeepSeek-R1-distill-llama-8B

Normal Random_0.5 Highest_0.5 GMT_0.5 CollabMask_0.5_0.5 CollabMask_0.5_0.7

24.4
19.5

34.9
29.6

33.5

25.6

47.1

38.9

29.9
24.4

49.7

41
36.6

29.9

51.9

42.3

31.7

23.8

47.6

38.6
33.5

27.4

48.4

41

0

10

20

30

40

50

60

Human Eval Human Eval + mbpp mbpp+

Mistral-v0.1-7B

Figure 2: Pass@1 result for coding tasks.

gradients of parameters. Third, the recursive clustering process applied to the collaboration graph
can introduce substantial noise into the final mask selection. Employing soft clustering methods or
directly applying the collaboration graph to gradients without clustering may mitigate this issue and
improve fine-tuning performance.

CollabMask introduces computational overhead due to co-activation hypergraph construction,
graph projection, and spectral clustering steps. In addition, our current method focuses on MLP
layers; neuron collaboration relations within attention modules remain underexplored. Another lim-
itation is that we treat layers as independent, whereas cross-layer neuron collaborations and causal
relations likely exist, as suggested by mechanistic interpretability research (Conmy et al., 2023).

5.3 FUTURE DIRECTIONS

Future work may explore several directions. First, CollabMask could be extended to preference
optimization frameworks, such as Direct Preference Optimization (DPO) (Rafailov et al., 2023).
Second, the framework may be adapted for mixture-of-experts (MoE) models and extended to atten-
tion modules. Finally, exploring continuous representations of neuron collaboration could provide a
more flexible mechanism for integrating neuron collaboration relations into fine-tuning.

6 CONCLUSION

In this paper, we introduced CollabMask, a fine-tuning method that leverages neuron collabo-
ration—groups of neurons co-activating for task-specific functions—to build collaboration-aware
gradient masks. By identifying functionally important parameter groups from pretrained models,
CollabMask preserves collaboration patterns, reduces redundant updates, and mitigates overfit-
ting, leading to improved performance and generalization. Experiments show that CollabMask
outperforms normal SFT by up to 10.5%. Future work will focus on obtaining more stable and in-
terpretable neuron groups and extending neuron collaboration analysis to attention mechanisms and
mechanistic interpretability.

8
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7 REPRODICIBILITY STATEMENT

All experiments in this paper are implemented in PyTorch 2.8 with CUDA 12.4 on NVIDIA A100
GPUs. The codebase, including training and evaluation scripts, will be made publicly available, and
an anonymous link will be provided during the review process.

Models are trained using the Adam optimizer with a learning rate of 1e-5, batch size 32, weight
decay 0.01, and a maximum of 3 epochs, with validation performed at each epoch and the best
model retained as the final model. For all datasets, reordering is disabled to ensure reproducibility.
For the MathQA and math tasks, we use 3,000 samples for training and 1,000 for validation. For the
coding task, 4,000 samples are used for training and 1,000 for validation.

The DeepSeek-R1-distilled-llama-8B and Mistral-7B models are fine-tuned using 4 A100 GPUs,
while the Qwen3-8B model is fine-tuned on 6 A100 GPUs. Each training epoch takes approximately
20 minutes. For the explainable neuron cluster experiments, hypergraph projection, eigenvector
approximation, and clustering take around 5 minutes per layer.
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A APPENDIX

A.1 THEORETICAL FOUNDATION OF PROJECTION TO COLLABORATION GRAPH

Following the Inhomogeneous Hypergraph Clustering (InH) algorithm by Li & Milenkovic (2017)
and its related notation, we demonstrate the consistency of our projection method in CollabMask
pipeline and highlight its advantage in handling hyperedges with small degrees.

A.1.1 PROJECTION OF HYPERGRAPHS IN INH

In InH, it is proved that using the prescribed method, a hypergraph can be projected onto a latent
graph, and clustering on this latent graph can approximate the clustering on the original hypergraph.

Formally, let H = (V,E) denote a hypergraph. For each hyperedge (e, we), the cost of cutting e
into two disjoint subsets S ⊂ e and e \ S is given by we(S). A weight function we(·) is called
consistent if it satisfies we(S) = we(e \ S).
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For each InH-hyperedge (e, we), the InH algorithm requires a projected complete subgraph Ge =
(V (e), E(e), w(e)) to represent (e, we), where

V (e) = e, E(e) = {{v, ṽ} | v, ṽ ∈ e, v ̸= ṽ}. (11)

The goal is to find edge weights w(e)
vṽ such that

we(S) ≤
∑

v∈S,ṽ∈e\S

w
(e)
vṽ ≤ β(e)we(S), (12)

where β(e) is a constant.

After solving for w(e), InH constructs a complete weighted graph G = (V,Eo, w), where V is the
set of vertices of the hypergraph, Eo is the complete set of edges, and the edge weights are computed
as

wvṽ =
∑
e∈E

w
(e)
vṽ . (13)

A.1.2 IMPLEMENTATION OF PROJECTION IN COLLABMASK

In CollabMask, when defining the cost of cutting a co-activation hypergraph, it is natural to
use a non-constant cost function so that cutting out a small fraction of a hyperedge incurs a lower
penalty, while keeping the majority of vertices in the same cluster. We define the cost function of a
co-activation hyperedge, which is obviously consistent by definition, as follows,

we(S) =
|S| · (|e| − |S|)

|e|α
, (14)

where α is a constant parameter that controls how the hyperedge degree affects clustering, thereby
prioritizing low-degree hyperedges in subsequent steps of the CollabMask pipeline. When |S| =
|e|
2 , the maximum cost of a hyperedge is reached:

max we(S) =
1

4|e|α−2
. (15)

Under the current setting α = 2.5, this becomes

max we(S) =
1

4
√

|e|
, (16)

which emphasizes hyperedges of smaller degree.

The edge weights in the projected graph are set as w
(e)
vṽ = 1

|e|α , which satisfy the approximation
requirement in equation 12: ∑

v∈S,ṽ∈e\S

w
(e)
vṽ =

|S| · (|e| − |S|)
|e|α

= we(S). (17)

Finally, the projection graph is constructed following equation 13, yielding the collaboration graph
(similar to equation 5, but without token reweighting):

Eℓ(i, j) =
∑

i,j∈E
(h)
ℓ (x)∈Eℓ

1

|E(h)
ℓ (x)|α

. (18)

A.2 TOKEN-FREQUENCY REWEIGHTING

In linguistics, the frequency of words is often analyzed as a function of their frequency rank, follow-
ing Zipf’s law (Zipf, 1949). Empirically, words serving primarily syntactic purposes (e.g., “the”)
typically appear among the highest-frequency ranks. In LLMs, a similar imbalance occurs: the
padding token often dominates the input, sometimes accounting for nearly half of the tokens,
due to the usual ’s padding-to-max-length strategy.
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As a result, most hyperedges E(h)
ℓ (x) in the co-activation hypergraph are induced by high-frequency

tokens that contribute relatively little semantic information. To mitigate this bias, we introduce a
token-frequency-based reweighting factor

R(x) = rank(x)β , (19)
where β = 1.3 in the current implementation, and additionally remove hyperedges induced by
extremely high-frequency tokens (in our current setting, the top 3 tokens).

0 5000 10000 15000 20000 25000 30000

In
flu

en
ce

beta=0

0 5000 10000 15000 20000 25000 30000

beta=1

0 5000 10000 15000 20000 25000 30000

beta=1.3

0 5000 10000 15000 20000 25000 30000
Token Rank

beta=1.5

Figure 3: The influence of tokens with different frequency under different reweighting factor β.The
dark area is the minimum token rank range that covers more than 60% of the total influence under
the β setting. Measured in Medical-o1-reasoning-SFT-en (Chen et al., 2024).

Here, the influence of a token is measured as the normalized product of its frequency and its
reweighting factor. This adjustment reduces the dominance of high-frequency, low-semantic tokens
while amplifying the relative contribution of medium- and low-frequency tokens. The resulting
influence distribution across tokens of different frequencies is illustrated in Figure 3.

A.3 ADDITIONAL RESULTS OF SPECTRAL CLUSTERING

During spectral clustering, we use a k-nearest-neighbor approximation of the adjacency matrix of the
projected collaboration graph. This sparsification accelerates the computation of the eigenvectors of
the corresponding normalized Laplacian. We record the eigenvector embeddings of the Laplacian
and subsequently reduce their dimensionality to 2D using the t-SNE method for visualization. The
resulting embeddings and clustering results are shown in Figure 4.

As observed, the neuron embeddings measured via co-activation do not exhibit clear or strictly
separable clusters. Furthermore, enforcing clustering to carry at least 4 bits of information by re-
cursively partitioning the largest clusters can introduce abrupt changes in cluster assignments for
relatively small variations in the embeddings. This sensitivity may lead to noisy neuron groupings
and, consequently, degrade the final fine-tuning performance.

A.4 EVALUATION OF CLUSTERING

A.4.1 EVALUATION OF CORRESPONDENCE TO CO-ACTIVATION

To evaluate whether a clustering Cℓ faithfully reflects the neuron collaboration structure, we define
the following conditional probability metric:

Score(Cℓ, x) = Pr[Cℓ(i) = Cℓ(j) | Iℓ,i(x) = 1, Iℓ,j(x) = 1] , (20)
where x is a token sampled from the unseen section from the same dataset. This probability can be
equivalently expressed in closed form as

Score(Cℓ, x) =
∑kℓ

c=1 |HEℓ(x) ∩ Cc,ℓ|2

|HEℓ(x)|2
. (21)

This measures the probability that two simultaneously activated neurons fall into the same cluster.

As a baseline, the expected probability under random assignment (the null model) can be computed
as

Null(Cℓ) =
kℓ∑
c=1

|Cc,ℓ|2

N2
ℓ

. (22)
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(a) Layer-1 embedding (b) Layer-1 clustering

(c) Layer-30 embedding (d) Layer-30 clustering

Figure 4: Example results from spectral clustering of deepseek-R1-distilled-llama-8B on dataset
GSM8k

(a) Cluster evaluation for CollabMask. (b) Evaluation for clustering by parameter

Figure 5: Cluster evaluation results

In Figure 5, we present an example evaluation of how clustering corresponds to co-activation. The
red dashed line represents the Null benchmark defined in Equation 22, and the blue dashed line rep-
resents the average probability over input tokens. In Figure 5a, we show the clustering evaluation
result of layer 14 of deepseek-R1-distilled-llama-8B, without enforcing recursive clus-
tering. In contrast, a baseline method Figure 5b presents the evaluation result for the correspondence
between co-activation and clustering based on parameters. In this setting, neurons are clustered us-
ing the k-means algorithm with cosine similarity as the distance metric, applied to their associated
parameter vectors in the up proj parameter block.
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Note that the two graphs have different x-axis scales. Overall, the results demonstrate that ex-
plainable neuron clustering more accurately reflects neuron collaboration behaviors in the given
downstream dataset.

A.4.2 EVALUATION OF TASK SPECIFICITY

We also evaluate how the neuron clustering results reflect task specificity. To quantify this, we define
a metric that measures the similarity between two partitions of the same neuron set. Specifically,
we randomly sample two distinct neurons and compute the probability that the two clustering re-
sults agree on whether the pair is co-clustered or not co-clustered. Formally, let C1 and C2 be two
partitions of the neuron set V .

Using this metric, we compare the difference between Case 1 and the following scenarios:
1. deepseek-llama-8b clustered on medical-o1-reasoning-sft, 2. the same model
clustered on gsm8k, and 3. the same model clustered again on medical-o1-reasoning-sft,
but using a different subset of samples.
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Figure 6: Similarity between partitions .

As shown in Figure 6, the similarity between case 1 and case 3 remains close to 1 across all layers,
indicating that the clustering results effectively and stably capture the dataset’s semantic features.
The similarity between case 1 and case 2 is high in the early layers but diverges substantially in the
later layers, suggesting that neuron clustering becomes increasingly task-specific in deeper layers.
This finding supports the view that shallow layers in LLMs primarily encode syntactic functions
(Chuang et al., 2024), resulting in minimal differences across datasets, while deeper layers capture
semantic functions, yielding distinct clustering outcomes across datasets but consistent results within
subsets of the same dataset.

A.5 USE OF LLMS

We used large language models (LLMs) to assist with the preparation of this manuscript. Specifi-
cally, LLMs were employed to help with text editing, grammar refinement, and improving readabil-
ity of certain sections. All technical ideas, experimental design, implementation, and analysis were
conducted by the authors.
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