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ABSTRACT

The Feynman-Kac Operator Expectation Estimator (FKEE) is an innovative
method for estimating the target Mathematical Expectation EX∼P [f(X)] with-
out relying on a large number of samples, in contrast to the commonly used
Markov Chain Monte Carlo (MCMC) Expectation Estimator. FKEE comprises
diffusion bridge models and approximation of the Feynman-Kac operator. The
key idea is to use the solution to the Feynmann-Kac equation at the initial time
u(x0, 0) = E[f(XT )|X0 = x0]. We use Physically Informed Neural Networks
(PINN) to approximate the Feynman-Kac operator, which enables the incorpo-
ration of diffusion bridge models into the expectation estimator and significantly
improves the efficiency of using data while substantially reducing the variance.
Diffusion Bridge Model is a more general MCMC method. In order to incorpo-
rate extensive MCMC algorithms, we propose a new diffusion bridge model based
on the Minimum Wasserstein distance. This diffusion bridge model is universal
and reduces the training time of the PINN. FKEE also reduces the adverse impact
of the curse of dimensionality and weakens the assumptions on the distribution
of X and performance function f in the general MCMC expectation estimator.
The theoretical properties of this universal diffusion bridge model are also shown.
Finally, we demonstrate the advantages and potential applications of this method
through various concrete experiments, including the challenging task of approxi-
mating the partition function in the random graph model such as the Ising model.

1 INTRODUCTION

1.1 BACKGROUND

Markov Chain Monte Carlo (MCMC) is a prevalent computational method used in fields such as
statistics, machine learning, and computational science. It is primarily applied for sampling from
complex distributions, Bayesian inference, and optimization (Hesterberg (2002); Ahmed (2008)).
MCMC algorithms are typically divided into two categories: those that sample from the target
distribution and those that estimate the statistical characteristics of the target distribution, such as
the expectation. While alternative methods to traditional MCMC samplers, like generative models
(Song & Ermon (2019)) and diffusion models (Ho et al. (2019)), have been explored, MCMC re-
mains the standard for expectation estimation. However, traditional MCMC estimators, based on
the law of large numbers (LLN) and the ergodic theorem of Markov chains (ETMC), face limita-
tions in data efficiency and impose complex constraints on the distribution P and performance
function f . Thus, developing algorithms that overcome these limitations by integrating modern
sampling methods with deep learning is of great importance.

1.2 MOTIVATION

Advantages of MCMC algorithm: MCMC algorithms are effective for sampling from target dis-
tributions and are accompanied by two types of expectation estimators. The first type, based on
LLN, uses averages from multiple samples at the terminal time of the Markov chain. The second
type, based on ETMC, averages values along the path of the Markov chain. These methods utilize
statistical principles effectively, particularly for high-dimensional distributions, mitigating the curse
of dimensionality in integral approximations.
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Disadvantages of MCMC algorithm: Despite their advantages, MCMC algorithms are not optimal
for expectation estimation. The efficiency of MCMC estimators depends on the distribution P and
the function f . Different MCMC algorithms are required for different P , and due to burn-in peri-
ods, MCMC algorithms often waste many points. Additionally, the sample size N shoule be large
enough to achieve accurate estimates, leading to variances on the order of O(

√
N). Quasi-Monte

Carlo methods offer variances on the order of O(N 1
2+δ) with δ ≤ 1

2 (Caflisch (1998)), but this di-
minishes efficiency and introduces bias. Error probabilities can be estimated through concentration
inequalities (Lugosi (2003)), but these depend on the Lipschitzian norm of f .

Estimating mathematical expectations is crucial in both machine learning and statistics. A unified
expectation estimator is theoretically and practically significant. Therefore, we focus on two essen-
tial questions:

(A) Is it possible to unify most existing MCMC algorithms into a cohesive framework to create a
universal sampler for expectation estimation?

(B) How can we develop a universal expectation estimator that leverages samples from univer-
sal samplers for accurate expectation estimates without relying on post-processing or specialized
methods?

For the first question: We propose the following solutions. we know the Markov model is deter-
mined by the transfer density of one step. The transition density function associated with the discrete
Markov chain generated by the MCMC algorithm can be interpreted as the transition density func-
tion of a specific stochastic differential equation (SDE) of Markov properties. In this study, we refer
to this SDE as the diffusion bridge model. This encompasses a broad class of SDEs that share
identical transition densities with the Markov chains in the MCMC algorithm. The distribution of
the terminals in such SDEs aligns with a predefined target distribution, which can take the form of
discrete points or a probability density function. Moreover, the starting point of this SDE can be
either arbitrary or fixed.

Figure 1: The expectation is obtained by sim-
ulating the SDE and then solving the PDE

For the second question: In the context of the
diffusion bridge model, we can view the expec-
tation estimation problem as a decoding problem.
It is easy to observe that MCMC is not the opti-
mal decoding method because a substantial num-
ber of burn-in samples go to waste when estimating
mathematical expectations by using the MCMC al-
gorithm. However, these samples harbor valuable
information, specifically pertaining to the gradient
information of the drift and diffusion coefficients
along the paths derived from the SDE. We capi-
talize on this information by integrating it through
the Physics-Informed Neural Network (PINN) ap-
proach (Sharma & Shankar (2022); Raissi et al.
(2019); Yuan et al. (2022)). This process, akin to
approximating the Feynman-Kac Operator, is re-
ferred to as solving the Feynman-Kac model. No-
tably, this approximation is meshless and effec-
tively overcomes the curse of dimensionality. By
amalgamating different combinations of the aforementioned models, we derive the Feynman-Kac
Operator Expectation Estimator (FKEE) in Figure 1. In the framework of FKEE, the diffusion
bridge model can extend the broader category of distributions P , while the Feynman-Kac model can
extend the broader category of performance functions f .

Our contributions can be summarized as follows:

• Expanding the Scope of Expectation Estimators: Our approach enhances the efficiency
of Markov chains, requiring fewer assumptions and not relying on LLN or the Markov
ergodic theorem.

• Introducing a more versatile diffusion bridge model: We introduce a highly adaptable
diffusion bridge model. This model not only allows for the specification of target distribu-
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tions at terminal moments but also facilitates the reconstruction of the entire Markov chain.
It can be employed in conjunction with the Feynman-Kac model for expectation estimation,
as well as independently for resampling target distributions to estimate expectations.

• Impacts on various fields combined with diffusion model: We offer an alternative in-
terpretation of diffusion models and mathematical expectation computations, where the
diffusion model functions as the encoder and FKEE serves as the decoder. Existing dif-
fusion models provide a powerful paradigm for learning data distributions, broadening the
category of distributions P , while FKEE broadens the category of performance functions
f . This enhances the utility of a broad class of existing diffusion models (based on SDE
samplers), leading to various interesting applications in fields such as statistics and machine
learning.

2 MAIN METHODOLOGIES

2.1 NOTATIONS

Let µt represent the distribution of Xt and µ̂t =
1
N

∑N
i=1 δXi

t
denote the empirical distribution of

Xi
t , 1 ≤ i ≤ N , where δX is the Dirac measure at X . Ai,j denotes the elements of row i and column

j of the matrix A, diag(A) represents the diagonal matrix of matrix A and diag(A)i denotes the
i-th element on the main diagonal of the diagonal matrix of A. C2 denotes the space of continuous
functions with second order derivatives. Denote Y ∼ P := µ∗ by the target distribution.

2.2 DIFFUSION BRIDGE MODEL

The sampling methods mentioned in related work can be generalized into a common framework: for
most MCMC sampling methods, we can consider using a Markov-type SDE as follows:

dXt = b(Xt, t)dt+ σ(Xt, t)dWt, X0 = x0, (1)

where b : Rd× [0, T ]→ Rd is a vector-valued function , σ : Rd× [0, T ]→ Rd×d is a matrix-valued
function, and {Wt}t≥0 is a Brownian motion taking values on Rd.

For a non-stationary diffusion model, these coefficients b and σ must satisfy certain regularity con-
ditions to ensure the existence and uniqueness of a strong solution. For diffusion models with a
stationary distribution, the uniqueness of the stationary distribution must hold. For a given distribu-
tion P or a set of discrete points from P , we encode the information of P into (X0, b, σ, T ). This
encoding algorithm should ensure that the distance between µT and P is sufficiently small. The
encoding loss to be minimized is:

Le =W2(µT , µ
∗), (2)

where µT is the measure of solution of SDE (1) and W2 is 2-Wasserstein distance. The encoding
loss Le consists of two main components: structural loss and discretization loss. Structural loss is
typically induced by the accuracy of (b, σ), and discretization loss is usually due to the need for a
sufficiently large T and the numerical discretization of the SDE. According to the triangle inequality,
the error can be decomposed as:

Le ≤ W2(µT , µ̄T )︸ ︷︷ ︸
discretization loss

+W2(µ̄T , µ
∗)︸ ︷︷ ︸

structural loss

, (3)

where µ̄T is the distribution of numerical solution. The encoding loss depends on whether the
distribution P has an explicit density.

Specifically, if the density of P is known, the structural loss has two components: the approximation
error of (X0, b, σ) itself and the asymptotic error. The asymptotic error exists only in certain methods
when the target distribution is the stationary distribution, such as in Langevin MCMC, where the
error of (X0, b, σ) is zero and the asymptotic error decreases exponentially. However, discretization
loss arises from the SDE solver.

If the density of P is unknown, the constructed SDE will exhibit both types of losses. The core
focus of the diffusion model is to minimize these two losses. The error in (b, σ) is controlled by a
specific loss function, while discretization loss is controlled by minimizing T as much as possible
and using a high-precision SDE solver.
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In this paper we propose a diffusion bridge model that minimizes the encoding loss through the use
of parameterized tuples (X0, b, σ). This method is similar to the Neural SDE (Tzen & Raginsky
(2019); Kidger et al. (2021)). Specifically, we use the following Neural SDE:

dXt = bθ1(Xt, t)dt+ σθ2(Xt, t)dWt, X0,θ3 = x0,θ3 , (4)
where Pθ = (X0,θ3 , bθ1 , σθ2) is a neural network, typically a multi-layer perceptron (MLP) with the
tanh activation function. Here, the time T and time step h are given in advance for the SDE solver.
Diffusion bridge model matching means that we use neural network methods to find the appropriate
(X∗

0 , b
∗, σ∗) such that the distribution of XT at the moment T is just the given target distribution

P . We need to categorise the target distribution to determine the matching method. This depends on
whether the target distribution has an explicit probability density function.

Encoding loss for diffusion bridge models

We examine the error of the diffusion bridge model. Unlike other design loss functions, we aim
to control both errors in loss (3) simultaneously. Different loss functions correspond to different
problems, necessitating the classification of the target distribution.

Only a few discrete observations: We propose a matching algorithm that deals with only a subset
of discrete points from the target distribution P . Specifically, we employ a diffusion bridge model to
parameterize (X0,θ, bθ, σθ) using a neural network. Given the empirical distribution of the target µ̂∗,
we simulate N trajectories of Brownian motion and use the Euler-Maruyama method (Platen (1999))
to obtain the solution X̄T . Subsequently, we match the obtained solutions to the given points and
utilize the Wasserstein distance loss function:

Pθ
∗ = argmin

Pθ∈Θ
W2(ˆ̄µT , µ̂), (5)

where ˆ̄µT (and µ̂ respectively) is the empirical distribution of independent identical copies of X̄T

(and µ∗ respectively). Given T and h, we can estimate the discretization loss and control the struc-
tural loss through the Wasserstein distance loss. This method has two additional applications:

(i) Resample (Generate) samples: For a set of high-quality samples (not within the burn-in period
of MCMC), this method can be used for resampling. By matching a diffusion bridge model to the
given points, we can simulate the SDE to obtain more samples. High-quality samples can also be
obtained through other methods, such as Perfect Sampling (Djurić et al. (2002)).

(ii) Matching Markov chains and generating more Markov chains quickly: For trajectories Y N
i of

N independently run Markov chains obtained from MCMC algorithms Yi ∼ µ∗
ti where i ≤ M ,

we aim to find a set of (X0, b, σ) such that X̄ti and Yi are close at M moments in the sense of
the Wasserstein distance. Here, X̄ti is the solution to the SDE defined by (X0, b, σ). This can be
achieved by optimizing the Wasserstein distance loss:

Pθ
∗ = argmin

Pθ∈Θ

M∑
i=1

W2(ˆ̄µti , µ̂
∗
ti), (6)

where ˆ̄µti and µ̂∗
ti are empirical distributions corresponding to X̄ti and Yi respectively. This process

allows for matching either a segment or the entire Markov chain, potentially starting the matching
process from a later moment to minimize reliance on points within the burn-in period.

Algorithm 1 Diffusion bridge model (DBM)
Input: Initial value:X0,θ3 , Brownian motion:Wt. Neural network:bθ1(x, t), σθ2(x, t). ε is the re-
quired error threshold. The given data point {Y k

T }Nk=1 follows the distribution of YT .
Output: Xt, b(t,Xt), σ(t,Xt).

1: Simulate Xt by Euler-Maruyama method.
2: Calculate loss L in (5).
3: if Match the whole Markov chain then
4: Calculating the loss L in (6). {The data points {Y k

i }Nk=1 are from Markov chains}
5: end if
6: Update parameters θ1, θ2, θ3.
7: if L < ε then
8: End of training.
9: end if

4
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This algorithm is a simplified version of a more detailed one available in the Appendix 10.

In the following we present some theoretical results with the proofs given in the Appendix. We first
provide an estimate for the discrete loss.

Theoretical results
Theorem 2.1. Assuming that b and σ are L-lipschitz functions and Linear growth, more precise in
(8.1). SDE solver is the Euler-Maruyama method ,we can obtain the following estimate:

W2(µT , µ̄T ) ≤ Ch
1
2 exp (4L2T ), (7)

where C depends on X0, but it is independent of h. We can pre-select suitable T and h to control
this error.

Proof. In the Appendix 8.3.

For convenience we use the following notations to indicate that the measures depend on the pa-
rameter. µT := µPθ

T , µ̄T := µ̄Pθ

T , µ̂T := µ̂N,Pθ

T , ˆ̄µT := ˆ̄µN,Pθ

T , µ̂ti := µ̂N,Pθ
ti , ˆ̄µti := ˆ̄µN,Pθ

ti ,
µ̂ := µ̂N .

In fact, we use the Minimal Wasserstein distance estimator, as the properties of this estimator have
been outlined in (Bernton et al. (2017)). We apply it to our specific problem to control the structural
loss. We first introduce the following assumptions:

Assumption 2.2. The model is identifiable: there exists a unique Pθ
∗ ∈ Θ such thatW2(µ̄

P∗
θ

T , ν) =
W2(µ

∗, ν) for every ν and
P∗
θ = argmin

Pθ∈Θ
W2(µ

∗, µ̄Pθ

T ).

This assumption ensures the existence of a deterministic parameter in the SDE.

Assumption 2.3. Data processes are sufficient: The data generation process error is satisfied
W2(µ̂

N , µ∗)→ 0, P-almost surely, as N →∞.

Assumption 2.4. Continuity: The map Pθ 7→ µ̄Pθ

T is continuous in the sense that D(PN
θ ,Pθ)→ 0

implies µ̄PN
θ

T
w→ µ̄Pθ

T as N →∞. D1 is the metric of the parameter.

Assumption 2.5. Level boundedness: For some ϵ > 0

The set B(ϵ) =
{
Pθ ∈ Θ :W2(µ

∗, µ̄Pθ

T ) ≤ infθ∈ΘW2(µ
∗, µ̄Pθ

T ) + ϵ
}

is bounded.

Theorem 2.6. Consistency of the structural loss. Assuming that 2.2,2.3,2.4 and 2.5 hold, the loss
function in (5)W2(ˆ̄µ

N,Pθ

T , µ̂N ) ≤ ϵl where ϵl → 0, P-almost surely. Then there exists aE ⊂ Ω with
P (E) = 1 such that for all ω ∈ E :

inf
Pθ∈Θ

W2(µ̂
N (ω), µ̄Pθ

T )→ inf
Pθ∈Θ

W2(µ
∗, µ̄Pθ

T ), (8)

and there exists n(ω) such that,for all N ≥ n(ω)

PN
θ → P∗

θ as N →∞, ϵl → 0,P-almost surely. (9)

Proof. The proof is based on (Bernton et al. (2017)). However, the key difference is that we intro-
duced a loss function control term, which enhances the result and more precise in appendix 8.3.

After introducing the theorem above, we provide an error estimation for the diffusion bridge model.

Theorem 2.7. Consistency of the diffusion bridge model: Assuming that 2.2,2.3,2.4 and 2.5 hold,
the loss function in (5) satisfiedW2(ˆ̄µ

N,Pθ

T , µ̂N ) ≤ ϵl where ϵl → 0,, P-almost surely for Pθ.

W2(µ
Pθ

T , µ∗)→ 0 as N →∞, ϵl → 0,P-almost surely.
1D(Pθ, Pη) = dx(X0,θ3 , X0,η3) + db(bθ1 , bη1) + dσ(σθ2 , ση2), where the dx, db, dσ correspond to dis-

tances in the appropriate space.

5
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Proof. This result can be proved by combining Theorem 2.1 with Theorem 2.6.

Know the target distribution: This scenario has been extensively studied using MCMC algorithms
and SDE-type samplers. Our method can still be applied to match a diffusion bridge, utilizing
two primary matching methods. The first method involves specifying a density function, using
existing MCMC algorithms to obtain N discrete points at each position Xt, and then employing the
Wasserstein distance loss as described above for matching.

Note: The design of the loss function is not unique. The diffusion bridge matching method presented
here serves as a baseline algorithm that can be replaced by many other algorithms. We employ
a Neural SDE bridge for the following reasons: (1) We aim to minimize the number of steps to
reach the target distribution within the smallest possible time interval to reduce the amount of PINN
training. (2) In cases with only partially observed samples, where density information is absent, the
matching process is not unique and relies on the chosen model. (3) We simulate an equal number of
Brownian motion paths and use a fully trainable initial value for drift and diffusion coefficients to
ensure maximum flexibility. The Wasserstein distance guarantees the stability of training and overall
match between the generated samples and the target value.

In practical scenarios, the maximum number of training points for the PINN is MN , where M
is the number of iterations of the SDE solver, satisfying (M − 1)h = T . Given ε and M0, we
aim to achieve M ≤ M0 by choosing appropriate h and T such that the following conditions hold
simultaneously:

[
T

h
] ≤M0 and Ch

1
2 exp (4L2T ) ≤ ε. (10)

This is relatively easy to achieve because we have parameterized the initial values, allowing us to
control them and, consequently, control C. This approach is distinctive and innovative compared to
other diffusion bridge models. Additionally, this method can also match the Markov chain in cases
where the density is known. The first one involves specifying a density function and then using
existing MCMC algorithms to obtain N discrete points at each position Xt. We then employ the
same Wasserstein distance loss (6) as mentioned above for matching. The second method involves
using transition density matching in (Dietrich et al. (2023)). Specifically, given a density function f ,
we can determine a transition density function p(y|x, h) in MCMC algorithms. Then, by discretizing
the SDE using the Euler-Maruyama method, we obtain the following transition density:

p̂(y|x, h) = N (y;x+ bθ1(x, t)h, hσθ2(x, t)σ
T
θ2(x, t)). (11)

We can consider the following loss function:

Pθ
∗ = argmin

Pθ∈Θ

∫∫
[p̂(y|x, h)− p(y|x, h)]2dydx+ [X0 −X0,θ3 ]

2. (12)

Using an SDE-type sampler directly as the diffusion bridge is also feasible, eliminating the need for
a matching process. A straightforward method for this purpose is the Langevin diffusion. Our exper-
iments demonstrate the improved estimates provided by FKEE for the Langevin diffusion equation.
The parameter pairs determining the diffusion bridge are (X0, b, σ, T ). Many MCMC algorithms
can be reduced to a diffusion bridge model, as shown in Table 1 in Appendix 8.1. Some of the more
representative recent works include (Song & Ermon (2019)) for the case where P is unknown, and
(Vargas et al. (2023)) and (Grenioux et al. (2024)) for the case where P is known.

2.3 FEYNMAN-KAC MODEL

This section presents our main contribution: a novel approach to expectation estimation. We aim
to estimate EX∼P [f(X)] by decoding P . All relevant information about P is encapsulated in
(X0, b, σ, T ). The decoding loss measures the accuracy of our estimate, while the decoding speed
impacts the algorithm’s efficiency. Our key innovation is the direct utilization of information within
(X0, b, σ, T ), as it contains all the necessary information about P . This is the core of our algorithm.
The decoding process can be viewed as an approximation of the Feynman-Kac operator, formally
obtained by solving the Feynman-Kac equation.

6
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The Feynman-Kac operator (Del Moral & Del Moral (2004)) is crucial in translating between de-
terministic PDEs and stochastic processes through the Feynman-Kac formula (Feynman-Kac equa-
tion). The Feynman-Kac equation (Pham (2014)) is a powerful method for solving PDEs by linking
them to stochastic processes. The basic idea is to represent the solution of a PDE as the expectation
of a function of a stochastic process and use Monte Carlo methods to approximate this expectation.

In our approach, we can reverse the process to obtain new methods for deriving MCMC results.
Specifically, we can use the solution of a PDE to accurately express the corresponding MCMC
results. We consider the following simplified version of the Feynman-Kac formula, which is com-
monly encountered.

Theorem 2.8. Feynman-Kac formula: Assuming that SDE (1) has strong solutions and f is a func-
tion in C2, we have the following Feynman-Kac equation, which has unique solutions on the interval
[0, T ].

∂u(x, t)

∂t
+

d∑
i=1

∂u(x, t)

∂xi
bi(x, t) +

1

2

d∑
i=1

d∑
j=1

∂2u(x, t)

∂xi∂xj
(σ(x, t)σ(x, t)T )i,j = 0,

with the boundary conditions
u(x, T ) = f(x).

The solution to the Feynman-Kac equation at the initial time is u(x0, 0) = E[f(XT )|X0 = x0].

Proof. The proof of the theorem is a classical result. For more details, please refer to Särkkä &
Solin (2019).

Fast calculation method. Calculating this equation involves computing the Hessian matrix of a
function and some partial derivatives, which can be obtained using any library with automatic differ-
entiation, such as Pytorch. If we consider only the diagonal diffusion coefficients σ, the algorithm
can be accelerated. For instance, in Langevin diffusion where σ = Id×d, we need to calculate the
second-order partial derivatives of the main diagonal.

For the Neural SDE, to reduce computation, we can consider a diagonal diffusion matrix function σ
: Rd × [0, T ]→ Λ(Rd), where Λ(Rd) is the set of real-valued diagonal matrices. We only calculate
the second-order derivatives of the diagonal elements to avoid the entire diffusion matrix function.
To achieve this, we design the following loss functions:

L1 =

∫∫
D×[0,T ]

[
∂uθ(x, t)

∂t
+

d∑
i=1

∂uθ(x, t)

∂xi
bi(xt, t) +

1

2

d∑
i=1

∂2uθ(x, t)

∂x2
i

diag(σ2(x, t))i

]2

dx dt

(13)
and

L2 =

∫
D
[uθ(x, T )− f(x)]

2
dx. (14)

Finally, we obtain the solution by optimizing these two loss functions.

u∗(x, t) = argmin
uθ(x,t)

[λ1L1 + λ2L2] ,

where λ1 and λ2 are the weights of the two loss functions. uθ(x, t) is the neural network with a tanh
activation function. Ultimately, we can obtain the expectation u∗(x0, 0) = E[f(XT )|X0 = x0].
The term Ld = λ1L1 + λ2L2 represents the empirical decoding loss, which incurs statistical and
optimization errors compared to the true decoding loss. Error analysis for this equation can be found
in many works related to PINN, for example, in (De Ryck & Mishra (2022)). Algorithm 2 presents
a simplified version, while the detailed implementation of the algorithms can be found in Appendix
10. In the approximation, we sample the PDE domain. In Figure 1, we simulate the SDE trajectory
and compute the PINN loss at these positions, which differs from directly using the SDE endpoint,
as our expectation comes from initial moment of solution.

Viewing MCMC expectation estimators from a decoding perspective The decoding loss of tra-
ditional MCMC expectation estimators might be suboptimal because these estimators often do not
fully utilize the information about (X0, b, σ, T ). Typically, these estimators rely on simulating a

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 2 Feynman-Kac model (FCM)
Input: Points of observation: Xt, Drift coefficient: b(t,Xt), Diffusion coefficient: σ(t,Xt). Neural
network: uθ(x, t). The function f . Required error threshold ε.
Output: E(f(XT )|X0 = xt0) = uθ(xt0 , t0)

1: Calculate PDE loss L1 in (13).
2: Calculate boundary loss L2 in (14).
3: Update parameters θ.
4: if (λ1L1 + λ2L2) < ε then
5: End of training
6: end if

subset of samples for averaging, which can introduce local bias and fail to provide a comprehen-
sive estimate of the entire distribution. The method of control functions (Oates et al. (2014); South
et al. (2020)) attempts to mitigate this by reusing information from P , but it is not universally ap-
plicable to any P and f . Additionally, these methods require stronger assumptions to guarantee
accurate estimates, influenced by LLN and the ETMC, which can further reduce the efficiency of
MCMC algorithms. Therefore, traditional MCMC expectation estimators can be seen as incomplete
decoding.

Discussion of the choice of the Feynman-Kac model Our approach fundamentally changes how
expectations are calculated by utilizing the full distributional information in P to approximate
(X∗

0 , b
∗, σ∗). However, when approximating (X∗

0 , b
∗, σ∗) in many diffusion bridge models, it is

often necessary to simulate part of the Brownian motion trajectory to estimate the loss function.
This results in some positions (x, t) corresponding to (b, σ) being accurate, while others depend on
the network’s generalization ability. Consequently, the appearance of x in our position (x, t) occurs
randomly, necessitating a meshless PDE solver.

For certain (b, σ) with exact analytical forms and diffusion bridges that exhibit better generalization,
a non-meshless PDE solver may suffice. The second critical issue is the change in how expectations
are computed, introducing the dimension d with respect to the MCMC expectation estimator. To
overcome the curse of dimensionality, we need a PDE solver capable of handling this problem. For
low-dimensional, non-meshless scenarios, finite element methods (Milstein et al. (2004)) are viable.
However, in more general cases, we require meshless PDE solvers that can address the curse of
dimensionality. We have chosen a classical PDE solver called PINN, but other PDE solvers meeting
these conditions are also feasible.

2.4 FEYNMAN-KAC OPERATOR EXPECTATION ESTIMATOR

FKEE consists of two parts: the Diffusion Bridge Model and the Feynman-Kac Model. The Dif-
fusion Bridge Model provides the coefficients and initial values of the SDE for the Feynman-Kac
Model. For a target distribution, we first use the Diffusion Bridge Model to obtain the correspond-
ing coefficients and save them. The Feynman-Kac Model then uses these coefficients to directly
approximate EX∼P [f(X)]. Since the Feynman-Kac Model is trained using PINN, we can leverage
GPU arithmetic acceleration or parallelism to efficiently handle high-dimensional distributions and
obtain the corresponding results.

3 DISCUSSION

Discussions on P : In conventional MCMC algorithms like Langevin diffusion, extensive analysis is
conducted on the properties of potential energy functions, particularly the requirements for Lipschitz
continuous gradients and strong convexity, as detailed in (Cheng & Bartlett (2018); Cheng et al.
(2018)). However, our approach diverges by not depending on these specific properties of energy
functions for convergence and speed. Instead, we require the corresponding SDE to have strong
solutions and the Feynman-Kac equation to be well defined. To better understand the applicability
of our method, consider the Itô-type SDE (1), which corresponds to the Fokker–Planck–Kolmogorov

8
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(FPK) equation (Risken & Risken (1996); Frank (2005)):

∂p(x, t)

∂t
= −

∑
i

∂

∂xi
[bi(x, t)p(x, t)] +

1

2

∑
i,j

∂2

∂xi∂xj

{[
σ(x, t)σ⊤(x, t)

]
ij
p(x, t)

}
,

where p(x, t) is the probability density function of Xt. For the stationary distribution, we set
∂p(x,t)

∂t = 0. There can be multiple pairs (b, σ) that satisfy this stationary FPK equation, with
Langevin diffusion being a special case where σ = Id. Our method can handle various other cases
as well, such as those discussed in (Li (2023)). Additionally, our method applies to more general
pairs (b, σ) that satisfy the FPK equation, even under finite time and non-stationary conditions.

Discussion on f : In classical MCMC expectation estimators, the following computation forms are
used:

E [f(X)] =
1

N

N∑
i=1

f(Xi
T ), (15)

where Xi
T is the value at moment T of the ith Markov chain, with different Markov chains being

independent. This represents the classical Monte Carlo integral calculation, where error is based on
the LLN. Another estimator is applicable only when P is the stationary distribution:

E [f(X)] =
1

N −M

N∑
t=M

f(Xt). (16)

Here, averaging is done over the time span of a Markov chain, with M denoting the number of
samples discarded during the burn-in period, characterized by correlated samples. Error in this case
is influenced by the ETMC, making optimal M selection challenging for complex problems. In-
corporating relevant samples can reduce the impact on MCMC expectation estimator efficiency. In
difficult scenarios, properties of f can often lead to larger biases. Our approach enhances MCMC
efficiency by utilizing points within the burn-in period for PDE loss computation and refining as-
sumptions on f , offering a novel bias reduction method. In summary, one method relies on the
LLN, often requiring Lipschitz continuity of f , with the estimator’s variance related to the Lipschitz
coefficient of f . The other is based on the ETMC, also imposing requirements on the Lipschitz
coefficient and the density function of P . Our method, however, only requires that the boundary
conditions of the PDE satisfy a specific smoothness, namely f ∈ C2. This significantly broadens
the scope of this approach.

4 EXPERIMENTS

Partition Function Computation for Random Graph Models. In our first example, we focus on
computing the partition function for random graph models, simplifying the setup from (Haddadan
et al. (2021)) to estimate the mathematical expectation and the corresponding partition function.
Background and details can be found in Appendix 9.1. Specifically, we consider the estimation of
the matching function of the Ising model for the high temperature case, i.e., the case corresponding
to a smaller β. we aim to estimate the following two expectation:

EF = Eexp(−β2 − β1

2
H(Xβ1

)), EG = Eexp(
β2 − β1

2
H(Xβ2

)),

where Xβi is a Gibbs distribution of the 2D Ising model (The dimension is n×n) with parameter βi,
which is given in advance. The MCMC expectation estimators may exhibit considerable bias due to
the involvement of the exponential function, the discrete nature of the target distribution. In addition,
Gibbs samplers require a large mixing time to reach the stationary distribution in low-temperature
regimes. We compare three different methods: the first is the SOTA MCMC expectation estimator,
the second uses the diffusion bridge model to resample data for averaging, and the third combines
the diffusion bridge model with the Feynman-Kac model, also known as the FKEE. The estimators
are denoted as MCMC-C, MCMC-R, and MCMC-T. wi, vi, q represent the estimated values of the
corresponding EF,EG,Q = EF

EG . We record the number of points sampled from the Gibbs chain
and the algorithm’s total runtime, excluding the mixing time. The dataset is obtained from a Gibbs
chain that has already reached its stationary distribution. We consider two computational methods

9
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based on the boundary conditions. The first treats H(Xβ) as YT , resulting in a one-dimensional ap-
proximate distribution with boundary condition exp{−βY }. The second uses Xβ as YT , leading to
a high-dimensional case with boundary condition exp{−βH(YT )}. Figure 2 shows the logarithmic
squared errors of the two estimators, wi and vi, for various methods. Note that for n > 5, MCMC-
C fails to provide stable estimates due to excessive computational costs (Haddadan et al. (2021)).
The training samples we used are the same as those used in MCMC-C (only differing in numbers).
MCMC-R can be regarded as the result of using the diffusion bridge model to generate the same
number of samples and then averaging the results. It can be observed from the figure that FKEE
(MCMC-T) leverages the diffusion bridge model more effectively, providing better results, even in
high-dimensional scenarios. Figure 3 evaluates the efficiency. Since the same sample size is used
for computing wi and vi, this part is omitted. It can be seen that the sample size used by MCMC-C
is significantly larger than that of FKEE. Regarding time costs, MCMC-R records the training time
of the diffusion bridge, while FKEE records the total training time of the entire algorithm (includ-
ing both the diffusion bridge and the FK model). It can be observed that even in high-dimensional
scenarios, the computations can still be completed within an acceptable time. This experiment high-
lights the effect of f on the target distribution’s expectation and the algorithm’s efficiency, defined
here as using fewer points on the Markov chain to achieve higher accuracy in approximating
expectations.

(a) First calculation method (b) Second calculation method

Figure 2: Comparison of squared errors

(a) First calculation method (b) Second calculation method

Figure 3: Comparison of time and number of points sampled

Baseline Experiments on Properties of P and Low Variance. Additional baseline experiments on
the properties of P and low variance are presented in Appendix 9.3, where we simulate the same tra-
jectory using the Langevin diffusion model with various expectation computation methods, resulting
in different estimations. In Appendix 9.2, we evaluate the proposed diffusion bridge model by gen-
erating samples and compare the distributions of the initial and subsequent sample sets, showcasing
the effectiveness of the diffusion bridge model.

5 CONCLUSION

We introduce a heuristic method for estimating mathematical expectations by bridging the gap be-
tween deep learning PDE solvers and sampling methods. This approach reduces reliance on tradi-
tional assumptions (LLN and ETMC) and expands the applicability to a broader range of P and f .
We presented a versatile diffusion bridge model to extend the range of P and utilized PDE methods
to broaden the scope of f . Our method demonstrates potential significance across multiple domains.

10
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6 APPENDIX

7 RELATED WORK

The diffusion model belongs to a class of stochastic differential equations, which are used to ap-
proximate the target distribution. It has been widely used for generative models (Dhariwal & Nichol
(2021)), variational inference (Geffner & Domke (2021); Kingma et al. (2021)), etc. The diffusion
bridge model is a variant of the diffusion model. Early development of diffusion bridge models
involved simulating processes originating from two endpoints (Beskos et al. (2008)). Alternative
approaches for constructing diffusion bridge models are outlined by (Liu et al. (2022); Bladt &
Sørensen (2010)). Since the diffusion bridge model essentially functions as a sampling algorithm, it
plays a pivotal role in addressing the crucial task of high-dimensional distribution sampling. Sam-
pling high-dimensional distributions is a fundamental task with applications across various fields.
Common methods include MCMC, random flow, and generative models. Recent work includes
stream-based methods (Müller et al. (2018); Yang et al. (2017); Matsubara et al. (2020); Strathmann
et al. (2015); Tran et al. (2019)), MCMC-based methods (Deng et al. (2020); Chen et al. (2014);
Jacob et al. (2017)) and generative models (Nichol & Dhariwal (2021)), score-based models (Song
et al. (2020); Song & Ermon (2019)). Normalizing Flows (Albergo & Vanden-Eijnden (2022)).
These models can be broadly categorized into two groups: those based on given discrete points and
those relying on a given density function. The former primarily serves for learning and generating
real world data such as text and images, while the latter is used for sampling, statistical estimation,
and similar purposes. Notably, Langevin diffusion (Cheng et al. (2018); Xifara et al. (2013); Garcı́a-
Portugués et al. (2017)) is a classical model within the latter category. (Zhang (2024)) presents an
explicit construction of the drift coefficient for two scenarios: when P has a closed-form expression
and when it does not.

The Feynman-Kac model is a technique employed to solve partial differential equations (PDEs)
by using deep learning. Deep learning has found application in solving PDEs of the Feynman-
Kac equation type, as demonstrated by (Berner et al. (2020); Blechschmidt & Ernst (2021). Liang
& Borovkov (2023)) highlights the approximation of Feynman-Kac type expectations through the
approximation of discrete Markov chains, thereby enhancing the order of convergence. When em-
ploying PINN to solve Feynman-Kac type PDEs, the sampling algorithm can be linked to the path of
the SDE. This approach enables the acquisition of adaptive sampling points from the paths of SDE,
which proves more efficient than uniform point selection (Chen et al. (2023)). Further analysis of
the approximation error for this class of equations is presented in (De Ryck & Mishra (2022)).

8 DEFINITIONS AND RELATED THEORY

8.1 COMPARISON OF DIFFUSION BRIDGE MODEL.

8.2 DEFINITIONS

Wasserstein distance: The most commonly used measure of distance between probability distri-
butions is the Wasserstein distance. It calculates the minimum cost of transporting mass from one
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Table 1: Comparison of Diffusion bridge model

Method X0 b σ T Descriptions
Classical MCMC ∀x0 ∈ Rd p(y|x) p(y|x) ∞ p(y|x) is the transfer proba-

bility density function in the
MCMC algorithm. The mean-
ing of p(y|x) is that the cor-
responding coefficients can be
obtained by a SDE.

Langevin MCMC ∀x0 ∈ Rd

or
∀X0 ∼ P0

1
2
∇x log p(x) Id×d ∞ p(x) is target density function

and density function of a sta-
tionary distribution. P0 is the
initial distribution.

Score-based SDE
and diffusion mod-
els (DDPM)

∀X0 ∼ P0 f(x, t)−g2(t)
∇x log pt(x)

g(t) ∞ ∇x log pt(x) is obtained from
the data and f(x, t) and g(t)
are known. P0 is the prior dis-
tribution.

Flow match ODE ∀X0 ∼ P0 v(x, t) 0 1 v(x, t) is obtained by matching
the data. P0 is the initial distri-
bution.

Neural SDE bridge
(taken in this pa-
per)

x0 = x0,θ3 bθ1(x, t) σθ2(x, t) < ∞ bθ1(x, t) and σθ2(x, t) is ob-
tained from the data or match
method.

distribution to another, based on the distance between the points being transported and the amount
of mass being moved. The Wasserstein distance is especially beneficial for comparing distributions
with different shapes since it considers the structure of distributions instead of only their statistical
moments. This distance metric is widely applied in fields like image processing, computer vision,
and machine learning. The definition is

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
Rd×Rd

|x− y|pπ(dx, dy)
) 1

p

= inf
{
[E|X − Y |p]

1
p ,Px = µ,PY = ν

}
.

Π(µ, ν) denotes the class of measures on Rd × Rd with marginal distributions µ and ν.

Euler-Maruyama method: (Platen (1999)) is a frequently used approach for solving SDE through
an iterative format. This method has been shown to converge to a strong order of O(h 1

2 ), where
the error is dependent on the Lipschitz coefficients of the drift and diffusion coefficients. When
generating paths using this method, it is recommended to use smaller step sizes, to minimize the
errors associated with the method.

Xt+h = Xt + b(Xt, t)h+ σ(Xt, t)(Wt+h −Wt), X0 = x0.

Numerical solvers for stochastic differential equations of any accuracy are allowed when construct-
ing sample paths for diffusion.

Physics-informed neural networks: PINN (Raissi et al. (2019)) is a deep learning method for
solving partial differential equations. The main idea is to use neural networks for fitting solutions
to PDE problems, PINN incorporates the residuals of the PDE (the difference between the left-
hand side and the right-hand side of the PDE equation) into the loss function, and then updates the
weights and parameters of the neural network through a backpropagation algorithm. Specifically,
we consider follow PDE:

F (ut, ux, uxx) = g(u, x, t)

and the boundary condition is
G(ut, ux, uxx) = 0

We choose a neural network uθ(x, t) to approximate the solution u(x, t). By automatic differentia-
tion, we can easily obtain the term uθ

t ,uθ
x and uθ

xx. We then need to sample the region of the target
and calculate the value of the empirical loss function for these points. Finally the solution uθ

t is
obtained by optimising the combination of the two loss functions.

Loss PDE = F (uθ
t , u

θ
x, u

θ
xx)− g(uθ, x, t) Loss boundary = G(uθ

t , u
θ
x, u

θ
xx)

Loss = λ1Loss boundary + λ2Loss PDE
λ1 and λ2 are the weights of the two loss functions.
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8.3 PROOF OF THEORETICAL RESULTS

Theorem 8.1. If the drift and diffusion coefficients satisfy the conditions (Platen (1999)) in SDE
(1):

• Lipschitz condition

|b(x, t)− b(y, t)| ≤ K|x− y| and ||σ(x, t)− σ(y, t)||F ≤ K|x− y|
for all t ∈ [0, T ] and x, y ∈ Rd

• Linear growth bound

There exists a constant C such that

|b(x, t)|2 ≤ C2(1 + |x|2) and ||σ(x, t)||2F ≤ C2(1 + |x|2)
for all t ∈ [0, T ] and x, y ∈ Rd.

• Measurability
b(x, t) and σ(x, t) is jointly measurable.

• Initial value
X0 is F0-measurable with E(|X0|2) <∞.

where || · ||F denotes the Frobenius norm of a matrix. Then the SDE has a unique strong solution.
The solution can be controlled by the initial value, i.e., EX2

T ≤ CEX2
0 .

Proof for Theorem 2.1.

Proof. Base on the Lipschitz condition, Linear growth bound condition in Theorem 8.1, and the Itô
isometry, we can derive the following:

W2
2 (µT , µ̄T ) ≤ E|XT − X̄T |2

≤ 4E

∣∣∣∣∣
∫ T

0

b(Xt, t)− b(X̄t, t)dt

∣∣∣∣∣
2

+ 4E

∣∣∣∣∣
∫ T

0

σ(Xt, t)− σ(X̄t, t)dWt

∣∣∣∣∣
2

.

+ 4E

∣∣∣∣∣
∫ T

[T ]

σ(X̄t, t)dWt

∣∣∣∣∣
2

+ 4E

∣∣∣∣∣
∫ T

[T ]

b(X̄t, t)dt

∣∣∣∣∣
2

.

≤ 4L2E
∫ T

0

|Xt − X̄t|2dt+ 4L2E
∫ T

0

|Xt − X̄t|2dt+ 4E

∣∣∣∣∣
∫ T

[T ]

σ(X̄t, t)dWt

∣∣∣∣∣
2

+ 4E

∣∣∣∣∣
∫ T

[T ]

b(X̄t, t)dt

∣∣∣∣∣
2

.

≤ 8L2E
∫ T

0

|Xt − X̄t|2dt+ 4C2E

∣∣∣∣∣
∫ T

[T ]

X̄2
t dt

∣∣∣∣∣+ 4C2E

∣∣∣∣∣
∫ T

[T ]

X̄tdt

∣∣∣∣∣
2

+ 4C2h2.

≤ 8L2E
∫ T

0

|Xt − X̄t|2dt+ 4C2M0h+ 4C2M1h+ 4C2h.

where M0 and M1 are upper bounds that relevant to E(|X̄T |2) because of E(|X0|2) < ∞. [T ] :=
max {Mh ≤ T}. Finally, based on the Gronwall’s inequality.

W2
2 (µT , µ̄T ) ≤ E|XT − X̄T |2 ≤ Ch exp (8L2T ).

Proof for Theorem 2.6.

Before proving this theorem we introduce the following definitions and lemmas. Some of these
definitions and lemmas are taken from (Rockafellar & Wets (2009), Fournier & Guillin (2015))
Definition 8.2. The function f : Θ→ R : is lower semicontinuous at x0 if

lim infx→x0f(x) ≥ f(x0). (17)
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Definition 8.3. A sequence of functions fn : Θ→ R is said to epi-converge to f : Θ→ R if for all
θ ∈ Θ {

lim infn→∞ fn(θn) ≥ f(θ) for every sequence θn → θ,

lim supn→∞ fn(θn) ≤ f(θ) for some sequence θn → θ.
(18)

Lemma 8.4. The sequence fn : Θ→ R epi-converges to f : Θ→ R if and only if{
lim infn→∞ infθ∈K fn(θ) ≥ infθ∈K f(θ) for every compact set K ⊂ Θ,

lim supn→∞ infθ∈O fn(θ) ≤ infθ∈O f(θ) for every open set O ⊂ Θ.
(19)

Lemma 8.5. Varadarajan’s theorem: If X1, . . . , Xn are i.i.d. X ∼ P on a separable metric space,
then µ̂n w→ µ∗ P-almost surely where µ̂n is empirical measure.

Lemma 8.6. Attainment of a minimum: Suppose f : Θ→ R is lower semicontinues, level-bounded
and proper. Then the value inf f is finite and the set argmin f is nonempty and compact.

Lemma 8.7. The properties of epi-convergence: If fn
1 ≤ fn ≤ fn

2 with fn
1

epi→ f and fn
2

epi→ f , then

fn epi→ f .

Lemma 8.8. The limits of inf: Suppose fn
epi→ f with −∞ < inf f < ∞. Then inf fn → inf f if

and only if there exists for every ε > 0 a compact set B ⊂ Rn along with an index set N such that

inf
B

fn ≤ inf fn + ε for all n ∈ N .

Proof. Based on Assumptions 2.4 and Villani (2008). we can conclude the map is lower semicon-
tinuous. i,e,W2(µ̄

Pθ

T , ν) ≤ lim infN→∞W2(µ̄
PN

θ

T , ν).

Then, we aim to prove Pθ 7→ W2(µ̂
N , µ̄Pθ

T ) epi converges to Pθ 7→ W2(µ
∗, µ̄Pθ

T ) P-almost surely.

Firstly, we can observe the following inequality:

W2(µ
∗, µ̄Pθ

T )−W2(µ
∗, µ̂N

T ) ≤ W2(µ̂
N
T , µ̄Pθ

T ), (20)

and
W2(µ̂

N
T , µ̄Pθ

T ) ≤ W2(µ̂
N
T , ˆ̄µN,Pθ

T ) +W2(ˆ̄µ
N,Pθ

T , µ̄Pθ

T ). (21)

In inequality (20), the function Pθ 7→ W2(µ
∗, µ̄Pθ

T ) epi-converges to Pθ 7→ W2(µ
∗, µ̄Pθ

T ) because
it is independent of N , and the function Pθ 7→ W2(µ

∗, µ̂N
T ) epi-converges to 0 as N → ∞, due to

Assumption 2.3.

In inequality (21), the function Pθ 7→ W2(µ̂
N
T , ˆ̄µN,Pθ

T ) epi converge to 0, because of assumptions
about the loss function. Finally we aim to proof that the function Pθ 7→ W2(ˆ̄µ

N,Pθ

T , µ̄Pθ

T ) epi
converge to Pθ 7→ W2(µ

P∗
θ , µ̄Pθ

T ). Combining Assumption 2.2 W2(µ
P∗

θ , ν) = W2(µ
∗, ν) and

Lemma 8.7 we can conclude that Pθ 7→ W2(µ̂
N , µ̄Pθ

T ) epi converges to Pθ 7→ W2(µ
∗, µ̄Pθ

T ) P-
almost surely.

In the following we demonstrate that the function Pθ 7→ W2(ˆ̄µ
N,Pθ

T , µ̄Pθ

T ) epi converge to Pθ 7→
W2(µ

P∗
θ , µ̄Pθ

T ).

According to Lemma 8.4, we go on to verify two inequalities. For a compact set K, by the lower
semicontinuous of the map Pθ 7→ W2(ν, µ̄

Pθ

T ), we have

inf
Pθ∈K

W2(ˆ̄µ
N,PN

θ

T , µ̄Pθ

T ) =W2(ˆ̄µ
N,PN

θ

T , µ̄
PN

θ

T ), for some PN
θ ∈ K. (22)

lim inf
N→∞

inf
Pθ∈K

W2(ˆ̄µ
N,Pθ

T , µ̄
PN

θ

T )
1
= lim inf

N→∞
W2(ˆ̄µ

N,Pθ

T , µ̄
PN

θ

T )

2
= lim

k→∞
W2(ˆ̄µ

Nk,Pθ

T , µ̄
PNk

θ

T )

3
= lim

m→∞
W2(ˆ̄µ

Nkm ,Pθ

T , µ̄
P

Nkm
θ

T ),

(23)
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lim
m→∞

W2(ˆ̄µ
Nkm ,Pθ

T , µ̄
P

Nkm
θ

T ) = lim inf
m→∞

W2(ˆ̄µ
Nkm ,Pθ

T , µ̄
P

Nkm
θ

T )

4
≥ W2(µ

P∗
θ , µ̄

Pθ0

T )

≥ inf
Pθ∈K

W2(µ
P∗

θ , µ̄Pθ

T ),

(24)

where the ”1” holds due to the substitution for the equation 22, ”2” holds due to the definition of
the infimum, ”3” holds due to the compactness of the K, ”4” holds due to the Lemma 8.5 and lower
semicontinuous.

For an open set O,

inf
Pθ∈K

W2(ˆ̄µ
N,Pθ

T , µ̄Pθ

T ) ≤ W2(ˆ̄µ
N,Pθ

T , µ̄
PN

θ

T ), exist PN
θ ∈ O. (25)

lim sup
N→∞

inf
Pθ∈O

W2(ˆ̄µ
N,Pθ

T , µ̄Pθ

T )
1
≤ lim sup

N→∞
W2(ˆ̄µ

N,Pθ

T , µ̄
PN

θ

T )

2
≤ lim sup

N→∞
W2(ˆ̄µ

N,Pθ

T , µP∗
θ ) + lim sup

N→∞
W2(µ

P∗
θ , µ̄

PN
θ

T ),

(26)

where ”1” holds due to a substitution for equation 25, ”2” holds due to triangle inequality.

lim sup
N→∞

W2(ˆ̄µ
N,Pθ

T , µP∗
θ ) + lim sup

N→∞
W2(µ

P∗
θ , µ̄

PN
θ

T ) = lim sup
N→∞

W2(µ
∗, µ̄

PN
θ

T )

= inf
Pθ∈O

W2(µ
∗, µ̄Pθ

T ),
(27)

Hence, Pθ 7→ W2(µ̂
N , µ̄Pθ

T ) epi converges to Pθ 7→ W2(µ
∗, µ̄Pθ

T ) P-almost surely holds.

By the definition of epi convergence, Theorem 8.6, and Assumption 2.3. According to Assumption
2.2, we can find an E satisfying that for a ω ∈ E, where P(E) = 1 Based on the above process, we
can conclude that

lim sup
N→∞

inf
Pθ∈PΘ

W2(µ̂
N (ω), µ̄Pθ

T ) ≤ inf
Pθ∈PΘ

W2(µ
∗, µ̄Pθ

T ) = P∗
θ . (28)

By conditioning on the loss function and the definition of the infimum, there exists N1(ω) such that

for ϵ > 0,

inf
Pθ∈PΘ

W2(µ̂
N (ω), µ̄Pθ

T ) ≤ inf
Pθ∈PΘ

W2(µ̂
n(ω), µ̄Pθ

T ) +W2(µ
n(ω), µ̂N,Pθ ) ≤ P∗

θ + ϵ/2 (29)

and the set
{Pθ ∈ PΘ :W2(µ̂

N (ω), µ̄Pθ

T ) ≤ P∗
θ + ϵ/2}, (30)

is non-empty for all n ≥ N1(ω). By the triangle inequality,

W2(µ
∗, µ̄Pθ

T ) ≤ W2(µ
∗, µ̂N (ω)) +W2(µ̂

N (ω), µ̄Pθ

T ), (31)

and 2.3, there exists N2(ω) such that

W2(µ
∗, µ̂N (ω)) ≤ ϵ/2, (32)

Then
W2(µ

∗, µ̄Pθ

T ) ≤ ϵ+ P∗
θ . (33)

This means that:
{Pθ ∈ PΘ :W2(µ̂

N (ω), µ̄Pθ

T ) ≤ P∗
θ + ϵ/2} ⊂ B(ϵ). (34)

Let N0 = max (N1(ω), N2(ω)) when N ≥ N0 we have

inf
Pθ∈PΘ

W2(µ̂
N (ω), µ̄Pθ

T ) = inf
Pθ∈B(ϵ)

W2(µ̂
N (ω), µ̄Pθ

T ). (35)

According to 8.8, we can get the result:

inf
Pθ∈PΘ

W2(µ̂
N (ω), µ̄Pθ

T )→ inf
Pθ∈PΘ

W2(µ
∗, µ̄Pθ

T ),
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and N0(ω) = N the sets argminPθ∈PΘ
W2(µ̂

N (ω), µ̄Pθ

T ) are non-empty form a bounded sequence
with

lim
N→∞

sup argminPθ∈PΘ
W2(µ̂

N (ω), µ̄Pθ

T ) ⊂ argminW2(µ
∗, µ̄Pθ

T ),

further we have:
PN
θ → P∗

θ as N →∞, ϵl → 0,P-almost surely. (36)

Next we give the proof of Theorem 2.8.
Theorem 8.9. (Särkkä & Solin (2019)) If the SDE has strong solution 8.1, then the solution to the
corresponding backward partial differential equation (PDE) can represent the expectation of the
terminal distribution of the SDE.

∂u(x, t)

∂t
+

d∑
i=1

∂u(x, t)

∂xi
bi(x, t) +

1

2

d∑
i=1

d∑
j=1

∂2u(x, t)

∂xi∂xj
(σ(x, t)σ(x, t)T )i,j = 0,

u(x, T ) = f(x).

The soluton of PDE at (x0, 0) is E[f(XT )|X0 = x0],i.e. u(x0, 0) = E[f(XT )|X0 = x0].

Proof. According to Itô’s formula

du(Xt, t) =

∂u(Xt, t)

∂t
+

d∑
i=1

∂u(Xt, t)

∂xi
bi(Xt, t) +

1

2

d∑
i=1

d∑
j=1

∂2u(Xt, t)

∂xi∂xj
(σ(Xt, t)σ(Xt, t)

T )i,j

 dt

+

[
d∑

r=1

d∑
i=1

∂u(Xt, t)

∂xi
σi,r(Xt, t)

]
dW r

t ,

where W r
t is the rth component of Wt. The first part is based on the equality inside the PDE being

set to zero. Integrate from [0, T ] on both sides.

u(XT , T )− u(X0, 0) = f(XT )− u(X0, 0) =

∫ T

0

[
d∑

r=1

d∑
i=1

∂u(Xt, t)

∂xi
σi,r(Xt, t)

]
dW r

t ,

Taking the conditional expectation on both sides while fixing X0 and utilizing the properties of Itô
integration as a martingale, we get

u(x0, 0) = E[f(XT )|X0 = x0].

9 BACKGROUNDS AND TABLES OF THE EXPERIMENT

9.1 EXPERIMENTS ON THE ISING MODEL

Traditional MCMC algorithms face limitations when dealing with discrete random variables and
complex functions f , which results in high variance. Consequently, accurate estimates often require
a large number of points in the Markov chain, especially in larger models. This issue is particularly
prevalent in random graph models (Cipra (1987); Newman et al. (2002); Drobyshevskiy & Turdakov
(2019)).

Ising model: Assume a sample space Ω, Hamiltonian function H : Ω → {0} ∪ [1,∞) , and
inverse temperature parameter β ∈ R , referred to as inverse temperature. The Gibbs distribution
on Ω, H(·) , and β is then characterized by probability law ∀x ∈ Ω : πβ(x)

.
= 1

Z(β) exp(−βH(x))

Here Z(β) is the normalizing constant or Gibbs partition function (GPF) of the distribution, with
Z(β)

.
=

∑
x∈Ω exp(−βH(x)). Specifically, we considered Ising model on 2D lattices: It has

n × n dimensions and a total of n2 random variables, each of which takes the values +1,-1 with
Hamiltonian function H(x) = −

∑
(i,j)∈E I(x(i) = x(j)). For β0 the results are easy to compute
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and for [β1, β2] between we can use the PPE-method, we do not use the Tpa-Method (Haddadan
et al. (2021)), which is an algorithm on splitting the region [β1, β2]. Specifically we can compute
the following EF = Eexp(−β2−β1

2 H(Xβ1)) and EG = Eexp(β2−β1

2 H(Xβ2)).Xβi is a Gibbs
distribution obeying parameter βi. Q = EG

EF = Z(β1)
Z(β2)

.We set β1 = −0.02 and β2 = 0. Then we
can find Z(β1) based on the fact that Z(β2) = Z(0). So we need to estimate two mathematical
expectations and we propose two ways to approximate this expectation. In this Experiment, for a
definite temperature β, the distribution on the random graph is often easy to approximate, but the
complexity of the exponent in the target expectation and also the function H(x) can lead to the need
for a large sample size to reduce the variance when MCMC deals with this problem. Our approach
demonstrates superior efficiency in dealing with the distribution on a random graph, particularly
when considering the complexities introduced by the target expectation exponent and the function
H(x). The implementation of our method, FKEE, stands out in handling larger-sized graphs (n ≥ 6)
where traditional MCMC and its variants, as found in (Haddadan et al. (2021)), face challenges due
to sample complexity. We have the following two methods:

First method: direct approximation of the overall part of the expectation. That is, we consider the
approximate stochastic process Hβ(X), which is a one-dimensional problem. We generate the chain
using the same method as in (Haddadan et al. (2021)) and compute the value Hβ(Xt) under each
moment. The diffusion bridge model and the Feynman-Kac model are then used to estimate the
expectation separately. In the diffusion bridge model, we generated the same number of Brownian
motions at the same number of moments and then calculated the loss at each moment to train. The
Feynman-Kac model uses the already established diffusion bridge model to get an estimate of the
expectation by solving the PDE.

The second approach better exemplifies the substantial improvement in harnessing Markov chains
facilitated by our method. It highlights the remarkable flexibility embedded in our approach. Specif-
ically, we directly approximate the distribution on a random graph, conceptualizing this graph as an
n2 random variable (X1, X2, ..., Xn2), with each variable assuming two discrete values. A Markov
chain is executed to obtain a sizable sample of random variables, and we subsequently approximate
this n2 dimensional distribution using a diffusion bridge model. However, since we are using a
continuous model via SDE to obtain YT , which cannot accurately approximate a discrete random
variable with values of {0, 1}, we employ the sigmoid function in the output YT . The loss for XT

is then computed. Finally, when using the diffusion model, we apply post-processing to obtain the
output value, i.e., torch.round(). In the case of the Feynman-Kac model, we set the boundary con-
ditions to u(x, T ) = p(H(round(sigmoid(x)))), where p is exp(−β/2 ∗ (x)). In other words, we
set the composite function p(H(round(sigmoid)) to f in the boundary.

Table 2 and Table 3 are one table. We have separated them for ease of presentation, and they have the
same rows. In Table 2 and Table 3, wi, vi, q represent the values of the corresponding EF,EG,Q
estimated using the corresponding estimators, respectively. true wi, true vi, true z indicate the
corresponding true values. The error wi, error vi, error z represent the squared error using the
corresponding estimators. The terms wi sample points and vi sample points refer to the number of
sampled points utilized by the estimator. The terms wi time and vi time refer to the time taken by
the estimator, measured in seconds. MCMC method we employed to generate samples follows the
same approach as used in https://github.com/zysophia/Doubly_Adaptive_MCMC.

At the same time we compare with the method RelMeanEst in (Haddadan et al. (2021)). MCMC-
C is the method RelMeanEst, MCMC-R is the empirical mean taken using the samples obtained
from resampling, and MCMC-T is the estimate of the expectation obtained using the established
diffusion bridge. And the number of data points used indicates the number of points in the Markov
chain used. To be fair, we lower the threshold in MCMC-C to reduce its algorithmic complexity.
Because only a small number of sample points are used in MCMC-R and MCMC-T. sample points
means the number of points sampled from the Markov chain. Note that when n ≥ 6 is in the
MCMC-C method due to the larger complexity we do not discuss it. We only compare MCMC-R
and MCMC-T. Note: GPU types: the first of these uses Tesla P100 while the second uses Tesla V100
when n ≥ 6. The two methods are shown in Table 2 and Table 3. Above the horizontal is the first
method below the second method. We can find the performance of PINN. In the high-dimensional
case (d = n2 = 225). The baseline model and hyperparameters in which the training was performed
can be found in the code in our Supporting Materials.
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Table 2: Comparison of different MCMC Expectation Estimator

Method n wi vi q true wi true vi true q
MCMC-C 2 0.9706396 1.0306606 1.0618365 0.9654024 1.0357122 1.072778
MCMC-R 2 0.9550395 1.0308957 1.0794273 0.9654024 1.0357122 1.072778
MCMC-T 2 0.9626546 1.0333116 1.073398 0.9654024 1.0357122 1.072778
MCMC-C 3 0.9340726 1.0744393 1.1502738 0.9226402 1.0834867 1.174333
MCMC-R 3 0.9269992 1.0774463 1.1622948 0.9226402 1.0834867 1.174333
MCMC-T 3 0.9283546 1.0795156 1.1628268 0.9226402 1.0834867 1.174333
MCMC-C 4 0.8844253 1.1470378 1.2969301 0.8641533 1.1563625 1.338233
MCMC-R 4 0.8686283 1.159192 1.3345087 0.8641533 1.1563625 1.338233
MCMC-T 4 0.8692993 1.1552249 1.328915 0.8641533 1.1563625 1.338233

MCMC-R 2 0.9950697 1.00498 1.0099593 0.9654024 1.0357122 1.072778
MCMC-T 2 0.9735975 1.0444663 1.0727907 0.9654024 1.0357122 1.072778
MCMC-R 3 0.9949918 1.0049603 1.0100187 0.9226402 1.0834867 1.174333
MCMC-T 3 0.9188372 1.0843412 1.1801233 0.9226402 1.0834867 1.174333
MCMC-R 4 0.9951742 1.0050679 1.0099418 0.8599499 1.1563472 1.344668
MCMC-T 4 0.8664092 1.1570783 1.3354871 0.8599499 1.1563472 1.344668
MCMC-R 6 0.9949221 1.0049597 1.0100888 0.7163408 1.3985122 1.9523
MCMC-T 6 0.6953082 1.3970394 2.0092378 0.7163408 1.3985122 1.9523
MCMC-R 8 0.9950855 1.0050602 1.010024 0.5468445 1.8348543 3.3553494
MCMC-T 8 0.5683886 1.9384431 3.4104189 0.5468445 1.8348543 3.3553494
MCMC-R 10 0.9949943 1.0050541 1.0101104 0.3853279 2.60382 6.7574135
MCMC-T 10 0.3684352 2.833073 7.6894751 0.3853279 2.60382 6.7574135
MCMC-R 15 0.9949888 1.0050285 1.0100903 0.1135434 8.894777 78.3381355
MCMC-T 15 0.1181741 10.4130456 88.1161667 0.1135434 8.894777 78.3381355

Table 3: Comparison of different MCMC Expectation Estimator

error wi error vi error q wi sample points vi sample points wi time (s) vi time (s)
2.74E-05 2.55E-05 0.000119716 3157 3157 0.29448 0.28554
0.00010739 2.32E-05 4.42E-05 100 100 14.421 9.702
7.55E-06 5.76E-06 3.84E-07 100 100 11.671 11.789
0.0001307 8.19E-05 0.000578845 30700 30700 3.40208 3.43238
1.90E-05 3.65E-05 0.000144918 2000 2000 20.163 19.544
3.27E-05 1.58E-05 0.000132393 2000 2000 236.109 233.225
0.000410954 8.70E-05 0.00170593 11383 11383 0.922 0.93
2.00E-05 8.01E-06 1.39E-05 2000 2000 26.917 26.696
2.65E-05 1.29E-06 8.68E-05 2000 2000 284.784 285.609

0.000880149 0.000944468 0.003946189 500 500 7.562 5.728
6.72E-05 7.66E-05 1.61E-10 2000 2000 15.809 15.456
0.005234754 0.006166395 0.026999189 500 500 7.748 7.547
1.45E-05 7.30E-07 3.35E-05 2000 2000 32.482 32.562
0.018285611 0.022885427 0.112041629 500 500 10.762 10.573
4.17E-05 5.35E-07 8.43E-05 2000 2000 59.597 58.064
0.077607541 0.15488357 0.887761945 500 500 25.194 23.99
0.00044237 2.17E-06 0.003241913 2000 2000 302.916 303.36
0.200919994 0.688558248 5.500551232 500 500 64.449 62.8
0.000464148 0.010730639 0.00303265 2000 2000 516.126 509.603
0.371693119 2.556052403 33.03149292 500 500 91.826 90.796
0.000285363 0.052556938 0.868738826 2000 2000 889.684 906.444
0.776945993 62.24813139 5979.626574 500 500 165.086 166.38
2.14E-05 2.305139542 95.60989415 2000 2000 1968.976 1997.663

9.2 EFFECTS OF DIFFUSION BRIDGE MODEL

This method is also applicable for estimating integrals in high dimensions, particularly in tandem
with the Monte Carlo method, when the target distribution is easily samplable. We conducted a com-
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parison in estimating the distribution of the bridge using a bridge constructed from partially sampled
high-quality samples. This approach enables continuous sampling of the target distribution by utiliz-
ing a well-established bridge. To illustrate, we simulated a diffusion bridge model (DBM) to approx-
imate the distribution of a target variable Y = (X1, X2, X3), where X1 ∼ N(1, 2) + Beta(4, 2),
X2 ∼ N(−1, 2) + Gamma(1, 2), and X3 ∼ N(3, 2) + geometric(0.5). We sampled 500 points
from the target distribution and employed DBM matching to obtain an SDE. Subsequently, we com-
pared the distribution of the generated tracks to the target distribution. Continuing the target distri-
bution sampling using the constructed bridge, we sampled an additional 500 points and compared
the differences between the resampled samples and the original target distribution. The specific pa-
rameters include T = 0.2, time step size h = 0.025. The DBM is trained for 300 epochs with a
learning rate of 0.001, using the Adam optimizer and Wasserstein distance as the loss. This method
facilitates the construction of a pair of target distributions amenable to sampling. The expectation
E(f(X)) of the target distribution can be obtained by utilizing FCM.

Figure 4: Comparison of the probability density functions of the generated and resampled paths and
target distributions for each dimension. Two of the blue lines are the mean of the experience of the
target sample and the mean of the experience of the re-generation sample, respectively.

Figure 5: Generated tracks

9.3 OTHER BASELINE EXPERIMENTS

Since there are too many variants for the MCMC sampler, and our aim in this paper is to estimate
the expectation rather than focusing on the selection aspect of the sampler, we consider one of the
simplest LMCMC (Langevin diffusion model). It is worth noting, however, that we are using the
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unadjusted LMCMC here.
dXt = b(x)dt+ dWt,

where b(x) = 1
2∇x log p(x) and SDE solver is

Xt+h = Xt + b(Xt)h+Wt+h −Wt X0 = x0

In all the experiments below, the interpretation of parameters is as follows: Total points in time: D,
Initial value: X0 = x0, Brownian motion: Wt, Time Series: t0, t1, . . . , tD = T , Euler-Maruyama
method step size: h, Number of paths simulated: N

We consider the MCMC algorithm and our method to sample the density function of the target and
obtain the corresponding expectation. In the MCMC algorithm configuration, we use the Langevin
MCMC to get independent samples. Here we use only the value of XT at the terminal moment
to estimate the expectation. We use the same paths in LDM+FCM, but with a different way of
computing expectations.

As an illustration, we consider a one-dimensional SDE, where we define the target distribution as
p(x) = C exp(−(x−1)2

2 ), corresponding to the drift coefficient of the LDM being µ(x) = 1−x
2 . We

evaluate the expectation of E(X10). To decrease the error of the Euler-Maruyama method, we use a
small step size of h = 0.01 and iterate 1000 steps to obtain the final path. We repeat the experiment
M = 30 times. During the training process, we extract points from each path every 100 points and
add them to the training process, instead of using all the points on the path.

We examine an extreme case, employing a very limited number of paths (N = 5) to estimate the true
expectation E(X10). In Figure 1, we present the empirical distributions obtained through two dif-
ferent methods. The results obtained by LDM+FCM outperform Langevin MCMC, validating that
paths can offer more informative outcomes. By incorporating gradient information from path points
and integrating it into PINN for training, our method demonstrates lower variance under the same
experimental configuration, significantly enhancing the efficiency of the MCMC algorithm with ap-
propriate optimization. Although we utilize Unadjusted Langevin MCMC, our method provides
unbiased estimates. This is attributed to the fact that the bias in Unadjusted Langevin MCMC
stems from the numerical SDE solver, while our method does not necessitate high accuracy in
Xt; we are more concerned with the precision of the corresponding (b, σ) on Xt. Unlike direct
sampling using the SDE method, which requires a highly precise SDE solver (Mou et al. (2021)),
such precision is unnecessary in our method. We only require accurate estimations at each point on
the path for the coefficients of the drift and diffusion terms.

Figure 6: The empirical distribution of Eestimated(X10)

For other cases, which can be handled by our method, we add an example of a broader computation
of the expectation of a stable distribution in the absence of the corresponding convergence result for
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MCMC. for example:

dXt =
1

2
h2 1− 2Xt

X
1
2
t (1−Xt)

1
2

dt+ 2hX
1
4
t (1−Xt)

1
4 dWt

where X0 = 0.5, EX1 = 0.5

Figure 7: The empirical distribution of Eestimated(X1)

In this example, we use this method to estimate mathematical expectations in high dimensions.
We consider a normal distribution with independent and identical marginal distributions as follows:
p(x) = C exp(−0.5(x − 0.2)2) for each dimension. When g(x1, . . . , xd) = x1 + · · · + xd, We
use a smaller number of paths (N = 50, 100). We use the Euler-Maruyama method with a step
size of 0. 1 for 100 iterations and calculate the internal loss function of the PDE every 10 points.
In the case of d = 5, 10 ,we employ a 2-layer neural network with 108 units per layer and a tanh
activation function. In the case of d = 20, we use a 2-layer neural network with 526 units per layer,
set N = 100, and compute the internal loss function of the PDE every 20 points. We also repeate the
experiment M = 30 times by using different random number seeds and measure the average time
required to estimate the mathematical expectation each time with GPU (Tesla P100). In the training
process we train 400 epochs by using the Adam optimizer with a learning rate of 0.001.

We compute E(g(X1, X2, . . . , Xd)) where Xi ∼ N(0.2, 1) and estimate its error. The errors we
use is

Absolute value error =
1

M

M∑
i=1

|Ei
estimated(g(X1, X2, . . . , Xd))− E(g(X1, X2, . . . , Xd)))|

and

Square Error =
1

M

M∑
i=1

|Ei
estimated(g(X1, X2, . . . , Xd))− Emean(g(X1, X2, . . . , Xd)))|2

where

Emean(g(X1, X2, . . . , Xd))) =
1

M

M∑
i=1

Ei
estimated(g(X1, X2, . . . , Xd))

The method is LDM+FCM and we compare the results of this method with those obtained by the
Langevin MCMC (LMCMC in short).
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Table 4: Comparison of different methods

Method Dimension(d) paths(N ) Absolute value error Square Error GPU time
LMCMC 5 50 2. 927620e-01 1.253495e-01 ×
LDM+FCM 5 50 1. 031084e-01 1.600998e-02 29. 62s
LMCMC 10 50 4. 696985e-01 3.077161e-01 ×
LDM+FCM 10 50 3. 330310e-01 1.382318e-01 46. 79s
LMCMC 20 100 3. 630368e-01 1.863313e-01 ×
LDM+FCM 20 100 2. 959023e-01 1.042063e-01 49. 74s

9.4 POTENTIAL APPLICATIONS AND FUTURE WORK

The independence of samples: Obtaining accurate expectations with entirely unknown sample in-
dependence remains a significant challenge in the real world, particularly in stochastic optimization
algorithms or loss functions, where independent sampling is frequently required for estimation. The
independence of samples plays a crucial role in machine learning, and its violation can significantly
impact the performance and validity of machine learning models. Many machine learning models
rely on the assumption of independent and identically distributed (i.i.d) samples. Non-independent
samples can introduce dependencies that the model may mistakenly learn as patterns. Nonlinear
mathematical expectations play a critical role in such non-iid scenarios (Peng (2010)). However,
methods like using Max-Mean Monte Carlo for calculating nonlinear mathematical expectations are
often challenging. This is because we need to partition the dataset into parts where the samples
are independent and then calculate the linear mathematical expectation for each part. Finally, we
take the largest to get the nonlinear mathematical expectation. Our approach provides a completely
new way to consider the use of Stochastic Differential Equations (SDEs) with G-Brownian motions.
The diffusion bridge model is constructed using the same method and then solved directly using the
Feynman-Kac model in the case of nonlinear mathematical expectations. This avoids problems such
as data grouping.

Representation learning and Distributional regression learning: In the theory of statistical
learning, we assume X ∼ PX and Y ∼ PY . A basic loss function is l = E[hθ(X) − Y )2)] and
l = E[Corss Entropy[hθ(X), Y )] where hθ is model, and we often need to sample a portion of the
sample {xi, yi}Ni=1, and then optimise the empirical loss function l = 1

N

∑N
i=1(hθ(xi) − yi)

2 and
l = 1

N

∑N
i=1 Corss Entropy(hθ(xi), yi). But in the case where the sample size does not fully cover

the distribution of the corresponding totality, because the loss function is obtained by sampling a
portion of the dataset, the loss function that we obtain tends to be biased, or has a large variance.
When we have a high quality diffusion bridge that can accurately approximate the distribution of
the target (PX , PY ), which most of the current diffusion bridge models can do. We can achieve
this by configuring the boundary conditions in the Feynman-Kac model to be f(x, y) = (hθ(x) −
y)2 and Cross Entropy(hθ(x), y). We then replace the empirical loss function with the PDE loss
and the PDE loss at the boundary. This approach may enable us to enhance the learning of the
Representation of a Distribution. This is because the diffusion bridge model captures information
about the entire distribution rather than just the local distribution of specific points. When estimating
expectations, we incorporate the PDE loss function, which contains gradient information regarding
the diffusion bridge coefficients. The coefficients of the diffusion bridge tend to exhibit correlations
with the target distribution. In this case, the number of points required for the diffusion bridge
coefficients is often significantly smaller than the number of points N directly sampled from the
data. Finally, we can use the trained diffusion bridge model to perform some basic statistical learning
tasks.

Variational Inference: Due to the extensive application of mathematical expectations in ma-
chine learning and probabilistic statistics, we are unable to comprehensively demonstrate all rel-
evant methods in this paper. We will consider applying these methods to important domains,
such as estimating the evidence lower bound (ELBO) in Black-Box Variational (Ranganath et al.
(2014)) Inference. We often need to use reparameterization techniques to estimate the ELBO =
Eq(z|ϕ) log p(x, z)− log q(z|ϕ) with small bias, but we can consider using a diffusion bridge to ap-
proximate the target distribution q(z|ϕ), and select f(z) = log p(x, z) − log q(z|ϕ), where ϕ can
be designed as a trainable parameter. In this way, we can modify our optimization objective from
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ELBO to −u(x0, t0) + PDE loss + boundary loss, which can achieve lower variance and
GPU acceleration.

10 ALGORITHMS

For X taking values in Rd, if the marginal distribution is not independent, we employ one-
dimensional Wasserstein distances (Santambrogio (2015)). In this case the Sinkhorn algorithm
(Cuturi (2013)) can be used to address the optimal transport problem in d-dimensions.

Backpropagation: By encapsulating the computation of the 2-Wasserstein algorithm into an
nn.Module and implementing it using PyTorch, we can retain the computation graph during
the calculation. This allows us to obtain precise gradients using automatic differentiation methods.

Algorithm 3 Diffusion bridge model (DBM)
Input: epochs:M ,Total point in time:D,Learning Rate:r,Initial value:X0,Brownian motion :Wt

Time Series: t0, t1, . . . , tD = T . Neural network: bθ1(x, t), σθ2(x, t),X0,θ3 and θ is the parameter
of a neural network. Euler-Maruyama method of step h. Number of paths simulated N . ε is the
required error threshold. The given data point is YT .
Output: Xi, b(t,Xi), σ(t,Xi), i ∈ [t0, t1, . . . , tD]

1: Calculate Xt

Xt+h = Xt + bθ1(t,Xt)h+ σθ2(t,Xt)(Wt+h −Wt) X0 = X0,θ3

2: for k in 1 : M do
3: Calculate loss

L =W2(ˆ̄µT , µ̂
N )

4: if Match the whole Markov chain then
5: Calculating the loss of this path assumes a Markov chain with M steps

L =

M∑
i=1

W2(ˆ̄µti , µ̂
∗
ti)

.
6: end if
7: for n in 1 : 3 do
8: Update parameters θkn ← θk−1

n −∇θLr.
9: end for

10: if L < ε then
11: End of training.
12: end if
13: end for

The algorithm of the Feynman-Kac model is similar to that of PINN. It is mainly a matter of using
the diffusion coefficients obtained earlier and solving the corresponding PDE for the data points.
Not all points on the paths need to be included in the training in this algorithm. This is the same as
the training of PINN, where we only need to sample a fraction of the points to get the solution.
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Algorithm 4 Feynman-Kac model (FCM)
Input: epochs:M ,Total point in time:D ,Learning Rate: r ,Time Series: t0, t1, . . . , tD = T .
Points of observation :Xt,Drift coefficient: b(t,Xt),Diffusion coefficient:σ(t,Xt) where t ∈
[t0, t1, . . . , tD]Neural network: uθ(x, t) θ is the parameter of a neural network. The function f
that needs to be estimated. Number of paths simulated N . required error threshold ε.
Output: E(f(XT )|X0 = xt0) = uθ(xt0 , t0)

1: if σ(t,Xt) is the diagonal matrix then
2: for k in 1 : M do
3: for s in 1 : D − 1 do
4:

Ls
1 =

1

N

N∑
k=1

∂uθ(x, t)

∂t
+

d∑
i=1

∂uθ(x, t)

∂xi
bi(xt, t) +

1

2

d∑
i=1

∂2uθ(x, t)

∂x2
i

σ(x, t)2i

∣∣∣∣∣
(x,t)=(xk

s ,ts)


2

5: end for
6: end for
7: end if
8: if σ(t,Xt) ̸= diagonal matrix then
9: for k in 1 : M do

10: for s in 1 : D − 1 do
11:

Ls
1 =

1

N

N∑
k=1

∂uθ(x, t)

∂t
+

d∑
i=1

∂uθ(x, t)

∂xi
bi(x, t) +

1

2

d∑
i=1

d∑
j=1

∂2uθ(x, t)

∂xi∂xj
(σ(x, t)σ(x, t)T )i,j

∣∣∣∣∣
(x,t)=(xk

s ,ts)


2

.
12: end for
13: end for
14: end if
15: Calculate PDE loss.

L1 =

D−1∑
s=1

Ls
1

.
16: Calculate boundary loss

L2 =
1

N

N∑
k=1

{
uθ(x

k
tD , tD)− f(xk

tD )
}2

17: Update parameters θk ← θk−1 −∇θ(L1 + L2)r
18: if (λ1L1 + λ2L2) < ε then
19: End of training
20: end if
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