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ABSTRACT

Large language models (LLMs) achieve good performance on challenging rea-
soning benchmarks, yet could also make basic reasoning mistakes. This contrast-
ing behavior is puzzling when it comes to understanding the mechanisms behind
LLMs’ reasoning capabilities. One hypothesis is that the increasingly high and
nearly saturated performance on common reasoning benchmarks could be due to
the memorization of similar problems. In this paper, we systematically inves-
tigate this hypothesis with a quantitative measurement of memorization in rea-
soning tasks, using a dynamically generated logical reasoning benchmark based
on Knights and Knaves (K&K) puzzles. We found that LLMs could interpo-
late the training puzzles (achieving near-perfect accuracy) after fine-tuning, yet
fail when those puzzles are slightly perturbed, suggesting that the models heav-
ily rely on memorization to solve those training puzzles. On the other hand,
we show that while fine-tuning leads to heavy memorization, it also consistently
improves generalization performance. In-depth analyses with perturbation tests,
cross difficulty-level transferability, probing model internals, and fine-tuning with
wrong answers suggest that the LLMs learn to reason on K&K puzzles despite
training data memorization. This phenomenon indicates that LLMs exhibit a com-
plex interplay between memorization and genuine reasoning abilities. Finally, our
analysis based on a per-sample memorization score sheds light on how LLMs
switch between reasoning and memorization when solving logical puzzles.

1 INTRODUCTION

Modern Large Language Models (LLMs) show impressive reasoning capabilities that allow them
to solve a wide range of challenging problems including commonsense reasoning and mathematical
reasoning. In the meantime, LLMs also make mistakes on some of the most basic problems, such as
comparing which number is bigger—13.11 or 13.8 (Lin, 2024), and counting the number of sisters
that Alice’s brother has (Nezhurina et al., 2024). This contrast is puzzling when it comes to under-
standing how exactly LLMs solve reasoning tasks. This question is important both scientifically and
practically: understanding how LLMs reason could shed light on their learning and generalization
behaviors. It is also crucial for real-world applications where robust reasoning is required due to
safety and trustworthiness concerns (Wang et al., 2023a; Wallace et al., 2024; Lee et al., 2024; Wei
et al., 2024a).

One hypothesis is that LLMs could be relying on memorization when solving those reasoning tasks,
especially when measured by popular benchmarks that could be accidentally leaked into various
massive internet-crawled pre-training datasets. Previous work (Tirumala et al., 2022; Carlini et al.,
2023) show that LLMs could indeed memorize the training data, which may lead to potential pri-
vacy (Carlini et al., 2021) or copyright (Karamolegkou et al., 2023; Wei et al., 2024b) concerns.
Additional evidences of potential memorization come from extensive studies on data contamination
in LLMs (Magar & Schwartz, 2022; Balloccu et al., 2024; Shi et al., 2024; Xu et al., 2024; Oren
et al., 2024). To mitigate the issue of benchmark saturation potentially due to memorization, some
papers focus on designing dynamic benchmarks (Roberts et al., 2023; Zhu et al., 2024; Srivastava
et al., 2024; Jain et al., 2024; Wu et al., 2024a) or alternative evaluation protocols (Zeng et al., 2023;
Zhang et al., 2024; Xu et al., 2024; Srivastava et al., 2024).

In this paper, we take a direct approach to quantify the memorization behaviors of LLMs in reason-
ing tasks within a controlled setting. Specifically, we seek to understand: (i) whether LLMs rely on
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by knights and knaves. Knights always 
tell the truth, and knaves always lie. 
You meet 2 inhabitants: Oliver, and 
Jacob. 
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A very special island is inhabited only 
by knights and knaves. Knights always 
tell the truth, and knaves always lie. 
You meet 2 inhabitants: Oliver, and 
Jacob. 

Oliver is a knight and 
Jacob is a knave

Oliver

Jacob

Oliver is a knave if and 
only if Jacob is a knight

So who is a knight and who is a knave?

Perturbed Problem 1

Figure 1: Illustration of the definition of Local Inconsistency based Memorization Score, LiMem. High level of
memorization occurs when the model shows high accuracy in solving sense problems but fails to consistently
solve those problems under local perturbations that require similar underlying reasoning principles.

memorization to solve reasoning tasks, and (ii) whether memorization is only detrimental to learn-
ing to reason. Both questions are inspired by human behavior. For instance, when a student works
hard on the preparation material for an exam, the preparation could help them get familiarized with
the problems, and their ability to solve new problems could usually improve with enough exercises.
However, without genuinely understanding the principles, they might fail when the same problem
is slightly changed despite doing well on prepared problems. Our metric of memorization LiMem,
illustrated in Fig. 1, is based on this intuition, that an LLM shows a high level of memorization when
it solves reasoning problems with high accuracy but struggles to consistently solve those problems
under local perturbations requiring similar mathematical principles (i.e., low consistency). We note
that a similar perturbation (mostly at language-level) idea has been used in previous work, especially
in detecting contamination (Golchin & Surdeanu, 2023; Yang et al., 2023; Xu et al., 2024). How-
ever, given our focus on understanding memorization in logical reasoning tasks, we further consider
problem-level perturbation that slightly changes the mathematical structure of a puzzle, in addition
to language-level perturbations. To facilitate our study, we propose a new logical reasoning bench-
mark that supports automatic problem-level perturbation. With this tool, we evaluate 11 off-the-shelf
models, and fine-tuned Llama3-8B and GPT4o-mini to quantify memorization in reasoning tasks,
and reveal interesting interplay between memorization and reasoning: while models indeed tend
to memorize many logical puzzles, they develop genuine reasoning capabilities during fine-tuning
(even directly on question-answer pairs without reasoning steps), and the reasoning performance
improves as the memorization level increases.

In the following, we provide an outline of the paper and summarize our key contributions:

• To quantify memorization in reasoning tasks, we define a memorization score based on the notions
of performance inconsistency under local perturbation, inspired by human behavior (§ 2.1).

• To facilitate the measurement, we propose a new logical reasoning benchmark based on the
Knights and Knaves (K&K, Smullyan, 1978; Johnson-Laird & Byrne, 1990) puzzles, that can
generate new puzzles at different difficulty levels, locally perturb existing puzzles, and automati-
cally synthesize detailed reasoning steps to solve a given puzzle (§ 2.2).

• We show that K&K puzzles are challenging, and only the most advanced LLMs could solve them
well. Moreover, our analysis suggests those models exhibit some level of memorization (§ 3).

• By fine-tuning on K&K samples, we confirm that modern LLMs are capable of memorizing a large
collection of puzzles, and reach high memorization score when interpolating (i.e., fitting, Belkin
et al., 2018) the training set. We observe that the models’ generalization accuracies continue to
improve as memorization grows (§ 4).

• We design various in-depth analyses (§ 4.1∼§ 4.3) to verify that the models developed genuine
reasoning capabilities after fine-tuning even with only question-answer pairs and wrong answers,
via local perturbation tests, cross difficulty-level transferability, and model internal probing.

• We show that fine-tuning with detailed reasoning steps can further boost the generalization on
K&K puzzles, even when fine-tuned with wrong reasoning steps (§ 5).

• To analyze the interplay between memorization and reasoning, we measure per-sample memo-
rization and study how LLMs switch between memorization and reasoning to solve a puzzle (§ 6).

2 HOW TO MEASURE MEMORIZATION IN REASONING TASKS

2.1 MEMORIZATION METRICS FOR REASONING TASKS

Memorization of LLMs has been studied in various contexts such as privacy (Carlini et al., 2023),
copyright (Carlini et al., 2021; Karamolegkou et al., 2023; Wei et al., 2024b; He et al., 2024), and
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[('proposal', {'assignment': True, 'outcome': 'ok', 'person': 0}),
 ('proposal', {'assignment': True, 'outcome': 'conflict', 
                       'conflict_statement': (0, True), 'person': 1}),
 ('proposal', {'assignment': False, 'outcome': 'ok', 'person': 1}),
 ('success', {'assignments': (True, False)})]

Abstract Reasoning Steps

True      False
Solution

A very special island is inhabited only by 
knights and knaves. Knights always tell the 
truth, and knaves always lie. You meet 2 
inhabitants: Oliver and Jacob.

Oliver is a knight and Jacob is a 
knave

Oliver is a knight if and only if 
Jacob is a knight

So who is a knight and who is a knave?

Synthetic CoTQuestion

person names, 
role names… 

denotes possible 
local perturbation

(1) Michael is a knight
(2) Zoey is a knight
(3) Ethan is a knight

Answer

'<=>', ('telling-truth', 2), ('telling-truth', 0), 
'or', ('telling-truth', 1), ('telling-truth', 2) 
'<=>', ('lying', 0), ('lying', 1)

Logical statements

[True, True, True]
Solution

TBD: with  N-ppl, width, depth,

Tree A very special island is inhabited only 
by knights and knaves. Knights 

always tell the truth, and knaves 
always lie. You meet 3 inhabitants: 

Michael, Zoey, and Ethan.

Ethan is a knight if and only if 
Michael is a knight

Michael

Ethan

Zoey

Zoey is a knight or Ethan is a 
knight

Michael is a knave if and only 
if Zoey is a knave

So who is a knight and who is a knave?

Let's think step by step, by 
considering whether each 
person is lying and if that 
leads to contradiction.
Assume Michael is a 
knight. No contradiction is 
found in their claim that 
Ethan is a knight if and 
only if Michael is a knight.
Assume Ethan is a 
knight.…
…..
This leads to a feasible 
solution.

Synthetic CoTQuestion

character 
names, 
role names… 

denotes local perturbation

TBD

Reason steps

Language 
conversion

Oliver

Jacob

(1) Oliver is a knight    (2) Jacob is a knave

Answer

Abstract Module
E.g., problem specification: N=2, W=2, D=2

claims

and ⇔

Person # 0
Person # 1

telling-truth lying telling-truth telling-truth

Let's think step by step, by 
considering whether each 
person is lying and if that 
leads to contradiction.
Assume Oliver is a knight. 
No contradiction is found in 
his claim that Oliver is a 
knight and Jacob is a knave. 
Jacob cannot be a knight, 
because this would 
contradict the claim of 

…..

This leads to a feasible 
solution.

Abstract Puzzle 

claims

Branching node

Leaf node

Natural Language Module

claims

Figure 2: K&K data generation framework employs abstract and natural language modules to generate question
answer pair and synthetic CoTs for each K&K sample, based on the problem specification: number of persons
(N ), tree width (W ), and depth (D). Perturbers in these modules can alter the math structure and language
description, respectively.

solving knowledge intensive tasks (Hartmann et al., 2023). In this paper, we are specifically inter-
ested in measuring the level of memorization when solving reasoning tasks, by borrowing intuition
from human behavior. For example, when preparing for an exam, a student may not be able to fully
digest the underlying principles due to various reasons or constraints. But when (luckily) facing the
same problem the student had prepared for, they would still be able to solve it. A key characteristic
of this type of memorization is: (A) high accuracy on observed problems and (B) low accuracy when
the problem is slightly changed. Based on this intuition, for a dataset D of reasoning puzzles, we
combine the following two quantities to measure memorization:

1. For (A), we measure the accuracy of a target model f on D, denoted as Acc(f ;D). We are
especially interested in measuring on the set of observed puzzles, i.e., the training set, Acc(f ;Tr).
We say f interpolates (Belkin et al., 2018; Muthukumar et al., 2020; Belkin, 2021; Bartlett et al.,
2021) the training puzzles if Acc(f ;Tr) ≈ 100%.

2. For (B), we measure a consistency ratio CR(f ;D) between the number of consistently solved
puzzles after some local perturbations, and the number of solved puzzles (without perturbation).
We are interested in local perturbations that make minimal changes to the puzzle and maintain the
same underlying principle for solving it, and a similar difficulty level (to be specified in § 2.2).

We combine the two factors to define a Local Inconsistency-based Memorization Score:
LiMem(f ;D) = Acc(f ;D) · (1− CR(f ;D)). (1)

When there is no ambiguity, we simply call it the memorization score. LiMem(f ;D) ∈ [0, 1]
and a larger score provides stronger evidence of memorization. Specifically, a high LiMem(f ;Tr)
matches the characteristic behavior of human memorizing observed puzzles, and in this case we say
f memorized the training puzzles. Furthermore, we also measure LiMem(f ;Tst) on test examples,
to study if the generalization accuracy is due to reasoning or memorization. Note the Acc(f ;D)
factor is simple but necessary, as there are three types of behaviors: (i) solving by memorization, (ii)
solving by reasoning, (iii) not solving (e.g., random guessing). A high LiMem(f ;D) indicates (i),
but a low LiMem(f ;D) would only indicate (ii) if we separately check that Acc(f ;D) is high.

To effectively measure the memorization score LiMem(f ;D), we need a principled way to (1) per-
form a local perturbation that changes the puzzle while maintaining its difficulty level; (2) compute
the new correct answer after perturbation. Towards this goal, we design and implement a functional
dataset based on the Knights and Knaves puzzles (Smullyan, 1978; Johnson-Laird & Byrne, 1990).

2.2 KNIGHTS AND KNAVES LOGICAL REASONING BENCHMARK

Knights and Knaves (K&K) is a type of logical puzzle where some characters can only answer
questions truthfully, and others only falsely. The goal is to infer each character i’s truthfulness Bi

(Boolean value) according to its statement Si. Fig. 2 shows an example puzzle and its answer.

The principle underlying K&K is the Boolean satisfiability problem (SAT) (Boolean satisfiabil-
ity problem, 2024). SAT was the first problem proven to be NP-complete and many well-known
problems can be translated into SAT, such as hardware and software verification and theorem prov-
ing (SAT solver, 2024). Hence, the performance of a model on SAT (i.e., K&K puzzles) can be
important indicative of its reasoning capabilities. Specifically, consider a K&K puzzle involving N
people, a possible solution assign a Boolean value to N variables B1, B2, . . . , BN , where the truth
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value of Bi indicates whether the ith person is telling the truth. By definition, the ith person is telling
the truth if and only if their statement Si is true. Therefore, a valid solution to a K&K puzzle is a
Boolean assignment for B1, B2, . . . , BN such that the following formula is true.

(B1 ⇔ S1) ∧ (B2 ⇔ S2) ∧ · · · ∧ (BN ⇔ SN ). (2)

Based on the K&K puzzle, we design a dynamic benchmark that supports generating new puzzles
and perturbing existing puzzles. Our library automatically solves the K&K puzzles and generates
detailed reasoning steps and solutions for evaluation and training. Moreover, to support measuring
memorization, we also provide a procedure to perturb a given puzzle and recompute the new solution
after the perturbation. Specifically, our benchmark consists of two modules:

The Abstract Module has four components that can generate and manipulate K&K puzzles in an
abstract form (see § C.1). (1) The Generator creates a random K&K puzzle given a specification
(N,D,W ) that determines the difficulty level. Specifically, it generates a puzzle with N people,
and for each person, a statement that consists of a random tree of maximum width W and depth
D, where each node is sampled uniformly at random from the following candidate sets. The leaf
node can be a claim that a specific person is lying (i.e., knave) or truth-telling (i.e., knight), and the
branching node can be and, or, not, imply, and equivalence. (2) The Solver finds the solution to a
given puzzle. In our study, we ignore puzzles with no or more than one solution. So we implement
the solver by converting the puzzle to a Boolean satisfiability problem and enumerate all Boolean
assignments so that we can easily obtain a list of all valid solutions to filter out unwanted puzzles.
(3) The Reasoner generates a step-by-step reasoning procedure that leads to the solution. We design
it to mimic the reasoning steps used by humans and some LLMs: instead of enumerating all Boolean
assignments, it examines each person sequentially, makes an assumption (knight/knave) and checks
if it leads to a contradiction with statements from people with specific identities assumed. If not, it
continues to examine the next person; otherwise it will try an alternative assumption or backtrack
to a previously examined person (details in § C.3). (4) The Perturber, given a puzzle, generates
a locally perturbed version that is (superficially) similar to the original puzzle, and solvable with
the same underlying principle and at a similar difficulty level. The Perturber replaces either an
entire statement or a leaf node in a statement with a newly sampled one. The process is rerun until
the perturbed puzzle has a unique solution different from the original puzzle, or until a maximum
number of attempts is reached. This rarely happens for N ≥ 3 people puzzles. When it happens we
skip the puzzle in our perturbation analysis. See Tab. 1 for concrete examples.

The Natural Language Module has three components that operate in natural language space. (1)
The NL-Generator takes an abstract K&K puzzle and formats it in natural language. It is template-
based, with randomly sampled person names and a random template for making claims, and it
uses a few heuristics to convert tree-structured logical statements to natural language. (2) The NL-
Reasoner converts the reasoning steps computed by the abstract Reasoner to the natural language
format in a similar manner. See Fig. 15 for dataset length distributions. (3) The NL-Perturber
generates perturbed puzzles by keeping the abstract puzzle intact and manipulating the language-
level descriptions as follows (See § C.7): (i) replace character names with uncommon names; (ii)
replace knight/knave with other similar pairs of role names, e.g., saint/sinner; (iii) reorder the state-
ments from the characters; (iv) flip the role name from knight/knave to knave/knight. Note that the
flipped role perturbation is somewhat adversarial as it goes against the common intuition that a good
character would tell the truth and a bad one would lie, so we include it mostly for reference purposes.

3 QUANTIFYING LLM MEMORIZATION IN REASONING TASKS

We measure memorization for off-the-shelf models (§ 3.1) and fine-tuned models (§ 3.2).

3.1 OFF-THE-SHELF MODELS

Evaluation setup. To generate our K&K benchmark (§ 2.2), we use the max tree width W = 2 and
depth D = 2, and create 100 test puzzles for each N -people task (N ∈ {2, 3, . . . , 8}). Then, we
generate perturbed versions for each puzzle under 6 perturbation types introduced in § 2.2: {per-
turbed statement, perturbed leaf node, random role-pair name, uncommon person name, reordered
statement, flipped role}. We utilize 0-shot direct prompting with task-specific instructions for open-
ended question-answering (details in § D.2). Note that even under direct prompting, capable LLMs
can generate Chain of Thought (Wei et al., 2022, CoT). Our evaluation mainly considers the 0-shot
setting, excluding potential biases introduced by in-context examples (Zhao et al., 2021). We defer

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2 3 4 5 6 7 8
# ppl

Gemma-2-9b
Llama-3-8B

Phi-3-mini-instruct
Phi-3-medium-instruct
NuminaMath-7B-CoT

Deepseek-Math-7b-instruct
Llama-3.1-8B-Instruct

Qwen2.5-Math-7B-Instruct
Qwen2-Math-7B-Instruct

GPT-4o-mini
GPT-4o

Claude-3.5-sonnet
Gemini-1.5-Flash-002

Gemini-1.5-Pro-002

0.30 0.16 0.09 0.06 0.05 0.02 0.05

0.28 0.11 0.04 0.02 0.04 0.00 0.00

0.36 0.25 0.15 0.12 0.03 0.07 0.04

0.44 0.34 0.16 0.14 0.04 0.07 0.03

0.28 0.13 0.12 0.05 0.01 0.00 0.00

0.35 0.21 0.08 0.06 0.02 0.00 0.00

0.41 0.22 0.07 0.06 0.02 0.03 0.01

0.49 0.36 0.20 0.10 0.05 0.02 0.01

0.54 0.36 0.25 0.14 0.04 0.03 0.04

0.63 0.42 0.34 0.17 0.09 0.10 0.01

0.68 0.57 0.49 0.32 0.23 0.21 0.11

0.70 0.63 0.51 0.31 0.22 0.10 0.06

0.66 0.48 0.28 0.14 0.04 0.02 0.02

0.79 0.61 0.42 0.22 0.07 0.00 0.00

Acc(f ;Tst)

2 3 4 5 6 7 8
# ppl

0.28 0.16 0.09 0.06 0.04 0.02 0.04

0.27 0.10 0.04 0.02 0.04 0.00 0.00

0.22 0.21 0.13 0.09 0.03 0.06 0.03

0.27 0.24 0.14 0.10 0.01 0.07 0.03

0.16 0.13 0.11 0.05 0.01 0.00 0.00

0.22 0.19 0.07 0.06 0.02 0.00 0.00

0.31 0.20 0.06 0.06 0.02 0.02 0.01

0.24 0.22 0.15 0.09 0.04 0.02 0.01

0.25 0.22 0.15 0.14 0.03 0.03 0.04

0.24 0.26 0.19 0.14 0.07 0.08 0.00

0.19 0.30 0.17 0.21 0.14 0.15 0.09

0.24 0.33 0.25 0.23 0.13 0.08 0.06

0.18 0.27 0.17 0.12 0.04 0.02 0.01

0.13 0.23 0.24 0.13 0.07 0.00 0.00

LiMem(f ;Tst) perturbed statement

2 3 4 5 6 7 8
# ppl

0.30 0.16 0.09 0.05 0.04 0.02 0.04

0.26 0.11 0.03 0.02 0.04 0.00 0.00

0.24 0.24 0.13 0.12 0.03 0.06 0.04

0.27 0.28 0.12 0.10 0.03 0.04 0.02

0.23 0.12 0.10 0.05 0.01 0.00 0.00

0.22 0.17 0.06 0.05 0.02 0.00 0.00

0.30 0.19 0.07 0.06 0.02 0.03 0.00

0.26 0.24 0.17 0.09 0.05 0.01 0.01

0.29 0.20 0.18 0.11 0.04 0.03 0.04

0.29 0.25 0.20 0.11 0.06 0.08 0.01

0.20 0.20 0.22 0.18 0.14 0.13 0.09

0.16 0.31 0.24 0.18 0.11 0.08 0.06

0.29 0.17 0.15 0.14 0.03 0.02 0.02

0.22 0.25 0.24 0.18 0.05 0.00 0.00

LiMem(f ;Tst) perturbed leaf
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Figure 3: Test accuracy Acc(f ;Tst) of off-the-shelf models under 0-shot direct prompting drops with increas-
ing puzzle complexity (left). LiMem(f ;Tst) on test examples under statement perturbation (middle) and leaf
perturbation (right) is large for specific models, indicating signs of memorization in solving these puzzles.

the results under CoT prompting (i.e., explicitly adding a CoT trigger “Let’s think step by step”), and
1-shot prompting to § E. To evaluate the accuracy of the model’s output, we use keyword match-
ing for full-puzzle correctness. A response is considered correct if every person’s true identity is
included in the conclusion part of the model’s response.

Off-the-shelf models do not perform well on K&K tasks. We evaluate 14 models that are shown
to perform competitively on common reasoning benchmarks1. As shown in Fig. 3, K&K bench-
mark poses a challenging logical reasoning task for all the models. Even for the easiest puzzles
involving only 2 persons, the best models still achieve ≤ 70% accuracy. And the performance drops
significantly as the complexity increases (the best accuracy is only 11% for 8-people puzzles).

Off-the-shelf models are sensitive to locally perturbed test samples. To quantify LLMs’ mem-
orization of the logical reasoning task, we employ the score proposed in Eq. (1). Since the train-
ing data for the off-the-shelf models is unknown, we focus on measuring the memorization score
LiMem(f ;Tst) on the test set here. We observe (Fig. 3 right) that for the cases where a model has
relatively high accuracy, the memorization scores under local perturbation are generally high. For
example, LiMem(Claude-3.5-Sonnet;Tst) > 0.3 on 3-people puzzles under both statement and leaf
perturbation. Those measurements indicate signs of memorization when solving these puzzles.

3.2 FINE-TUNED MODELS

Here, we study a model’s memorization behavior when fine-tuned on K&K puzzles.

Fine-tuning setup. We take Llama3-8B and GPT4o-mini and run supervised fine-tuning (SFT) on
a set of K&K training puzzles disjoint from the test set. We consider two fine-tuning paradigms: (1)
Fine-tuning on detailed CoT steps (CoT FT): during SFT, the model observes the concatenation of
the question, synthetic CoT steps, and the answer for each puzzle; the loss is computed on the CoT
steps and the answer part. (2) Fine-tuning on the answers (Direct FT) where the model observes the
question-answer pair for each puzzle, and the loss is only computed on the answer part. Examples
of CoT FT/Direct FT training instances are provided in § D.2.2. We fine-tune the models for each
N -people task separately, with ntrain = 1, 000 for 3 ≤ N ≤ 8, and ntrain = 200 for 2-people task
due to limited number of combinations. We fine-tune Llama3-8B for 50 epochs2 and GPT4o-mini
for 5 epochs (due to budget constraints) via the OpenAI fine-tune API (details in § D.2). During the
evaluation, we follow the same prompting paradigm as FT paradigm, i.e., direct/CoT prompting for
direct/CoT-FTed model, which is shown effective in § E.2.

LLMs interpolate K&K training puzzles. In Fig. 4, we present the training accuracy of models
trained on each task on the x-axis (each dot represents a training epoch). We find that models exhibit
high training accuracy in tasks such as 3/5-people puzzles. The higher capacity GPT4o-mini nearly
achieves interpolation (Acc(f ;Tr) ≈ 100%) using both Direct FT and CoT FT.

Interpolating LLMs have large memorization scores on training examples. From Fig. 5, (1)
we observe high LiMem(f ;Tr) memorization score on training samples (e.g., ∼ 50% on 8-people
task) under various perturbations. It shows significant gaps between accuracy on the original sample
and the consistent accuracy under perturbation, suggesting a heavy reliance on memorization. (2)
LiMem(f ;Tr) is higher for more difficult tasks (e.g., 5/8-people), which could mirror human behav-
ior, where memorization is often used to tackle challenging tasks that people do not fully understand.
(3) More capable model GPT4o-mini, in general, show lower memorization scores than Llama3-8B.

1We are not evaluating the OpenAI o1 model because API access is limited to only the highest-tier users.
2We fine-tune Llama3-8B for max 100 epochs in Fig. 21 and find that it typically converges at 50 epochs.
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due to its limited capacity.
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consistency ratio separately in Fig. 19, and memorization score
of combined math & language-level perturbations in Fig. 20.

Ablation on local perturbations. Comparing different perturbations in Fig. 5, we find that (1)
LLMs exhibit a higher memorization score when evaluated with math-level perturbations (e.g.,
statement/leaf) compared to language-level, which indicates that LLMs can compose the language
understanding capability to solve the same puzzle in alternative phrasing. (2) LLMs get nearly zero
accuracy on role-flipped samples (e.g., when a knight, typically viewed as truthful, is defined as
always lying), and memorization score LiMem(f ;Tr) under role-flipping for Llama3-8B is ∼ 80%
as shown in Fig. 6. This could be due to an internal bias or commonsense understanding that knights
are inherently good characters (e.g., truthful), and thus LLMs disregard the altered puzzle statement.

4 LLMS LEARN TO REASON BY FINE-TUNING WITH ANSWERS ONLY

§ 3 shows that both off-the-shelf and fine-tuned models exhibit memorization when solving K&K
reasoning tasks. Does it mean that those models do not have reasoning capabilities at all? As we will
show, it turns out that the models can do both, and interestingly the reasoning capability consistently
improves as the memorization level increases when the models are fine-tuned on K&K puzzles.

We focus on analyzing Direct FT in this section and discuss CoT FT in § 5. For humans, solving
K&K tasks without understanding the underlying logic is difficult. However, after observing the
step-by-step reasoning steps, people can understand the procedure and solve the puzzles more easily.
Similarly, compared to CoT FT, learning from only answers (Direct FT) without detailed reasoning
steps is intuitively more challenging for LLMs, as the models need to come up with the reasoning
procedures on their own. Therefore, the models might be more likely to rely on memorization in
this case. Surprisingly, from Fig. 5, we did not observe Direct FTed GPT4o-mini models exhibiting
consistently higher memorization score than CoT FTed ones. It turns out that models can learn to
reason K&K puzzles well directly from observing only question-answer pairs, as we will show in
§ 4.1. To better understand what the model actually learns through Direct FT, we conduct a probing
analysis on model internals in § 4.3 and an ablation study with incorrect answers fine-tuning in § 4.3.

4.1 REASONING CAPABILITIES OF DIRECT FT-ED MODEL

Generalization performance increases with memorization level. As shown in Fig. 6 , the test
accuracy (y-axis) of fine-tuned LLMs on the unseen test set continues to increase over the epochs,
despite that the memorization score LiMem(f ;Tr) on training samples also increases.
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Figure 6: Test accuracy of fine-tuned Llama3-8B increases over epochs, despite the stronger memorization of
training data as reflected by larger LiMem(f ;Tr). See Fig. 18 for results on GPT4o-mini.
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Figure 7: Test accuracy improvement on N -people problems for LLMs fine-tuned on M -people problems,
compared to the unfine-tuned model, under 0-shot direct prompting. Most grid values are above 0, indicating
transferability and enhanced reasoning abilities across unseen tasks. Results for more epochs are in § E.2.

LiMem(f ;Tst) on test samples is smaller than LiMem(f ;Tr) on train samples in Fig. 5, indi-
cating that models are less likely to rely on memorization when solving test samples compared to
training samples. Since a low memorization score can result from either solving by reasoning or fail-
ing to solve (e.g., low accuracy), we further analyze the model’s reasoning ability on test samples
through a transferability study below.

Fine-tuned model generalizes across different difficulty levels. We evaluate LLMs’ transferabil-
ity by fine-tuning on M -people puzzles and testing on N -people puzzles. When M ̸= N , the testing
is out-of-distribution compared to training and solving it requires reasoning. The N × M test ac-
curacy improvement grid (compared to the un-FTed model) in Fig. 7 shows: (1) Training on any
M -people puzzle generally improves test accuracy on any N -people puzzles, suggesting that the
model learns general task-solving rules after FT (to reason and solve both easier and harder unseen
puzzles). (2) More training epochs (e.g., 50 vs. 5) improve results, especially for Llama3-8B. (3)
Accuracy gains are larger for N ≤ 6 puzzles, though improvements on harder tasks remain possible.
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Figure 8: Transferability of 1k/10k
8-ppl FTed GPT4o-mini. Llama3-
8B results are in Fig. 24.

Fine-tuning with 10k 8-people puzzles. Given the significant
performance improvement from fine-tuning, a natural question
arises: can brute-force fine-tuning on a very large number of puz-
zles eventually solve the K&K puzzles, by observing/memorizing
a variety of combinations of persons’ claims and their correspond-
ing answers? We Direct FT GPT4o-mini on 1k/10k of the most
challenging 8-people puzzles for 5 epochs. Fig. 8 shows that (1)
10k-FT significantly outperforms 1k-FT across all tasks, reaching
∼ 90% test accuracy on moderately difficult 4/5-people puzzles.
(2) CoT FT is generally more effective than Direct FT with 10k
samples, likely due to the guidance provided by reasoning steps.
(3) An exception is the 2-people task, where the training and test-
ing distribution gap causes the CoT FTed model to occasionally
get stuck in a loop of listing assumptions and contradictions, re-
sulting in long, repetitive responses without reaching a conclu-
sion3. (4) Direct FT with 10k puzzles achieves surprisingly high
test accuracy on all tasks, e.g., 52% on 8-people tasks, where the
un-FTed model scores near 0. Notably, the models do not see rea-
soning steps during training and rely solely on memorizing an-
swers. We also observe high transferability for 10k Direct FTed
Llama3-8B in Fig. 24, e.g., 87% test accuracy on 3-people puz-
zles.

4.2 PROBING DIRECT FTED MODELS

To investigate whether Direct FTed models develop internal understanding of the skills necessary
to solve K&K puzzles when learning only from the answers, we use probing techniques (Adi et al.,
2017; Conneau et al., 2018; Hewitt & Liang, 2019; Ye et al., 2024) to analyze their internal represen-
tations. Specifically, we study whether a Direct FTed model’s intermediate outputs provide evidence
that it can distinguish between correct and incorrect statements for a given K&K puzzle, which is
essential for solving the puzzle via reasoning. For a given model, we extract intermediate outputs
from all transformer blocks for 200 correct and 200 incorrect statements, then check whether these

3We observe similar accuracy drop on 2-people task for Llama3-8B (see Fig. 24) when it is Direct FTed for
overly long epochs. We provide more examples and discussions in § E.2.2.
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outputs form distinct clusters by measuring the training accuracy of a logistic regression model fit
on them (see § D.2.3 for details). For each N -people K&K puzzle, we report the per-layer probing
accuracy averaged across seven Direct FTed models, each Direct FTed on an M ∈ {2, 3, . . . , 8}-
people task.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Transformer Block Index

2

3

4

5

6

7

8

#
pp

l
in

th
e

K
&

K
ev

al
ua

ti
on

0.57 0.59 0.61 0.65 0.68 0.75 0.77 0.78 0.85 0.87 0.9 0.91 0.94 0.97 0.97 0.97 0.96 0.95 0.94 0.92 0.91 0.92 0.9 0.89 0.9 0.9 0.91 0.92 0.94 0.95 0.91 0.89

0.58 0.59 0.61 0.66 0.71 0.74 0.76 0.78 0.84 0.87 0.91 0.92 0.95 0.97 0.97 0.96 0.95 0.94 0.93 0.91 0.91 0.9 0.89 0.88 0.89 0.9 0.91 0.92 0.93 0.93 0.88 0.88

0.6 0.6 0.62 0.64 0.66 0.71 0.74 0.76 0.82 0.84 0.89 0.9 0.95 0.97 0.96 0.95 0.94 0.93 0.91 0.89 0.89 0.89 0.88 0.87 0.87 0.88 0.88 0.9 0.9 0.91 0.85 0.85

0.6 0.61 0.64 0.67 0.7 0.74 0.76 0.78 0.83 0.85 0.9 0.92 0.95 0.97 0.96 0.96 0.94 0.93 0.92 0.89 0.89 0.88 0.87 0.86 0.87 0.89 0.89 0.89 0.89 0.9 0.82 0.81

0.61 0.61 0.63 0.65 0.67 0.71 0.74 0.77 0.81 0.84 0.89 0.9 0.93 0.95 0.95 0.95 0.93 0.92 0.9 0.89 0.87 0.88 0.85 0.86 0.86 0.87 0.87 0.87 0.87 0.87 0.79 0.8

0.6 0.61 0.62 0.66 0.69 0.72 0.75 0.77 0.81 0.83 0.86 0.88 0.92 0.95 0.95 0.94 0.92 0.91 0.88 0.87 0.87 0.86 0.86 0.85 0.85 0.87 0.87 0.86 0.88 0.86 0.8 0.76

0.65 0.65 0.66 0.68 0.7 0.72 0.74 0.77 0.8 0.83 0.87 0.89 0.93 0.95 0.95 0.95 0.93 0.91 0.9 0.88 0.88 0.87 0.86 0.85 0.86 0.87 0.89 0.86 0.87 0.85 0.81 0.78

0.80

0.85

0.90

0.95

1.00

Figure 9: Probing accuracy of K&K puzzles with different number of people in testing puzzles across different
layers of the Llama3-8B transformer model. Results for un-FTed models are shown in Fig. 33 in § E.

Fig. 9 shows (1) a clear trend of higher probing accuracy in deeper layers, peaking at around the
14th/15th layer. The near-perfect peak accuracy suggests that the model’s internal representations
have a clear distinction between true/false statements about a given puzzle. (2) The probing accuracy
is much higher than the un-FTed model (Fig. 33 in § E), suggesting that such representations are
learned from the question-answer pairs during Direct FT. (3) Puzzles with more people seem to
demand more internal computation, as evidenced by the point where probing accuracy surpasses
85% shifting to later transformer blocks.

4.3 DIRECT FT WITH WRONG ANSWERS

To further explore what could the models learn from the question-answer pairs without detailed
reasoning steps, we consider an extreme scenario of learning with incorrect answers: for each N -
people training puzzle, we randomly select Ñ from [1, N ] and flip the knight/knave identities of Ñ
randomly chosen individuals. Surprisingly, Fig. 10 shows that Direct FT with incorrect answers still
leads to non-trivial improvements for Llama3-8B. These improvements occur gradually over more
epochs, suggesting that the model progressively developed reasoning skills during fine-tuning.

Note that in this case the improved test accuracy could not have come from memorization because
100% of the training examples are incorrectly labeled. However, since in each wrong answer of a N -
people puzzle, there are still N − Ñ correct role assignments where the random Ñ ≥ 1. The model
might have learned to reason from those partially correct role assignments in the wrong answer.
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Figure 11: Direct FT w/ various
wrong training answer proportions
on 5-ppl task.

However, as shown in Fig. 11, when applied to more capable
GPT4o-mini models, Direct FT on 5-people puzzles where 100%
training examples have corrupted answers does not lead to im-
provement. Moreover, the negative effects transfer to other tasks,
notably easier ones (2/3/4-people). Nevertheless, as the percent-
age of corrupt-answer training examples reduces (≤ 50%), the
model could gain improved reasoning capabilities that generalize
across different N -people tasks. We provide GPT4o-mini results
under more epochs in Fig. 32 and Llama3-8B results for partially
wrong answer FT in Figs. 30 and 31.

5 LLMS LEARN TO REASON BY FINE-TUNING WITH COTS

Here we measure models’ reasoning capabilities after fine-tuning with detailed reasoning steps.

0.25

0.50

0.75

A
cc

(f
;T

r)

5-ppl FT GPT4o-mini

0 2 4 6 8 10
Epoch

0.2

0.4

0.6

A
cc

(f
;T

st
)

Clean CoT

Shuffle CoT

Replace one CoT step

Figure 12: Wrong CoTs FT.

Model learns to reason on CoT when model capacity is large
enough. As shown in Fig. 4, (1) training with reasoning steps as guid-
ance improves test accuracy (y-axis) on unseen puzzles. (2) However,
Llama3-8B struggles with CoT FT, likely due to its limited capacity
to effectively learn CoT skills with ≤1K training samples. (3) Similar
to Direct FT results in § 4, in CoT FT, memorization of training data
is higher than test data (Fig. 5), yet test accuracy improves despite
that the memorization score increases over training (Fig. 18), and the
fine-tuned models show positive transferability to easier/harder tasks
(Fig. 7). (4) Though models can generalize surprisingly well under
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Figure 10: Test accuracy improves on N -people puzzles for Llama3-8B fine-tuned on M -people puzzles with
completely wrong answers, compared to the unfine-tuned model. This evaluation uses 1-shot direct prompting
(see Fig. 29 for results under different prompting setups).

Direct FT, CoT FT could lead to much higher test accuracy, especially with a larger training set
(Fig. 8).

Fine-tuning with wrong CoTs. The CoT training data includes both reasoning steps and answers.
To understand the role of the CoT component in improving model generalization, we fine-tune
GPT4o-mini with two types of incorrect CoT data: (a) randomly shuffled CoT steps, disrupting the
logic of the reasoning steps; and (b) CoTs with a single incorrect step, simulating genuine mistakes
that people would sometimes make, where one step is randomly replaced with another puzzle’s CoT
step (adjusting names to fit the current context). The results in Fig. 12 show that (1) fine-tuning
with a 100% corrupted CoT dataset can still enhance test accuracy over the epochs, suggesting that
the model learns to reason (potentially from the correct answers) despite CoT errors. (2) Altering
one CoT step slows convergence and reduces test accuracy compared to clean CoT. (3) Shuffling
CoT steps further harms both convergence and generalization. These also suggest that using correct
logical chains in CoT can help LLMs to more effectively learn to reason.

6 DISTINGUISHING MEMORIZATION FROM REASONING

The findings above show that models’ reasoning capabilities continue to improve as they memorize
more training examples. In other words, the models use both memorization and reasoning to solve
the puzzles. How do models decide which example to memorize or reason about? We can use our
framework to study this question by extending the memorization score to a per-example metric.

Specifically, consider measuring Eq. (1) on a 1-point dataset D = {x}. We skip the examples where
Acc(f ; {x}) = 0 as the consistency ratio CR({x}) is NaN in this case. Then LiMem(f ; {x}) ∈
{0, 1} is a binary indicator: 0 indicates x is consistently solved after local perturbation; 1 indicates
otherwise. We would like to see if there is a clear rule that can separate the two types of puzzles.

Setup. We collect training samples {xi} on which the targeted LLM makes correct predictions, and
assign a binary categorical label as either “consistently solved” (i.e., solved by reasoning) puzzle or
“not consistently solved” (i.e., solved by memorization) puzzle. We split this dataset into random
disjoint 80%/20% training/test sets, and train a simple logistic regression model to solve this binary
classification problem, in order to study the question: Is there a simple indicator that determines
whether a model would solve a given puzzle by reasoning or memorization?
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Figure 13: AUC for classifying 3-people puzzles under leaf perturbation
based on puzzle-based indicators. Results under more tasks and pertur-
bations are in Fig. 34.

Puzzle-based indicators. We
consider the following features:
(1) TF-IDF; (2) Bag-of-Words;
(3) Word Length; (4) Charac-
ter Length; (5) concatenation of
all. Each feature can be ex-
tracted from one of the follow-
ing fields: (1) question; (2) syn-
thetic CoT reasoning steps; (3)
model response4; (4) concatena-
tion of the above fields. The training and test performance (measured with AUC as the dataset
can be unbalanced) are shown in Fig. 13. We observe a test AUC of 0.629/0.787 for Direct/CoT
FT-ed GPT4o-mini, and 0.627 for Direct FT-ed Llama3-8B. This indicates that the puzzle-based
indicators could be informative, though not perfect, at determining which examples are reasoned vs.
memorized.

4Strictly speaking this is a model-based indicator feature.
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Figure 14: Test AUC for predicting 3-people puzzles based on whether they are consistently solved under leaf
perturbation by the Llama3-8B model Direct-FTed. The embeddings across different layers of the fine-tuned
Llama3-8B provide more distinguishable signals than those of the un-FTed model, leading to 0.7 AUC at the
middle layers. Results under more tasks and perturbations are in Fig. 35.
Model-based indicators. Here we study model-based indicators to test whether the internal activa-
tions of the fine-tuned model are informative for this categorization. Since we do not have access to
the model internals of GPT4o-mini, we conduct the experiment on Llama3-8B. Specifically, we feed
each puzzle question to the FT-ed model, collect the average embedding at each layer as features,
and then train a linear classifier based on the features of each layer. The test AUCs are shown in
Fig. 14, where we compare the results based on a not-FTed base Llama3-8B model, to see how much
of the feature expressiveness comes from the fine-tuning process. We observe that (1) the features
from the bottom layers are too low level to classify memorization vs. reasoning, but the test AUCs
improve at higher layers. (2) The features from the FTed model are consistently more informative
than the un-FTed model, suggesting that the model’s decision regarding memorization vs. reasoning
on specific samples likely stems from the fine-tuning process. (3) The best model embedding-based
indicator provides stronger signals than the puzzle-based indicator (Fig. 13 left) for Llama3-8B, with
0.70 and 0.627 test AUC on 3-people puzzles, respectively.

7 RELATED WORK

Memorization in LLMs. Previous work on LLM memorization primarily focused on near-verbatim
training text regurgitation from the perspective of privacy or copyright concerns (Carlini et al., 2021;
Lee et al., 2022; Carlini et al., 2023; Lukas et al., 2023; Biderman et al., 2024; Prashanth et al., 2024).
In contrast, we focus on quantifying the memorization behavior of LLMs when solving reasoning
tasks, using a metric computed with the help of local perturbation of reasoning puzzles.

Benchmark Contamination and Logical Reasoning Evaluation. Recent research has revealed
LLMs’ significant performance decline when faced with altered versions of popular reasoning
benchmarks (Oren et al., 2024; Xu et al., 2024; Yang et al., 2023; Yao et al., 2024; Zhang et al.,
2024; Srivastava et al., 2024), suggesting potential benchmark contamination. Various synthetic
benchmarks have been developed to evaluate LLMs’ logical reasoning capabilities, allowing for dy-
namic and scalable generation of samples with different configurations and difficulty levels (Clark
et al., 2020; Giadikiaroglou et al., 2024; Parmar et al., 2024; Dziri et al., 2024; Lin et al., 2024;
Kazemi et al., 2024; Mondorf & Plank, 2024). TruthQuest (Mondorf & Plank, 2024) is the most
similar task to our work, which provides K&K-type of 3-6 person puzzles and answers. Our work
provides more comprehensive dynamic set of K&K puzzles that support the automatic generation of
perturbations, solutions, and detailed reasoning steps. Moreover, we define and measure memoriza-
tion, and reveal its intricate relation to reasoning.

We refer the readers to § B for a more comprehensive discussion of related work.

8 CONCLUSION

We propose a memorization metric LiMem based on the inconsistency when solving a locally per-
turbed logical reasoning puzzle, and quantitatively characterize the amount of memorization and
reasoning. Through an in-depth analysis based on local perturbation, transferability, intermediate
outputs probing, and fine-tuning with wrong answers, we find that LLMs learn to reason as they
memorize more training examples. Furthermore, we study input and model-based signals that de-
termine which puzzles are solved by reasoning vs by memorization. To support these studies, we
create a feature-rich dynamic logical reasoning benchmark that not only enables our memorization
study, but could also be useful for future studies related to LLM logical reasoning. We defer more
discussion and future work to § A.
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REPRODUCIBILITY STATEMENT

In this paper, we have taken steps to ensure the reproducibility of our results: (1) The source code
for data generation, LLM evaluation and fine-tuning is provided in the supplementary material. We
have provided the README and scripts to replicate the experiments in the paper. (2) Detailed
information about K&K data generation can be found in § C. This includes descriptions of each
component in the abstract puzzle module and the natural language module. (3) We described the
experimental setups in each section (§ 3-§ 6). Additional details on models, hyperparameters, LLM
evaluation, fine-tuning, and computational resources are provided in Appendix § D.
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A DISCUSSION AND FUTURE WORK

Our results reveal intricate phenomena of the interplay between reasoning and memorization, but
challenging questions remain open: (i) While a model’s reasoning capabilities improve during fine-
tuning as it memorizes more training puzzles, it is unclear exactly how those capabilities develop,
especially when fine-tuned on only question-answer pairs without detailed reasoning steps. (ii)
While the models’ reasoning capabilities can be significantly improved after fine-tuning, they have
not reached 100% test accuracy yet. Is it because the models only learned some “shortcut rules”
that can only solve a specific subset of puzzles? If so, what are the shortcuts? (iii) Since some
model-based indicators can approximately predict when the model is solving a specific puzzle by
memorization vs by reasoning, can we further design intervention mechanisms to bias the model to-
wards reasoning during inference or training time? Exploring the open questions in further research
would deepen our understanding of this space.

B EXTENDED RELATED WORK

Memorization in LLMs. Prior work has explored training data memorization in LLMs, primarily
in the contexts of privacy and copyright concerns (Carlini et al., 2021; Lukas et al., 2023; He et al.,
2024), focusing on how LLMs may reproduce text near-verbatim to their training data (Lee et al.,
2022; Carlini et al., 2023; Biderman et al., 2024). Recent work by Prashanth et al. (2024) further
introduces a taxonomy for memorization, categorizing it into Recitation, Reconstruction, and Recol-
lection. They investigate the memorization behaviors of the Pythia model (Biderman et al., 2024) on
the Pile dataset (Gao et al., 2020). In contrast, we examine memorization in the reasoning context,
and focus on analyzing whether LLMs can accurately solve problems encountered during training
but struggle to solve slightly perturbed variants. This allows us to better investigate the extent to
which LLMs truly understand and generalize the underlying principles of the reasoning problems
they have been trained on, as opposed to merely memorizing the text.

Recent research discusses signs of LLMs memorization in reasoning tasks by evaluating them on
counterfactual reasoning tasks. These counterfactual tasks demand similar abstract reasoning skills
as the original tasks but are less common in the training data. For instance, tasks such as reversing
a sequence of words (McCoy et al., 2024) show better performance on high-probability sequences
than on low-probability sequences; shifting each letter by n places in the alphabet (Rot-n) (Prab-
hakar et al., 2024; McCoy et al., 2024) demonstrates higher performance when n = 13 than for other
values, likely because “Rot-13” is commonly used in online forums. Wu et al. (2024b) presents 11
counterfactual tasks (e.g., 1-indexing in Python, base-9 arithmetic) that show significant perfor-
mance declines. Jiang et al. (2024) changes some tokens in the reasoning task descriptions which
leads to significant performance drops, suggesting that models might depend on recognizing super-
ficial patterns with strong token bias. Moreover, Razeghi et al. (2022) finds a strong correlation
between the accuracy for a number on numerical reasoning tasks and its frequency in pretraining for
GPT-J/GPT-Neo. In our study, we formally define a memorization score to quantify performance
variance under task perturbations, covering both counterfactual alterations (e.g., switching the roles
of knights and knaves) and standard perturbations on language level and problem structure level.

Detecting benchmark contamination. Recent work has shown that LLMs’ performance drastically
declines when faced with altered versions of popular reasoning benchmarks, suggesting potential
contamination/memorization of these benchmarks. The benchmark variants include diverse forms
such as altered multiple-choice questions formats (Wang et al., 2024b; Zong et al., 2024; Gupta
et al., 2024; Zhou et al., 2024; Robinson & Wingate, 2023), rephrased or translated problems (Xu
et al., 2024; Yang et al., 2023; Yao et al., 2024), shuffled example orderings (Oren et al., 2024),
human-curated problems of comparable difficulty (Zhang et al., 2024), functional variants gener-
ating random instantiations (Srivastava et al., 2024; Mirzadeh et al., 2024), and problems beyond
specific date cutoffs (Roberts et al., 2023; Jain et al., 2024). Previous work either focus on surface
level language perturbations or require extensive expert-level annotations for math level variations.
In contrast, our benchmark support automatic problem-level perturbation, solution and reasoning
procedure generation, and easily scale to different difficult levels and dataset sizes without extra
human efforts.

Logical reasoning benchmarks. To evaluate logical reasoning capabilities in LLMs, synthetic
benchmarks have been developed to enable scalable generation of samples with varying configura-
tions and difficulty levels (Clark et al., 2020; Giadikiaroglou et al., 2024; Parmar et al., 2024). For
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instance, DyVal (Zhu et al., 2024) uses directed acyclic graphs to dynamically generate samples on
reasoning tasks including deductive, Boolean, and abductive reasoning. Chen et al. (2024) focus on
propositional logical problems involving definite clauses, and synthetically generate variations with
different premise orders, such as forward, backward, and shuffled. Dziri et al. (2024) explore the
limitations of LLMs in tasks requiring compositional reasoning, including multiplication, logic grid
puzzles, and dynamic programming problems. ZebraLogic (Lin et al., 2024) is an extended bench-
mark that systematically tests logical reasoning capabilities. BoardgameQA (Kazemi et al., 2024)
presents a question-answering dataset characterized by contradictory facts and rules in the questions.
PRONTOQA (Saparov & He, 2023) is a synthetic question-answering dataset where each example is
generated from a synthetic world model represented in first-order logic. This dataset enables parsing
the generated chain of thought into symbolic proofs, facilitating formal analysis. TruthQuest (Mon-
dorf & Plank, 2024) is the most similar task to our work, which provides evaluation samples based
on K&K-type of puzzles involving 3-6 person. Our work provides more comprehensive dynamic set
of K&K puzzles that support automatic generation of perturbations, solutions and detailed reasoning
steps. Moreover, based on this benchmark, we define and measure memorization in reasoning tasks,
revealing intricate interplay between memorization and reasoning in LLMs.

Improving reasoning via fine-tuning. Prior work has explored fine-tuning LLMs on synthetic
reasoning data to enhance their performance on reasoning. DyVal (Zhu et al., 2024) shows that
fine-tuning Llama2-13B-chat on their synthetic reasoning benchmark improves its performance on
other popular reasoning benchmarks. BoardgameQA (Kazemi et al., 2024) find that fine-tuning
BERT-large and T5-XXL on their training dataset with synthetic proofs outperforms few-shot CoT
prompting using PaLM. Ye et al. (2024) pretrain GPT2 from scratch on synthetic math problems,
synthetic CoT steps and solutions and show that model can solve problems from the same dis-
tribution and generalize to out-of-distribution (OOD) problems. However, Dziri et al. (2024) show
that while GPT-3 fine-tuned on their compositional reasoning tasks with/without reasoning steps can
solve in-distribution (ID) problems, it fails to generalize to OOD tasks with increased problem sizes.
Besides using synthetic CoTs, there are work using model-generated CoTs to enhance the models’
reasoning capabilities (Chung et al., 2024). STaR (Zelikman et al., 2022) uses model self-generated
CoTs on correctly solved samples to iteratively fine-tune itself as a self-taught reasoner. A number
of work (Puerto et al., 2024; Kim et al., 2023; Ho et al., 2023; Hsieh et al., 2023) leverage CoTs
generated from teacher models to train smaller student models. Additionally, some recent efforts
have focused on leveraging intermediate reasoning steps in CoT more implicitly. For instance, Deng
et al. (2023) distill intermediate reasoning tokens into the network layers by representing reasoning
steps as vectors and using them as targets; Deng et al. (2024) distill CoT by gradually removing the
intermediate steps and fine-tuning the model to internalize these steps, predicting the answers based
on partial CoT. Both studies show that full CoT fine-tuning may not be necessary for the model to
achieve strong reasoning performance.

In our study, we employ both direct fine-tuning and CoT fine-tuning to achieve memorization on
K&K training data. Notably, our findings show that the fine-tuned GPT4o-mini and Llama3-8B
models can effectively generalize to unseen OOD and ID K&K problems, contributing new insights
to the topic of LLM fine-tuning for reasoning.

Orthogonal to our work, inference-time techniques have been explored to enhance reasoning per-
formance such as self-consistency (Wang et al., 2023b), self-verification (Weng et al., 2023), and
integration with external symbolic solvers (Pan et al., 2023).

Grokking. Our findings are related to Grokking, first identified by Power et al. (2022) on a small
algorithmic dataset, where validation accuracy suddenly improves from random chance to near-
perfect generalization long after severe overfitting. Follow-up studies expanded the range of tasks
where grokking occurs and proposed various explanations (Liu et al., 2022a; Murty et al., 2023;
Liu et al., 2022b). Recently, Wang et al. (2024a) observed grokking in the domain of complex
knowledge-based tasks, showing that implicit reasoning over parametric knowledge emerges only
after extensive overfitting. In this work, we observe a related phenomenon but through the lens of
memorization. Through novel (math & language-level) perturbation tests and transferability analy-
ses, we verify that LLM reasoning skills emerge alongside memorization. Furthermore, our investi-
gation focuses on logical reasoning, offering new insights into how LLMs acquire logical reasoning
skills.
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C DETAILS ON K&K BENCHMARK

C.1 THE ABSTRACT REPRESENTATION

We use a simple internal representation using basic Python primitives (integer, string and tuple)
to encode each K&K puzzle. This allows easy inter-operation with the json format to simplify
saving and loading. Specifically, for a N -people puzzle, each person is represented by the integer
0, . . . , N − 1. Each person’s statement is represented by a tuple (type, arguments, ...), where
type indicate the statement type listed below:

• Leaf Statements: It can be either (’lying’, i) or (’telling-truth’, i), where i is
an integer and this statement assert the ith person is lying or truthful.

• Composite Statements: It can take one or more statements as arguments, and has the
following types:

– Negation (’not’, statement)

– Conjunction (’and’, statement1, statement2, ...)

– Disjunction (’or’, statement1, statement2, ...)

– Implication (’->’, statement1, statement2)

– Equivalence (’<=>’, statement1, statement2)

C.2 THE ABSTRACT PUZZLE MODULE: GENERATOR

The Generator samples a problem based on a random seed and a difficulty level specification
(N,W,D), where N indicates the number of people, W indicates the max width of each statement,
D indicates the max depth of each person’s statement. To instantiate the problem, we initialize a ran-
dom number generator, and sample a statement for each person sequentially. We sample each state-
ment type uniformly at random. For composite statement with variable number of sub-statements,
we also randomize the number according to the max width W . We restrict the sampling to only leaf
statements if the max depth is exhausted. We avoid (skip and resample) some invalid (e.g., asserting
self is lying) or uninteresting cases (e.g., a and statement with identical sub-statements).

The following is an example K&K puzzle with 5 people in the abstract representation. We will use
this example to illustrate various component in the rest of the section.

Example puzzle of 5 people in the abstract representation

(('and', ('lying', 3), ('telling-truth', 4)),
('<=>', ('lying', 3), ('telling-truth', 4)),
('telling-truth', 4),
('telling-truth', 0),
('<=>', ('telling-truth', 2), ('lying', 2)))

C.3 THE ABSTRACT PUZZLE MODULE: SOLVER AND REASONER

Each K&K problem can be transformed and solved as a Boolean satisfiability problem. Specifically,
consider a puzzle involving N people, a possible solution assign a Boolean value to N variables
B1, B2, . . . , BN , where the truth value of Bi indicates whether the ith person is telling the truth.
By definition, the ith person is telling the truth if and only if their statement Si is true. Therefore, a
valid solution to a K&K puzzle is a Boolean assignment for B1, B2, . . . , BN such that the following
formula evaluates to true.

(B1 ⇔ S1) ∧ (B2 ⇔ S2) ∧ · · · ∧ (BN ⇔ SN ). (3)

We implement our Solver and Reasoner based on this reduction. We take two different approaches
here, because we want to find all possible solutions in the Solver, and we want to generate intuitive
intermediate steps for the Reasoner.

Specifically, we are primarily interested in evaluating K&K puzzles with a unique valid solution.
Therefore, we design our Solver to use a simple brute-force search that enumerates all possible
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Boolean assignments for N people and count the number of assignments that evaluate Eq. (3) to
true. In our dataset construction, we only include puzzles whose solution count is exactly one.

In the Reasoner, we are interested in procedurally generating intermediate reasoning steps that lead
to the final solution. We note that when explaining the reasoning steps for K&K puzzles, human
or off-the-shelf LLMs rarely use the brute-force assignment search approach adopted in our Solver.
Instead, they tend to examine the statement from each person sequentially, construct a partial as-
signment for the people examined so far, and backtrack when a contradiction is found. We design
our Reasoner following the same procedure.

Specifically, we maintain a queue of people to be examined next, and a partial assignment of knight
/ knave for people that have been examined so far. In each step, we examine the next person from
the queue by adding to the partial assignment the assumed knight / knave role for this person. Given
the newly proposed assignment, we go through the known statements and check if there is a contra-
diction. (A) If a contradiction is found, we record the statement of contradiction as the explanation,
and start backtracking. Backtracking will put people back into the to-be-examined queue until we
reach a person who has an alternative unexamined role assignment. If no such person is found
during backtracking, this means there is no valid solution for this problem. (B) If a contradiction
is not found, we can proceed to examine the next person in the queue. Here we also implement a
mechanism to reorder the queue so that it may match the human behavior better. For example, if the
current person’s statement is “If Noah is a knight, then Lily is a knave.” then we would bring Noah
and Lily to the front of the to-be-examined queue, provided that they are in the queue (i.e., have not
been previously examined).

The reasoning steps are generated and stored using a similar format as the abstract representation of
the puzzle as described in § C.1. The following snippet shows an example of the generated reasoning
steps for the example puzzle shown above:

Example of generated reasoning steps in the abstract representation

[('proposal', {'assignment': True, 'outcome': 'ok', 'person': 0}),
('proposal', {'assignment': True, 'conflict_statement': (0, True), 'outcome': 'conflict', 'person': 3}),
('proposal', {'assignment': False, 'conflict_statement': (3, False), 'outcome': 'conflict', 'person': 3}),
('reconsider', {'exhausted': [3], 'person': 0}),
('proposal', {'assignment': False, 'outcome': 'ok', 'person': 0}),
('proposal', {'assignment': True, 'conflict_statement': (3, True), 'outcome': 'conflict', 'person': 3}),
('proposal', {'assignment': False, 'outcome': 'ok', 'person': 3}),
('proposal', {'assignment': True, 'conflict_statement': (0, False), 'outcome': 'conflict', 'person': 4}),
('proposal', {'assignment': False, 'outcome': 'ok', 'person': 4}),
('proposal', {'assignment': True, 'conflict_statement': (2, True), 'outcome': 'conflict', 'person': 2}),
('proposal', {'assignment': False, 'outcome': 'ok', 'person': 2}),
('proposal', {'assignment': True, 'conflict_statement': (1, True), 'outcome': 'conflict', 'person': 1}),
('proposal', {'assignment': False, 'outcome': 'ok', 'person': 1}),
('success', {'assignments': (False, False, False, False, False)})]

C.4 THE ABSTRACT PUZZLE MODULE: PERTURBER

To support memorization measurement, the K&K Puzzle Perturber generate an perturbed version of
a given puzzle. We design the perturbation with the following considerations:

• The perturbation should be “local”, in the sense that the perturbed problem should be sim-
ilar to the original problem when measured in some superficial ways, such as edit distance.

• The perturbation should keep the nature of the problem, i.e., the perturbed problem should
be solvable using the same underlying principle, and the difficulty level should be roughly
maintained.

• The perturbed puzzle should have a unique solution, which should be different from the
solution of the original puzzle.

With those consideration, we support two different perturbations:

• Statement perturbation: randomly choose a person and sample a new statement tree for that
person.

• Leaf perturbation: randomly choose a person, and from that person’s existing statement
tree, randomly choose one leaf node and change it.
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C.5 THE NATURAL LANGUAGE MODULE: NL-GENERATOR

The NL-Generator generate a K&K puzzle in natural language by converting a given abstract-form
puzzle into the familiar text form described in natural language. For example, the puzzle presented
(in the abstract representation) above can be materialized as follows:

Example puzzle converted to natural language representation

A very special island is inhabited only by knights and knaves. Knights always tell the truth, and knaves
always lie. You meet 5 inhabitants: David, Zoey, Alexander, Aurora, and Isabella. In David’s words:
"Aurora is a knave and Isabella is a knight". Zoey expressed that Aurora is a knave if and only if
Isabella is a knight. Alexander said, "Isabella is a knight." Aurora commented, "David is a knight".
According to Isabella, "Alexander is a knight if and only if Alexander is a knave". So who is a knight
and who is a knave?

Specifically, given a puzzle of N people in the abstract representation, our natural language represen-
tation generator first sample N human names, and then format each people’s claim by plugging in the
corresponding name mapping. We use some heuristics to make the conversion of the tree-structured
logic statements to natural language sounds natural. Our current implementation randomly sample
from 18 templates of making a statement claim and from the following common names — but this
can be easily extended to include more.

COMMON_NAMES = ['Emma', 'Liam', 'Olivia', 'Noah', 'Ava', 'Ethan', 'Sophia',
'Mason', 'Isabella', 'William', 'Mia', 'James', 'Charlotte',
'Benjamin', 'Amelia', 'Lucas', 'Harper', 'Henry', 'Evelyn',
'Alexander', 'Abigail', 'Michael', 'Emily', 'Daniel', 'Elizabeth',
'Jacob', 'Sofia', 'Logan', 'Avery', 'Jackson', 'Ella', 'Sebastian',
'Scarlett', 'Jack', 'Grace', 'Aiden', 'Chloe', 'Owen', 'Victoria',
'Samuel', 'Riley', 'Matthew', 'Aria', 'Joseph', 'Lily', 'Luke',
'Aurora', 'David', 'Zoey', 'Oliver', 'Penelope']

C.6 THE NATURAL LANGUAGE MODULE: NL-REASONER

The NL-Reasoner generates detailed reasoning steps in natural language by converting the output
from the abstract Reasoner to natural language descriptions using a similar approach as the NL-
Generator. The following show the generated reasoning steps in natural language for the puzzle
shown above:
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Reasoning steps generated by the Reasoner

Let’s think step by step, by considering whether each person is lying and if that leads to contradiction.
1. Assume David is a knight. No contradiction is found in their claim that Aurora is a knave and

Isabella is a knight.
2. Aurora cannot be a knight, because this would contradict the claim of David that Aurora is a

knave and Isabella is a knight.
3. Aurora cannot be a knave, because this would contradict the false claim of their own that David

is a knight.
4. We have exhausted all possibilities for Aurora, so let us go back and reconsider David.
5. Assume David is a knave. No contradiction is found in their false claim that Aurora is a knave

and Isabella is a knight.
6. Aurora cannot be a knight, because this would contradict the claim of their own that David is a

knight.
7. Assume Aurora is a knave. No contradiction is found in their false claim that David is a knight.
8. Isabella cannot be a knight, because this would contradict the false claim of David that Aurora is

a knave and Isabella is a knight.
9. Assume Isabella is a knave. No contradiction is found in their false claim that Alexander is a

knight if and only if Alexander is a knave.
10. Alexander cannot be a knight, because this would contradict the claim of their own that Isabella

is a knight.
11. Assume Alexander is a knave. No contradiction is found in their false claim that Isabella is a

knight.
12. Zoey cannot be a knight, because this would contradict the claim of their own that Aurora is a

knave if and only if Isabella is a knight.
13. Assume Zoey is a knave. No contradiction is found in their false claim that Aurora is a knave if

and only if Isabella is a knight.
This leads to a feasible solution.

C.7 THE NATURAL LANGUAGE MODULE: NL-PERTURBER

The NL-Perturber generates perturbed puzzles at the language level. Note unlike in the perturbations
generated by the abstract Perturber, NL-Perturber keep the underlying abstract puzzle intact and only
modify the materialization in natural language. Therefore, the solution to the perturbed puzzle is
identical to the solution to the original puzzle. Specifically, the NL-Perturber supports the following
perturbations:

With those consideration in mind, we provide two family of perturbations:

• Uncommon name: replace the names of the characters with randomly sampled names from
the set of uncommon names.

• Random role: change the role name from knight/knave to other pairs of role names.
To avoid introducing bias, we sample from pairs of good/bad role names, including
“saint/sinner, hero/villain, angel/devil, altruist/egoist, sage/fool, pioneer/laggard”.

• Reorder statement: shuffle the order of presenting each person’s statement.

• Flip role: change the role from knight/knave to knave/knight, i.e., knave will be telling the
truth while knight will be lying.

The uncommon names are sampled from the following list:

UNCOMMON_NAMES = [
'Zephyr', 'Elowen', 'Caspian', 'Isolde', 'Osiris', 'Vesper', 'Thaddeus', 'Ondine',
'Lysander', 'Xanthe', 'Oberon', 'Calliope', 'Leander', 'Eulalia', 'Florian', 'Forsythe',
'Nephele', 'Peregrine', 'Ianthe', 'Lazarus', 'Elodie', 'Cillian', 'Ottoline', 'Evander',
'Saffron', 'Caius', 'Zora', 'Cyprian', 'Amaryllis', 'Theron', 'Perdita', 'Ignatius',
'Zephyrine', 'Balthazar', 'Melisande', 'Zinnia', 'Sylvester', 'Cosima', 'Leocadio',
'Percival', 'Oceane', 'Evanthe', 'Zenobia', 'Eurydice', 'Quillan', 'Aeronwen',
'Thorsten', 'Xiomara', 'Zephyrus', 'Ysolde'

]
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Note the flip role perturbation is somewhat adversarial as it goes against the common intuition that
good role tends to tell the truth while bad role tends to lie. We indeed observe that the models would
make a lot of mistakes under this perturbation, despite that the perturbed problem is perfect valid
and unambiguous. However, the study of how model’s bias impact its reasoning capability is not the
main focus of this paper. So we keep this perturbation as reference but primarily focus on “benign”
perturbations.

C.8 DATASET GENERATION

K&K dataset During our data construction, we use the maximum width W = 2 and depth D = 2,
and the number of persons in the puzzle N = 2, 3, 4, 5, 6, 7, 8.

We present the length distributions of K&K training dataset in Fig. 15. The length distributions of
the test dataset are similar to those of the training dataset.
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Figure 15: Length distributions of K&K training data.

Local perturbation Tab. 1 presents the example knight (truth-teller) and knave (liar) scenario in-
volving two people: Liam and Aria, with corresponding logical statements, and converted English
statements, questions, and answers. It also shows three versions of the problems: an original exam-
ple, a leaf-perturbed version, and a statement-perturbed version. Specifically, (1) leaf perturbation
changes a “leaf” in the logical tree - a single truth value. In this case, it flipped Jacob’s status in
Oliver’s statement from knave (liar) to knight (truth-teller) (2) Statement perturbation changes the
entire structure of a statement. Here, it changed Oliver’s statement entirely. Both perturbations re-

A very special island is inhabited only 
by knights and knaves. Knights always 

tell the truth, and knaves always lie. 
You meet 2 inhabitants: Liam, and Aria. 

Aria is not a knave
Liam

Aria

Aria is a knight if and only if 
Liam is a knight

So who is a knight and who is a knave?

Question

A very special island is inhabited only by knights and 
knaves. Knights always tell the truth, and knaves 
always lie. You meet 2 inhabitants: Oliver, and Jacob. 

Oliver is a knight and Jacob is a knave

Jacob

Oliver is a knight if and only if Jacob is a knight

So who is a knight and who is a knave?

Original Problem
If Oliver is a knight then Jacob is a knight

Oliver

Statement perturbation

Uncommon name

Osiris is a knight and Jacob is a knave

Osiris is a knight if and only if Jacob is a knight

Random role pair 

Oliver is an angle and Jacob is a devil

Oliver is an angle if and only if Jacob is an angle

Oliver is a knight and Jacob is a knight
Oliver

Leaf perturbation

language-level pert.

math-level pert.

…….

…….

Fine-tuned 
LLM

Locally Perturbed Problem

High 
accuracy on 

training  
problem 

Interpolating the training dataset 
via fine-tuning (e.g., data contamination)

Osiris

Elowen

Oliver

Jacob

A very special island is inhabited only by knights and knaves. 
Knights always tell the truth, and knaves always lie. You meet 2 

inhabitants: Oliver, and Jacob. Oliver commented, "Oliver is a 
knight and Jacob is a knave". Jacob remarked, "Oliver is a knight 

if and only if Jacob is a knight". So who is a knight and who is a 
knave?

Oliver 
is a 

knight, 
and 

Jacob 
is a 

knave.

A very special island is inhabited only by knights and knaves. 
Knights always tell the truth, and knaves always lie. You meet 2 

inhabitants: Oliver, and Jacob. Oliver commented, "Oliver is a 
knight and Jacob is a knight". Jacob remarked, "Oliver is a knight 

if and only if Jacob is a knight". So who is a knight and who is a 
knave?

Oliver 
is a 

knight, 
and 

Jacob 
is a 

knight.

A very special island is inhabited only by knights and knaves. 
Knights always tell the truth, and knaves always lie. You meet 2 
inhabitants: Oliver, and Jacob. Oliver commented, "If Oliver is a 

knight then Jacob is a knight". Jacob remarked, "Oliver is a knight 
if and only if Jacob is a knight". So who is a knight and who is a 

knave?

Oliver 
is a 

knight, 
and 

Jacob 
is a 

knight.

A very special island is inhabited only by knights and 
knaves. Knights always tell the truth, and knaves 
always lie. You meet 2 inhabitants: Oliver, and Jacob. 

Oliver is a knight and Jacob is a knave
Oliver

Jacob

Oliver is a knight if and only if Jacob is a knight

So who is a knight and who is a knave?

Original Problem

If Oliver is a knight then Jacob is a knight
Oliver

Statement perturbation

Uncommon name

Osiris is a knight and Jacob is a knave

Osiris is a knight if and only if Jacob is a knight

Random role pair 

Oliver is an angle and Jacob is a devil

Oliver is an angle if and only if Jacob is an angle

Oliver is a knight and Jacob is a knight
Oliver

Leaf perturbation

language-level pert.

math-level pert.

…….

…….

Original 
problem is 
solved by 
reasoning

Locally Perturbed Problem

Original 
problem is 
solved by 
memorization

Osiris

Elowen

Oliver

Jacob

Original 
problem is 
correctly 
solved

Figure 16: Comparison between different locally perturbed problems.
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sult in changing the answer. The leaf perturbation creates a subtle change in one statement that flips
the logical outcome, while the statement perturbation changes the entire one statement.

Table 1: 2-person puzzle generation with the knight (telling-truth) and knave (lying) and comparison between
original sample, leaf-perturbed sample, and statement-perturbed sample.

Type Example Leaf Perturbed Example Statement Perturbed Example
person Oliver (person index 0), Jacob (person index 1)

logical statement

Oliver: (’and’, (’telling-truth’, 0),
(’lying’, 1))

Jacob: (‘⇔’, (’telling-truth’, 0),
(’telling-truth’, 1))

Oliver: (’and’, (’telling-truth’, 0),
(’telling-truth’, 1))

Jacob: (‘⇔’, (’telling-truth’, 0),
(’telling-truth’, 1))

Oliver: (’−→’, (’telling-truth’, 0),
(’telling-truth’, 1))

Jacob: (‘⇔’, (’telling-truth’, 0),
(’telling-truth’, 1))

English statement

Oliver: Oliver is a knight and Jacob
is a knave

Jacob: Oliver is a knight if and
only if Jacob is a knight

Oliver: Oliver is a knight and
Jacob is a knight

Jacob: Oliver is a knight if and
only if Jacob is a knight

Oliver: If Oliver is a knight then
Jacob is a knight Jacob: Oliver is

a knight if and only if Jacob is a
knight

question

A very special island is inhabited
only by knights and knaves.

Knights always tell the truth, and
knaves always lie. You meet 2
inhabitants: Oliver, and Jacob.
Oliver commented, "Oliver is a

knight and Jacob is a knave". Jacob
remarked, "Oliver is a knight if and
only if Jacob is a knight". So who

is a knight and who is a knave?

A very special island is inhabited
only by knights and knaves.

Knights always tell the truth, and
knaves always lie. You meet 2
inhabitants: Oliver, and Jacob.
Oliver commented, "Oliver is a
knight and Jacob is a knight".

Jacob remarked, "Oliver is a knight
if and only if Jacob is a knight". So

who is a knight and who is a
knave?

A very special island is inhabited
only by knights and knaves.

Knights always tell the truth, and
knaves always lie. You meet 2
inhabitants: Oliver, and Jacob.

Oliver commented, "If Oliver is a
knight then Jacob is a knight".

Jacob remarked, "Oliver is a knight
if and only if Jacob is a knight". So

who is a knight and who is a
knave?

answer (1) Oliver is a knight
(2) Jacob is a knave

(1) Oliver is a knight
(2) Jacob is a knight

(1) Oliver is a knight
(2) Jacob is a knight

Moreover, we compare the math-level perturbation with language-level perturbation in Fig. 16.

As mentioned in § 2, the Perturber of the abstract puzzle module generates a perturbed puzzle with a
unique solution that is different from the original puzzle, or until the maximum number of attempts
is reached. We set this limit to 2000 attempts.

• For statement perturbation, the Perturber can always return a valid perturbed puzzle due to
the large perturbation space.

• For leaf perturbation, since the process is restricted to a single leaf node, it may not always
find a valid perturbed puzzle within the constraints of unique and different solution. Below
are the detailed proportions of valid leaf perturbations on training samples (under 2000 max
attempts for each sample): 76% valid for 2-person task; 93.4% valid for 3-person task;
95.4% valid for 4-person task; 98.8% valid for 5-person task; 99.5% valid for 6-person
task; 100% valid for 7/8-person tasks.

D EXPERIMENTAL SETUPS

D.1 MODELS

Tab. 2 provides the details of the models evaluated in our study.

Table 2: HuggingFace links or endpoint specifications for evaluated models.

Model Link
Llama3-8B https://huggingface.co/meta-llama/Meta-Llama-3-8B
Phi-3-mini https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
Phi-3-medium https://huggingface.co/microsoft/Phi-3-medium-4k-instruct
NuminaMath-7B-CoT https://huggingface.co/AI-MO/NuminaMath-7B-CoT
Deepseek-Math-7B deepseek-ai/deepseek-math-7b-instruct
Claude-3.5-Sonnet https://www.anthropic.com/news/claude-3-5-sonnet, claude-3-5-sonnet-20240620 endpoint
GPT4o-mini https://platform.openai.com/docs/models/, gpt-4o-mini-2024-07-18 endpoint
GPT4o https://platform.openai.com/docs/models/, gpt-4o-2024-05-13 endpoint
Gemini-1.5-Flash-002 https://console.cloud.google.com/vertex-ai/model-garden, gemini-1.5-flash-002 endpoint
Gemini-1.5-Prof-002 https://console.cloud.google.com/vertex-ai/model-garden, gemini-1.5-pro-002 endpoint
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D.2 EXPERIMENTAL DETAILS

D.2.1 EVALUATION

By default, we utilize zero-shot direct prompting with task-specific instructions for open-ended
question-answering. We employ the following prompt:

0-shot Direct Prompting

Your task is to solve a logical reasoning problem. You are given set of statements from
which you must logically deduce the identity of a set of characters.

You must infer the identity of each character. At the end of your answer, you must clearly
state the identity of each character by following the format:

CONCLUSION:
(1) ...
(2) ...
(3) ...

### Question: {question}
### Answer:

In addition to the 0-shot direct prompting used in the main paper, we explore 0-shot Chain of
Thought (CoT) prompting and 1-shot direct/CoT prompting and report the results in Appendix § E.

0-shot CoT Prompting

Your task is to solve a logical reasoning problem. You are given set of statements from
which you must logically deduce the identity of a set of characters.

You must infer the identity of each character. First, explain your reasoning. At the end
of your answer, you must clearly state the identity of each character by following the format:

CONCLUSION:
(1) ...
(2) ...
(3) ...

### Question: {question}
### Answer: Let’s think step by step

In addition, we utilize a specific CoT prompting format for instruction-tuned models: DeepSeek-
Math-7B and NuminaMath-7B-CoT, as recommended by their developers:

Please reason step by step, and put your final answer within \boxed{}.

This replaces the previous prompt, "Let’s think step by step."
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1-shot Direct Prompting

Your task is to solve a logical reasoning problem. You are given set of statements from
which you must logically deduce the identity of a set of characters.

You must infer the identity of each character. At the end of your answer, you must clearly
state the identity of each character by following the format:

CONCLUSION:
(1) ...
(2) ...
(3) ...

### Question: A very special island is inhabited only by knights and knaves. Knights
always tell the truth, and knaves always lie. You meet 2 inhabitants: Jack, and Sophia. Jack
tells you that Sophia is not a knave. Sophia says that If Jack is a knight then Sophia is a
knight. So who is a knight and who is a knave?
### Answer:
CONCLUSION:
(1) Jack is a knight
(2) Sophia is a knight

### Question: {question}
### Answer:
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1-shot CoT Prompting

Your task is to solve a logical reasoning problem. You are given set of statements from
which you must logically deduce the identity of a set of characters.

You must infer the identity of each character. First, explain your reasoning. At the end
of your answer, you must clearly state the identity of each character by following the format:

CONCLUSION:
(1) ...
(2) ...
(3) ...

### Question: A very special island is inhabited only by knights and knaves. Knights
always tell the truth, and knaves always lie. You meet 2 inhabitants: Ella, and Penelope. In
a statement by Ella: “Ella is a knight or Penelope is a knight”. According to Penelope, “Ella
is a knave if and only if Penelope is a knight”. So who is a knight and who is a knave?
### Answer: Let’s think step by step, by considering whether each person is lying and if
that leads to contradiction. Assume Ella is a knight. Penelope cannot be a knight, because
this would contradict the claim of their own. Penelope cannot be a knave, because this
would contradict the false claim of their own. We have exhausted all possibilities for
Penelope, so let us go back and reconsider Ella. Assume Ella is a knave. Penelope cannot
be a knight, because this would contradict the false claim of Ella. Assume Penelope is a
knave. This leads to a feasible solution.
CONCLUSION:
(1) Ella is a knave
(2) Penelope is a knave

### Question: {question}
### Answer: Let’s think step by step

In our evaluation process, we use greedy decoding with temperature t = 0 for all models and a
maximum token length of 2048.

To assess the correctness, we implement keyword matching: a response is considered correct if each
person’s ground truth identity appears in the conclusion part of the model’s output.

D.2.2 FINE-TUNING

Training instance Each training instance in Direct FT includes the task instruction, question, and
the correct conclusion. In CoT FT, each training instance includes the task instruction, question,
synthetic reasoning steps, and the correct conclusion. Both formats are structured similarly to task
instructions followed by a single demonstration used in 1-shot Direct Prompting or 1-shot CoT
Prompting.

Training loss In Direct FT, the loss for each training instance is computed on the tokens that
appear directly after “### Answer:\n”. In CoT FT, the loss is calculated on the tokens that appear
directly after “### Answer: Let’s think step by step”.

Training hyperparameters For Llama3-8B fine-tuning, we used LoRA fine-tuning with the fol-
lowing standard hyperparameters: a batch size of 4, gradient accumulation steps of 8, and 5e-5
learning rate. The LoRA configuration was set as follows: rank r = 32, scaling factor α = 32,
and dropout rate 0.05. No quantization techniques were used. We fine-tune for a maximum of 100
epochs. We primarily reported results before 50 epochs, as we found the model typically converged
by then.
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For GPT4o-mini fine-tuning, we utilized the default hyperparameters provided by the OpenAI fine-
tuning API. The model was fine-tuned for 5 epochs to achieve high accuracy within reasonable
budget.

Reported Training accuracy For GPT4o-mini, the training accuracy for each N -people K&K
task is calculated using 100 training samples due to budget constraints on API usage. For open-
source Llama3-8B, the training accuracy is based on the full set of training samples.

D.2.3 PROBING

As described in § 4.2, in the probing experiments, we train logistic regression models on the model’s
intermediate outputs from different transformer blocks, to distinguish between correct and incorrect
statements. For each transformer block, we extract the MLP layer’s output.

The correct/incorrect statements consist of a K&K puzzle and a conclusion about a character’s role
in the puzzle. For example, considering the following 2-people K&K puzzle:

A very special island is inhabited only by knights and knaves. Knights always tell the truth,
and knaves always lie. You meet 2 inhabitants: Oliver, and Ethan. Oliver told you that Oliver
is a knight or Ethan is a knave. In a statement by Ethan: “Oliver is a knight”. So who is a
knight and who is a knave?

with the correct answer being

Oliver is a knight, and Ethan is a knight.

We can generate two correct statements:

• A very special island is inhabited only by knights and knaves. Knights always tell the truth,
and knaves always lie. You meet 2 inhabitants: Oliver, and Ethan. Oliver told you that
Oliver is a knight or Ethan is a knave. In a statement by Ethan: “Oliver is a knight”. So
who is a knight and who is a knave? Oliver is a knight.

• A very special island is inhabited only by knights and knaves. Knights always tell the truth,
and knaves always lie. You meet 2 inhabitants: Oliver, and Ethan. Oliver told you that
Oliver is a knight or Ethan is a knave. In a statement by Ethan: “Oliver is a knight”. So
who is a knight and who is a knave? Ethan is a knight.

And two incorrect statements:

• A very special island is inhabited only by knights and knaves. Knights always tell the truth,
and knaves always lie. You meet 2 inhabitants: Oliver, and Ethan. Oliver told you that
Oliver is a knight or Ethan is a knave. In a statement by Ethan: “Oliver is a knight”. So
who is a knight and who is a knave? Oliver is a knave.

• A very special island is inhabited only by knights and knaves. Knights always tell the truth,
and knaves always lie. You meet 2 inhabitants: Oliver, and Ethan. Oliver told you that
Oliver is a knight or Ethan is a knave. In a statement by Ethan: “Oliver is a knight”. So
who is a knight and who is a knave? Ethan is a knave.

D.2.4 DISTINGUISHING MEMORIZATION FROM REASONING

For GPT4o-mini and Llama3-8B, we calculate the memorization score for each training sample
within each complete N -people K&K training dataset. As discussed in § 6, we omit samples where
Acc(f ;x) = 0 and label the remaining samples based on whether they are consistently solved under
perturbation. We then split the dataset into 80%/20% train/test sets and perform binary classification.
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D.2.5 COMPUTATION RESOURCES

The fine-tuning experiments are conducted on 2 NVIDIA A100 GPU cards, each with 80GB of
memory. The LLM evaluation experiments can be conducted on one NVIDIA RTX A6000 GPU
card with 48 GB of memory.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 MEMORIZATION MEASUREMENT

Off-the-shelf models We evaluate Llama3-8B, Phi-3-mini, Phi-3-medium, NuminaMath-7B-CoT,
and Deepseek-Math-7B using 0/1-shot Direct/CoT prompting in Fig. 17. The results indicate that
these open-source models exhibit poor accuracy on K&K tasks, particularly as the number of peo-
ple in the K&K puzzles increases. Different prompting methods do not significantly enhance per-
formance. Additionally, the models struggle to consistently solve the K&K prompts under local
perturbations, as shown by the memorization scores under statement and lead perturbations.
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Figure 17: Acc(f ;Tst) and LiMem(f ;Tst) of off-the-shelf models under various prompt formats.

Fine-tuned models As shown in Fig. 18, the test accuracy (y-axis) of CoT-FTed or Direct-FTed
GPT4o-mini on the unseen test set continues to increase over the epochs, despite that the memoriza-
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tion score LiMem(f ;Tr) on training samples also increases. The memorization score LiMem(f ;Tr)
under role-flipping is significantly higher than other perturbation, possibly due to an internal bias
that knights are truthful.
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Figure 18: Test accuracy of fine-tuned GPT4o-mini (first row: Direct FT; second row: CoT FT) increase with
Acc(f ;Tr), despite that the memorization becomes stronger as reflected by larger LiMem(f ;Tr) under leaf
perturbation.
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Figure 19: Consistency Ratio (CR ↑) under local perturbations. Fine-tuned LLMs generally demonstrate a
higher consistency ratio on solved problems in the test set compared to the train set, particularly for challenging
tasks such as 5/8-person puzzles. On the 3-person puzzle task, the consistency ratio between the train and test
sets remains comparable.

Table 3: Self-consistency (Wang et al., 2023b) can enhance the accuracy of GPT4o-mini on the easy 2-ppl
K&K task, but has limited improvement on 3-ppl task and fails to help on the challenging 8-ppl task, which
suggests that the model cannot fundamentally solve such complex problems. Self-consistency also reduces
memorization scores on 2-ppl/3-ppl tasks, likely due to its majority voting mechanism that leads to robust
reasoning results.

Method Test Accuracy Memorization Score

2-ppl 3-ppl 8-ppl 2-ppl 3-ppl

Direct Prompting 0.63 0.42 0.01 0.24 0.26
Direct Prompting + Self-consistency 0.74 0.43 0.02 0.20 0.22
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Figure 20: Memorization scores of Directly Fine-Tuned Llama3-8B under various math-level (statement, leaf)
and language-level (name, reorder) perturbations. Combining math-level and language-level perturbations pro-
gressively can result in higher memorization scores (e.g., leaf + reorder), especially compared to applying
language-level perturbations alone.
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E.2 EVALUATION ON REASONING CAPABILITY

E.2.1 LLAMA3-8B

Accuracy over epochs Fig. 21 reports the train and test accuracy (under different evaluation con-
figurations) for the Llama3-8B model fine-tuned on N -person tasks across multiple training epochs.

Transferability We present the transferability results for the K&K task across different problem
sizes and training epochs in Fig. 22 and Fig. 23. Fig. 22 shows the accuracy improvements relative
to the baseline with no fine-tuning, while Fig. 23 reports the absolute accuracy values.
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Figure 21: Train and test accuracy (under different evaluation configurations) for the Llama3-8B model fine-
tuned on N -person tasks across multiple training epochs.
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Figure 22: Improvement in test accuracy on N -person problems for Llama3-8B fine-tuned on M -person prob-
lems with direct FT, compared to the unfine-tuned model, under various evaluation configurations.
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(a) 0-shot Direct Prompting
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(b) 0-shot CoT Prompting
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Figure 23: Test accuracy on N -person problems for Llama3-8B fine-tuned on M -person problems with direct
FT, under various evaluation configurations.

Fine-tuning on 10k 8-people K&K samples The results in Fig. 24 shows that 10k fine-tuning
achieves significantly higher test accuracy than 1k fine-tuning on all tasks. Direct FT with 10k
puzzles shows surprisingly high test accuracy, e.g., 87% accuracy on 3-person tasks, where the un-
FTed model has nearly 0 accuracy as shown in Fig. 3. Notably, the models don’t see reasoning steps
during training and rely solely on memorizing answers. It also suggests that training on the hardest
(8-person) tasks helps the model learn certain underlying rules that can be transferred to solve easier
tasks.

However, the test accuracy drops for Llama3-8B when Direct FTing on 10k samples for overly
long epochs, especially evaluated on 2-people K&K task, potentially due to overfitting to the more
complicated 8-people training task.
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Figure 24: Transferability of Llama3-8B Direct-FTed on 1k/10k samples at different epochs.
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E.2.2 GPT4O-MINI

Accuracy over epochs Fig. 25 reports the train and test accuracy (under different evaluation
configurations) for the GPT4o-mini model fine-tuned on N -person tasks across multiple training
epochs.

Using the same paradigm for training and evaluation (i.e., Direct FT & Direct Prompting, CoT FT
& CoT Prompting) usually achieves the best accuracy for GPT4o-mini on training dataset and test
dataset. We focus on 0-shot setting for GPT4o-mini evaluation given its stronger capacity and higher
accuracy than Llama3-8B.
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Figure 25: Train and test accuracy (under different evaluation configurations) for the GPT4o-mini model fine-
tuned on N -person tasks across multiple training epochs.

Transferability We present the transferability results for the K&K task across different problem
sizes and training epochs in Fig. 26 and Fig. 27. Fig. 26 shows the accuracy improvements relative
to the baseline with no fine-tuning, while Fig. 27 reports the absolute accuracy values.
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(b) CoT FT & 0-shot CoT Prompting

Figure 26: Improvement in test accuracy on N -person problems for GPT4o-mini fine-tuned on M -person
problems, under two finetuning/evaluation configurations.

Fine-tuning on 10k 8-people K&K samples We present the transferability results with absolute
test accuracy for the K&K task across different 8-people task training sizes and training epochs in
Fig. 28. As shown, GPT4o-mini achieves high accuracy on all tasks at early epochs (e.g., 3 epochs).
We also find that GPT4o-mini exhibits poor test accuracy on two-person testing puzzles when CoT-
FTed on 10k 8-people puzzles, unlike the Direct FTed model that have stable performance across all
task. In the failure case below, the CoT-FTed GPT4o-mini gets stuck in a loop of listing assumptions
and contradictions, resulting in long, repetitive responses without reaching a conclusion.
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(a) Direct FT & 0-shot Direct Prompting

2 3 4 5 6 7 8
# ppl for testing

8

5

3

#
pp

l
fo

r
tr

ai
ni

ng

0.74 0.58 0.58 0.54 0.30 0.36 0.28

0.86 0.68 0.70 0.48 0.36 0.32 0.24

0.92 0.78 0.60 0.36 0.22 0.12 0.20

# epoch: 3

2 3 4 5 6 7 8
# ppl for testing

8

5

3

#
pp

l
fo

r
tr

ai
ni

ng

0.52 0.64 0.62 0.46 0.48 0.44 0.31

0.88 0.68 0.70 0.52 0.36 0.30 0.26

0.98 0.83 0.66 0.44 0.30 0.20 0.16

# epoch: 4

2 3 4 5 6 7 8
# ppl for testing

8

5

3

#
pp

l
fo

r
tr

ai
ni

ng

0.61 0.73 0.67 0.53 0.44 0.36 0.31

0.92 0.73 0.78 0.55 0.41 0.35 0.22

0.97 0.86 0.62 0.45 0.23 0.14 0.14

# epoch: 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) CoT FT & 0-shot CoT Prompting

Figure 27: Test accuracy on N -person problems for GPT4o-mini fine-tuned on M -person problems, under two
finetuning/evaluation configurations.
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Figure 28: Test accuracy on N -person problems for GPT4o-mini fine-tuned on 1k/10k 8-people problems,
under two finetuning/evaluation configurations.

Failure case of GPT4o-mini CoT FTed on 10k 8-people K&K task

{omitted task instruction}
### Question: A very special island is inhabited only by knights and knaves. Knights always tell the truth, and knaves always lie.
You meet 2 inhabitants: Logan, and Olivia. Logan was heard saying, “Logan is a knight”. “If Olivia is a knight then Logan is a
knight” - Olivia. So who is a knight and who is a knave?
### Answer: Let’s think step by step

// response from GPT4o-mini
by considering whether each person is lying and if that leads to contradiction. Assume Logan is a knight. No contradiction is found
in their claim that Logan is a knight. Assume Olivia is a knight. No contradiction is found in their claim that If Olivia is a knight
then Logan is a knight. Assume this leads to no contradiction. No contradiction is found in their claim that If Olivia is a knight then
Logan is a knight. This leads to no contradiction in their claim that Logan is a knight. This leads to no contradiction in their claim
that If Olivia is a knight then Logan is a knight. This leads to no contradiction in their claim that Logan is a knight. This leads to
no contradiction in their claim that If Olivia is a knight then Logan is a knight. This leads to no contradiction in their claim that
If Olivia is a knight then Logan is a knight. This leads to no contradiction in their claim that Logan is a knight. This leads to no
contradiction in their claim that If Olivia is a knight then Logan is a knight. This leads to no contradiction in their claim that Logan
is a knight.
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E.3 DIRECT FT WITH WRONG ANSWERS

E.3.1 LLAMA3-8B

Fig. 29, Fig. 30 and Fig. 31 show the results of Direct FT with 100%, 75% and 50% incorrect
answers for the Llama3-8B model across different prompting setups. Consistent with our earlier
findings in § 4.3, fine-tuning with incorrect answers still significantly improves K&K performance,
especially with 0-shot CoT prompting or 1-shot direct prompting.
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(c) 1-shot Direct Prompting

Figure 29: Improvement in test accuracy on N -person problems for Llama3-8B fine-tuned on M -person prob-
lems with completely wrong answers, compared to the unfine-tuned model, under various evaluation config-
urations.
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(a) 0-shot Direct Prompting
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(b) 0-shot CoT Prompting
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(c) 1-shot Direct Prompting

Figure 30: Improvement in test accuracy on N -person problems for Llama3-8B fine-tuned on M -person prob-
lems with 75% wrong answers, compared to the unfine-tuned model, under various evaluation configurations.
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(a) 0-shot Direct Prompting
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(b) 0-shot CoT Prompting
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(c) 1-shot Direct Prompting

Figure 31: Improvement in test accuracy on N -person problems for Llama3-8B fine-tuned on M -person prob-
lems with 50% wrong answers, compared to the unfine-tuned model, under various evaluation configurations.
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E.3.2 GPT4O-MINI

Fig. 32 displays the results of direct fine-tuning using 5-people training K&K puzzles for
the GPT4o-mini model, containing varying percentages of incorrect answers in the dataset:
100%, 75%, 50%, 25%, 0%. This is evaluated across different epochs in the five-person puzzle.
As noted in § 4.3, when the training dataset includes 50% or fewer samples with incorrect answers,
fine-tuning can still enhance K&K’s performance across various testing tasks.

2 3 4 5 6 7 8
# ppl for testing

1.0

0.75

0.5

0.25

0.0

pr
op

or
ti

on
of

w
ro

ng
tr

ai
ni

ng
an

sw
er

-0.37 -0.28 -0.26 -0.15 -0.09 -0.08 -0.01

-0.15 -0.04 -0.10 0.07 0.03 -0.02 0.01

0.17 0.22 0.18 0.07 0.17 0.02 0.15

0.11 0.24 0.28 0.29 0.17 0.20 0.07

0.25 0.36 0.34 0.36 0.35 0.24 0.22

# epoch: 3

2 3 4 5 6 7 8
# ppl for testing

1.0

0.75

0.5

0.25

0.0

pr
op

or
ti

on
of

w
ro

ng
tr

ai
ni

ng
an

sw
er

-0.33 -0.20 -0.22 -0.13 -0.07 -0.10 -0.01

-0.11 -0.06 -0.16 -0.03 -0.01 -0.06 0.01

0.13 0.22 0.14 0.11 0.13 0.00 0.13

0.17 0.26 0.26 0.21 0.29 0.26 0.07

0.25 0.38 0.34 0.42 0.35 0.28 0.21

# epoch: 4

2 3 4 5 6 7 8
# ppl for testing

1.0

0.75

0.5

0.25

0.0

pr
op

or
ti

on
of

w
ro

ng
tr

ai
ni

ng
an

sw
er

-0.39 -0.20 -0.24 -0.15 -0.07 -0.10 -0.01

-0.15 -0.08 -0.16 0.01 0.03 -0.06 -0.01

0.09 0.24 0.08 0.09 0.09 -0.02 0.09

0.15 0.30 0.28 0.27 0.29 0.24 0.07

0.25 0.35 0.37 0.40 0.37 0.24 0.26

# epoch: 5

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

Eval config: 0-shot Direct Prompting

Figure 32: Improvement in test accuracy on N -people problems for GPT4o-mini fine-tuned on 5-people prob-
lems with different proportion of wrong answers, compared to the unfine-tuned model. Direct FT with 50%
wrong answers still improves K&K performance.
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E.4 PROBING

We report the probing accuracy for the un-fine-tuned Llama3-8B model in Fig. 33. As shown,
without fine-tuning, the model demonstrates relatively low probing accuracy, with values usually
below 90%.
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Figure 33: Probing accuracy of K&K puzzles with different number of people in testing puzzles across different
layers of the un-finetuned Llama3-8B transformer model.
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E.5 DISTINGUISHING MEMORIZATION FROM REASONING

Puzzle-based indicators Fig. 34 shows the train and test AUC for predicting whether N -person
puzzles can be consistently solved by a specific model under perturbations, using puzzle-based in-
dicators. The results indicate that length-related features are useful for distinguishing memorization
from reasoning. Notably, the test AUC is generally higher for CoT FTed GPT4o-mini compared to
Direct FTed GPT4o-mini.
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(c) 3-person puzzles for Llama3-8B.
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(d) 5-person puzzles for Llama3-8B.

Figure 34: AUC for predicting whether N -person puzzles can be consistently solved under perturbations based
on puzzle-based indicators.

Model-based indicators We report test AUC for classifying puzzles based on whether they are
consistently solved under leaf/statement perturbation by the Llama3-8B model Direct-FTed on the
3/5-person task. As shown in Fig. 35, the embeddings across different layers of the fine-tuned
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Llama3-8B provide more distinguishable signals for memorized samples than those of the base
model.
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(a) 3-person puzzles under leaf perturbation.
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(b) 3-person puzzles under statement perturbation.
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(c) 5-person puzzles under leaf perturbation.
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(d) 5-person puzzles under statement perturbation.

Figure 35: Test AUC for predicting whether N -person puzzles can be consistently solved under perturbations
by Direct-FTed Llama3-8B models.
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