
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON MEMORIZATION OF LARGE LANGUAGE MODELS
IN LOGICAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) achieve good performance on challenging rea-
soning benchmarks, yet could also make basic reasoning mistakes. This contrast-
ing behavior is puzzling when it comes to understanding the mechanisms behind
LLMs’ reasoning capabilities. One hypothesis is that the increasingly high and
nearly saturated performance on common reasoning benchmarks could be due to
the memorization of similar problems. In this paper, we systematically inves-
tigate this hypothesis with a quantitative measurement of memorization in rea-
soning tasks, using a dynamically generated logical reasoning benchmark based
on Knights and Knaves (K&K) puzzles. We found that LLMs could interpo-
late the training puzzles (achieving near-perfect accuracy) after fine-tuning, yet
fail when those puzzles are slightly perturbed, suggesting that the models heav-
ily rely on memorization to solve those training puzzles. On the other hand,
we show that while fine-tuning leads to heavy memorization, it also consistently
improves generalization performance. In-depth analyses with perturbation tests,
cross difficulty-level transferability, probing model internals, and fine-tuning with
wrong answers suggest that the LLMs learn to reason on K&K puzzles despite
training data memorization. This phenomenon indicates that LLMs exhibit a com-
plex interplay between memorization and genuine reasoning abilities. Finally, our
analysis based on a per-sample memorization score sheds light on how LLMs
switch between reasoning and memorization when solving logical puzzles.

1 INTRODUCTION

Modern Large Language Models (LLMs) show impressive reasoning capabilities that allow them
to solve a wide range of challenging problems including commonsense reasoning and mathematical
reasoning. In the meantime, LLMs also make mistakes on some of the most basic problems, such as
comparing which number is bigger—13.11 or 13.8 (Lin, 2024), and counting the number of sisters
that Alice’s brother has (Nezhurina et al., 2024). This contrast is puzzling when it comes to under-
standing how exactly LLMs solve reasoning tasks. This question is important both scientifically and
practically: understanding how LLMs reason could shed light on their learning and generalization
behaviors. It is also crucial for real-world applications where robust reasoning is required due to
safety and trustworthiness concerns (Wang et al., 2023a; Wallace et al., 2024; Lee et al., 2024; Wei
et al., 2024a).

One hypothesis is that LLMs could be relying on memorization when solving those reasoning tasks,
especially when measured by popular benchmarks that could be accidentally leaked into various
massive internet-crawled pre-training datasets. Previous work (Tirumala et al., 2022; Carlini et al.,
2023) show that LLMs could indeed memorize the training data, which may lead to potential pri-
vacy (Carlini et al., 2021) or copyright (Karamolegkou et al., 2023; Wei et al., 2024b) concerns.
Additional evidences of potential memorization come from extensive studies on data contamination
in LLMs (Magar & Schwartz, 2022; Balloccu et al., 2024; Shi et al., 2024; Xu et al., 2024; Oren
et al., 2024). To mitigate the issue of benchmark saturation potentially due to memorization, some
papers focus on designing dynamic benchmarks (Roberts et al., 2023; Zhu et al., 2024; Srivastava
et al., 2024; Jain et al., 2024; Wu et al., 2024a) or alternative evaluation protocols (Zeng et al., 2023;
Zhang et al., 2024; Xu et al., 2024; Srivastava et al., 2024).

In this paper, we take a direct approach to quantify the memorization behaviors of LLMs in reason-
ing tasks within a controlled setting. Specifically, we seek to understand: (i) whether LLMs rely on

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

c

A very special island is inhabited only
by knights and knaves. Knights always
tell the truth, and knaves always lie.
You meet 2 inhabitants: Oliver, and
Jacob.

Oliver is a knight and
Jacob is a knave

Oliver

Jacob

Oliver is a knight if and
only if Jacob is a knight

So who is a knight and who is a knave?

Problem 1

...

LLM

Problem m

...

Problem 1

...
Local

Perturbation
LLM

Perturbed Pk

Perturbed P1

Size = {#Total} Size = {#Correct} Size = {#Correct} Size = {#Consistently
Correct}

Acc = {#Correct} / {#Total} CR = {#Consistently Correct} / {#Correct}LiMem = Acc · (1 - CR)

…

…

…

Original
problem is
solved by
memorization

Local Inconsistency based Memorization Score

Original
problem is
solved by
reasoning

c

A very special island is inhabited only
by knights and knaves. Knights always
tell the truth, and knaves always lie.
You meet 2 inhabitants: Oliver, and
Jacob.

Oliver is a knight and
Jacob is a knave

Oliver

Jacob

Oliver is a knave if and
only if Jacob is a knight

So who is a knight and who is a knave?

Perturbed Problem 1

Figure 1: Illustration of the definition of Local Inconsistency based Memorization Score, LiMem. High level of
memorization occurs when the model shows high accuracy in solving sense problems but fails to consistently
solve those problems under local perturbations that require similar underlying reasoning principles.

memorization to solve reasoning tasks, and (ii) whether memorization is only detrimental to learn-
ing to reason. Both questions are inspired by human behavior. For instance, when a student works
hard on the preparation material for an exam, the preparation could help them get familiarized with
the problems, and their ability to solve new problems could usually improve with enough exercises.
However, without genuinely understanding the principles, they might fail when the same problem
is slightly changed despite doing well on prepared problems. Our metric of memorization LiMem,
illustrated in Fig. 1, is based on this intuition, that an LLM shows a high level of memorization when
it solves reasoning problems with high accuracy but struggles to consistently solve those problems
under local perturbations requiring similar mathematical principles (i.e., low consistency). We note
that a similar perturbation (mostly at language-level) idea has been used in previous work, especially
in detecting contamination (Golchin & Surdeanu, 2023; Yang et al., 2023; Xu et al., 2024). How-
ever, given our focus on understanding memorization in logical reasoning tasks, we further consider
problem-level perturbation that slightly changes the mathematical structure of a puzzle, in addition
to language-level perturbations. To facilitate our study, we propose a new logical reasoning bench-
mark that supports automatic problem-level perturbation. With this tool, we evaluate 11 off-the-shelf
models, and fine-tuned Llama3-8B and GPT4o-mini to quantify memorization in reasoning tasks,
and reveal interesting interplay between memorization and reasoning: while models indeed tend
to memorize many logical puzzles, they develop genuine reasoning capabilities during fine-tuning
(even directly on question-answer pairs without reasoning steps), and the reasoning performance
improves as the memorization level increases.

In the following, we provide an outline of the paper and summarize our key contributions:

• To quantify memorization in reasoning tasks, we define a memorization score based on the notions
of performance inconsistency under local perturbation, inspired by human behavior (§ 2.1).

• To facilitate the measurement, we propose a new logical reasoning benchmark based on the
Knights and Knaves (K&K, Smullyan, 1978; Johnson-Laird & Byrne, 1990) puzzles, that can
generate new puzzles at different difficulty levels, locally perturb existing puzzles, and automati-
cally synthesize detailed reasoning steps to solve a given puzzle (§ 2.2).

• We show that K&K puzzles are challenging, and only the most advanced LLMs could solve them
well. Moreover, our analysis suggests those models exhibit some level of memorization (§ 3).

• By fine-tuning on K&K samples, we confirm that modern LLMs are capable of memorizing a large
collection of puzzles, and reach high memorization score when interpolating (i.e., fitting, Belkin
et al., 2018) the training set. We observe that the models’ generalization accuracies continue to
improve as memorization grows (§ 4).

• We design various in-depth analyses (§ 4.1∼§ 4.3) to verify that the models developed genuine
reasoning capabilities after fine-tuning even with only question-answer pairs and wrong answers,
via local perturbation tests, cross difficulty-level transferability, and model internal probing.

• We show that fine-tuning with detailed reasoning steps can further boost the generalization on
K&K puzzles, even when fine-tuned with wrong reasoning steps (§ 5).

• To analyze the interplay between memorization and reasoning, we measure per-sample memo-
rization and study how LLMs switch between memorization and reasoning to solve a puzzle (§ 6).

2 HOW TO MEASURE MEMORIZATION IN REASONING TASKS

2.1 MEMORIZATION METRICS FOR REASONING TASKS

Memorization of LLMs has been studied in various contexts such as privacy (Carlini et al., 2023),
copyright (Carlini et al., 2021; Karamolegkou et al., 2023; Wei et al., 2024b; He et al., 2024), and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

[('proposal', {'assignment': True, 'outcome': 'ok', 'person': 0}),
 ('proposal', {'assignment': True, 'outcome': 'conflict',
 'conflict_statement': (0, True), 'person': 1}),
 ('proposal', {'assignment': False, 'outcome': 'ok', 'person': 1}),
 ('success', {'assignments': (True, False)})]

Abstract Reasoning Steps

True False
Solution

A very special island is inhabited only by
knights and knaves. Knights always tell the
truth, and knaves always lie. You meet 2
inhabitants: Oliver and Jacob.

Oliver is a knight and Jacob is a
knave

Oliver is a knight if and only if
Jacob is a knight

So who is a knight and who is a knave?

Synthetic CoTQuestion

person names,
role names…

denotes possible
local perturbation

(1) Michael is a knight
(2) Zoey is a knight
(3) Ethan is a knight

Answer

'<=>', ('telling-truth', 2), ('telling-truth', 0),
'or', ('telling-truth', 1), ('telling-truth', 2)
'<=>', ('lying', 0), ('lying', 1)

Logical statements

[True, True, True]
Solution

TBD: with N-ppl, width, depth,

Tree A very special island is inhabited only
by knights and knaves. Knights

always tell the truth, and knaves
always lie. You meet 3 inhabitants:

Michael, Zoey, and Ethan.

Ethan is a knight if and only if
Michael is a knight

Michael

Ethan

Zoey

Zoey is a knight or Ethan is a
knight

Michael is a knave if and only
if Zoey is a knave

So who is a knight and who is a knave?

Let's think step by step, by
considering whether each
person is lying and if that
leads to contradiction.
Assume Michael is a
knight. No contradiction is
found in their claim that
Ethan is a knight if and
only if Michael is a knight.
Assume Ethan is a
knight.…
…..
This leads to a feasible
solution.

Synthetic CoTQuestion

character
names,
role names…

denotes local perturbation

TBD

Reason steps

Language
conversion

Oliver

Jacob

(1) Oliver is a knight (2) Jacob is a knave

Answer

Abstract Module
E.g., problem specification: N=2, W=2, D=2

claims

and ⇔

Person # 0
Person # 1

telling-truth lying telling-truth telling-truth

Let's think step by step, by
considering whether each
person is lying and if that
leads to contradiction.
Assume Oliver is a knight.
No contradiction is found in
his claim that Oliver is a
knight and Jacob is a knave.
Jacob cannot be a knight,
because this would
contradict the claim of

…..

This leads to a feasible
solution.

Abstract Puzzle

claims

Branching node

Leaf node

Natural Language Module

claims

Figure 2: K&K data generation framework employs abstract and natural language modules to generate question
answer pair and synthetic CoTs for each K&K sample, based on the problem specification: number of persons
(N), tree width (W), and depth (D). Perturbers in these modules can alter the math structure and language
description, respectively.

solving knowledge intensive tasks (Hartmann et al., 2023). In this paper, we are specifically inter-
ested in measuring the level of memorization when solving reasoning tasks, by borrowing intuition
from human behavior. For example, when preparing for an exam, a student may not be able to fully
digest the underlying principles due to various reasons or constraints. But when (luckily) facing the
same problem the student had prepared for, they would still be able to solve it. A key characteristic
of this type of memorization is: (A) high accuracy on observed problems and (B) low accuracy when
the problem is slightly changed. Based on this intuition, for a dataset D of reasoning puzzles, we
combine the following two quantities to measure memorization:

1. For (A), we measure the accuracy of a target model f on D, denoted as Acc(f ;D). We are
especially interested in measuring on the set of observed puzzles, i.e., the training set, Acc(f ;Tr).
We say f interpolates (Belkin et al., 2018; Muthukumar et al., 2020; Belkin, 2021; Bartlett et al.,
2021) the training puzzles if Acc(f ;Tr) ≈ 100%.

2. For (B), we measure a consistency ratio CR(f ;D) between the number of consistently solved
puzzles after some local perturbations, and the number of solved puzzles (without perturbation).
We are interested in local perturbations that make minimal changes to the puzzle and maintain the
same underlying principle for solving it, and a similar difficulty level (to be specified in § 2.2).

We combine the two factors to define a Local Inconsistency-based Memorization Score:
LiMem(f ;D) = Acc(f ;D) · (1− CR(f ;D)). (1)

When there is no ambiguity, we simply call it the memorization score. LiMem(f ;D) ∈ [0, 1]
and a larger score provides stronger evidence of memorization. Specifically, a high LiMem(f ;Tr)
matches the characteristic behavior of human memorizing observed puzzles, and in this case we say
f memorized the training puzzles. Furthermore, we also measure LiMem(f ;Tst) on test examples,
to study if the generalization accuracy is due to reasoning or memorization. Note the Acc(f ;D)
factor is simple but necessary, as there are three types of behaviors: (i) solving by memorization, (ii)
solving by reasoning, (iii) not solving (e.g., random guessing). A high LiMem(f ;D) indicates (i),
but a low LiMem(f ;D) would only indicate (ii) if we separately check that Acc(f ;D) is high.

To effectively measure the memorization score LiMem(f ;D), we need a principled way to (1) per-
form a local perturbation that changes the puzzle while maintaining its difficulty level; (2) compute
the new correct answer after perturbation. Towards this goal, we design and implement a functional
dataset based on the Knights and Knaves puzzles (Smullyan, 1978; Johnson-Laird & Byrne, 1990).

2.2 KNIGHTS AND KNAVES LOGICAL REASONING BENCHMARK

Knights and Knaves (K&K) is a type of logical puzzle where some characters can only answer
questions truthfully, and others only falsely. The goal is to infer each character i’s truthfulness Bi

(Boolean value) according to its statement Si. Fig. 2 shows an example puzzle and its answer.

The principle underlying K&K is the Boolean satisfiability problem (SAT) (Boolean satisfiabil-
ity problem, 2024). SAT was the first problem proven to be NP-complete and many well-known
problems can be translated into SAT, such as hardware and software verification and theorem prov-
ing (SAT solver, 2024). Hence, the performance of a model on SAT (i.e., K&K puzzles) can be
important indicative of its reasoning capabilities. Specifically, consider a K&K puzzle involving N
people, a possible solution assign a Boolean value to N variables B1, B2, . . . , BN , where the truth

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

value of Bi indicates whether the ith person is telling the truth. By definition, the ith person is telling
the truth if and only if their statement Si is true. Therefore, a valid solution to a K&K puzzle is a
Boolean assignment for B1, B2, . . . , BN such that the following formula is true.

(B1 ⇔ S1) ∧ (B2 ⇔ S2) ∧ · · · ∧ (BN ⇔ SN). (2)

Based on the K&K puzzle, we design a dynamic benchmark that supports generating new puzzles
and perturbing existing puzzles. Our library automatically solves the K&K puzzles and generates
detailed reasoning steps and solutions for evaluation and training. Moreover, to support measuring
memorization, we also provide a procedure to perturb a given puzzle and recompute the new solution
after the perturbation. Specifically, our benchmark consists of two modules:

The Abstract Module has four components that can generate and manipulate K&K puzzles in an
abstract form (see § C.1). (1) The Generator creates a random K&K puzzle given a specification
(N,D,W) that determines the difficulty level. Specifically, it generates a puzzle with N people,
and for each person, a statement that consists of a random tree of maximum width W and depth
D, where each node is sampled uniformly at random from the following candidate sets. The leaf
node can be a claim that a specific person is lying (i.e., knave) or truth-telling (i.e., knight), and the
branching node can be and, or, not, imply, and equivalence. (2) The Solver finds the solution to a
given puzzle. In our study, we ignore puzzles with no or more than one solution. So we implement
the solver by converting the puzzle to a Boolean satisfiability problem and enumerate all Boolean
assignments so that we can easily obtain a list of all valid solutions to filter out unwanted puzzles.
(3) The Reasoner generates a step-by-step reasoning procedure that leads to the solution. We design
it to mimic the reasoning steps used by humans and some LLMs: instead of enumerating all Boolean
assignments, it examines each person sequentially, makes an assumption (knight/knave) and checks
if it leads to a contradiction with statements from people with specific identities assumed. If not, it
continues to examine the next person; otherwise it will try an alternative assumption or backtrack
to a previously examined person (details in § C.3). (4) The Perturber, given a puzzle, generates
a locally perturbed version that is (superficially) similar to the original puzzle, and solvable with
the same underlying principle and at a similar difficulty level. The Perturber replaces either an
entire statement or a leaf node in a statement with a newly sampled one. The process is rerun until
the perturbed puzzle has a unique solution different from the original puzzle, or until a maximum
number of attempts is reached. This rarely happens for N ≥ 3 people puzzles. When it happens we
skip the puzzle in our perturbation analysis. See Tab. 1 for concrete examples.

The Natural Language Module has three components that operate in natural language space. (1)
The NL-Generator takes an abstract K&K puzzle and formats it in natural language. It is template-
based, with randomly sampled person names and a random template for making claims, and it
uses a few heuristics to convert tree-structured logical statements to natural language. (2) The NL-
Reasoner converts the reasoning steps computed by the abstract Reasoner to the natural language
format in a similar manner. See Fig. 15 for dataset length distributions. (3) The NL-Perturber
generates perturbed puzzles by keeping the abstract puzzle intact and manipulating the language-
level descriptions as follows (See § C.7): (i) replace character names with uncommon names; (ii)
replace knight/knave with other similar pairs of role names, e.g., saint/sinner; (iii) reorder the state-
ments from the characters; (iv) flip the role name from knight/knave to knave/knight. Note that the
flipped role perturbation is somewhat adversarial as it goes against the common intuition that a good
character would tell the truth and a bad one would lie, so we include it mostly for reference purposes.

3 QUANTIFYING LLM MEMORIZATION IN REASONING TASKS

We measure memorization for off-the-shelf models (§ 3.1) and fine-tuned models (§ 3.2).

3.1 OFF-THE-SHELF MODELS

Evaluation setup. To generate our K&K benchmark (§ 2.2), we use the max tree width W = 2 and
depth D = 2, and create 100 test puzzles for each N -people task (N ∈ {2, 3, . . . , 8}). Then, we
generate perturbed versions for each puzzle under 6 perturbation types introduced in § 2.2: {per-
turbed statement, perturbed leaf node, random role-pair name, uncommon person name, reordered
statement, flipped role}. We utilize 0-shot direct prompting with task-specific instructions for open-
ended question-answering (details in § D.2). Note that even under direct prompting, capable LLMs
can generate Chain of Thought (Wei et al., 2022, CoT). Our evaluation mainly considers the 0-shot
setting, excluding potential biases introduced by in-context examples (Zhao et al., 2021). We defer

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2 3 4 5 6 7 8
ppl

Gemma-2-9b
Llama-3-8B

Phi-3-mini-instruct
Phi-3-medium-instruct
NuminaMath-7B-CoT

Deepseek-Math-7b-instruct
Llama-3.1-8B-Instruct

Qwen2.5-Math-7B-Instruct
Qwen2-Math-7B-Instruct

GPT-4o-mini
GPT-4o

Claude-3.5-sonnet
Gemini-1.5-Flash-002

Gemini-1.5-Pro-002

0.30 0.16 0.09 0.06 0.05 0.02 0.05

0.28 0.11 0.04 0.02 0.04 0.00 0.00

0.36 0.25 0.15 0.12 0.03 0.07 0.04

0.44 0.34 0.16 0.14 0.04 0.07 0.03

0.28 0.13 0.12 0.05 0.01 0.00 0.00

0.35 0.21 0.08 0.06 0.02 0.00 0.00

0.41 0.22 0.07 0.06 0.02 0.03 0.01

0.49 0.36 0.20 0.10 0.05 0.02 0.01

0.54 0.36 0.25 0.14 0.04 0.03 0.04

0.63 0.42 0.34 0.17 0.09 0.10 0.01

0.68 0.57 0.49 0.32 0.23 0.21 0.11

0.70 0.63 0.51 0.31 0.22 0.10 0.06

0.66 0.48 0.28 0.14 0.04 0.02 0.02

0.79 0.61 0.42 0.22 0.07 0.00 0.00

Acc(f ;Tst)

2 3 4 5 6 7 8
ppl

0.28 0.16 0.09 0.06 0.04 0.02 0.04

0.27 0.10 0.04 0.02 0.04 0.00 0.00

0.22 0.21 0.13 0.09 0.03 0.06 0.03

0.27 0.24 0.14 0.10 0.01 0.07 0.03

0.16 0.13 0.11 0.05 0.01 0.00 0.00

0.22 0.19 0.07 0.06 0.02 0.00 0.00

0.31 0.20 0.06 0.06 0.02 0.02 0.01

0.24 0.22 0.15 0.09 0.04 0.02 0.01

0.25 0.22 0.15 0.14 0.03 0.03 0.04

0.24 0.26 0.19 0.14 0.07 0.08 0.00

0.19 0.30 0.17 0.21 0.14 0.15 0.09

0.24 0.33 0.25 0.23 0.13 0.08 0.06

0.18 0.27 0.17 0.12 0.04 0.02 0.01

0.13 0.23 0.24 0.13 0.07 0.00 0.00

LiMem(f ;Tst) perturbed statement

2 3 4 5 6 7 8
ppl

0.30 0.16 0.09 0.05 0.04 0.02 0.04

0.26 0.11 0.03 0.02 0.04 0.00 0.00

0.24 0.24 0.13 0.12 0.03 0.06 0.04

0.27 0.28 0.12 0.10 0.03 0.04 0.02

0.23 0.12 0.10 0.05 0.01 0.00 0.00

0.22 0.17 0.06 0.05 0.02 0.00 0.00

0.30 0.19 0.07 0.06 0.02 0.03 0.00

0.26 0.24 0.17 0.09 0.05 0.01 0.01

0.29 0.20 0.18 0.11 0.04 0.03 0.04

0.29 0.25 0.20 0.11 0.06 0.08 0.01

0.20 0.20 0.22 0.18 0.14 0.13 0.09

0.16 0.31 0.24 0.18 0.11 0.08 0.06

0.29 0.17 0.15 0.14 0.03 0.02 0.02

0.22 0.25 0.24 0.18 0.05 0.00 0.00

LiMem(f ;Tst) perturbed leaf

0.0

0.2

0.4

0.6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 3: Test accuracy Acc(f ;Tst) of off-the-shelf models under 0-shot direct prompting drops with increas-
ing puzzle complexity (left). LiMem(f ;Tst) on test examples under statement perturbation (middle) and leaf
perturbation (right) is large for specific models, indicating signs of memorization in solving these puzzles.

the results under CoT prompting (i.e., explicitly adding a CoT trigger “Let’s think step by step”), and
1-shot prompting to § E. To evaluate the accuracy of the model’s output, we use keyword match-
ing for full-puzzle correctness. A response is considered correct if every person’s true identity is
included in the conclusion part of the model’s response.

Off-the-shelf models do not perform well on K&K tasks. We evaluate 14 models that are shown
to perform competitively on common reasoning benchmarks1. As shown in Fig. 3, K&K bench-
mark poses a challenging logical reasoning task for all the models. Even for the easiest puzzles
involving only 2 persons, the best models still achieve ≤ 70% accuracy. And the performance drops
significantly as the complexity increases (the best accuracy is only 11% for 8-people puzzles).

Off-the-shelf models are sensitive to locally perturbed test samples. To quantify LLMs’ mem-
orization of the logical reasoning task, we employ the score proposed in Eq. (1). Since the train-
ing data for the off-the-shelf models is unknown, we focus on measuring the memorization score
LiMem(f ;Tst) on the test set here. We observe (Fig. 3 right) that for the cases where a model has
relatively high accuracy, the memorization scores under local perturbation are generally high. For
example, LiMem(Claude-3.5-Sonnet;Tst) > 0.3 on 3-people puzzles under both statement and leaf
perturbation. Those measurements indicate signs of memorization when solving these puzzles.

3.2 FINE-TUNED MODELS

Here, we study a model’s memorization behavior when fine-tuned on K&K puzzles.

Fine-tuning setup. We take Llama3-8B and GPT4o-mini and run supervised fine-tuning (SFT) on
a set of K&K training puzzles disjoint from the test set. We consider two fine-tuning paradigms: (1)
Fine-tuning on detailed CoT steps (CoT FT): during SFT, the model observes the concatenation of
the question, synthetic CoT steps, and the answer for each puzzle; the loss is computed on the CoT
steps and the answer part. (2) Fine-tuning on the answers (Direct FT) where the model observes the
question-answer pair for each puzzle, and the loss is only computed on the answer part. Examples
of CoT FT/Direct FT training instances are provided in § D.2.2. We fine-tune the models for each
N -people task separately, with ntrain = 1, 000 for 3 ≤ N ≤ 8, and ntrain = 200 for 2-people task
due to limited number of combinations. We fine-tune Llama3-8B for 50 epochs2 and GPT4o-mini
for 5 epochs (due to budget constraints) via the OpenAI fine-tune API (details in § D.2). During the
evaluation, we follow the same prompting paradigm as FT paradigm, i.e., direct/CoT prompting for
direct/CoT-FTed model, which is shown effective in § E.2.

LLMs interpolate K&K training puzzles. In Fig. 4, we present the training accuracy of models
trained on each task on the x-axis (each dot represents a training epoch). We find that models exhibit
high training accuracy in tasks such as 3/5-people puzzles. The higher capacity GPT4o-mini nearly
achieves interpolation (Acc(f ;Tr) ≈ 100%) using both Direct FT and CoT FT.

Interpolating LLMs have large memorization scores on training examples. From Fig. 5, (1)
we observe high LiMem(f ;Tr) memorization score on training samples (e.g., ∼ 50% on 8-people
task) under various perturbations. It shows significant gaps between accuracy on the original sample
and the consistent accuracy under perturbation, suggesting a heavy reliance on memorization. (2)
LiMem(f ;Tr) is higher for more difficult tasks (e.g., 5/8-people), which could mirror human behav-
ior, where memorization is often used to tackle challenging tasks that people do not fully understand.
(3) More capable model GPT4o-mini, in general, show lower memorization scores than Llama3-8B.

1We are not evaluating the OpenAI o1 model because API access is limited to only the highest-tier users.
2We fine-tune Llama3-8B for max 100 epochs in Fig. 21 and find that it typically converges at 50 epochs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

A
cc

(f
;T

st
)

GPT4o-mini Direct FT

3-ppl FT

5-ppl FT

8-ppl FT

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

Llama3-8B Direct FT

3-ppl FT

5-ppl FT

8-ppl FT

0.00 0.25 0.50 0.75 1.00

Acc(f ;Tr)

0.00

0.25

0.50

0.75

A
cc

(f
;T

st
)

GPT4o-mini CoT FT

3-ppl FT

5-ppl FT

8-ppl FT

0.00 0.25 0.50 0.75 1.00

Acc(f ;Tr)

0.0

0.1

0.2

Llama3-8B CoT FT

3-ppl FT

5-ppl FT

8-ppl FT

Figure 4: Train & test accuracy increases
over the epochs. FTed LLMs can achieve
interpolation (≈ 100% train accuracy)
for easy tasks, e.g., 3/5-people puzzles.
Llama3-8B struggles with CoT FT, likely
due to its limited capacity.

0.0

0.5

L
iM

em

3-ppl CoT FT GPT4o-mini

0.0

0.5

L
iM

em

5-ppl CoT FT

statementleaf pair
name

reorder

perturb type

0.0

0.5

L
iM

em

8-ppl CoT FT

train

test

0.0

0.5

3-ppl Direct FT GPT4o-mini

0.0

0.5

5-ppl Direct FT

statement leaf pair
name

reorder

perturb type

0.0

0.5

8-ppl Direct FT

train

test

0.0

0.5

3-ppl Direct FT Llama3-8B

0.0

0.5

5-ppl Direct FT

statement leaf pair
name

reorder

perturb type

0.0

0.5

8-ppl Direct FT

train

test

Figure 5: Fine-tuned LLMs exhibit high memorization score on
the training set under different perturbations, especially for hard
tasks. The score on the test set can be smaller than on the training
set. Models show stronger memorization under math-level per-
turbations compared to language-level perturbations. We report
consistency ratio separately in Fig. 19, and memorization score
of combined math & language-level perturbations in Fig. 20.

Ablation on local perturbations. Comparing different perturbations in Fig. 5, we find that (1)
LLMs exhibit a higher memorization score when evaluated with math-level perturbations (e.g.,
statement/leaf) compared to language-level, which indicates that LLMs can compose the language
understanding capability to solve the same puzzle in alternative phrasing. (2) LLMs get nearly zero
accuracy on role-flipped samples (e.g., when a knight, typically viewed as truthful, is defined as
always lying), and memorization score LiMem(f ;Tr) under role-flipping for Llama3-8B is ∼ 80%
as shown in Fig. 6. This could be due to an internal bias or commonsense understanding that knights
are inherently good characters (e.g., truthful), and thus LLMs disregard the altered puzzle statement.

4 LLMS LEARN TO REASON BY FINE-TUNING WITH ANSWERS ONLY

§ 3 shows that both off-the-shelf and fine-tuned models exhibit memorization when solving K&K
reasoning tasks. Does it mean that those models do not have reasoning capabilities at all? As we will
show, it turns out that the models can do both, and interestingly the reasoning capability consistently
improves as the memorization level increases when the models are fine-tuned on K&K puzzles.

We focus on analyzing Direct FT in this section and discuss CoT FT in § 5. For humans, solving
K&K tasks without understanding the underlying logic is difficult. However, after observing the
step-by-step reasoning steps, people can understand the procedure and solve the puzzles more easily.
Similarly, compared to CoT FT, learning from only answers (Direct FT) without detailed reasoning
steps is intuitively more challenging for LLMs, as the models need to come up with the reasoning
procedures on their own. Therefore, the models might be more likely to rely on memorization in
this case. Surprisingly, from Fig. 5, we did not observe Direct FTed GPT4o-mini models exhibiting
consistently higher memorization score than CoT FTed ones. It turns out that models can learn to
reason K&K puzzles well directly from observing only question-answer pairs, as we will show in
§ 4.1. To better understand what the model actually learns through Direct FT, we conduct a probing
analysis on model internals in § 4.3 and an ablation study with incorrect answers fine-tuning in § 4.3.

4.1 REASONING CAPABILITIES OF DIRECT FT-ED MODEL

Generalization performance increases with memorization level. As shown in Fig. 6 , the test
accuracy (y-axis) of fine-tuned LLMs on the unseen test set continues to increase over the epochs,
despite that the memorization score LiMem(f ;Tr) on training samples also increases.

0.00 0.25

LiMem(f ;Tr)

0.0

0.5

A
cc

(f
;T

st
) statement pert.

0.0 0.5

LiMem(f ;Tr)

0.0

0.5

leaf pert.

0.00 0.25

LiMem(f ;Tr)

0.0

0.5

pair pert.

0.0 0.2

LiMem(f ;Tr)

0.0

0.5

name pert.

0.00 0.25

LiMem(f ;Tr)

0.0

0.5

reorder pert.

0.0 0.4 0.8

LiMem(f ;Tr)

0.0

0.5

flip role
3-ppl Direct FT 5-ppl Direct FT 8-ppl Direct FT

Figure 6: Test accuracy of fine-tuned Llama3-8B increases over epochs, despite the stronger memorization of
training data as reflected by larger LiMem(f ;Tr). See Fig. 18 for results on GPT4o-mini.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2 3 4 5 6 7 8
ppl for testing

8

5

4

3

#
pp

l
fo

r
tr

ai
ni

ng

-0.10 0.24 0.35 0.27 0.33 0.32 0.30

0.21 0.24 0.46 0.29 0.30 0.31 0.21

0.21 0.25 0.34 0.25 0.22 0.22 0.23

0.26 0.37 0.30 0.19 0.12 0.10 0.13

epoch: 5

−0.4

−0.2

0.0

0.2

0.4

(a) GPT4o-mini CoT FT

2 3 4 5 6 7 8
ppl for testing

8

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.17 0.29 0.22 0.31 0.31 0.18 0.25

0.25 0.35 0.37 0.40 0.37 0.24 0.26

0.20 0.39 0.37 0.27 0.31 0.18 0.28

0.32 0.35 0.34 0.29 0.29 0.05 0.15

0.28 0.05 0.07 0.06 0.07 -0.05 0.07

epoch: 5

−0.4

−0.2

0.0

0.2

0.4

(b) GPT4o-mini Direct FT

2 3 4 5 6 7 8
ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.11 0.32 0.29 0.25 0.17 0.10 0.10

-0.03 0.34 0.30 0.27 0.16 0.11 0.10

0.19 0.33 0.32 0.24 0.20 0.11 0.12

0.16 0.37 0.31 0.25 0.13 0.13 0.11

0.24 0.39 0.29 0.23 0.09 0.10 0.08

-0.01 0.27 0.20 0.26 0.14 0.11 0.08

-0.10 0.12 0.03 0.07 0.02 0.03 0.04

epoch: 5

2 3 4 5 6 7 8
ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.25 0.37 0.30 0.24 0.20 0.11 0.13

0.20 0.41 0.40 0.29 0.17 0.14 0.12

0.34 0.41 0.43 0.34 0.21 0.15 0.09

0.25 0.45 0.42 0.28 0.20 0.11 0.12

0.39 0.40 0.44 0.25 0.16 0.09 0.06

0.41 0.38 0.41 0.26 0.17 0.11 0.13

0.11 0.08 0.06 0.06 0.02 0.01 0.02

epoch: 50

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(c) Llama3-8B Direct FT

Figure 7: Test accuracy improvement on N -people problems for LLMs fine-tuned on M -people problems,
compared to the unfine-tuned model, under 0-shot direct prompting. Most grid values are above 0, indicating
transferability and enhanced reasoning abilities across unseen tasks. Results for more epochs are in § E.2.

LiMem(f ;Tst) on test samples is smaller than LiMem(f ;Tr) on train samples in Fig. 5, indi-
cating that models are less likely to rely on memorization when solving test samples compared to
training samples. Since a low memorization score can result from either solving by reasoning or fail-
ing to solve (e.g., low accuracy), we further analyze the model’s reasoning ability on test samples
through a transferability study below.

Fine-tuned model generalizes across different difficulty levels. We evaluate LLMs’ transferabil-
ity by fine-tuning on M -people puzzles and testing on N -people puzzles. When M ̸= N , the testing
is out-of-distribution compared to training and solving it requires reasoning. The N × M test ac-
curacy improvement grid (compared to the un-FTed model) in Fig. 7 shows: (1) Training on any
M -people puzzle generally improves test accuracy on any N -people puzzles, suggesting that the
model learns general task-solving rules after FT (to reason and solve both easier and harder unseen
puzzles). (2) More training epochs (e.g., 50 vs. 5) improve results, especially for Llama3-8B. (3)
Accuracy gains are larger for N ≤ 6 puzzles, though improvements on harder tasks remain possible.

2 3 4 5 6 7 8
0.0

0.5

1.0

A
cc

(f
;T

st
)

no FT

Direct prompting

CoT prompting

2 3 4 5 6 7 8
0.0

0.5

1.0

A
cc

(f
;T

st
)

1000 samples 8-ppl FT

Direct FT

CoT FT

2 3 4 5 6 7 8
ppl for testing

0.0

0.5

1.0

A
cc

(f
;T

st
)

10000 samples 8-ppl FT

Figure 8: Transferability of 1k/10k
8-ppl FTed GPT4o-mini. Llama3-
8B results are in Fig. 24.

Fine-tuning with 10k 8-people puzzles. Given the significant
performance improvement from fine-tuning, a natural question
arises: can brute-force fine-tuning on a very large number of puz-
zles eventually solve the K&K puzzles, by observing/memorizing
a variety of combinations of persons’ claims and their correspond-
ing answers? We Direct FT GPT4o-mini on 1k/10k of the most
challenging 8-people puzzles for 5 epochs. Fig. 8 shows that (1)
10k-FT significantly outperforms 1k-FT across all tasks, reaching
∼ 90% test accuracy on moderately difficult 4/5-people puzzles.
(2) CoT FT is generally more effective than Direct FT with 10k
samples, likely due to the guidance provided by reasoning steps.
(3) An exception is the 2-people task, where the training and test-
ing distribution gap causes the CoT FTed model to occasionally
get stuck in a loop of listing assumptions and contradictions, re-
sulting in long, repetitive responses without reaching a conclu-
sion3. (4) Direct FT with 10k puzzles achieves surprisingly high
test accuracy on all tasks, e.g., 52% on 8-people tasks, where the
un-FTed model scores near 0. Notably, the models do not see rea-
soning steps during training and rely solely on memorizing an-
swers. We also observe high transferability for 10k Direct FTed
Llama3-8B in Fig. 24, e.g., 87% test accuracy on 3-people puz-
zles.

4.2 PROBING DIRECT FTED MODELS

To investigate whether Direct FTed models develop internal understanding of the skills necessary
to solve K&K puzzles when learning only from the answers, we use probing techniques (Adi et al.,
2017; Conneau et al., 2018; Hewitt & Liang, 2019; Ye et al., 2024) to analyze their internal represen-
tations. Specifically, we study whether a Direct FTed model’s intermediate outputs provide evidence
that it can distinguish between correct and incorrect statements for a given K&K puzzle, which is
essential for solving the puzzle via reasoning. For a given model, we extract intermediate outputs
from all transformer blocks for 200 correct and 200 incorrect statements, then check whether these

3We observe similar accuracy drop on 2-people task for Llama3-8B (see Fig. 24) when it is Direct FTed for
overly long epochs. We provide more examples and discussions in § E.2.2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

outputs form distinct clusters by measuring the training accuracy of a logistic regression model fit
on them (see § D.2.3 for details). For each N -people K&K puzzle, we report the per-layer probing
accuracy averaged across seven Direct FTed models, each Direct FTed on an M ∈ {2, 3, . . . , 8}-
people task.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Transformer Block Index

2

3

4

5

6

7

8

#
pp

l
in

th
e

K
&

K
ev

al
ua

ti
on

0.57 0.59 0.61 0.65 0.68 0.75 0.77 0.78 0.85 0.87 0.9 0.91 0.94 0.97 0.97 0.97 0.96 0.95 0.94 0.92 0.91 0.92 0.9 0.89 0.9 0.9 0.91 0.92 0.94 0.95 0.91 0.89

0.58 0.59 0.61 0.66 0.71 0.74 0.76 0.78 0.84 0.87 0.91 0.92 0.95 0.97 0.97 0.96 0.95 0.94 0.93 0.91 0.91 0.9 0.89 0.88 0.89 0.9 0.91 0.92 0.93 0.93 0.88 0.88

0.6 0.6 0.62 0.64 0.66 0.71 0.74 0.76 0.82 0.84 0.89 0.9 0.95 0.97 0.96 0.95 0.94 0.93 0.91 0.89 0.89 0.89 0.88 0.87 0.87 0.88 0.88 0.9 0.9 0.91 0.85 0.85

0.6 0.61 0.64 0.67 0.7 0.74 0.76 0.78 0.83 0.85 0.9 0.92 0.95 0.97 0.96 0.96 0.94 0.93 0.92 0.89 0.89 0.88 0.87 0.86 0.87 0.89 0.89 0.89 0.89 0.9 0.82 0.81

0.61 0.61 0.63 0.65 0.67 0.71 0.74 0.77 0.81 0.84 0.89 0.9 0.93 0.95 0.95 0.95 0.93 0.92 0.9 0.89 0.87 0.88 0.85 0.86 0.86 0.87 0.87 0.87 0.87 0.87 0.79 0.8

0.6 0.61 0.62 0.66 0.69 0.72 0.75 0.77 0.81 0.83 0.86 0.88 0.92 0.95 0.95 0.94 0.92 0.91 0.88 0.87 0.87 0.86 0.86 0.85 0.85 0.87 0.87 0.86 0.88 0.86 0.8 0.76

0.65 0.65 0.66 0.68 0.7 0.72 0.74 0.77 0.8 0.83 0.87 0.89 0.93 0.95 0.95 0.95 0.93 0.91 0.9 0.88 0.88 0.87 0.86 0.85 0.86 0.87 0.89 0.86 0.87 0.85 0.81 0.78

0.80

0.85

0.90

0.95

1.00

Figure 9: Probing accuracy of K&K puzzles with different number of people in testing puzzles across different
layers of the Llama3-8B transformer model. Results for un-FTed models are shown in Fig. 33 in § E.

Fig. 9 shows (1) a clear trend of higher probing accuracy in deeper layers, peaking at around the
14th/15th layer. The near-perfect peak accuracy suggests that the model’s internal representations
have a clear distinction between true/false statements about a given puzzle. (2) The probing accuracy
is much higher than the un-FTed model (Fig. 33 in § E), suggesting that such representations are
learned from the question-answer pairs during Direct FT. (3) Puzzles with more people seem to
demand more internal computation, as evidenced by the point where probing accuracy surpasses
85% shifting to later transformer blocks.

4.3 DIRECT FT WITH WRONG ANSWERS

To further explore what could the models learn from the question-answer pairs without detailed
reasoning steps, we consider an extreme scenario of learning with incorrect answers: for each N -
people training puzzle, we randomly select Ñ from [1, N] and flip the knight/knave identities of Ñ
randomly chosen individuals. Surprisingly, Fig. 10 shows that Direct FT with incorrect answers still
leads to non-trivial improvements for Llama3-8B. These improvements occur gradually over more
epochs, suggesting that the model progressively developed reasoning skills during fine-tuning.

Note that in this case the improved test accuracy could not have come from memorization because
100% of the training examples are incorrectly labeled. However, since in each wrong answer of a N -
people puzzle, there are still N − Ñ correct role assignments where the random Ñ ≥ 1. The model
might have learned to reason from those partially correct role assignments in the wrong answer.

2 3 4 5 6 7 8
ppl for testing

1.0

0.75

0.5

0.25

0.0

pr
op

or
ti

on
of

w
ro

ng
tr

ai
ni

ng
an

sw
er

-0.39 -0.20 -0.24 -0.15 -0.07 -0.10 -0.01

-0.15 -0.08 -0.16 0.01 0.03 -0.06 -0.01

0.09 0.24 0.08 0.09 0.09 -0.02 0.09

0.15 0.30 0.28 0.27 0.29 0.24 0.07

0.25 0.35 0.37 0.40 0.37 0.24 0.26

GPT4o-mini # epoch: 5

−0.4

−0.2

0.0

0.2

0.4

Figure 11: Direct FT w/ various
wrong training answer proportions
on 5-ppl task.

However, as shown in Fig. 11, when applied to more capable
GPT4o-mini models, Direct FT on 5-people puzzles where 100%
training examples have corrupted answers does not lead to im-
provement. Moreover, the negative effects transfer to other tasks,
notably easier ones (2/3/4-people). Nevertheless, as the percent-
age of corrupt-answer training examples reduces (≤ 50%), the
model could gain improved reasoning capabilities that generalize
across different N -people tasks. We provide GPT4o-mini results
under more epochs in Fig. 32 and Llama3-8B results for partially
wrong answer FT in Figs. 30 and 31.

5 LLMS LEARN TO REASON BY FINE-TUNING WITH COTS

Here we measure models’ reasoning capabilities after fine-tuning with detailed reasoning steps.

0.25

0.50

0.75

A
cc

(f
;T

r)

5-ppl FT GPT4o-mini

0 2 4 6 8 10
Epoch

0.2

0.4

0.6

A
cc

(f
;T

st
)

Clean CoT

Shuffle CoT

Replace one CoT step

Figure 12: Wrong CoTs FT.

Model learns to reason on CoT when model capacity is large
enough. As shown in Fig. 4, (1) training with reasoning steps as guid-
ance improves test accuracy (y-axis) on unseen puzzles. (2) However,
Llama3-8B struggles with CoT FT, likely due to its limited capacity
to effectively learn CoT skills with ≤1K training samples. (3) Similar
to Direct FT results in § 4, in CoT FT, memorization of training data
is higher than test data (Fig. 5), yet test accuracy improves despite
that the memorization score increases over training (Fig. 18), and the
fine-tuned models show positive transferability to easier/harder tasks
(Fig. 7). (4) Though models can generalize surprisingly well under

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2
#

pp
l

fo
r

tr
ai

ni
ng

0.20 0.15 0.13 0.08 0.01 0.02 0.03

0.23 0.16 0.13 0.08 0.01 0.02 0.03

0.19 0.15 0.13 0.08 0.01 0.02 0.03

0.21 0.15 0.13 0.08 0.01 0.02 0.03

0.19 0.16 0.13 0.08 0.01 0.02 0.03

0.22 0.16 0.13 0.09 0.01 0.02 0.03

0.20 0.15 0.13 0.08 0.01 0.02 0.02

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.25 0.12 0.07 0.04 0.01 0.03 0.01

0.31 0.08 0.07 0.04 0.00 0.01 0.01

0.34 0.16 0.11 0.03 0.03 0.02 0.03

0.32 0.12 0.10 0.05 0.01 0.01 0.03

0.33 0.13 0.08 0.07 0.03 0.02 0.03

0.28 0.16 0.09 0.07 0.02 0.02 0.03

0.16 0.16 0.14 0.05 0.00 0.02 0.02

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.28 0.13 0.08 0.04 0.02 0.02 0.01

0.36 0.14 0.07 0.03 0.02 0.00 0.00

0.31 0.19 0.11 0.04 0.03 0.03 0.03

0.30 0.15 0.08 0.05 0.03 0.01 0.03

0.29 0.14 0.10 0.05 0.04 0.02 0.00

0.27 0.14 0.07 0.07 0.02 0.01 0.04

0.26 0.10 0.09 0.03 0.00 0.01 0.04

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.31 0.15 0.05 0.03 0.02 0.01 0.01

0.32 0.08 0.04 0.04 0.02 0.00 0.00

0.32 0.14 0.04 0.05 0.01 0.03 0.01

0.31 0.11 0.08 0.09 0.01 0.01 0.01

0.30 0.13 0.06 0.02 0.03 0.02 0.00

0.25 0.10 0.09 0.07 0.02 0.02 0.04

0.26 0.10 0.10 0.01 0.00 0.01 0.02

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.30 0.15 0.05 0.03 0.02 0.01 0.01

0.33 0.08 0.04 0.04 0.01 0.00 0.00

0.32 0.13 0.03 0.04 0.01 0.03 0.01

0.32 0.11 0.08 0.08 0.01 0.01 0.01

0.31 0.13 0.06 0.02 0.03 0.02 0.00

0.25 0.10 0.09 0.07 0.02 0.02 0.04

0.27 0.10 0.10 0.02 0.00 0.01 0.02

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

Figure 10: Test accuracy improves on N -people puzzles for Llama3-8B fine-tuned on M -people puzzles with
completely wrong answers, compared to the unfine-tuned model. This evaluation uses 1-shot direct prompting
(see Fig. 29 for results under different prompting setups).

Direct FT, CoT FT could lead to much higher test accuracy, especially with a larger training set
(Fig. 8).

Fine-tuning with wrong CoTs. The CoT training data includes both reasoning steps and answers.
To understand the role of the CoT component in improving model generalization, we fine-tune
GPT4o-mini with two types of incorrect CoT data: (a) randomly shuffled CoT steps, disrupting the
logic of the reasoning steps; and (b) CoTs with a single incorrect step, simulating genuine mistakes
that people would sometimes make, where one step is randomly replaced with another puzzle’s CoT
step (adjusting names to fit the current context). The results in Fig. 12 show that (1) fine-tuning
with a 100% corrupted CoT dataset can still enhance test accuracy over the epochs, suggesting that
the model learns to reason (potentially from the correct answers) despite CoT errors. (2) Altering
one CoT step slows convergence and reduces test accuracy compared to clean CoT. (3) Shuffling
CoT steps further harms both convergence and generalization. These also suggest that using correct
logical chains in CoT can help LLMs to more effectively learn to reason.

6 DISTINGUISHING MEMORIZATION FROM REASONING

The findings above show that models’ reasoning capabilities continue to improve as they memorize
more training examples. In other words, the models use both memorization and reasoning to solve
the puzzles. How do models decide which example to memorize or reason about? We can use our
framework to study this question by extending the memorization score to a per-example metric.

Specifically, consider measuring Eq. (1) on a 1-point dataset D = {x}. We skip the examples where
Acc(f ; {x}) = 0 as the consistency ratio CR({x}) is NaN in this case. Then LiMem(f ; {x}) ∈
{0, 1} is a binary indicator: 0 indicates x is consistently solved after local perturbation; 1 indicates
otherwise. We would like to see if there is a clear rule that can separate the two types of puzzles.

Setup. We collect training samples {xi} on which the targeted LLM makes correct predictions, and
assign a binary categorical label as either “consistently solved” (i.e., solved by reasoning) puzzle or
“not consistently solved” (i.e., solved by memorization) puzzle. We split this dataset into random
disjoint 80%/20% training/test sets, and train a simple logistic regression model to solve this binary
classification problem, in order to study the question: Is there a simple indicator that determines
whether a model would solve a given puzzle by reasoning or memorization?

0.6 0.8
Train AUC

0.500

0.525

0.550

0.575

0.600

0.625

T
es

t
A

U
C

Direct FT (Llama3-8b)

0.5 0.6 0.7 0.8
Train AUC

0.500

0.525

0.550

0.575

0.600

0.625

Direct FT (GPT4o-mini)

0.6 0.7 0.8 0.9
Train AUC

0.5

0.6

0.7

0.8
CoT FT (GPT4o-mini)

Text Field

question

synthetic CoTs

response

concat all fields

Method

TF-IDF

BoW

word length

char length

concat all features

Figure 13: AUC for classifying 3-people puzzles under leaf perturbation
based on puzzle-based indicators. Results under more tasks and pertur-
bations are in Fig. 34.

Puzzle-based indicators. We
consider the following features:
(1) TF-IDF; (2) Bag-of-Words;
(3) Word Length; (4) Charac-
ter Length; (5) concatenation of
all. Each feature can be ex-
tracted from one of the follow-
ing fields: (1) question; (2) syn-
thetic CoT reasoning steps; (3)
model response4; (4) concatena-
tion of the above fields. The training and test performance (measured with AUC as the dataset
can be unbalanced) are shown in Fig. 13. We observe a test AUC of 0.629/0.787 for Direct/CoT
FT-ed GPT4o-mini, and 0.627 for Direct FT-ed Llama3-8B. This indicates that the puzzle-based
indicators could be informative, though not perfect, at determining which examples are reasoned vs.
memorized.

4Strictly speaking this is a model-based indicator feature.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Transformer Block Index

0.5

0.6

0.7

0.8

T
es

t
A

U
C

0
.5

2 0
.5

4

0
.5

4

0
.5

9

0
.5

8 0
.6

0 0
.6

3 0
.6

6

0
.6

5

0
.6

5

0
.6

5

0
.6

7

0
.6

8

0
.6

6

0
.6

4

0
.6

4

0
.5

9

0
.6

3

0
.6

1

0
.6

1

0
.6

0

0
.6

1

0
.6

2

0
.6

0

0
.5

8

0
.5

7 0
.5

9

0
.5

9

0
.6

0

0
.5

5

0
.5

6

0
.5

6

0
.5

2 0
.5

5

0
.5

4

0
.5

9

0
.5

8 0
.6

0

0
.6

5

0
.6

9

0
.7

0

0
.6

5

0
.7

0

0
.6

8

0
.7

0

0
.6

9

0
.6

8 0
.7

0

0
.6

4

0
.6

1

0
.5

9 0
.6

1

0
.6

6

0
.6

4 0
.6

8

0
.6

3

0
.6

3 0
.6

5

0
.6

4

0
.6

3 0
.6

5

0
.6

4

0
.6

5

0
.6

2

Base model FTed model

Figure 14: Test AUC for predicting 3-people puzzles based on whether they are consistently solved under leaf
perturbation by the Llama3-8B model Direct-FTed. The embeddings across different layers of the fine-tuned
Llama3-8B provide more distinguishable signals than those of the un-FTed model, leading to 0.7 AUC at the
middle layers. Results under more tasks and perturbations are in Fig. 35.
Model-based indicators. Here we study model-based indicators to test whether the internal activa-
tions of the fine-tuned model are informative for this categorization. Since we do not have access to
the model internals of GPT4o-mini, we conduct the experiment on Llama3-8B. Specifically, we feed
each puzzle question to the FT-ed model, collect the average embedding at each layer as features,
and then train a linear classifier based on the features of each layer. The test AUCs are shown in
Fig. 14, where we compare the results based on a not-FTed base Llama3-8B model, to see how much
of the feature expressiveness comes from the fine-tuning process. We observe that (1) the features
from the bottom layers are too low level to classify memorization vs. reasoning, but the test AUCs
improve at higher layers. (2) The features from the FTed model are consistently more informative
than the un-FTed model, suggesting that the model’s decision regarding memorization vs. reasoning
on specific samples likely stems from the fine-tuning process. (3) The best model embedding-based
indicator provides stronger signals than the puzzle-based indicator (Fig. 13 left) for Llama3-8B, with
0.70 and 0.627 test AUC on 3-people puzzles, respectively.

7 RELATED WORK

Memorization in LLMs. Previous work on LLM memorization primarily focused on near-verbatim
training text regurgitation from the perspective of privacy or copyright concerns (Carlini et al., 2021;
Lee et al., 2022; Carlini et al., 2023; Lukas et al., 2023; Biderman et al., 2024; Prashanth et al., 2024).
In contrast, we focus on quantifying the memorization behavior of LLMs when solving reasoning
tasks, using a metric computed with the help of local perturbation of reasoning puzzles.

Benchmark Contamination and Logical Reasoning Evaluation. Recent research has revealed
LLMs’ significant performance decline when faced with altered versions of popular reasoning
benchmarks (Oren et al., 2024; Xu et al., 2024; Yang et al., 2023; Yao et al., 2024; Zhang et al.,
2024; Srivastava et al., 2024), suggesting potential benchmark contamination. Various synthetic
benchmarks have been developed to evaluate LLMs’ logical reasoning capabilities, allowing for dy-
namic and scalable generation of samples with different configurations and difficulty levels (Clark
et al., 2020; Giadikiaroglou et al., 2024; Parmar et al., 2024; Dziri et al., 2024; Lin et al., 2024;
Kazemi et al., 2024; Mondorf & Plank, 2024). TruthQuest (Mondorf & Plank, 2024) is the most
similar task to our work, which provides K&K-type of 3-6 person puzzles and answers. Our work
provides more comprehensive dynamic set of K&K puzzles that support the automatic generation of
perturbations, solutions, and detailed reasoning steps. Moreover, we define and measure memoriza-
tion, and reveal its intricate relation to reasoning.

We refer the readers to § B for a more comprehensive discussion of related work.

8 CONCLUSION

We propose a memorization metric LiMem based on the inconsistency when solving a locally per-
turbed logical reasoning puzzle, and quantitatively characterize the amount of memorization and
reasoning. Through an in-depth analysis based on local perturbation, transferability, intermediate
outputs probing, and fine-tuning with wrong answers, we find that LLMs learn to reason as they
memorize more training examples. Furthermore, we study input and model-based signals that de-
termine which puzzles are solved by reasoning vs by memorization. To support these studies, we
create a feature-rich dynamic logical reasoning benchmark that not only enables our memorization
study, but could also be useful for future studies related to LLM logical reasoning. We defer more
discussion and future work to § A.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

In this paper, we have taken steps to ensure the reproducibility of our results: (1) The source code
for data generation, LLM evaluation and fine-tuning is provided in the supplementary material. We
have provided the README and scripts to replicate the experiments in the paper. (2) Detailed
information about K&K data generation can be found in § C. This includes descriptions of each
component in the abstract puzzle module and the natural language module. (3) We described the
experimental setups in each section (§ 3-§ 6). Additional details on models, hyperparameters, LLM
evaluation, fine-tuning, and computational resources are provided in Appendix § D.

REFERENCES

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg. Fine-grained analysis
of sentence embeddings using auxiliary prediction tasks. In ICLR, 2017.

Simone Balloccu, Patrícia Schmidtová, Mateusz Lango, and Ondřej Dušek. Leak, cheat, re-
peat: Data contamination and evaluation malpractices in closed-source LLMs. arXiv preprint
arXiv:2402.03927, 2024.

Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint.
Acta Numerica, 2021.

Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning through the
prism of interpolation. Acta Numerica, 2021.

Mikhail Belkin, Daniel J Hsu, and Partha Mitra. Overfitting or perfect fitting? Risk bounds for
classification and regression rules that interpolate. In NeurIPS, 2018.

Stella Biderman, Usvsn Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin Anthony, Shivan-
shu Purohit, and Edward Raff. Emergent and predictable memorization in large language models.
Advances in Neural Information Processing Systems, 36, 2024.

Boolean satisfiability problem. Boolean satisfiability problem — Wikipedia, the free encyclopedia,
2024. URL https://en.wikipedia.org/wiki/Boolean_satisfiability_problem. [Online;
accessed 20-Nov-2024].

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In USENIX Security, 2021.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models. In ICLR, 2023.

Xinyun Chen, Ryan Andrew Chi, Xuezhi Wang, and Denny Zhou. Premise order matters in reason-
ing with large language models. In ICML, 2024.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. Journal of Machine Learning Research, 2024.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. Transformers as soft reasoners over language.
In IJCAI, 2020.

Alexis Conneau, German Kruszewski, Guillaume Lample, Loïc Barrault, and Marco Baroni. What
you can cram into a single vector: Probing sentence embeddings for linguistic properties. In ACL,
2018.

Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul Smolensky, Vishrav Chaudhary, and Stu-
art Shieber. Implicit chain of thought reasoning via knowledge distillation. arXiv preprint
arXiv:2311.01460, 2023.

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to inter-
nalize cot step by step. arXiv preprint arXiv:2405.14838, 2024.

11

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jian, Bill Yuchen Lin, Peter West,
Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang
Ren, Allyson Ettinger, Zaïd Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on
compositionality. NeurIPS, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Panagiotis Giadikiaroglou, Maria Lymperaiou, Giorgos Filandrianos, and Giorgos Stamou. Puzzle
solving using reasoning of large language models: A survey. In IJCAI, 2024.

Shahriar Golchin and Mihai Surdeanu. Data contamination quiz: A tool to detect and estimate
contamination in large language models. arXiv preprint arXiv:2311.06233, 2023.

Vipul Gupta, David Pantoja, Candace Ross, Adina Williams, and Megan Ung. Changing answer
order can decrease MMLU accuracy. arXiv preprint arXiv:2406.19470, 2024.

Valentin Hartmann, Anshuman Suri, Vincent Bindschaedler, David Evans, Shruti Tople, and
Robert West. SoK: memorization in general-purpose large language models. arXiv preprint
arXiv:2310.18362, 2023.

Luxi He, Yangsibo Huang, Weijia Shi, Tinghao Xie, Haotian Liu, Yue Wang, Luke Zettlemoyer,
Chiyuan Zhang, Danqi Chen, and Peter Henderson. Fantastic copyrighted beasts and how (not)
to generate them. arXiv preprint arXiv:2406.14526, 2024.

John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In EMNLP,
2019.

Namgyu Ho, Laura Schmid, and Se-Young Yun. Large language models are reasoning teachers. In
ACL, 2023.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Rat-
ner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming
larger language models with less training data and smaller model sizes. In ACL, 2023.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Bowen Jiang, Yangxinyu Xie, Zhuoqun Hao, Xiaomeng Wang, Tanwi Mallick, Weijie J Su,
Camillo J Taylor, and Dan Roth. A peek into token bias: Large language models are not yet
genuine reasoners. EMNLP, 2024.

Philip N Johnson-Laird and Ruth MJ Byrne. Meta-logical problems: Knights, knaves, and rips.
Cognition, 1990.

Antonia Karamolegkou, Jiaang Li, Li Zhou, and Anders Søgaard. Copyright violations and large
language models. In EMNLP, 2023.

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung Kim, Xin Xu, Vaiva Imbrasaite, and Deepak
Ramachandran. BoardgameQA: A dataset for natural language reasoning with contradictory in-
formation. In NeurIPS, 2024.

Seungone Kim, Se June Joo, Doyoung Kim, Joel Jang, Seonghyeon Ye, Jamin Shin, and Minjoon
Seo. The cot collection: Improving zero-shot and few-shot learning of language models via
chain-of-thought fine-tuning. In EMNLP, 2023.

Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Wattenberg, Jonathan K Kummerfeld, and Rada
Mihalcea. A mechanistic understanding of alignment algorithms: A case study on DPO and
toxicity. In ICML, 2024.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better. In ACL,
2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bill Yuchen Lin. Math Olympiad becomes easier for AI; Common sense is still hard., 2024. URL
https://x.com/billyuchenlin/status/1812948314360541302.

Bill Yuchen Lin, Ronan Le Bras, and Yejin Choi. ZebraLogic: benchmarking the logical reasoning
ability of language models, 2024. URL https://hf.co/spaces/allenai/ZebraLogic.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams. To-
wards understanding grokking: An effective theory of representation learning. NeurIPS, 2022a.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data. In
The Eleventh International Conference on Learning Representations, 2022b.

Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople, Lukas Wutschitz, and Santiago Zanella-
Béguelin. Analyzing leakage of personally identifiable information in language models. In IEEE
Symposium on Security and Privacy (SP), 2023.

Inbal Magar and Roy Schwartz. Data contamination: From memorization to exploitation. arXiv
preprint arXiv:2203.08242, 2022.

R Thomas McCoy, Shunyu Yao, Dan Friedman, Mathew D Hardy, and Thomas L Griffiths. Embers
of autoregression show how large language models are shaped by the problem they are trained to
solve. Proceedings of the National Academy of Sciences, 121(41):e2322420121, 2024.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models. arXiv preprint arXiv:2410.05229, 2024.

Philipp Mondorf and Barbara Plank. Liar, liar, logical mire: A benchmark for suppositional reason-
ing in large language models. arXiv preprint arXiv:2406.12546, 2024.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher D Manning. Grokking of hier-
archical structure in vanilla transformers. In ACL, 2023.

Vidya Muthukumar, Kailas Vodrahalli, Vignesh Subramanian, and Anant Sahai. Harmless inter-
polation of noisy data in regression. IEEE Journal on Selected Areas in Information Theory,
2020.

Marianna Nezhurina, Lucia Cipolina-Kun, Mehdi Cherti, and Jenia Jitsev. Alice in wonderland:
Simple tasks showing complete reasoning breakdown in state-of-the-art large language models.
arXiv preprint arXiv:2406.02061, 2024.

Yonatan Oren, Nicole Meister, Niladri Chatterji, Faisal Ladhak, and Tatsunori B Hashimoto. Proving
test set contamination in black box language models. ICLR, 2024.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empowering large
language models with symbolic solvers for faithful logical reasoning. In The 2023 Conference on
Empirical Methods in Natural Language Processing, 2023.

Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi Nakamura, Man Luo, Santosh Mashetty,
Arindam Mitra, and Chitta Baral. LogicBench: towards systematic evaluation of logical reasoning
ability of large language models. In ACL, 2024.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Akshara Prabhakar, Thomas L Griffiths, and R Thomas McCoy. Deciphering the factors influencing
the efficacy of chain-of-thought: Probability, memorization, and noisy reasoning. arXiv preprint
arXiv:2407.01687, 2024.

USVSN Sai Prashanth, Alvin Deng, Kyle O’Brien, Jyothir SV, Mohammad Aflah Khan, Jaydeep
Borkar, Christopher A Choquette-Choo, Jacob Ray Fuehne, Stella Biderman, Tracy Ke, et al.
Recite, reconstruct, recollect: Memorization in lms as a multifaceted phenomenon. arXiv preprint
arXiv:2406.17746, 2024.

13

https://x.com/billyuchenlin/status/1812948314360541302
https://hf.co/spaces/allenai/ZebraLogic

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Haritz Puerto, Tilek Chubakov, Xiaodan Zhu, Harish Tayyar Madabushi, and Iryna Gurevych. Fine-
tuning with divergent chains of thought boosts reasoning through self-correction in language mod-
els. arXiv preprint arXiv:2407.03181, 2024.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining term
frequencies on few-shot numerical reasoning. In Findings of EMNLP 2022, pp. 840–854, 2022.

Manley Roberts, Himanshu Thakur, Christine Herlihy, Colin White, and Samuel Dooley. To the
cutoff... and beyond? A longitudinal perspective on LLM data contamination. In ICLR, 2023.

Joshua Robinson and David Wingate. Leveraging large language models for multiple choice ques-
tion answering. In ICLR, 2023.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=qFVVBzXxR2V.

SAT solver. Sat solver — Wikipedia, the free encyclopedia, 2024. URL https://en.wikipedia.
org/wiki/SAT_solver. [Online; accessed 20-Nov-2024].

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. In ICLR,
2024.

Raymond Smullyan. What is the Name of this Book? Prentice-Hall, 1978.

Saurabh Srivastava, Anto PV, Shashank Menon, Ajay Sukumar, Alan Philipose, Stevin Prince,
Sooraj Thomas, et al. Functional benchmarks for robust evaluation of reasoning performance,
and the reasoning gap. arXiv preprint arXiv:2402.19450, 2024.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
without overfitting: Analyzing the training dynamics of large language models. NeurIPS, 2022.

Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng, Johannes Heidecke, and Alex Beutel. The
instruction hierarchy: Training LLMs to prioritize privileged instructions. arXiv preprint
arXiv:2404.13208, 2024.

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokking of implicit reasoning in transformers:
A mechanistic journey to the edge of generalization. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024a. URL https://openreview.net/forum?id=
D4QgSWxiOb.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu,
Zidi Xiong, Ritik Dutta, Rylan Schaeffer, et al. DecodingTrust: a comprehensive assessment of
trustworthiness in GPT models. In NeurIPS, 2023a.

Haochun Wang, Sendong Zhao, Zewen Qiang, Bing Qin, and Ting Liu. Beyond the answers: Re-
viewing the rationality of multiple choice question answering for the evaluation of large language
models. arXiv preprint arXiv:2402.01349, 2024b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023b.

Boyi Wei, Kaixuan Huang, Yangsibo Huang, Tinghao Xie, Xiangyu Qi, Mengzhou Xia, Prateek
Mittal, Mengdi Wang, and Peter Henderson. Assessing the brittleness of safety alignment via
pruning and low-rank modifications. In ICML, 2024a.

Boyi Wei, Weijia Shi, Yangsibo Huang, Noah A Smith, Chiyuan Zhang, Luke Zettlemoyer, Kai Li,
and Peter Henderson. Evaluating copyright takedown methods for language models. In NeurIPS
Datasets and Benchmark, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS,
2022.

14

https://openreview.net/forum?id=qFVVBzXxR2V
https://en.wikipedia.org/wiki/SAT_solver
https://en.wikipedia.org/wiki/SAT_solver
https://openreview.net/forum?id=D4QgSWxiOb
https://openreview.net/forum?id=D4QgSWxiOb

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun
Zhao. Large language models are better reasoners with self-verification. In The 2023 Conference
on Empirical Methods in Natural Language Processing, 2023.

Xindi Wu, Dingli Yu, Yangsibo Huang, Olga Russakovsky, and Sanjeev Arora. ConceptMix: A
compositional image generation benchmark with controllable difficulty. In NeurIPS Datasets and
Benchmark, 2024a.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations
of language models through counterfactual tasks. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 1819–1862, 2024b.

Ruijie Xu, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu. Benchmarking benchmark leakage in large
language models. arXiv preprint arXiv:2404.18824, 2024.

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E Gonzalez, and Ion Stoica. Rethinking
benchmark and contamination for language models with rephrased samples. arXiv preprint
arXiv:2311.04850, 2023.

Feng Yao, Yufan Zhuang, Zihao Sun, Sunan Xu, Animesh Kumar, and Jingbo Shang. Data contam-
ination can cross language barriers. arXiv preprint arXiv:2406.13236, 2024.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. arXiv preprint arXiv:2407.20311, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. NeurIPS, 35:15476–15488, 2022.

Zhongshen Zeng, Pengguang Chen, Shu Liu, Haiyun Jiang, and Jiaya Jia. MR-GSM8K: a meta-
reasoning benchmark for large language model evaluation. arXiv preprint arXiv:2312.17080,
2023.

Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson, Catherine Wu, Will Song, Tiffany Zhao, Pranav
Raja, Dylan Slack, Qin Lyu, et al. A careful examination of large language model performance
on grade school arithmetic. arXiv preprint arXiv:2405.00332, 2024.

Tony Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In ICML, 2021.

Wenjie Zhou, Qiang Wang, Mingzhou Xu, Ming Chen, and Xiangyu Duan. Revisiting the self-
consistency challenges in multi-choice question formats for large language model evaluation. In
LREC-COLING, 2024.

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Diyi Yang, and Xing Xie. Dyval:
Graph-informed dynamic evaluation of large language models. In ICLR, 2024.

Yongshuo Zong, Tingyang Yu, Bingchen Zhao, Ruchika Chavhan, and Timothy Hospedales. Fool
your (vision and) language model with embarrassingly simple permutations. ICML, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX

A Discussion and Future Work 17

B Extended Related Work 17

C Details on K&K Benchmark 19

C.1 The Abstract Representation . 19

C.2 The Abstract Puzzle Module: Generator . 19

C.3 The Abstract Puzzle Module: Solver and Reasoner 19

C.4 The Abstract Puzzle Module: Perturber . 20

C.5 The Natural Language Module: NL-Generator . 21

C.6 The Natural Language Module: NL-Reasoner . 21

C.7 The Natural Language Module: NL-Perturber . 22

C.8 Dataset Generation . 23

D Experimental Setups 24

D.1 Models . 24

D.2 Experimental Details . 25

D.2.1 Evaluation . 25

D.2.2 Fine-tuning . 27

D.2.3 Probing . 28

D.2.4 Distinguishing Memorization from Reasoning 28

D.2.5 Computation Resources . 29

E Additional Experimental Results 29

E.1 Memorization Measurement . 29

E.2 Evaluation on Reasoning Capability . 32

E.2.1 Llama3-8B . 32

E.2.2 GPT4o-mini . 34

E.3 Direct FT with Wrong Answers . 36

E.3.1 Llama3-8B . 36

E.3.2 GPT4o-mini . 38

E.4 Probing . 39

E.5 Distinguishing Memorization from Reasoning . 40

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A DISCUSSION AND FUTURE WORK

Our results reveal intricate phenomena of the interplay between reasoning and memorization, but
challenging questions remain open: (i) While a model’s reasoning capabilities improve during fine-
tuning as it memorizes more training puzzles, it is unclear exactly how those capabilities develop,
especially when fine-tuned on only question-answer pairs without detailed reasoning steps. (ii)
While the models’ reasoning capabilities can be significantly improved after fine-tuning, they have
not reached 100% test accuracy yet. Is it because the models only learned some “shortcut rules”
that can only solve a specific subset of puzzles? If so, what are the shortcuts? (iii) Since some
model-based indicators can approximately predict when the model is solving a specific puzzle by
memorization vs by reasoning, can we further design intervention mechanisms to bias the model to-
wards reasoning during inference or training time? Exploring the open questions in further research
would deepen our understanding of this space.

B EXTENDED RELATED WORK

Memorization in LLMs. Prior work has explored training data memorization in LLMs, primarily
in the contexts of privacy and copyright concerns (Carlini et al., 2021; Lukas et al., 2023; He et al.,
2024), focusing on how LLMs may reproduce text near-verbatim to their training data (Lee et al.,
2022; Carlini et al., 2023; Biderman et al., 2024). Recent work by Prashanth et al. (2024) further
introduces a taxonomy for memorization, categorizing it into Recitation, Reconstruction, and Recol-
lection. They investigate the memorization behaviors of the Pythia model (Biderman et al., 2024) on
the Pile dataset (Gao et al., 2020). In contrast, we examine memorization in the reasoning context,
and focus on analyzing whether LLMs can accurately solve problems encountered during training
but struggle to solve slightly perturbed variants. This allows us to better investigate the extent to
which LLMs truly understand and generalize the underlying principles of the reasoning problems
they have been trained on, as opposed to merely memorizing the text.

Recent research discusses signs of LLMs memorization in reasoning tasks by evaluating them on
counterfactual reasoning tasks. These counterfactual tasks demand similar abstract reasoning skills
as the original tasks but are less common in the training data. For instance, tasks such as reversing
a sequence of words (McCoy et al., 2024) show better performance on high-probability sequences
than on low-probability sequences; shifting each letter by n places in the alphabet (Rot-n) (Prab-
hakar et al., 2024; McCoy et al., 2024) demonstrates higher performance when n = 13 than for other
values, likely because “Rot-13” is commonly used in online forums. Wu et al. (2024b) presents 11
counterfactual tasks (e.g., 1-indexing in Python, base-9 arithmetic) that show significant perfor-
mance declines. Jiang et al. (2024) changes some tokens in the reasoning task descriptions which
leads to significant performance drops, suggesting that models might depend on recognizing super-
ficial patterns with strong token bias. Moreover, Razeghi et al. (2022) finds a strong correlation
between the accuracy for a number on numerical reasoning tasks and its frequency in pretraining for
GPT-J/GPT-Neo. In our study, we formally define a memorization score to quantify performance
variance under task perturbations, covering both counterfactual alterations (e.g., switching the roles
of knights and knaves) and standard perturbations on language level and problem structure level.

Detecting benchmark contamination. Recent work has shown that LLMs’ performance drastically
declines when faced with altered versions of popular reasoning benchmarks, suggesting potential
contamination/memorization of these benchmarks. The benchmark variants include diverse forms
such as altered multiple-choice questions formats (Wang et al., 2024b; Zong et al., 2024; Gupta
et al., 2024; Zhou et al., 2024; Robinson & Wingate, 2023), rephrased or translated problems (Xu
et al., 2024; Yang et al., 2023; Yao et al., 2024), shuffled example orderings (Oren et al., 2024),
human-curated problems of comparable difficulty (Zhang et al., 2024), functional variants gener-
ating random instantiations (Srivastava et al., 2024; Mirzadeh et al., 2024), and problems beyond
specific date cutoffs (Roberts et al., 2023; Jain et al., 2024). Previous work either focus on surface
level language perturbations or require extensive expert-level annotations for math level variations.
In contrast, our benchmark support automatic problem-level perturbation, solution and reasoning
procedure generation, and easily scale to different difficult levels and dataset sizes without extra
human efforts.

Logical reasoning benchmarks. To evaluate logical reasoning capabilities in LLMs, synthetic
benchmarks have been developed to enable scalable generation of samples with varying configura-
tions and difficulty levels (Clark et al., 2020; Giadikiaroglou et al., 2024; Parmar et al., 2024). For

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

instance, DyVal (Zhu et al., 2024) uses directed acyclic graphs to dynamically generate samples on
reasoning tasks including deductive, Boolean, and abductive reasoning. Chen et al. (2024) focus on
propositional logical problems involving definite clauses, and synthetically generate variations with
different premise orders, such as forward, backward, and shuffled. Dziri et al. (2024) explore the
limitations of LLMs in tasks requiring compositional reasoning, including multiplication, logic grid
puzzles, and dynamic programming problems. ZebraLogic (Lin et al., 2024) is an extended bench-
mark that systematically tests logical reasoning capabilities. BoardgameQA (Kazemi et al., 2024)
presents a question-answering dataset characterized by contradictory facts and rules in the questions.
PRONTOQA (Saparov & He, 2023) is a synthetic question-answering dataset where each example is
generated from a synthetic world model represented in first-order logic. This dataset enables parsing
the generated chain of thought into symbolic proofs, facilitating formal analysis. TruthQuest (Mon-
dorf & Plank, 2024) is the most similar task to our work, which provides evaluation samples based
on K&K-type of puzzles involving 3-6 person. Our work provides more comprehensive dynamic set
of K&K puzzles that support automatic generation of perturbations, solutions and detailed reasoning
steps. Moreover, based on this benchmark, we define and measure memorization in reasoning tasks,
revealing intricate interplay between memorization and reasoning in LLMs.

Improving reasoning via fine-tuning. Prior work has explored fine-tuning LLMs on synthetic
reasoning data to enhance their performance on reasoning. DyVal (Zhu et al., 2024) shows that
fine-tuning Llama2-13B-chat on their synthetic reasoning benchmark improves its performance on
other popular reasoning benchmarks. BoardgameQA (Kazemi et al., 2024) find that fine-tuning
BERT-large and T5-XXL on their training dataset with synthetic proofs outperforms few-shot CoT
prompting using PaLM. Ye et al. (2024) pretrain GPT2 from scratch on synthetic math problems,
synthetic CoT steps and solutions and show that model can solve problems from the same dis-
tribution and generalize to out-of-distribution (OOD) problems. However, Dziri et al. (2024) show
that while GPT-3 fine-tuned on their compositional reasoning tasks with/without reasoning steps can
solve in-distribution (ID) problems, it fails to generalize to OOD tasks with increased problem sizes.
Besides using synthetic CoTs, there are work using model-generated CoTs to enhance the models’
reasoning capabilities (Chung et al., 2024). STaR (Zelikman et al., 2022) uses model self-generated
CoTs on correctly solved samples to iteratively fine-tune itself as a self-taught reasoner. A number
of work (Puerto et al., 2024; Kim et al., 2023; Ho et al., 2023; Hsieh et al., 2023) leverage CoTs
generated from teacher models to train smaller student models. Additionally, some recent efforts
have focused on leveraging intermediate reasoning steps in CoT more implicitly. For instance, Deng
et al. (2023) distill intermediate reasoning tokens into the network layers by representing reasoning
steps as vectors and using them as targets; Deng et al. (2024) distill CoT by gradually removing the
intermediate steps and fine-tuning the model to internalize these steps, predicting the answers based
on partial CoT. Both studies show that full CoT fine-tuning may not be necessary for the model to
achieve strong reasoning performance.

In our study, we employ both direct fine-tuning and CoT fine-tuning to achieve memorization on
K&K training data. Notably, our findings show that the fine-tuned GPT4o-mini and Llama3-8B
models can effectively generalize to unseen OOD and ID K&K problems, contributing new insights
to the topic of LLM fine-tuning for reasoning.

Orthogonal to our work, inference-time techniques have been explored to enhance reasoning per-
formance such as self-consistency (Wang et al., 2023b), self-verification (Weng et al., 2023), and
integration with external symbolic solvers (Pan et al., 2023).

Grokking. Our findings are related to Grokking, first identified by Power et al. (2022) on a small
algorithmic dataset, where validation accuracy suddenly improves from random chance to near-
perfect generalization long after severe overfitting. Follow-up studies expanded the range of tasks
where grokking occurs and proposed various explanations (Liu et al., 2022a; Murty et al., 2023;
Liu et al., 2022b). Recently, Wang et al. (2024a) observed grokking in the domain of complex
knowledge-based tasks, showing that implicit reasoning over parametric knowledge emerges only
after extensive overfitting. In this work, we observe a related phenomenon but through the lens of
memorization. Through novel (math & language-level) perturbation tests and transferability analy-
ses, we verify that LLM reasoning skills emerge alongside memorization. Furthermore, our investi-
gation focuses on logical reasoning, offering new insights into how LLMs acquire logical reasoning
skills.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C DETAILS ON K&K BENCHMARK

C.1 THE ABSTRACT REPRESENTATION

We use a simple internal representation using basic Python primitives (integer, string and tuple)
to encode each K&K puzzle. This allows easy inter-operation with the json format to simplify
saving and loading. Specifically, for a N -people puzzle, each person is represented by the integer
0, . . . , N − 1. Each person’s statement is represented by a tuple (type, arguments, ...), where
type indicate the statement type listed below:

• Leaf Statements: It can be either (’lying’, i) or (’telling-truth’, i), where i is
an integer and this statement assert the ith person is lying or truthful.

• Composite Statements: It can take one or more statements as arguments, and has the
following types:

– Negation (’not’, statement)

– Conjunction (’and’, statement1, statement2, ...)

– Disjunction (’or’, statement1, statement2, ...)

– Implication (’->’, statement1, statement2)

– Equivalence (’<=>’, statement1, statement2)

C.2 THE ABSTRACT PUZZLE MODULE: GENERATOR

The Generator samples a problem based on a random seed and a difficulty level specification
(N,W,D), where N indicates the number of people, W indicates the max width of each statement,
D indicates the max depth of each person’s statement. To instantiate the problem, we initialize a ran-
dom number generator, and sample a statement for each person sequentially. We sample each state-
ment type uniformly at random. For composite statement with variable number of sub-statements,
we also randomize the number according to the max width W . We restrict the sampling to only leaf
statements if the max depth is exhausted. We avoid (skip and resample) some invalid (e.g., asserting
self is lying) or uninteresting cases (e.g., a and statement with identical sub-statements).

The following is an example K&K puzzle with 5 people in the abstract representation. We will use
this example to illustrate various component in the rest of the section.

Example puzzle of 5 people in the abstract representation

(('and', ('lying', 3), ('telling-truth', 4)),
('<=>', ('lying', 3), ('telling-truth', 4)),
('telling-truth', 4),
('telling-truth', 0),
('<=>', ('telling-truth', 2), ('lying', 2)))

C.3 THE ABSTRACT PUZZLE MODULE: SOLVER AND REASONER

Each K&K problem can be transformed and solved as a Boolean satisfiability problem. Specifically,
consider a puzzle involving N people, a possible solution assign a Boolean value to N variables
B1, B2, . . . , BN , where the truth value of Bi indicates whether the ith person is telling the truth.
By definition, the ith person is telling the truth if and only if their statement Si is true. Therefore, a
valid solution to a K&K puzzle is a Boolean assignment for B1, B2, . . . , BN such that the following
formula evaluates to true.

(B1 ⇔ S1) ∧ (B2 ⇔ S2) ∧ · · · ∧ (BN ⇔ SN). (3)

We implement our Solver and Reasoner based on this reduction. We take two different approaches
here, because we want to find all possible solutions in the Solver, and we want to generate intuitive
intermediate steps for the Reasoner.

Specifically, we are primarily interested in evaluating K&K puzzles with a unique valid solution.
Therefore, we design our Solver to use a simple brute-force search that enumerates all possible

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Boolean assignments for N people and count the number of assignments that evaluate Eq. (3) to
true. In our dataset construction, we only include puzzles whose solution count is exactly one.

In the Reasoner, we are interested in procedurally generating intermediate reasoning steps that lead
to the final solution. We note that when explaining the reasoning steps for K&K puzzles, human
or off-the-shelf LLMs rarely use the brute-force assignment search approach adopted in our Solver.
Instead, they tend to examine the statement from each person sequentially, construct a partial as-
signment for the people examined so far, and backtrack when a contradiction is found. We design
our Reasoner following the same procedure.

Specifically, we maintain a queue of people to be examined next, and a partial assignment of knight
/ knave for people that have been examined so far. In each step, we examine the next person from
the queue by adding to the partial assignment the assumed knight / knave role for this person. Given
the newly proposed assignment, we go through the known statements and check if there is a contra-
diction. (A) If a contradiction is found, we record the statement of contradiction as the explanation,
and start backtracking. Backtracking will put people back into the to-be-examined queue until we
reach a person who has an alternative unexamined role assignment. If no such person is found
during backtracking, this means there is no valid solution for this problem. (B) If a contradiction
is not found, we can proceed to examine the next person in the queue. Here we also implement a
mechanism to reorder the queue so that it may match the human behavior better. For example, if the
current person’s statement is “If Noah is a knight, then Lily is a knave.” then we would bring Noah
and Lily to the front of the to-be-examined queue, provided that they are in the queue (i.e., have not
been previously examined).

The reasoning steps are generated and stored using a similar format as the abstract representation of
the puzzle as described in § C.1. The following snippet shows an example of the generated reasoning
steps for the example puzzle shown above:

Example of generated reasoning steps in the abstract representation

[('proposal', {'assignment': True, 'outcome': 'ok', 'person': 0}),
('proposal', {'assignment': True, 'conflict_statement': (0, True), 'outcome': 'conflict', 'person': 3}),
('proposal', {'assignment': False, 'conflict_statement': (3, False), 'outcome': 'conflict', 'person': 3}),
('reconsider', {'exhausted': [3], 'person': 0}),
('proposal', {'assignment': False, 'outcome': 'ok', 'person': 0}),
('proposal', {'assignment': True, 'conflict_statement': (3, True), 'outcome': 'conflict', 'person': 3}),
('proposal', {'assignment': False, 'outcome': 'ok', 'person': 3}),
('proposal', {'assignment': True, 'conflict_statement': (0, False), 'outcome': 'conflict', 'person': 4}),
('proposal', {'assignment': False, 'outcome': 'ok', 'person': 4}),
('proposal', {'assignment': True, 'conflict_statement': (2, True), 'outcome': 'conflict', 'person': 2}),
('proposal', {'assignment': False, 'outcome': 'ok', 'person': 2}),
('proposal', {'assignment': True, 'conflict_statement': (1, True), 'outcome': 'conflict', 'person': 1}),
('proposal', {'assignment': False, 'outcome': 'ok', 'person': 1}),
('success', {'assignments': (False, False, False, False, False)})]

C.4 THE ABSTRACT PUZZLE MODULE: PERTURBER

To support memorization measurement, the K&K Puzzle Perturber generate an perturbed version of
a given puzzle. We design the perturbation with the following considerations:

• The perturbation should be “local”, in the sense that the perturbed problem should be sim-
ilar to the original problem when measured in some superficial ways, such as edit distance.

• The perturbation should keep the nature of the problem, i.e., the perturbed problem should
be solvable using the same underlying principle, and the difficulty level should be roughly
maintained.

• The perturbed puzzle should have a unique solution, which should be different from the
solution of the original puzzle.

With those consideration, we support two different perturbations:

• Statement perturbation: randomly choose a person and sample a new statement tree for that
person.

• Leaf perturbation: randomly choose a person, and from that person’s existing statement
tree, randomly choose one leaf node and change it.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C.5 THE NATURAL LANGUAGE MODULE: NL-GENERATOR

The NL-Generator generate a K&K puzzle in natural language by converting a given abstract-form
puzzle into the familiar text form described in natural language. For example, the puzzle presented
(in the abstract representation) above can be materialized as follows:

Example puzzle converted to natural language representation

A very special island is inhabited only by knights and knaves. Knights always tell the truth, and knaves
always lie. You meet 5 inhabitants: David, Zoey, Alexander, Aurora, and Isabella. In David’s words:
"Aurora is a knave and Isabella is a knight". Zoey expressed that Aurora is a knave if and only if
Isabella is a knight. Alexander said, "Isabella is a knight." Aurora commented, "David is a knight".
According to Isabella, "Alexander is a knight if and only if Alexander is a knave". So who is a knight
and who is a knave?

Specifically, given a puzzle of N people in the abstract representation, our natural language represen-
tation generator first sample N human names, and then format each people’s claim by plugging in the
corresponding name mapping. We use some heuristics to make the conversion of the tree-structured
logic statements to natural language sounds natural. Our current implementation randomly sample
from 18 templates of making a statement claim and from the following common names — but this
can be easily extended to include more.

COMMON_NAMES = ['Emma', 'Liam', 'Olivia', 'Noah', 'Ava', 'Ethan', 'Sophia',
'Mason', 'Isabella', 'William', 'Mia', 'James', 'Charlotte',
'Benjamin', 'Amelia', 'Lucas', 'Harper', 'Henry', 'Evelyn',
'Alexander', 'Abigail', 'Michael', 'Emily', 'Daniel', 'Elizabeth',
'Jacob', 'Sofia', 'Logan', 'Avery', 'Jackson', 'Ella', 'Sebastian',
'Scarlett', 'Jack', 'Grace', 'Aiden', 'Chloe', 'Owen', 'Victoria',
'Samuel', 'Riley', 'Matthew', 'Aria', 'Joseph', 'Lily', 'Luke',
'Aurora', 'David', 'Zoey', 'Oliver', 'Penelope']

C.6 THE NATURAL LANGUAGE MODULE: NL-REASONER

The NL-Reasoner generates detailed reasoning steps in natural language by converting the output
from the abstract Reasoner to natural language descriptions using a similar approach as the NL-
Generator. The following show the generated reasoning steps in natural language for the puzzle
shown above:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Reasoning steps generated by the Reasoner

Let’s think step by step, by considering whether each person is lying and if that leads to contradiction.
1. Assume David is a knight. No contradiction is found in their claim that Aurora is a knave and

Isabella is a knight.
2. Aurora cannot be a knight, because this would contradict the claim of David that Aurora is a

knave and Isabella is a knight.
3. Aurora cannot be a knave, because this would contradict the false claim of their own that David

is a knight.
4. We have exhausted all possibilities for Aurora, so let us go back and reconsider David.
5. Assume David is a knave. No contradiction is found in their false claim that Aurora is a knave

and Isabella is a knight.
6. Aurora cannot be a knight, because this would contradict the claim of their own that David is a

knight.
7. Assume Aurora is a knave. No contradiction is found in their false claim that David is a knight.
8. Isabella cannot be a knight, because this would contradict the false claim of David that Aurora is

a knave and Isabella is a knight.
9. Assume Isabella is a knave. No contradiction is found in their false claim that Alexander is a

knight if and only if Alexander is a knave.
10. Alexander cannot be a knight, because this would contradict the claim of their own that Isabella

is a knight.
11. Assume Alexander is a knave. No contradiction is found in their false claim that Isabella is a

knight.
12. Zoey cannot be a knight, because this would contradict the claim of their own that Aurora is a

knave if and only if Isabella is a knight.
13. Assume Zoey is a knave. No contradiction is found in their false claim that Aurora is a knave if

and only if Isabella is a knight.
This leads to a feasible solution.

C.7 THE NATURAL LANGUAGE MODULE: NL-PERTURBER

The NL-Perturber generates perturbed puzzles at the language level. Note unlike in the perturbations
generated by the abstract Perturber, NL-Perturber keep the underlying abstract puzzle intact and only
modify the materialization in natural language. Therefore, the solution to the perturbed puzzle is
identical to the solution to the original puzzle. Specifically, the NL-Perturber supports the following
perturbations:

With those consideration in mind, we provide two family of perturbations:

• Uncommon name: replace the names of the characters with randomly sampled names from
the set of uncommon names.

• Random role: change the role name from knight/knave to other pairs of role names.
To avoid introducing bias, we sample from pairs of good/bad role names, including
“saint/sinner, hero/villain, angel/devil, altruist/egoist, sage/fool, pioneer/laggard”.

• Reorder statement: shuffle the order of presenting each person’s statement.

• Flip role: change the role from knight/knave to knave/knight, i.e., knave will be telling the
truth while knight will be lying.

The uncommon names are sampled from the following list:

UNCOMMON_NAMES = [
'Zephyr', 'Elowen', 'Caspian', 'Isolde', 'Osiris', 'Vesper', 'Thaddeus', 'Ondine',
'Lysander', 'Xanthe', 'Oberon', 'Calliope', 'Leander', 'Eulalia', 'Florian', 'Forsythe',
'Nephele', 'Peregrine', 'Ianthe', 'Lazarus', 'Elodie', 'Cillian', 'Ottoline', 'Evander',
'Saffron', 'Caius', 'Zora', 'Cyprian', 'Amaryllis', 'Theron', 'Perdita', 'Ignatius',
'Zephyrine', 'Balthazar', 'Melisande', 'Zinnia', 'Sylvester', 'Cosima', 'Leocadio',
'Percival', 'Oceane', 'Evanthe', 'Zenobia', 'Eurydice', 'Quillan', 'Aeronwen',
'Thorsten', 'Xiomara', 'Zephyrus', 'Ysolde'

]

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Note the flip role perturbation is somewhat adversarial as it goes against the common intuition that
good role tends to tell the truth while bad role tends to lie. We indeed observe that the models would
make a lot of mistakes under this perturbation, despite that the perturbed problem is perfect valid
and unambiguous. However, the study of how model’s bias impact its reasoning capability is not the
main focus of this paper. So we keep this perturbation as reference but primarily focus on “benign”
perturbations.

C.8 DATASET GENERATION

K&K dataset During our data construction, we use the maximum width W = 2 and depth D = 2,
and the number of persons in the puzzle N = 2, 3, 4, 5, 6, 7, 8.

We present the length distributions of K&K training dataset in Fig. 15. The length distributions of
the test dataset are similar to those of the training dataset.

80 100 120 140 160 180 200
of Token

0

25

50

75

100

125

150

#
of

S
am

pl
es

Question

2-ppl task

3-ppl task

4-ppl task

5-ppl task

6-ppl task

7-ppl task

8-ppl task

(a) K&K questions

20 30 40 50 60 70
of Token

0

50

100

150

200

250

300

350

#
of

S
am

pl
es

Answer

2-ppl task

3-ppl task

4-ppl task

5-ppl task

6-ppl task

7-ppl task

8-ppl task

(b) K&K answers

100 200 300 400 500
of Token

0

25

50

75

100

125

150

175

#
of

S
am

pl
es

Synthetic CoT for 3-ppl task

3-ppl task

(c) 3-people K&K synthetic CoTs

200 400 600 800 1000
of Token

0

50

100

150

200

#
of

S
am

pl
es

Synthetic CoT for 5-ppl task

5-ppl task

(d) 5-people K&K synthetic CoTs

500 1000 1500 2000 2500 3000
of Token

0

50

100

150

200

250

#
of

S
am

pl
es

Synthetic CoT for 8-ppl task

8-ppl task

(e) 8-people K&K synthetic CoTs

Figure 15: Length distributions of K&K training data.

Local perturbation Tab. 1 presents the example knight (truth-teller) and knave (liar) scenario in-
volving two people: Liam and Aria, with corresponding logical statements, and converted English
statements, questions, and answers. It also shows three versions of the problems: an original exam-
ple, a leaf-perturbed version, and a statement-perturbed version. Specifically, (1) leaf perturbation
changes a “leaf” in the logical tree - a single truth value. In this case, it flipped Jacob’s status in
Oliver’s statement from knave (liar) to knight (truth-teller) (2) Statement perturbation changes the
entire structure of a statement. Here, it changed Oliver’s statement entirely. Both perturbations re-

A very special island is inhabited only
by knights and knaves. Knights always

tell the truth, and knaves always lie.
You meet 2 inhabitants: Liam, and Aria.

Aria is not a knave
Liam

Aria

Aria is a knight if and only if
Liam is a knight

So who is a knight and who is a knave?

Question

A very special island is inhabited only by knights and
knaves. Knights always tell the truth, and knaves
always lie. You meet 2 inhabitants: Oliver, and Jacob.

Oliver is a knight and Jacob is a knave

Jacob

Oliver is a knight if and only if Jacob is a knight

So who is a knight and who is a knave?

Original Problem
If Oliver is a knight then Jacob is a knight

Oliver

Statement perturbation

Uncommon name

Osiris is a knight and Jacob is a knave

Osiris is a knight if and only if Jacob is a knight

Random role pair

Oliver is an angle and Jacob is a devil

Oliver is an angle if and only if Jacob is an angle

Oliver is a knight and Jacob is a knight
Oliver

Leaf perturbation

language-level pert.

math-level pert.

…….

…….

Fine-tuned
LLM

Locally Perturbed Problem

High
accuracy on

training
problem

Interpolating the training dataset
via fine-tuning (e.g., data contamination)

Osiris

Elowen

Oliver

Jacob

A very special island is inhabited only by knights and knaves.
Knights always tell the truth, and knaves always lie. You meet 2

inhabitants: Oliver, and Jacob. Oliver commented, "Oliver is a
knight and Jacob is a knave". Jacob remarked, "Oliver is a knight

if and only if Jacob is a knight". So who is a knight and who is a
knave?

Oliver
is a

knight,
and

Jacob
is a

knave.

A very special island is inhabited only by knights and knaves.
Knights always tell the truth, and knaves always lie. You meet 2

inhabitants: Oliver, and Jacob. Oliver commented, "Oliver is a
knight and Jacob is a knight". Jacob remarked, "Oliver is a knight

if and only if Jacob is a knight". So who is a knight and who is a
knave?

Oliver
is a

knight,
and

Jacob
is a

knight.

A very special island is inhabited only by knights and knaves.
Knights always tell the truth, and knaves always lie. You meet 2
inhabitants: Oliver, and Jacob. Oliver commented, "If Oliver is a

knight then Jacob is a knight". Jacob remarked, "Oliver is a knight
if and only if Jacob is a knight". So who is a knight and who is a

knave?

Oliver
is a

knight,
and

Jacob
is a

knight.

A very special island is inhabited only by knights and
knaves. Knights always tell the truth, and knaves
always lie. You meet 2 inhabitants: Oliver, and Jacob.

Oliver is a knight and Jacob is a knave
Oliver

Jacob

Oliver is a knight if and only if Jacob is a knight

So who is a knight and who is a knave?

Original Problem

If Oliver is a knight then Jacob is a knight
Oliver

Statement perturbation

Uncommon name

Osiris is a knight and Jacob is a knave

Osiris is a knight if and only if Jacob is a knight

Random role pair

Oliver is an angle and Jacob is a devil

Oliver is an angle if and only if Jacob is an angle

Oliver is a knight and Jacob is a knight
Oliver

Leaf perturbation

language-level pert.

math-level pert.

…….

…….

Original
problem is
solved by
reasoning

Locally Perturbed Problem

Original
problem is
solved by
memorization

Osiris

Elowen

Oliver

Jacob

Original
problem is
correctly
solved

Figure 16: Comparison between different locally perturbed problems.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

sult in changing the answer. The leaf perturbation creates a subtle change in one statement that flips
the logical outcome, while the statement perturbation changes the entire one statement.

Table 1: 2-person puzzle generation with the knight (telling-truth) and knave (lying) and comparison between
original sample, leaf-perturbed sample, and statement-perturbed sample.

Type Example Leaf Perturbed Example Statement Perturbed Example
person Oliver (person index 0), Jacob (person index 1)

logical statement

Oliver: (’and’, (’telling-truth’, 0),
(’lying’, 1))

Jacob: (‘⇔’, (’telling-truth’, 0),
(’telling-truth’, 1))

Oliver: (’and’, (’telling-truth’, 0),
(’telling-truth’, 1))

Jacob: (‘⇔’, (’telling-truth’, 0),
(’telling-truth’, 1))

Oliver: (’−→’, (’telling-truth’, 0),
(’telling-truth’, 1))

Jacob: (‘⇔’, (’telling-truth’, 0),
(’telling-truth’, 1))

English statement

Oliver: Oliver is a knight and Jacob
is a knave

Jacob: Oliver is a knight if and
only if Jacob is a knight

Oliver: Oliver is a knight and
Jacob is a knight

Jacob: Oliver is a knight if and
only if Jacob is a knight

Oliver: If Oliver is a knight then
Jacob is a knight Jacob: Oliver is

a knight if and only if Jacob is a
knight

question

A very special island is inhabited
only by knights and knaves.

Knights always tell the truth, and
knaves always lie. You meet 2
inhabitants: Oliver, and Jacob.
Oliver commented, "Oliver is a

knight and Jacob is a knave". Jacob
remarked, "Oliver is a knight if and
only if Jacob is a knight". So who

is a knight and who is a knave?

A very special island is inhabited
only by knights and knaves.

Knights always tell the truth, and
knaves always lie. You meet 2
inhabitants: Oliver, and Jacob.
Oliver commented, "Oliver is a
knight and Jacob is a knight".

Jacob remarked, "Oliver is a knight
if and only if Jacob is a knight". So

who is a knight and who is a
knave?

A very special island is inhabited
only by knights and knaves.

Knights always tell the truth, and
knaves always lie. You meet 2
inhabitants: Oliver, and Jacob.

Oliver commented, "If Oliver is a
knight then Jacob is a knight".

Jacob remarked, "Oliver is a knight
if and only if Jacob is a knight". So

who is a knight and who is a
knave?

answer (1) Oliver is a knight
(2) Jacob is a knave

(1) Oliver is a knight
(2) Jacob is a knight

(1) Oliver is a knight
(2) Jacob is a knight

Moreover, we compare the math-level perturbation with language-level perturbation in Fig. 16.

As mentioned in § 2, the Perturber of the abstract puzzle module generates a perturbed puzzle with a
unique solution that is different from the original puzzle, or until the maximum number of attempts
is reached. We set this limit to 2000 attempts.

• For statement perturbation, the Perturber can always return a valid perturbed puzzle due to
the large perturbation space.

• For leaf perturbation, since the process is restricted to a single leaf node, it may not always
find a valid perturbed puzzle within the constraints of unique and different solution. Below
are the detailed proportions of valid leaf perturbations on training samples (under 2000 max
attempts for each sample): 76% valid for 2-person task; 93.4% valid for 3-person task;
95.4% valid for 4-person task; 98.8% valid for 5-person task; 99.5% valid for 6-person
task; 100% valid for 7/8-person tasks.

D EXPERIMENTAL SETUPS

D.1 MODELS

Tab. 2 provides the details of the models evaluated in our study.

Table 2: HuggingFace links or endpoint specifications for evaluated models.

Model Link
Llama3-8B https://huggingface.co/meta-llama/Meta-Llama-3-8B
Phi-3-mini https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
Phi-3-medium https://huggingface.co/microsoft/Phi-3-medium-4k-instruct
NuminaMath-7B-CoT https://huggingface.co/AI-MO/NuminaMath-7B-CoT
Deepseek-Math-7B deepseek-ai/deepseek-math-7b-instruct
Claude-3.5-Sonnet https://www.anthropic.com/news/claude-3-5-sonnet, claude-3-5-sonnet-20240620 endpoint
GPT4o-mini https://platform.openai.com/docs/models/, gpt-4o-mini-2024-07-18 endpoint
GPT4o https://platform.openai.com/docs/models/, gpt-4o-2024-05-13 endpoint
Gemini-1.5-Flash-002 https://console.cloud.google.com/vertex-ai/model-garden, gemini-1.5-flash-002 endpoint
Gemini-1.5-Prof-002 https://console.cloud.google.com/vertex-ai/model-garden, gemini-1.5-pro-002 endpoint

24

https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
https://huggingface.co/microsoft/Phi-3-medium-4k-instruct
https://huggingface.co/AI-MO/NuminaMath-7B-CoT
deepseek-ai/deepseek-math-7b-instruct
https://www.anthropic.com/news/claude-3-5-sonnet
https://platform.openai.com/docs/models/
https://platform.openai.com/docs/models/
https://console.cloud.google.com/vertex-ai/model-garden
https://console.cloud.google.com/vertex-ai/model-garden

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.2 EXPERIMENTAL DETAILS

D.2.1 EVALUATION

By default, we utilize zero-shot direct prompting with task-specific instructions for open-ended
question-answering. We employ the following prompt:

0-shot Direct Prompting

Your task is to solve a logical reasoning problem. You are given set of statements from
which you must logically deduce the identity of a set of characters.

You must infer the identity of each character. At the end of your answer, you must clearly
state the identity of each character by following the format:

CONCLUSION:
(1) ...
(2) ...
(3) ...

Question: {question}
Answer:

In addition to the 0-shot direct prompting used in the main paper, we explore 0-shot Chain of
Thought (CoT) prompting and 1-shot direct/CoT prompting and report the results in Appendix § E.

0-shot CoT Prompting

Your task is to solve a logical reasoning problem. You are given set of statements from
which you must logically deduce the identity of a set of characters.

You must infer the identity of each character. First, explain your reasoning. At the end
of your answer, you must clearly state the identity of each character by following the format:

CONCLUSION:
(1) ...
(2) ...
(3) ...

Question: {question}
Answer: Let’s think step by step

In addition, we utilize a specific CoT prompting format for instruction-tuned models: DeepSeek-
Math-7B and NuminaMath-7B-CoT, as recommended by their developers:

Please reason step by step, and put your final answer within \boxed{}.

This replaces the previous prompt, "Let’s think step by step."

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

1-shot Direct Prompting

Your task is to solve a logical reasoning problem. You are given set of statements from
which you must logically deduce the identity of a set of characters.

You must infer the identity of each character. At the end of your answer, you must clearly
state the identity of each character by following the format:

CONCLUSION:
(1) ...
(2) ...
(3) ...

Question: A very special island is inhabited only by knights and knaves. Knights
always tell the truth, and knaves always lie. You meet 2 inhabitants: Jack, and Sophia. Jack
tells you that Sophia is not a knave. Sophia says that If Jack is a knight then Sophia is a
knight. So who is a knight and who is a knave?
Answer:
CONCLUSION:
(1) Jack is a knight
(2) Sophia is a knight

Question: {question}
Answer:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

1-shot CoT Prompting

Your task is to solve a logical reasoning problem. You are given set of statements from
which you must logically deduce the identity of a set of characters.

You must infer the identity of each character. First, explain your reasoning. At the end
of your answer, you must clearly state the identity of each character by following the format:

CONCLUSION:
(1) ...
(2) ...
(3) ...

Question: A very special island is inhabited only by knights and knaves. Knights
always tell the truth, and knaves always lie. You meet 2 inhabitants: Ella, and Penelope. In
a statement by Ella: “Ella is a knight or Penelope is a knight”. According to Penelope, “Ella
is a knave if and only if Penelope is a knight”. So who is a knight and who is a knave?
Answer: Let’s think step by step, by considering whether each person is lying and if
that leads to contradiction. Assume Ella is a knight. Penelope cannot be a knight, because
this would contradict the claim of their own. Penelope cannot be a knave, because this
would contradict the false claim of their own. We have exhausted all possibilities for
Penelope, so let us go back and reconsider Ella. Assume Ella is a knave. Penelope cannot
be a knight, because this would contradict the false claim of Ella. Assume Penelope is a
knave. This leads to a feasible solution.
CONCLUSION:
(1) Ella is a knave
(2) Penelope is a knave

Question: {question}
Answer: Let’s think step by step

In our evaluation process, we use greedy decoding with temperature t = 0 for all models and a
maximum token length of 2048.

To assess the correctness, we implement keyword matching: a response is considered correct if each
person’s ground truth identity appears in the conclusion part of the model’s output.

D.2.2 FINE-TUNING

Training instance Each training instance in Direct FT includes the task instruction, question, and
the correct conclusion. In CoT FT, each training instance includes the task instruction, question,
synthetic reasoning steps, and the correct conclusion. Both formats are structured similarly to task
instructions followed by a single demonstration used in 1-shot Direct Prompting or 1-shot CoT
Prompting.

Training loss In Direct FT, the loss for each training instance is computed on the tokens that
appear directly after “### Answer:\n”. In CoT FT, the loss is calculated on the tokens that appear
directly after “### Answer: Let’s think step by step”.

Training hyperparameters For Llama3-8B fine-tuning, we used LoRA fine-tuning with the fol-
lowing standard hyperparameters: a batch size of 4, gradient accumulation steps of 8, and 5e-5
learning rate. The LoRA configuration was set as follows: rank r = 32, scaling factor α = 32,
and dropout rate 0.05. No quantization techniques were used. We fine-tune for a maximum of 100
epochs. We primarily reported results before 50 epochs, as we found the model typically converged
by then.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

For GPT4o-mini fine-tuning, we utilized the default hyperparameters provided by the OpenAI fine-
tuning API. The model was fine-tuned for 5 epochs to achieve high accuracy within reasonable
budget.

Reported Training accuracy For GPT4o-mini, the training accuracy for each N -people K&K
task is calculated using 100 training samples due to budget constraints on API usage. For open-
source Llama3-8B, the training accuracy is based on the full set of training samples.

D.2.3 PROBING

As described in § 4.2, in the probing experiments, we train logistic regression models on the model’s
intermediate outputs from different transformer blocks, to distinguish between correct and incorrect
statements. For each transformer block, we extract the MLP layer’s output.

The correct/incorrect statements consist of a K&K puzzle and a conclusion about a character’s role
in the puzzle. For example, considering the following 2-people K&K puzzle:

A very special island is inhabited only by knights and knaves. Knights always tell the truth,
and knaves always lie. You meet 2 inhabitants: Oliver, and Ethan. Oliver told you that Oliver
is a knight or Ethan is a knave. In a statement by Ethan: “Oliver is a knight”. So who is a
knight and who is a knave?

with the correct answer being

Oliver is a knight, and Ethan is a knight.

We can generate two correct statements:

• A very special island is inhabited only by knights and knaves. Knights always tell the truth,
and knaves always lie. You meet 2 inhabitants: Oliver, and Ethan. Oliver told you that
Oliver is a knight or Ethan is a knave. In a statement by Ethan: “Oliver is a knight”. So
who is a knight and who is a knave? Oliver is a knight.

• A very special island is inhabited only by knights and knaves. Knights always tell the truth,
and knaves always lie. You meet 2 inhabitants: Oliver, and Ethan. Oliver told you that
Oliver is a knight or Ethan is a knave. In a statement by Ethan: “Oliver is a knight”. So
who is a knight and who is a knave? Ethan is a knight.

And two incorrect statements:

• A very special island is inhabited only by knights and knaves. Knights always tell the truth,
and knaves always lie. You meet 2 inhabitants: Oliver, and Ethan. Oliver told you that
Oliver is a knight or Ethan is a knave. In a statement by Ethan: “Oliver is a knight”. So
who is a knight and who is a knave? Oliver is a knave.

• A very special island is inhabited only by knights and knaves. Knights always tell the truth,
and knaves always lie. You meet 2 inhabitants: Oliver, and Ethan. Oliver told you that
Oliver is a knight or Ethan is a knave. In a statement by Ethan: “Oliver is a knight”. So
who is a knight and who is a knave? Ethan is a knave.

D.2.4 DISTINGUISHING MEMORIZATION FROM REASONING

For GPT4o-mini and Llama3-8B, we calculate the memorization score for each training sample
within each complete N -people K&K training dataset. As discussed in § 6, we omit samples where
Acc(f ;x) = 0 and label the remaining samples based on whether they are consistently solved under
perturbation. We then split the dataset into 80%/20% train/test sets and perform binary classification.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D.2.5 COMPUTATION RESOURCES

The fine-tuning experiments are conducted on 2 NVIDIA A100 GPU cards, each with 80GB of
memory. The LLM evaluation experiments can be conducted on one NVIDIA RTX A6000 GPU
card with 48 GB of memory.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 MEMORIZATION MEASUREMENT

Off-the-shelf models We evaluate Llama3-8B, Phi-3-mini, Phi-3-medium, NuminaMath-7B-CoT,
and Deepseek-Math-7B using 0/1-shot Direct/CoT prompting in Fig. 17. The results indicate that
these open-source models exhibit poor accuracy on K&K tasks, particularly as the number of peo-
ple in the K&K puzzles increases. Different prompting methods do not significantly enhance per-
formance. Additionally, the models struggle to consistently solve the K&K prompts under local
perturbations, as shown by the memorization scores under statement and lead perturbations.

2 3 4 5 6 7 8
ppl

Llama-3-8B

Phi-3-mini

Phi-3-medium

NuminaMath-7B-CoT

Deepseek-Math-7b

0.28 0.11 0.04 0.02 0.04 0.00 0.00

0.36 0.25 0.15 0.12 0.03 0.07 0.04

0.44 0.34 0.16 0.14 0.04 0.07 0.03

0.28 0.13 0.12 0.05 0.01 0.00 0.00

0.35 0.21 0.08 0.06 0.02 0.00 0.00

Acc(f ;Tst)

2 3 4 5 6 7 8
ppl

0.27 0.10 0.04 0.02 0.04 0.00 0.00

0.22 0.21 0.13 0.09 0.03 0.06 0.03

0.27 0.24 0.14 0.10 0.01 0.07 0.03

0.16 0.13 0.11 0.05 0.01 0.00 0.00

0.22 0.19 0.07 0.06 0.02 0.00 0.00

LiMem(f ;Tst) perturbed statement

2 3 4 5 6 7 8
ppl

0.26 0.11 0.03 0.02 0.04 0.00 0.00

0.24 0.24 0.13 0.12 0.03 0.06 0.04

0.27 0.28 0.12 0.10 0.03 0.04 0.02

0.23 0.12 0.10 0.05 0.01 0.00 0.00

0.22 0.17 0.06 0.05 0.02 0.00 0.00

LiMem(f ;Tst) perturbed leaf

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

(a) 0-shot Direct prompting

2 3 4 5 6 7 8
ppl

Llama-3-8B

Phi-3-mini

Phi-3-medium

NuminaMath-7B-CoT

Deepseek-Math-7b

0.24 0.10 0.05 0.03 0.02 0.00 0.01

0.32 0.38 0.21 0.11 0.04 0.02 0.01

0.57 0.40 0.29 0.24 0.10 0.07 0.06

0.23 0.06 0.06 0.02 0.01 0.01 0.00

0.36 0.14 0.04 0.02 0.02 0.01 0.00

Acc(f ;Tst)

2 3 4 5 6 7 8
ppl

0.22 0.08 0.05 0.03 0.02 0.00 0.01

0.23 0.30 0.16 0.11 0.04 0.02 0.01

0.24 0.21 0.23 0.18 0.08 0.07 0.05

0.17 0.06 0.03 0.02 0.01 0.01 0.00

0.24 0.10 0.04 0.02 0.02 0.01 0.00

LiMem(f ;Tst) perturbed statement

2 3 4 5 6 7 8
ppl

0.20 0.09 0.05 0.03 0.02 0.00 0.01

0.23 0.29 0.15 0.10 0.04 0.02 0.01

0.28 0.22 0.19 0.17 0.07 0.06 0.04

0.17 0.05 0.06 0.02 0.01 0.01 0.00

0.24 0.12 0.04 0.02 0.02 0.01 0.00

LiMem(f ;Tst) perturbed leaf

0.0

0.1

0.2

0.3

0.4

0.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00

0.05

0.10

0.15

0.20

0.25

(b) 0-shot CoT prompting

2 3 4 5 6 7 8
ppl

Llama-3-8B

Phi-3-mini

Phi-3-medium

NuminaMath-7B-CoT

Deepseek-Math-7b

0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.45 0.20 0.16 0.11 0.02 0.03 0.03

0.54 0.31 0.18 0.10 0.07 0.05 0.06

0.31 0.12 0.12 0.06 0.06 0.01 0.01

0.32 0.19 0.10 0.03 0.01 0.01 0.01

Acc(f ;Tst)

2 3 4 5 6 7 8
ppl

0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.28 0.19 0.15 0.09 0.01 0.02 0.03

0.37 0.24 0.17 0.10 0.03 0.03 0.05

0.27 0.11 0.11 0.06 0.05 0.01 0.01

0.26 0.17 0.08 0.03 0.01 0.01 0.01

LiMem(f ;Tst) perturbed statement

2 3 4 5 6 7 8
ppl

0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.37 0.19 0.14 0.11 0.02 0.02 0.03

0.30 0.24 0.16 0.09 0.06 0.02 0.05

0.30 0.12 0.10 0.06 0.06 0.01 0.00

0.25 0.17 0.10 0.03 0.01 0.01 0.01

LiMem(f ;Tst) perturbed leaf

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

(c) 1-shot Direct prompting

2 3 4 5 6 7 8
ppl

Llama-3-8B

Phi-3-mini

Phi-3-medium

NuminaMath-7B-CoT

Deepseek-Math-7b

0.14 0.02 0.02 0.01 0.01 0.00 0.00

0.33 0.18 0.08 0.07 0.02 0.03 0.01

0.45 0.28 0.21 0.08 0.04 0.05 0.08

0.27 0.09 0.08 0.01 0.04 0.00 0.00

0.34 0.07 0.06 0.01 0.00 0.00 0.01

Acc(f ;Tst)

2 3 4 5 6 7 8
ppl

0.14 0.02 0.02 0.01 0.01 0.00 0.00

0.25 0.14 0.06 0.06 0.02 0.03 0.01

0.31 0.24 0.12 0.06 0.02 0.05 0.08

0.25 0.08 0.08 0.01 0.04 0.00 0.00

0.21 0.07 0.06 0.01 0.00 0.00 0.01

LiMem(f ;Tst) perturbed statement

2 3 4 5 6 7 8
ppl

0.14 0.01 0.02 0.01 0.01 0.00 0.00

0.26 0.18 0.08 0.06 0.01 0.03 0.01

0.37 0.20 0.16 0.05 0.02 0.04 0.06

0.23 0.09 0.08 0.01 0.04 0.00 0.00

0.24 0.07 0.06 0.01 0.00 0.00 0.01

LiMem(f ;Tst) perturbed leaf

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0

0.1

0.2

0.3

(d) 1-shot CoT prompting

Figure 17: Acc(f ;Tst) and LiMem(f ;Tst) of off-the-shelf models under various prompt formats.

Fine-tuned models As shown in Fig. 18, the test accuracy (y-axis) of CoT-FTed or Direct-FTed
GPT4o-mini on the unseen test set continues to increase over the epochs, despite that the memoriza-

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

tion score LiMem(f ;Tr) on training samples also increases. The memorization score LiMem(f ;Tr)
under role-flipping is significantly higher than other perturbation, possibly due to an internal bias
that knights are truthful.

0.2 0.4

LiMem(f ;Tr)

0.0

0.5

A
cc

(f
;T

st
)

statement pert.

0.25 0.50

LiMem(f ;Tr)

0.0

0.5

leaf pert.

0.2 0.4

LiMem(f ;Tr)

0.0

0.5

pair pert.

0.2 0.4

LiMem(f ;Tr)

0.0

0.5

name pert.

0.2 0.4

LiMem(f ;Tr)

0.0

0.5

reorder pert.

0.4 0.8

LiMem(f ;Tr)

0.0

0.5

flip role

5-ppl Direct FT 8-ppl Direct FT

0.25 0.50

LiMem(f ;Tr)

0.0

0.5

A
cc

(f
;T

st
)

statement pert.

0.25 0.50

LiMem(f ;Tr)

0.0

0.5

leaf pert.

0.1 0.2 0.3

LiMem(f ;Tr)

0.0

0.5

pair pert.

0.2 0.4

LiMem(f ;Tr)

0.0

0.5

name pert.

0.25 0.50

LiMem(f ;Tr)

0.0

0.5

reorder pert.

0.4 0.8

LiMem(f ;Tr)

0.0

0.5

flip role

5-ppl CoT FT 8-ppl CoT FT

Figure 18: Test accuracy of fine-tuned GPT4o-mini (first row: Direct FT; second row: CoT FT) increase with
Acc(f ;Tr), despite that the memorization becomes stronger as reflected by larger LiMem(f ;Tr) under leaf
perturbation.

0.0

0.5

1.0

C
R

3-ppl CoT FT GPT4o-mini

0.0

0.5

1.0

C
R

5-ppl CoT FT

statementleaf pair
name

reorder

perturb type

0.0

0.5

1.0

C
R

8-ppl CoT FT

train

test

0.0

0.5

1.0
3-ppl Direct FT GPT4o-mini

0.0

0.5

1.0
5-ppl Direct FT

statement leaf pair
name

reorder

perturb type

0.0

0.5

1.0
8-ppl Direct FT

train

test

0.0

0.5

1.0
3-ppl Direct FT Llama3-8B

0.0

0.5

1.0
5-ppl Direct FT

statement leaf pair
name

reorder

perturb type

0.0

0.5

1.0
8-ppl Direct FT

train

test

Figure 19: Consistency Ratio (CR ↑) under local perturbations. Fine-tuned LLMs generally demonstrate a
higher consistency ratio on solved problems in the test set compared to the train set, particularly for challenging
tasks such as 5/8-person puzzles. On the 3-person puzzle task, the consistency ratio between the train and test
sets remains comparable.

Table 3: Self-consistency (Wang et al., 2023b) can enhance the accuracy of GPT4o-mini on the easy 2-ppl
K&K task, but has limited improvement on 3-ppl task and fails to help on the challenging 8-ppl task, which
suggests that the model cannot fundamentally solve such complex problems. Self-consistency also reduces
memorization scores on 2-ppl/3-ppl tasks, likely due to its majority voting mechanism that leads to robust
reasoning results.

Method Test Accuracy Memorization Score

2-ppl 3-ppl 8-ppl 2-ppl 3-ppl

Direct Prompting 0.63 0.42 0.01 0.24 0.26
Direct Prompting + Self-consistency 0.74 0.43 0.02 0.20 0.22

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0.0

0.5

3-ppl Direct FT Llama3-8B

st
m

t
le

af
na

m
e

re
or

de
r

st
m

t+
na

m
e

st
m

t+
re

or
de

r
le

af
+

na
m

e
le

af
+

re
or

de
r

perturb type

0.0

0.5

5-ppl Direct FT

train test

Figure 20: Memorization scores of Directly Fine-Tuned Llama3-8B under various math-level (statement, leaf)
and language-level (name, reorder) perturbations. Combining math-level and language-level perturbations pro-
gressively can result in higher memorization scores (e.g., leaf + reorder), especially compared to applying
language-level perturbations alone.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

E.2 EVALUATION ON REASONING CAPABILITY

E.2.1 LLAMA3-8B

Accuracy over epochs Fig. 21 reports the train and test accuracy (under different evaluation con-
figurations) for the Llama3-8B model fine-tuned on N -person tasks across multiple training epochs.

Transferability We present the transferability results for the K&K task across different problem
sizes and training epochs in Fig. 22 and Fig. 23. Fig. 22 shows the accuracy improvements relative
to the baseline with no fine-tuning, while Fig. 23 reports the absolute accuracy values.

50 100
nepoch

0.1

0.2

0.3

0.4

0.5

ac
c

Non-CoT FT, ntrain = 2

50 100
nepoch

0.1

0.2

0.3

0.4

0.5

0.6

ac
c

Non-CoT FT, ntrain = 3

50 100
nepoch

0.2

0.4

0.6

0.8

ac
c

Non-CoT FT, ntrain = 4

50 100
nepoch

0.0

0.2

0.4

0.6

ac
c

Non-CoT FT, ntrain = 5

50 100
nepoch

0.2

0.4

0.6

ac
c

Non-CoT FT, ntrain = 6

50 100
nepoch

0.0

0.2

0.4

0.6

ac
c

Non-CoT FT, ntrain = 7

50 100
nepoch

0.0

0.1

0.2

0.3

0.4

0.5

ac
c

Non-CoT FT, ntrain = 8

train, 0-shot test, 0-shot test, 0-shot CoT test, 1-shot test, 1-shot CoT

(a) Direct FT

20 40
nepoch

0.1

0.2

0.3

ac
c

CoT FT, ntrain = 2

50 100
nepoch

0.15

0.20

0.25

0.30

0.35

0.40

ac
c

CoT FT, ntrain = 3

50 100
nepoch

0.15

0.20

0.25

0.30

ac
c

CoT FT, ntrain = 4

50 100
nepoch

0.0

0.1

0.2

0.3

ac
c

CoT FT, ntrain = 5

50 100
nepoch

0.000

0.025

0.050

0.075

0.100

0.125

ac
c

CoT FT, ntrain = 6

50 100
nepoch

0.000

0.025

0.050

0.075

0.100

0.125

ac
c

CoT FT, ntrain = 7

50 100
nepoch

0.01

0.02

0.03

0.04

0.05

0.06

ac
c

CoT FT, ntrain = 8

train, 0-shot test, 0-shot test, 0-shot CoT test, 1-shot test, 1-shot CoT

(b) CoT FT

Figure 21: Train and test accuracy (under different evaluation configurations) for the Llama3-8B model fine-
tuned on N -person tasks across multiple training epochs.

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.11 0.32 0.29 0.25 0.17 0.10 0.10

-0.03 0.34 0.30 0.27 0.16 0.11 0.10

0.19 0.33 0.32 0.24 0.20 0.11 0.12

0.16 0.37 0.31 0.25 0.13 0.13 0.11

0.24 0.39 0.29 0.23 0.09 0.10 0.08

-0.01 0.27 0.20 0.26 0.14 0.11 0.08

-0.10 0.12 0.03 0.07 0.02 0.03 0.04

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.22 0.19 0.32 0.18 0.12 0.11 0.06

0.30 0.35 0.29 0.25 0.11 0.07 0.10

0.23 0.32 0.23 0.29 0.20 0.13 0.07

0.29 0.36 0.36 0.27 0.17 0.10 0.11

0.35 0.43 0.28 0.21 0.16 0.13 0.06

0.13 0.24 0.31 0.24 0.10 0.12 0.03

0.07 0.14 0.07 0.04 -0.02 0.02 0.03

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.14 0.25 0.22 0.20 0.06 0.08 0.08

0.32 0.39 0.37 0.29 0.18 0.10 0.09

0.21 0.33 0.33 0.30 0.18 0.14 0.15

0.38 0.34 0.34 0.29 0.13 0.12 0.11

0.31 0.44 0.35 0.23 0.15 0.08 0.11

0.33 0.46 0.36 0.25 0.15 0.12 0.07

0.11 0.11 0.06 0.03 -0.02 0.03 0.01

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.25 0.37 0.30 0.24 0.20 0.11 0.13

0.20 0.41 0.40 0.29 0.17 0.14 0.12

0.34 0.41 0.43 0.34 0.21 0.15 0.09

0.25 0.45 0.42 0.28 0.20 0.11 0.12

0.39 0.40 0.44 0.25 0.16 0.09 0.06

0.41 0.38 0.41 0.26 0.17 0.11 0.13

0.11 0.08 0.06 0.06 0.02 0.01 0.02

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng
0.27 0.36 0.32 0.24 0.20 0.11 0.13

0.21 0.43 0.40 0.29 0.17 0.15 0.12

0.33 0.41 0.43 0.34 0.20 0.14 0.10

0.24 0.40 0.42 0.29 0.20 0.12 0.12

0.39 0.40 0.44 0.25 0.16 0.09 0.06

0.45 0.39 0.41 0.25 0.17 0.11 0.13

0.12 0.08 0.07 0.06 0.02 0.02 0.02

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(a) 0-shot Direct Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.05 0.28 0.35 0.30 0.35 0.31 0.19

-0.22 0.20 0.24 0.17 0.18 0.13 0.12

0.17 0.25 0.29 0.29 0.26 0.28 0.24

-0.14 0.31 0.31 0.23 0.17 0.16 0.22

0.06 0.30 0.22 0.16 0.15 0.09 0.08

-0.04 0.30 0.26 0.30 0.25 0.22 0.15

0.11 0.14 0.04 0.03 0.06 0.06 0.02

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.17 0.14 0.19 0.18 0.09 0.06 0.07

0.17 0.26 0.22 0.20 0.13 0.05 0.06

0.25 0.22 0.22 0.20 0.14 0.08 0.09

0.28 0.26 0.24 0.17 0.13 0.08 0.07

0.25 0.22 0.21 0.12 0.09 0.07 0.06

0.30 0.29 0.26 0.22 0.07 0.04 0.03

0.24 0.11 0.08 0.02 0.03 0.02 -0.01

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.24 0.17 0.18 0.15 0.10 0.06 0.11

0.22 0.24 0.27 0.21 0.19 0.10 0.08

0.31 0.26 0.30 0.18 0.08 0.07 0.08

0.37 0.28 0.29 0.23 0.13 0.06 0.11

0.27 0.28 0.29 0.14 0.14 0.09 0.08

0.36 0.34 0.22 0.17 0.10 0.06 0.05

0.31 0.21 0.12 0.06 0.05 0.01 0.00

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.39 0.37 0.37 0.35 0.33 0.31 0.23

0.23 0.34 0.34 0.32 0.17 0.15 0.11

0.22 0.38 0.42 0.37 0.27 0.16 0.12

0.24 0.37 0.29 0.31 0.19 0.14 0.11

0.32 0.34 0.40 0.18 0.17 0.10 0.07

0.36 0.37 0.30 0.20 0.19 0.16 0.12

0.20 0.13 0.17 0.12 0.06 0.02 0.03

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.36 0.39 0.35 0.36 0.33 0.29 0.22

0.23 0.30 0.35 0.30 0.16 0.14 0.12

0.18 0.37 0.42 0.39 0.27 0.13 0.08

0.25 0.36 0.32 0.31 0.19 0.16 0.11

0.35 0.34 0.39 0.18 0.17 0.10 0.07

0.35 0.41 0.30 0.20 0.20 0.15 0.10

0.26 0.14 0.18 0.10 0.07 0.02 0.01

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(b) 0-shot CoT Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.54 0.40 0.35 0.23 0.19 0.09 0.12

0.56 0.46 0.35 0.27 0.22 0.13 0.10

0.59 0.52 0.37 0.26 0.20 0.10 0.13

0.73 0.54 0.43 0.27 0.21 0.11 0.12

0.61 0.50 0.37 0.29 0.17 0.10 0.11

0.70 0.54 0.40 0.25 0.22 0.08 0.07

0.44 0.28 0.17 0.08 0.03 0.01 0.03

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.46 0.34 0.38 0.16 0.15 0.09 0.11

0.56 0.43 0.44 0.27 0.18 0.11 0.07

0.63 0.49 0.43 0.25 0.24 0.13 0.10

0.65 0.50 0.45 0.25 0.25 0.08 0.14

0.66 0.48 0.48 0.23 0.19 0.10 0.11

0.67 0.39 0.40 0.24 0.20 0.04 0.06

0.47 0.25 0.18 0.06 0.00 0.00 0.00

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.18 0.22 0.36 0.16 0.11 0.08 0.07

0.66 0.45 0.42 0.28 0.24 0.14 0.07

0.58 0.51 0.47 0.28 0.23 0.05 0.05

0.65 0.46 0.53 0.31 0.27 0.10 0.14

0.67 0.55 0.49 0.26 0.19 0.10 0.13

0.56 0.56 0.32 0.17 0.12 0.05 0.02

0.51 0.25 0.14 0.06 0.05 0.01 0.02

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.54 0.45 0.50 0.28 0.21 0.12 0.08

0.68 0.61 0.52 0.32 0.31 0.13 0.10

0.67 0.56 0.48 0.31 0.26 0.12 0.06

0.75 0.64 0.61 0.29 0.28 0.13 0.11

0.69 0.51 0.45 0.26 0.22 0.11 0.09

0.77 0.52 0.44 0.27 0.17 0.12 0.11

0.55 0.28 0.18 0.08 0.06 0.02 0.02

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.54 0.45 0.49 0.28 0.20 0.12 0.09

0.69 0.61 0.51 0.32 0.31 0.13 0.10

0.67 0.57 0.48 0.31 0.26 0.12 0.06

0.75 0.64 0.61 0.29 0.27 0.13 0.11

0.69 0.51 0.45 0.26 0.22 0.11 0.10

0.77 0.52 0.44 0.26 0.18 0.12 0.11

0.54 0.28 0.18 0.08 0.06 0.02 0.02

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(c) 1-shot Direct Prompting

Figure 22: Improvement in test accuracy on N -person problems for Llama3-8B fine-tuned on M -person prob-
lems with direct FT, compared to the unfine-tuned model, under various evaluation configurations.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.38 0.42 0.34 0.27 0.21 0.10 0.11

0.24 0.44 0.35 0.29 0.20 0.11 0.11

0.46 0.43 0.37 0.26 0.24 0.11 0.13

0.43 0.47 0.36 0.27 0.17 0.13 0.12

0.51 0.49 0.34 0.25 0.13 0.10 0.09

0.26 0.37 0.25 0.28 0.18 0.11 0.09

0.17 0.22 0.08 0.09 0.06 0.03 0.05

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.49 0.29 0.37 0.20 0.16 0.11 0.07

0.57 0.45 0.34 0.27 0.15 0.07 0.11

0.50 0.42 0.28 0.31 0.24 0.13 0.08

0.56 0.46 0.41 0.29 0.21 0.10 0.12

0.62 0.53 0.33 0.23 0.20 0.13 0.07

0.40 0.34 0.36 0.26 0.14 0.12 0.04

0.34 0.24 0.12 0.06 0.02 0.02 0.04

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.41 0.35 0.27 0.22 0.10 0.08 0.09

0.59 0.49 0.42 0.31 0.22 0.10 0.10

0.48 0.43 0.38 0.32 0.22 0.14 0.16

0.65 0.44 0.39 0.31 0.17 0.12 0.12

0.58 0.54 0.40 0.25 0.19 0.08 0.12

0.60 0.56 0.41 0.27 0.19 0.12 0.08

0.38 0.21 0.11 0.05 0.02 0.03 0.02

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.52 0.47 0.35 0.26 0.24 0.11 0.14

0.47 0.51 0.45 0.31 0.21 0.14 0.13

0.61 0.51 0.48 0.36 0.25 0.15 0.10

0.52 0.55 0.47 0.30 0.24 0.11 0.13

0.66 0.50 0.49 0.27 0.20 0.09 0.07

0.68 0.48 0.46 0.28 0.21 0.11 0.14

0.38 0.18 0.11 0.08 0.06 0.01 0.03

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.54 0.46 0.37 0.26 0.24 0.11 0.14

0.48 0.53 0.45 0.31 0.21 0.15 0.13

0.60 0.51 0.48 0.36 0.24 0.14 0.11

0.51 0.50 0.47 0.31 0.24 0.12 0.13

0.66 0.50 0.49 0.27 0.20 0.09 0.07

0.72 0.49 0.46 0.27 0.21 0.11 0.14

0.39 0.18 0.12 0.08 0.06 0.02 0.03

epoch: 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) 0-shot Direct Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.17 0.39 0.37 0.32 0.36 0.31 0.20

0.00 0.31 0.26 0.19 0.19 0.13 0.13

0.39 0.36 0.31 0.31 0.27 0.28 0.25

0.08 0.42 0.33 0.25 0.18 0.16 0.23

0.28 0.41 0.24 0.18 0.16 0.09 0.09

0.18 0.41 0.28 0.32 0.26 0.22 0.16

0.33 0.25 0.06 0.05 0.07 0.06 0.03

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.39 0.25 0.21 0.20 0.10 0.06 0.08

0.39 0.37 0.24 0.22 0.14 0.05 0.07

0.47 0.33 0.24 0.22 0.15 0.08 0.10

0.50 0.37 0.26 0.19 0.14 0.08 0.08

0.47 0.33 0.23 0.14 0.10 0.07 0.07

0.52 0.40 0.28 0.24 0.08 0.04 0.04

0.46 0.22 0.10 0.04 0.04 0.02 0.00

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.46 0.28 0.20 0.17 0.11 0.06 0.12

0.44 0.35 0.29 0.23 0.20 0.10 0.09

0.53 0.37 0.32 0.20 0.09 0.07 0.09

0.59 0.39 0.31 0.25 0.14 0.06 0.12

0.49 0.39 0.31 0.16 0.15 0.09 0.09

0.58 0.45 0.24 0.19 0.11 0.06 0.06

0.53 0.32 0.14 0.08 0.06 0.01 0.01

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.61 0.48 0.39 0.37 0.34 0.31 0.24

0.45 0.45 0.36 0.34 0.18 0.15 0.12

0.44 0.49 0.44 0.39 0.28 0.16 0.13

0.46 0.48 0.31 0.33 0.20 0.14 0.12

0.54 0.45 0.42 0.20 0.18 0.10 0.08

0.58 0.48 0.32 0.22 0.20 0.16 0.13

0.42 0.24 0.19 0.14 0.07 0.02 0.04

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.58 0.50 0.37 0.38 0.34 0.29 0.23

0.45 0.41 0.37 0.32 0.17 0.14 0.13

0.40 0.48 0.44 0.41 0.28 0.13 0.09

0.47 0.47 0.34 0.33 0.20 0.16 0.12

0.57 0.45 0.41 0.20 0.18 0.10 0.08

0.57 0.52 0.32 0.22 0.21 0.15 0.11

0.48 0.25 0.20 0.12 0.08 0.02 0.02

epoch: 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) 0-shot CoT Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.55 0.41 0.35 0.23 0.19 0.09 0.12

0.57 0.47 0.35 0.27 0.22 0.13 0.10

0.60 0.53 0.37 0.26 0.20 0.10 0.13

0.74 0.55 0.43 0.27 0.21 0.11 0.12

0.62 0.51 0.37 0.29 0.17 0.10 0.11

0.71 0.55 0.40 0.25 0.22 0.08 0.07

0.45 0.29 0.17 0.08 0.03 0.01 0.03

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.47 0.35 0.38 0.16 0.15 0.09 0.11

0.57 0.44 0.44 0.27 0.18 0.11 0.07

0.64 0.50 0.43 0.25 0.24 0.13 0.10

0.66 0.51 0.45 0.25 0.25 0.08 0.14

0.67 0.49 0.48 0.23 0.19 0.10 0.11

0.68 0.40 0.40 0.24 0.20 0.04 0.06

0.48 0.26 0.18 0.06 0.00 0.00 0.00

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng
0.19 0.23 0.36 0.16 0.11 0.08 0.07

0.67 0.46 0.42 0.28 0.24 0.14 0.07

0.59 0.52 0.47 0.28 0.23 0.05 0.05

0.66 0.47 0.53 0.31 0.27 0.10 0.14

0.68 0.56 0.49 0.26 0.19 0.10 0.13

0.57 0.57 0.32 0.17 0.12 0.05 0.02

0.52 0.26 0.14 0.06 0.05 0.01 0.02

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.55 0.46 0.50 0.28 0.21 0.12 0.08

0.69 0.62 0.52 0.32 0.31 0.13 0.10

0.68 0.57 0.48 0.31 0.26 0.12 0.06

0.76 0.65 0.61 0.29 0.28 0.13 0.11

0.70 0.52 0.45 0.26 0.22 0.11 0.09

0.78 0.53 0.44 0.27 0.17 0.12 0.11

0.56 0.29 0.18 0.08 0.06 0.02 0.02

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.55 0.46 0.49 0.28 0.20 0.12 0.09

0.70 0.62 0.51 0.32 0.31 0.13 0.10

0.68 0.58 0.48 0.31 0.26 0.12 0.06

0.76 0.65 0.61 0.29 0.27 0.13 0.11

0.70 0.52 0.45 0.26 0.22 0.11 0.10

0.78 0.53 0.44 0.26 0.18 0.12 0.11

0.55 0.29 0.18 0.08 0.06 0.02 0.02

epoch: 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) 1-shot Direct Prompting

Figure 23: Test accuracy on N -person problems for Llama3-8B fine-tuned on M -person problems with direct
FT, under various evaluation configurations.

Fine-tuning on 10k 8-people K&K samples The results in Fig. 24 shows that 10k fine-tuning
achieves significantly higher test accuracy than 1k fine-tuning on all tasks. Direct FT with 10k
puzzles shows surprisingly high test accuracy, e.g., 87% accuracy on 3-person tasks, where the un-
FTed model has nearly 0 accuracy as shown in Fig. 3. Notably, the models don’t see reasoning steps
during training and rely solely on memorizing answers. It also suggests that training on the hardest
(8-person) tasks helps the model learn certain underlying rules that can be transferred to solve easier
tasks.

However, the test accuracy drops for Llama3-8B when Direct FTing on 10k samples for overly
long epochs, especially evaluated on 2-people K&K task, potentially due to overfitting to the more
complicated 8-people training task.

2 3 4 5 6 7 8
ppl for testing

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

(f
;T

st
)

0.26

0.18 0.17

0.09

0.01 0.02 0.03

0.75 0.74 0.73

0.64

0.51

0.35

0.45

8-ppl FT epoch: 2

2 3 4 5 6 7 8
ppl for testing

0.0

0.2

0.4

0.6

0.8

1.0

0.38
0.42

0.34

0.27
0.21

0.10 0.11

0.47

0.87

0.74

0.67

0.59

0.45
0.41

8-ppl FT epoch: 5

2 3 4 5 6 7 8
ppl for testing

0.0

0.2

0.4

0.6

0.8

1.0

0.49

0.29

0.37

0.20
0.16

0.11
0.07

0.01

0.42

0.60

0.46

0.37

0.29

0.43

8-ppl FT epoch: 10

2 3 4 5 6 7 8
ppl for testing

0.0

0.2

0.4

0.6

0.8

1.0

0.41
0.35

0.27
0.22

0.10 0.08 0.09

0.00

0.48
0.51

0.59

0.32
0.28

0.35

8-ppl FT epoch: 20

1k samples

10k samples

Figure 24: Transferability of Llama3-8B Direct-FTed on 1k/10k samples at different epochs.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

E.2.2 GPT4O-MINI

Accuracy over epochs Fig. 25 reports the train and test accuracy (under different evaluation
configurations) for the GPT4o-mini model fine-tuned on N -person tasks across multiple training
epochs.

Using the same paradigm for training and evaluation (i.e., Direct FT & Direct Prompting, CoT FT
& CoT Prompting) usually achieves the best accuracy for GPT4o-mini on training dataset and test
dataset. We focus on 0-shot setting for GPT4o-mini evaluation given its stronger capacity and higher
accuracy than Llama3-8B.

0 2 4
nepoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
c

Direct FT nppl-train = 3

0 2 4
nepoch

0.2

0.4

0.6

0.8

ac
c

Direct FT nppl-train = 5

0 2 4
nepoch

0.0

0.2

0.4

0.6

ac
c

Direct FT nppl-train = 8

train, 0-shot Direct train, 0-shot CoT test, 0-shot Direct test, 0-shot CoT

(a) Direct FT

0 2 4
nepoch

0.4

0.5

0.6

0.7

0.8

0.9

ac
c

CoT FT nppl-train = 3

0 2 4
nepoch

0.2

0.4

0.6

0.8

ac
c

CoT FT nppl-train = 5

0 2 4
nepoch

0.0

0.2

0.4

0.6

0.8

ac
c

CoT FT nppl-train = 8

train, 0-shot Direct train, 0-shot CoT test, 0-shot Direct test, 0-shot CoT

(b) CoT FT

Figure 25: Train and test accuracy (under different evaluation configurations) for the GPT4o-mini model fine-
tuned on N -person tasks across multiple training epochs.

Transferability We present the transferability results for the K&K task across different problem
sizes and training epochs in Fig. 26 and Fig. 27. Fig. 26 shows the accuracy improvements relative
to the baseline with no fine-tuning, while Fig. 27 reports the absolute accuracy values.

2 3 4 5 6 7 8
ppl for testing

8

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.15 0.27 0.28 0.35 0.35 0.20 0.25

0.25 0.36 0.34 0.36 0.35 0.24 0.22

0.19 0.38 0.38 0.28 0.34 0.16 0.27

0.29 0.33 0.34 0.27 0.25 0.08 0.19

0.23 0.07 0.09 -0.01 0.07 -0.06 0.08

epoch: 3

2 3 4 5 6 7 8
ppl for testing

8

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.21 0.18 0.18 0.29 0.21 0.12 0.25

0.25 0.38 0.34 0.42 0.35 0.28 0.21

0.19 0.40 0.28 0.29 0.25 0.12 0.33

0.29 0.34 0.30 0.23 0.19 0.04 0.21

0.27 0.04 0.18 0.13 0.07 0.00 0.09

epoch: 4

2 3 4 5 6 7 8
ppl for testing

8

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.17 0.29 0.22 0.31 0.31 0.18 0.25

0.25 0.35 0.37 0.40 0.37 0.24 0.26

0.20 0.39 0.37 0.27 0.31 0.18 0.28

0.32 0.35 0.34 0.29 0.29 0.05 0.15

0.28 0.05 0.07 0.06 0.07 -0.05 0.07

epoch: 5

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(a) Direct FT & 0-shot Direct Prompting

2 3 4 5 6 7 8
ppl for testing

8

5

3

#
pp

l
fo

r
tr

ai
ni

ng

0.03 0.09 0.26 0.28 0.19 0.32 0.27

0.15 0.19 0.38 0.22 0.25 0.28 0.23

0.21 0.29 0.28 0.10 0.11 0.08 0.19

epoch: 3

2 3 4 5 6 7 8
ppl for testing

8

5

3

#
pp

l
fo

r
tr

ai
ni

ng

-0.19 0.15 0.30 0.20 0.37 0.40 0.30

0.17 0.19 0.38 0.26 0.25 0.26 0.25

0.27 0.34 0.34 0.18 0.19 0.16 0.15

epoch: 4

2 3 4 5 6 7 8
ppl for testing

8

5

3

#
pp

l
fo

r
tr

ai
ni

ng

-0.10 0.24 0.35 0.27 0.33 0.32 0.30

0.21 0.24 0.46 0.29 0.30 0.31 0.21

0.26 0.37 0.30 0.19 0.12 0.10 0.13

epoch: 5

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(b) CoT FT & 0-shot CoT Prompting

Figure 26: Improvement in test accuracy on N -person problems for GPT4o-mini fine-tuned on M -person
problems, under two finetuning/evaluation configurations.

Fine-tuning on 10k 8-people K&K samples We present the transferability results with absolute
test accuracy for the K&K task across different 8-people task training sizes and training epochs in
Fig. 28. As shown, GPT4o-mini achieves high accuracy on all tasks at early epochs (e.g., 3 epochs).
We also find that GPT4o-mini exhibits poor test accuracy on two-person testing puzzles when CoT-
FTed on 10k 8-people puzzles, unlike the Direct FTed model that have stable performance across all
task. In the failure case below, the CoT-FTed GPT4o-mini gets stuck in a loop of listing assumptions
and contradictions, resulting in long, repetitive responses without reaching a conclusion.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

2 3 4 5 6 7 8
ppl for testing

8

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.78 0.69 0.62 0.52 0.44 0.30 0.26

0.88 0.78 0.68 0.53 0.44 0.34 0.23

0.82 0.80 0.72 0.45 0.43 0.26 0.28

0.92 0.75 0.68 0.44 0.34 0.18 0.20

0.86 0.49 0.43 0.16 0.16 0.04 0.09

epoch: 3

2 3 4 5 6 7 8
ppl for testing

8

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.84 0.60 0.52 0.46 0.30 0.22 0.26

0.88 0.80 0.68 0.59 0.44 0.38 0.22

0.82 0.82 0.62 0.46 0.34 0.22 0.34

0.92 0.76 0.64 0.40 0.28 0.14 0.22

0.90 0.46 0.52 0.30 0.16 0.10 0.10

epoch: 4

2 3 4 5 6 7 8
ppl for testing

8

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.80 0.71 0.56 0.48 0.40 0.28 0.26

0.88 0.77 0.71 0.57 0.46 0.34 0.27

0.83 0.81 0.71 0.44 0.40 0.28 0.29

0.95 0.77 0.68 0.46 0.38 0.15 0.16

0.91 0.47 0.41 0.23 0.16 0.05 0.08

epoch: 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Direct FT & 0-shot Direct Prompting

2 3 4 5 6 7 8
ppl for testing

8

5

3

#
pp

l
fo

r
tr

ai
ni

ng

0.74 0.58 0.58 0.54 0.30 0.36 0.28

0.86 0.68 0.70 0.48 0.36 0.32 0.24

0.92 0.78 0.60 0.36 0.22 0.12 0.20

epoch: 3

2 3 4 5 6 7 8
ppl for testing

8

5

3

#
pp

l
fo

r
tr

ai
ni

ng

0.52 0.64 0.62 0.46 0.48 0.44 0.31

0.88 0.68 0.70 0.52 0.36 0.30 0.26

0.98 0.83 0.66 0.44 0.30 0.20 0.16

epoch: 4

2 3 4 5 6 7 8
ppl for testing

8

5

3

#
pp

l
fo

r
tr

ai
ni

ng

0.61 0.73 0.67 0.53 0.44 0.36 0.31

0.92 0.73 0.78 0.55 0.41 0.35 0.22

0.97 0.86 0.62 0.45 0.23 0.14 0.14

epoch: 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) CoT FT & 0-shot CoT Prompting

Figure 27: Test accuracy on N -person problems for GPT4o-mini fine-tuned on M -person problems, under two
finetuning/evaluation configurations.

2 3 4 5 6 7 8
ppl for testing

10000

1000#
sa

m
pl

es
fo

r
tr

ai
ni

ng 0.88 0.90 0.94 0.88 0.68 0.62 0.50

0.78 0.69 0.62 0.52 0.44 0.30 0.26

epoch: 3

2 3 4 5 6 7 8
ppl for testing

10000

1000#
sa

m
pl

es
fo

r
tr

ai
ni

ng 0.88 0.92 0.90 0.86 0.68 0.66 0.56

0.84 0.60 0.52 0.46 0.30 0.22 0.26

epoch: 4

2 3 4 5 6 7 8
ppl for testing

10000

1000#
sa

m
pl

es
fo

r
tr

ai
ni

ng 0.88 0.92 0.86 0.86 0.68 0.64 0.52

0.80 0.71 0.56 0.48 0.40 0.28 0.26

epoch: 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Direct FT & 0-shot Direct Prompting

2 3 4 5 6 7 8
ppl for testing

10000

1000#
sa

m
pl

es
fo

r
tr

ai
ni

ng 0.26 0.66 0.90 0.92 0.80 0.80 0.84

0.74 0.58 0.58 0.54 0.30 0.36 0.28

epoch: 3

2 3 4 5 6 7 8
ppl for testing

10000

1000#
sa

m
pl

es
fo

r
tr

ai
ni

ng 0.16 0.74 0.92 0.96 0.94 0.88 0.86

0.52 0.64 0.62 0.46 0.48 0.44 0.31

epoch: 4

2 3 4 5 6 7 8
ppl for testing

10000

1000#
sa

m
pl

es
fo

r
tr

ai
ni

ng 0.12 0.78 0.94 0.98 0.96 0.88 0.84

0.61 0.73 0.67 0.53 0.44 0.36 0.31

epoch: 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) CoT FT & 0-shot CoT Prompting

Figure 28: Test accuracy on N -person problems for GPT4o-mini fine-tuned on 1k/10k 8-people problems,
under two finetuning/evaluation configurations.

Failure case of GPT4o-mini CoT FTed on 10k 8-people K&K task

{omitted task instruction}
Question: A very special island is inhabited only by knights and knaves. Knights always tell the truth, and knaves always lie.
You meet 2 inhabitants: Logan, and Olivia. Logan was heard saying, “Logan is a knight”. “If Olivia is a knight then Logan is a
knight” - Olivia. So who is a knight and who is a knave?
Answer: Let’s think step by step

// response from GPT4o-mini
by considering whether each person is lying and if that leads to contradiction. Assume Logan is a knight. No contradiction is found
in their claim that Logan is a knight. Assume Olivia is a knight. No contradiction is found in their claim that If Olivia is a knight
then Logan is a knight. Assume this leads to no contradiction. No contradiction is found in their claim that If Olivia is a knight then
Logan is a knight. This leads to no contradiction in their claim that Logan is a knight. This leads to no contradiction in their claim
that If Olivia is a knight then Logan is a knight. This leads to no contradiction in their claim that Logan is a knight. This leads to
no contradiction in their claim that If Olivia is a knight then Logan is a knight. This leads to no contradiction in their claim that
If Olivia is a knight then Logan is a knight. This leads to no contradiction in their claim that Logan is a knight. This leads to no
contradiction in their claim that If Olivia is a knight then Logan is a knight. This leads to no contradiction in their claim that Logan
is a knight.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

E.3 DIRECT FT WITH WRONG ANSWERS

E.3.1 LLAMA3-8B

Fig. 29, Fig. 30 and Fig. 31 show the results of Direct FT with 100%, 75% and 50% incorrect
answers for the Llama3-8B model across different prompting setups. Consistent with our earlier
findings in § 4.3, fine-tuning with incorrect answers still significantly improves K&K performance,
especially with 0-shot CoT prompting or 1-shot direct prompting.

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.01 0.09 0.08 0.06 -0.03 0.02 0.02

-0.06 0.05 0.07 0.05 -0.03 0.02 0.02

0.01 0.07 0.09 0.06 -0.03 0.02 0.02

-0.19 0.08 0.11 0.07 -0.03 0.02 0.02

-0.09 0.23 0.14 0.06 -0.02 0.02 0.02

-0.04 0.05 0.11 0.06 -0.03 0.02 0.02

-0.01 0.06 0.08 0.02 -0.04 0.02 0.01

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.00 0.21 0.02 0.00 -0.02 0.00 -0.01

-0.01 0.05 0.00 -0.01 -0.02 0.02 -0.01

0.05 0.08 0.01 0.00 -0.02 0.02 0.01

0.03 0.06 0.02 0.01 0.00 0.01 0.01

0.06 0.07 0.01 0.00 -0.02 0.03 0.01

-0.04 0.06 0.04 -0.01 0.00 0.01 0.00

0.05 0.11 0.02 0.01 -0.02 0.02 0.00

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.03 0.18 0.04 0.01 -0.04 0.00 -0.01

-0.27 -0.10 -0.05 -0.02 -0.04 0.00 -0.01

-0.01 0.13 0.06 0.01 -0.01 0.01 0.02

0.00 0.01 0.04 0.01 0.00 0.00 0.00

0.06 0.10 0.02 0.05 -0.01 0.07 0.00

-0.02 0.07 0.02 0.01 -0.02 0.00 0.02

-0.01 0.13 0.09 0.03 0.01 0.01 -0.01

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.09 0.24 0.16 0.05 -0.02 0.01 0.00

0.06 0.01 0.01 0.00 -0.03 0.02 -0.01

0.04 0.14 -0.01 -0.01 -0.04 0.01 0.00

0.01 -0.01 0.05 -0.01 -0.01 0.00 0.01

0.06 0.09 -0.01 0.02 0.00 0.02 0.01

-0.03 0.04 0.01 0.00 -0.04 0.00 0.01

0.04 0.13 0.07 0.03 0.01 0.00 -0.01

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.09 0.23 0.14 0.05 0.00 0.00 0.00

0.07 0.01 0.01 0.00 -0.03 0.02 -0.01

0.04 0.14 -0.01 -0.01 -0.03 0.01 0.00

0.01 -0.01 0.05 -0.01 0.00 0.00 0.01

0.07 0.09 -0.01 0.02 0.00 0.01 0.01

-0.03 0.03 0.01 0.00 -0.04 0.01 0.01

0.02 0.13 0.05 0.03 0.02 0.00 0.00

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(a) 0-shot Direct Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.20 0.13 0.36 0.21 0.10 0.15 0.08

-0.19 0.08 0.14 0.05 0.00 0.02 0.02

0.08 0.32 0.26 0.23 0.05 0.08 0.10

-0.19 0.16 0.14 0.06 0.00 0.02 0.02

-0.11 0.28 0.28 0.15 0.10 0.13 0.08

-0.09 0.21 0.23 0.12 0.08 0.07 0.07

0.18 0.17 0.19 0.10 0.10 0.07 0.07

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.16 0.26 0.32 0.29 0.12 0.16 0.07

0.11 0.15 0.13 0.00 0.01 0.01 0.00

0.24 0.17 0.17 0.10 0.11 0.10 0.05

0.20 0.20 0.07 0.00 0.02 0.00 0.03

0.15 0.12 0.16 0.09 0.04 0.03 0.02

0.06 0.18 0.12 0.12 0.10 0.04 0.04

0.24 0.18 0.24 0.17 0.06 0.06 0.02

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng
-0.01 0.25 0.18 0.16 0.14 0.09 0.10

0.22 0.11 0.09 0.00 0.01 0.00 -0.01

0.19 0.18 0.17 0.13 0.04 0.03 0.02

0.10 0.04 0.06 0.00 0.03 0.00 0.01

0.10 0.17 0.12 0.16 0.05 0.07 0.06

0.11 0.22 0.15 0.11 0.13 0.11 0.02

0.20 0.20 0.20 0.10 0.05 0.09 0.02

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.04 0.23 0.25 0.13 0.12 0.05 0.03

0.15 -0.03 0.01 0.00 0.02 0.00 0.00

0.10 0.09 0.10 0.09 0.03 0.02 0.02

0.08 -0.02 0.08 -0.02 0.04 0.01 0.00

0.07 0.10 0.15 0.13 0.08 0.09 0.02

0.04 0.14 0.24 0.11 0.08 0.07 0.03

0.22 0.22 0.17 0.11 0.08 0.06 0.04

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.04 0.22 0.26 0.11 0.13 0.03 0.03

0.10 -0.04 0.01 0.00 0.01 0.00 0.00

0.14 0.09 0.13 0.12 0.03 0.02 0.03

0.06 -0.01 0.08 -0.02 0.03 0.01 0.00

0.03 0.12 0.12 0.11 0.10 0.09 0.02

0.02 0.16 0.20 0.09 0.06 0.07 0.04

0.21 0.21 0.20 0.13 0.08 0.06 0.03

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(b) 0-shot CoT Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.20 0.15 0.13 0.08 0.01 0.02 0.03

0.23 0.16 0.13 0.08 0.01 0.02 0.03

0.19 0.15 0.13 0.08 0.01 0.02 0.03

0.21 0.15 0.13 0.08 0.01 0.02 0.03

0.19 0.16 0.13 0.08 0.01 0.02 0.03

0.22 0.16 0.13 0.09 0.01 0.02 0.03

0.20 0.15 0.13 0.08 0.01 0.02 0.02

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.25 0.12 0.07 0.04 0.01 0.03 0.01

0.31 0.08 0.07 0.04 0.00 0.01 0.01

0.34 0.16 0.11 0.03 0.03 0.02 0.03

0.32 0.12 0.10 0.05 0.01 0.01 0.03

0.33 0.13 0.08 0.07 0.03 0.02 0.03

0.28 0.16 0.09 0.07 0.02 0.02 0.03

0.16 0.16 0.14 0.05 0.00 0.02 0.02

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.28 0.13 0.08 0.04 0.02 0.02 0.01

0.36 0.14 0.07 0.03 0.02 0.00 0.00

0.31 0.19 0.11 0.04 0.03 0.03 0.03

0.30 0.15 0.08 0.05 0.03 0.01 0.03

0.29 0.14 0.10 0.05 0.04 0.02 0.00

0.27 0.14 0.07 0.07 0.02 0.01 0.04

0.26 0.10 0.09 0.03 0.00 0.01 0.04

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.31 0.15 0.05 0.03 0.02 0.01 0.01

0.32 0.08 0.04 0.04 0.02 0.00 0.00

0.32 0.14 0.04 0.05 0.01 0.03 0.01

0.31 0.11 0.08 0.09 0.01 0.01 0.01

0.30 0.13 0.06 0.02 0.03 0.02 0.00

0.25 0.10 0.09 0.07 0.02 0.02 0.04

0.26 0.10 0.10 0.01 0.00 0.01 0.02

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.30 0.15 0.05 0.03 0.02 0.01 0.01

0.33 0.08 0.04 0.04 0.01 0.00 0.00

0.32 0.13 0.03 0.04 0.01 0.03 0.01

0.32 0.11 0.08 0.08 0.01 0.01 0.01

0.31 0.13 0.06 0.02 0.03 0.02 0.00

0.25 0.10 0.09 0.07 0.02 0.02 0.04

0.27 0.10 0.10 0.02 0.00 0.01 0.02

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(c) 1-shot Direct Prompting

Figure 29: Improvement in test accuracy on N -person problems for Llama3-8B fine-tuned on M -person prob-
lems with completely wrong answers, compared to the unfine-tuned model, under various evaluation config-
urations.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.03 0.07 0.08 0.06 -0.03 0.02 0.02

-0.13 0.09 0.06 0.05 -0.03 0.03 0.00

0.07 0.11 0.11 0.07 0.01 0.02 0.02

-0.02 0.07 0.10 0.07 -0.03 0.02 0.02

-0.01 0.10 0.09 0.06 -0.03 0.02 0.02

-0.13 0.17 0.12 0.06 -0.01 0.02 0.03

-0.02 0.13 0.09 0.08 0.00 0.02 0.03

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.03 0.05 0.05 0.03 -0.02 0.00 -0.01

-0.04 -0.01 0.01 0.00 -0.01 0.01 -0.01

0.14 0.14 0.06 0.04 0.01 0.02 0.02

0.05 0.07 0.03 0.03 0.00 0.02 0.02

0.15 0.14 0.13 0.03 0.05 0.04 0.02

0.05 0.21 0.07 0.05 0.02 0.03 0.04

0.12 0.10 0.05 0.03 -0.03 0.01 0.01

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.04 0.03 0.04 0.01 -0.04 0.00 -0.01

0.02 0.06 0.00 0.03 -0.02 0.01 0.00

0.06 0.16 0.07 0.01 -0.01 0.02 0.00

0.08 0.12 0.05 0.01 0.00 0.01 0.02

0.12 0.15 0.13 0.06 0.06 0.04 0.04

0.03 0.14 0.07 0.02 0.00 0.03 0.03

0.15 0.07 0.07 0.02 -0.02 0.01 -0.01

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.00 0.03 0.06 0.01 -0.02 0.01 -0.01

0.00 0.02 0.00 0.04 0.02 0.02 -0.01

0.04 0.11 0.07 0.02 -0.01 0.02 0.00

0.05 0.10 0.02 0.06 -0.02 0.01 0.01

0.08 0.22 0.15 0.04 0.00 0.03 0.03

0.02 0.13 0.05 0.06 -0.03 0.00 0.02

0.11 0.07 0.06 0.03 0.00 0.00 0.00

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.00 0.02 0.06 0.01 -0.02 0.01 -0.01

-0.01 0.02 -0.01 0.04 0.02 0.02 -0.01

0.01 0.10 0.08 0.02 -0.01 0.02 0.00

0.06 0.09 0.02 0.06 -0.02 0.01 0.00

0.10 0.19 0.15 0.04 0.02 0.03 0.04

0.01 0.12 0.04 0.06 -0.03 0.00 0.02

0.12 0.06 0.06 0.01 -0.01 0.00 0.00

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(a) 0-shot Direct Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.21 0.32 0.35 0.26 0.23 0.17 0.12

-0.19 0.27 0.17 0.12 0.04 0.05 0.03

-0.03 0.31 0.31 0.24 0.15 0.16 0.12

-0.15 0.32 0.19 0.06 0.00 0.02 0.02

0.15 0.23 0.27 0.13 0.14 0.10 0.08

-0.05 0.23 0.27 0.21 0.13 0.10 0.09

0.12 0.18 0.18 0.08 0.07 0.04 0.05

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng
-0.01 0.15 0.19 0.10 0.04 0.01 0.01

0.06 0.07 0.10 0.06 0.01 0.09 0.05

0.11 0.26 0.21 0.19 0.13 0.07 0.06

0.16 0.15 0.11 0.05 0.03 0.04 0.02

0.21 0.20 0.14 0.16 0.10 0.13 0.04

0.09 0.30 0.18 0.18 0.09 0.11 0.12

0.28 0.16 0.16 0.13 0.07 0.02 -0.01

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.16 0.17 0.21 0.02 0.01 0.00 0.01

0.16 0.09 0.07 0.08 0.05 0.10 0.03

0.15 0.14 0.13 0.07 0.06 0.08 0.00

0.18 0.14 0.13 0.05 0.03 0.03 0.03

0.08 0.17 0.16 0.11 0.08 0.04 0.06

0.10 0.31 0.24 0.07 0.08 0.05 0.06

0.29 0.24 0.24 0.18 0.06 0.04 -0.01

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.13 0.21 0.17 0.07 0.01 0.02 0.01

0.08 -0.01 0.11 0.08 0.03 0.06 0.05

0.15 0.14 0.14 0.08 0.05 0.04 0.00

0.19 0.12 0.12 0.06 0.01 0.02 0.00

0.14 0.18 0.15 0.07 0.11 0.06 0.06

0.19 0.30 0.22 0.06 0.03 0.03 0.03

0.30 0.27 0.19 0.13 0.12 0.05 0.02

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.10 0.18 0.20 0.11 0.01 0.02 0.00

0.11 0.02 0.11 0.06 0.06 0.06 0.05

0.14 0.12 0.15 0.08 0.07 0.03 0.00

0.17 0.09 0.13 0.06 0.02 0.01 0.00

0.12 0.15 0.17 0.05 0.11 0.07 0.06

0.21 0.30 0.21 0.04 0.03 0.03 0.03

0.30 0.29 0.13 0.16 0.13 0.06 0.03

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(b) 0-shot CoT Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.20 0.17 0.13 0.08 0.01 0.02 0.03

0.20 0.17 0.13 0.08 0.01 0.02 0.03

0.24 0.18 0.14 0.09 0.01 0.02 0.05

0.22 0.17 0.14 0.09 0.01 0.02 0.03

0.20 0.15 0.14 0.08 0.01 0.02 0.03

0.36 0.22 0.16 0.10 0.04 0.02 0.05

0.21 0.14 0.15 0.09 0.01 0.02 0.04

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.25 0.15 0.09 0.04 0.03 0.02 0.03

0.32 0.17 0.07 0.03 0.03 0.01 0.02

0.36 0.28 0.15 0.05 0.06 0.03 0.02

0.28 0.10 0.08 0.07 0.04 0.01 0.02

0.39 0.24 0.16 0.09 0.05 0.04 0.02

0.38 0.22 0.16 0.11 0.04 0.03 0.05

0.32 0.16 0.12 0.06 0.01 0.02 0.02

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.25 0.14 0.07 0.02 0.03 0.00 0.01

0.29 0.14 0.09 0.03 0.04 0.01 0.01

0.30 0.17 0.09 0.02 0.02 0.02 0.01

0.29 0.15 0.09 0.08 0.02 0.02 0.00

0.40 0.24 0.22 0.07 0.08 0.04 0.04

0.37 0.19 0.15 0.12 0.04 0.03 0.04

0.33 0.13 0.07 0.06 0.01 0.01 0.01

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.22 0.16 0.05 0.03 0.01 0.00 0.02

0.33 0.16 0.05 0.04 0.03 0.01 0.02

0.32 0.18 0.08 0.08 0.04 0.01 0.01

0.32 0.21 0.08 0.08 0.04 0.01 0.00

0.33 0.21 0.15 0.07 0.09 0.04 0.04

0.34 0.19 0.15 0.12 0.01 0.02 0.04

0.33 0.12 0.07 0.04 0.02 0.01 0.01

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.22 0.15 0.05 0.03 0.01 0.00 0.02

0.34 0.16 0.05 0.04 0.03 0.01 0.01

0.33 0.17 0.08 0.07 0.04 0.01 0.01

0.32 0.21 0.08 0.08 0.04 0.01 0.00

0.33 0.22 0.15 0.07 0.09 0.04 0.05

0.33 0.19 0.15 0.13 0.02 0.02 0.04

0.33 0.12 0.07 0.05 0.02 0.01 0.01

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(c) 1-shot Direct Prompting

Figure 30: Improvement in test accuracy on N -person problems for Llama3-8B fine-tuned on M -person prob-
lems with 75% wrong answers, compared to the unfine-tuned model, under various evaluation configurations.

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.04 0.14 0.09 0.04 -0.01 0.02 0.04

-0.06 0.14 0.13 0.13 0.07 0.06 0.04

0.09 0.16 0.09 0.06 0.03 0.03 0.05

0.03 0.17 0.16 0.09 -0.03 0.02 0.03

0.13 0.13 0.14 0.09 0.04 0.05 0.05

-0.23 0.17 0.12 0.08 0.02 0.02 0.05

-0.01 0.15 0.13 0.05 -0.02 0.03 0.02

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.08 0.16 0.13 0.03 0.04 0.00 0.03

0.08 0.17 0.03 0.10 0.03 0.03 0.01

0.12 0.16 0.14 0.05 0.05 0.00 0.01

-0.02 0.10 0.07 0.13 0.03 0.03 0.00

0.11 0.20 0.17 0.09 0.04 0.04 0.03

0.11 0.15 0.08 0.10 0.03 0.03 0.02

0.15 0.10 0.06 0.12 -0.02 0.02 0.01

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.11 0.10 0.09 0.06 0.02 0.01 0.02

0.04 0.14 0.08 0.12 0.08 0.03 0.05

0.13 0.20 0.13 0.06 0.05 0.03 0.01

0.02 0.14 0.12 0.09 0.06 0.04 0.03

0.12 0.17 0.18 0.07 0.04 0.04 0.03

0.20 0.16 0.14 0.06 0.03 0.05 0.02

0.01 0.12 0.10 0.13 0.01 0.08 0.02

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.06 0.15 0.08 0.08 0.03 0.00 0.02

0.09 0.21 0.07 0.11 0.04 0.02 0.01

0.12 0.24 0.22 0.08 0.04 0.04 0.01

0.08 0.06 0.12 0.06 0.03 0.04 0.02

0.17 0.28 0.16 0.07 0.04 0.04 0.04

0.20 0.17 0.12 0.09 0.06 0.06 0.01

-0.03 0.10 0.16 0.07 0.05 0.05 0.06

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng
0.08 0.14 0.08 0.08 0.03 0.00 0.02

0.09 0.19 0.07 0.11 0.04 0.03 0.01

0.16 0.21 0.23 0.08 0.04 0.03 0.00

0.07 0.05 0.12 0.05 0.04 0.04 0.02

0.15 0.27 0.16 0.10 0.06 0.04 0.04

0.20 0.17 0.12 0.09 0.06 0.05 0.01

-0.03 0.12 0.14 0.08 0.03 0.04 0.08

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(a) 0-shot Direct Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.11 0.00 0.15 0.11 0.06 0.09 0.03

-0.20 0.29 0.33 0.24 0.19 0.14 0.13

0.03 0.23 0.30 0.25 0.20 0.17 0.16

-0.12 0.25 0.25 0.13 0.04 0.05 0.06

0.08 0.30 0.44 0.32 0.23 0.18 0.13

-0.17 0.23 0.15 0.12 0.05 0.08 0.07

0.11 0.04 0.07 0.05 0.10 0.03 0.04

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.13 0.26 0.23 0.12 0.12 0.12 0.07

0.14 0.19 0.25 0.13 0.15 0.11 0.09

0.22 0.27 0.31 0.15 0.10 0.16 0.05

0.09 0.20 0.13 0.09 0.06 0.06 0.02

0.19 0.26 0.31 0.28 0.17 0.16 0.08

0.22 0.19 0.14 0.13 0.07 0.06 0.04

0.15 0.17 0.23 0.16 0.03 0.07 0.03

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.13 0.17 0.24 0.11 0.02 0.09 0.06

0.07 0.28 0.24 0.08 0.15 0.13 0.08

0.19 0.18 0.22 0.21 0.05 0.13 0.02

0.18 0.10 0.14 0.08 0.08 0.05 0.01

0.20 0.24 0.32 0.22 0.18 0.09 0.10

0.22 0.27 0.15 0.07 0.02 0.04 0.04

0.16 0.26 0.22 0.16 0.09 0.09 0.05

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.20 0.09 0.21 0.08 0.03 0.02 0.05

0.01 0.23 0.14 0.13 0.12 0.08 0.08

0.11 0.11 0.27 0.20 0.09 0.10 0.03

0.12 0.11 0.11 0.05 0.07 0.02 0.01

0.26 0.25 0.28 0.18 0.14 0.10 0.07

0.25 0.22 0.18 0.07 0.06 0.05 0.03

0.04 0.16 0.23 0.14 0.15 0.10 0.05

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.21 0.07 0.19 0.07 0.03 0.02 0.04

0.05 0.24 0.17 0.13 0.17 0.10 0.07

0.17 0.12 0.23 0.22 0.10 0.11 0.02

0.09 0.14 0.12 0.05 0.06 0.02 0.01

0.25 0.21 0.29 0.20 0.13 0.16 0.10

0.25 0.22 0.18 0.07 0.05 0.05 0.04

0.03 0.18 0.26 0.14 0.12 0.07 0.04

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(b) 0-shot CoT Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.30 0.19 0.16 0.09 0.01 0.02 0.04

0.30 0.19 0.16 0.14 0.07 0.04 0.08

0.39 0.24 0.15 0.09 0.07 0.02 0.08

0.33 0.18 0.16 0.10 0.02 0.02 0.05

0.32 0.24 0.19 0.12 0.06 0.02 0.05

0.39 0.28 0.19 0.11 0.07 0.02 0.07

0.37 0.27 0.17 0.11 0.04 0.02 0.04

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.30 0.22 0.12 0.08 0.06 0.02 0.01

0.38 0.21 0.15 0.12 0.04 0.01 0.03

0.35 0.22 0.24 0.21 0.11 0.05 0.00

0.30 0.17 0.07 0.12 0.07 0.04 0.01

0.45 0.35 0.24 0.13 0.07 0.04 0.07

0.43 0.23 0.23 0.12 0.06 0.02 0.03

0.39 0.26 0.10 0.07 0.02 0.00 0.00

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.31 0.16 0.14 0.07 0.07 0.02 0.02

0.34 0.27 0.17 0.13 0.05 0.02 0.05

0.30 0.21 0.26 0.11 0.10 0.05 0.00

0.37 0.26 0.12 0.07 0.09 0.06 0.02

0.43 0.25 0.27 0.12 0.11 0.02 0.06

0.41 0.28 0.23 0.12 0.06 0.02 0.03

0.43 0.23 0.12 0.08 0.02 0.00 0.00

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.33 0.14 0.13 0.04 0.03 0.01 0.02

0.40 0.29 0.15 0.14 0.05 0.04 0.01

0.36 0.27 0.25 0.16 0.11 0.09 0.00

0.31 0.21 0.11 0.06 0.06 0.04 0.01

0.45 0.31 0.35 0.16 0.14 0.06 0.07

0.39 0.26 0.23 0.11 0.08 0.04 0.04

0.39 0.21 0.14 0.07 0.02 0.00 0.00

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.29 0.14 0.13 0.04 0.03 0.01 0.02

0.41 0.27 0.15 0.12 0.05 0.04 0.01

0.37 0.27 0.25 0.16 0.11 0.09 0.01

0.31 0.21 0.11 0.06 0.06 0.04 0.01

0.45 0.30 0.34 0.16 0.15 0.06 0.07

0.39 0.27 0.24 0.11 0.08 0.04 0.04

0.39 0.19 0.13 0.07 0.02 0.00 0.00

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(c) 1-shot Direct Prompting

Figure 31: Improvement in test accuracy on N -person problems for Llama3-8B fine-tuned on M -person prob-
lems with 50% wrong answers, compared to the unfine-tuned model, under various evaluation configurations.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

E.3.2 GPT4O-MINI

Fig. 32 displays the results of direct fine-tuning using 5-people training K&K puzzles for
the GPT4o-mini model, containing varying percentages of incorrect answers in the dataset:
100%, 75%, 50%, 25%, 0%. This is evaluated across different epochs in the five-person puzzle.
As noted in § 4.3, when the training dataset includes 50% or fewer samples with incorrect answers,
fine-tuning can still enhance K&K’s performance across various testing tasks.

2 3 4 5 6 7 8
ppl for testing

1.0

0.75

0.5

0.25

0.0

pr
op

or
ti

on
of

w
ro

ng
tr

ai
ni

ng
an

sw
er

-0.37 -0.28 -0.26 -0.15 -0.09 -0.08 -0.01

-0.15 -0.04 -0.10 0.07 0.03 -0.02 0.01

0.17 0.22 0.18 0.07 0.17 0.02 0.15

0.11 0.24 0.28 0.29 0.17 0.20 0.07

0.25 0.36 0.34 0.36 0.35 0.24 0.22

epoch: 3

2 3 4 5 6 7 8
ppl for testing

1.0

0.75

0.5

0.25

0.0

pr
op

or
ti

on
of

w
ro

ng
tr

ai
ni

ng
an

sw
er

-0.33 -0.20 -0.22 -0.13 -0.07 -0.10 -0.01

-0.11 -0.06 -0.16 -0.03 -0.01 -0.06 0.01

0.13 0.22 0.14 0.11 0.13 0.00 0.13

0.17 0.26 0.26 0.21 0.29 0.26 0.07

0.25 0.38 0.34 0.42 0.35 0.28 0.21

epoch: 4

2 3 4 5 6 7 8
ppl for testing

1.0

0.75

0.5

0.25

0.0

pr
op

or
ti

on
of

w
ro

ng
tr

ai
ni

ng
an

sw
er

-0.39 -0.20 -0.24 -0.15 -0.07 -0.10 -0.01

-0.15 -0.08 -0.16 0.01 0.03 -0.06 -0.01

0.09 0.24 0.08 0.09 0.09 -0.02 0.09

0.15 0.30 0.28 0.27 0.29 0.24 0.07

0.25 0.35 0.37 0.40 0.37 0.24 0.26

epoch: 5

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

Eval config: 0-shot Direct Prompting

Figure 32: Improvement in test accuracy on N -people problems for GPT4o-mini fine-tuned on 5-people prob-
lems with different proportion of wrong answers, compared to the unfine-tuned model. Direct FT with 50%
wrong answers still improves K&K performance.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

E.4 PROBING

We report the probing accuracy for the un-fine-tuned Llama3-8B model in Fig. 33. As shown,
without fine-tuning, the model demonstrates relatively low probing accuracy, with values usually
below 90%.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Transformer Block Index

2

3

4

5

6

7

8

#
pp

l
in

th
e

K
&

K
ev

al
ua

ti
on

0.57 0.58 0.6 0.64 0.67 0.74 0.75 0.76 0.8 0.8 0.82 0.84 0.86 0.88 0.87 0.86 0.86 0.83 0.85 0.83 0.82 0.82 0.79 0.8 0.81 0.81 0.81 0.82 0.84 0.85 0.81 0.75

0.56 0.57 0.6 0.62 0.69 0.73 0.74 0.75 0.8 0.82 0.85 0.84 0.87 0.87 0.88 0.87 0.87 0.85 0.83 0.82 0.83 0.82 0.81 0.8 0.82 0.83 0.87 0.85 0.87 0.87 0.8 0.79

0.57 0.58 0.58 0.63 0.64 0.68 0.69 0.69 0.74 0.75 0.77 0.79 0.83 0.86 0.83 0.81 0.82 0.81 0.78 0.76 0.76 0.76 0.77 0.74 0.75 0.76 0.78 0.81 0.82 0.81 0.78 0.73

0.57 0.59 0.62 0.67 0.69 0.72 0.72 0.73 0.78 0.8 0.79 0.84 0.84 0.87 0.87 0.83 0.86 0.82 0.83 0.8 0.77 0.78 0.76 0.76 0.79 0.79 0.8 0.83 0.77 0.82 0.73 0.72

0.58 0.58 0.6 0.62 0.66 0.66 0.71 0.74 0.78 0.8 0.84 0.85 0.89 0.88 0.9 0.88 0.86 0.82 0.81 0.8 0.8 0.79 0.77 0.81 0.78 0.81 0.78 0.79 0.8 0.8 0.75 0.72

0.58 0.59 0.6 0.62 0.65 0.69 0.7 0.69 0.74 0.76 0.78 0.79 0.82 0.82 0.8 0.81 0.81 0.77 0.78 0.76 0.76 0.76 0.74 0.72 0.75 0.77 0.78 0.76 0.78 0.75 0.76 0.68

0.62 0.62 0.63 0.65 0.67 0.7 0.72 0.73 0.75 0.75 0.75 0.8 0.79 0.81 0.81 0.79 0.79 0.77 0.76 0.77 0.76 0.76 0.75 0.75 0.76 0.78 0.8 0.75 0.8 0.74 0.75 0.67

0.80

0.85

0.90

0.95

1.00

Figure 33: Probing accuracy of K&K puzzles with different number of people in testing puzzles across different
layers of the un-finetuned Llama3-8B transformer model.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

E.5 DISTINGUISHING MEMORIZATION FROM REASONING

Puzzle-based indicators Fig. 34 shows the train and test AUC for predicting whether N -person
puzzles can be consistently solved by a specific model under perturbations, using puzzle-based in-
dicators. The results indicate that length-related features are useful for distinguishing memorization
from reasoning. Notably, the test AUC is generally higher for CoT FTed GPT4o-mini compared to
Direct FTed GPT4o-mini.

0.6 0.8
Train AUC

0.500

0.525

0.550

0.575

0.600

0.625

T
es

t
A

U
C

Direct FT (leaf perb.)

0.6 0.8
Train AUC

0.500

0.525

0.550

0.575

0.600

0.625

Direct FT (statement perb.)

0.6 0.8
Train AUC

0.5

0.6

0.7

0.8
CoT FT (leaf perb.)

0.6 0.8
Train AUC

0.50

0.55

0.60

0.65

0.70

CoT FT (statement perb.)
Text Field

question

synthetic CoTs

response

concat all fields

Method

TF-IDF

BoW

word length

char length

concat all features

(a) 3-person puzzles for GPT4o-mini.

0.6 0.8
Train AUC

0.500

0.525

0.550

0.575

0.600

0.625

T
es

t
A

U
C

Direct FT (leaf perb.)

0.5 0.6 0.7 0.8
Train AUC

0.50

0.52

0.54

0.56

0.58

Direct FT (statement perb.)

0.6 0.8
Train AUC

0.50

0.55

0.60

0.65

0.70

CoT FT (leaf perb.)

0.6 0.8
Train AUC

0.50

0.55

0.60

0.65

CoT FT (statement perb.)
Text Field

question

synthetic CoTs

response

concat all fields

Method

TF-IDF

BoW

word length

char length

concat all features

(b) 5-person puzzles for GPT4o-mini.

0.5 0.6 0.7 0.8 0.9
Train AUC

0.500

0.525

0.550

0.575

0.600

0.625

T
es

t
A

U
C

Direct FT (leaf perb.)

0.5 0.6 0.7 0.8 0.9
Train AUC

0.50

0.52

0.54

0.56

Direct FT (statement perb.)
Text Field

question

synthetic CoTs

response

concat all fields

Method

TF-IDF

BoW

word length

char length

concat all features

(c) 3-person puzzles for Llama3-8B.

0.5 0.6 0.7 0.8 0.9
Train AUC

0.500

0.525

0.550

0.575

0.600

0.625

T
es

t
A

U
C

Direct FT (leaf perb.)

0.5 0.6 0.7 0.8 0.9
Train AUC

0.50

0.52

0.54

0.56

0.58
Direct FT (statement perb.)

Text Field

question

synthetic CoTs

response

concat all fields

Method

TF-IDF

BoW

word length

char length

concat all features

(d) 5-person puzzles for Llama3-8B.

Figure 34: AUC for predicting whether N -person puzzles can be consistently solved under perturbations based
on puzzle-based indicators.

Model-based indicators We report test AUC for classifying puzzles based on whether they are
consistently solved under leaf/statement perturbation by the Llama3-8B model Direct-FTed on the
3/5-person task. As shown in Fig. 35, the embeddings across different layers of the fine-tuned

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Llama3-8B provide more distinguishable signals for memorized samples than those of the base
model.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Transformer Block Index

0.5

0.6

0.7

0.8
T

es
t

A
U

C

0
.5

2 0
.5

4

0
.5

4

0
.5

9

0
.5

8 0
.6

0 0
.6

3 0
.6

6

0
.6

5

0
.6

5

0
.6

5

0
.6

7

0
.6

8

0
.6

6

0
.6

4

0
.6

4

0
.5

9

0
.6

3

0
.6

1

0
.6

1

0
.6

0

0
.6

1

0
.6

2

0
.6

0

0
.5

8

0
.5

7 0
.5

9

0
.5

9

0
.6

0

0
.5

5

0
.5

6

0
.5

6

0
.5

2 0
.5

5

0
.5

4

0
.5

9

0
.5

8 0
.6

0

0
.6

5

0
.6

9

0
.7

0

0
.6

5

0
.7

0

0
.6

8

0
.7

0

0
.6

9

0
.6

8 0
.7

0

0
.6

4

0
.6

1

0
.5

9 0
.6

1

0
.6

6

0
.6

4 0
.6

8

0
.6

3

0
.6

3 0
.6

5

0
.6

4

0
.6

3 0
.6

5

0
.6

4

0
.6

5

0
.6

2

Base model FTed model

(a) 3-person puzzles under leaf perturbation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Transformer Block Index

0.5

0.6

0.7

0.8

T
es

t
A

U
C

0
.5

9

0
.6

0

0
.6

1

0
.6

5

0
.6

4

0
.6

6

0
.6

5

0
.6

7

0
.6

5

0
.6

3 0
.6

6

0
.6

7

0
.6

3

0
.6

1

0
.6

8

0
.6

4

0
.6

5

0
.6

5 0
.6

7

0
.6

5

0
.6

5

0
.6

6

0
.6

4

0
.6

3 0
.6

6

0
.6

5

0
.6

4 0
.6

6

0
.6

4 0
.6

6

0
.6

5

0
.6

4

0
.5

9

0
.6

0

0
.6

2 0
.6

5

0
.6

5

0
.6

6

0
.6

6

0
.6

7

0
.6

7

0
.6

2 0
.6

5

0
.6

5

0
.6

9

0
.6

6

0
.6

6

0
.6

7

0
.6

6

0
.6

6

0
.7

1

0
.6

4 0
.6

7

0
.6

6

0
.6

6 0
.6

8

0
.6

7

0
.6

8

0
.6

5

0
.6

6

0
.6

6

0
.6

6 0
.6

9

0
.6

9

Base model FTed model

(b) 3-person puzzles under statement perturbation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Transformer Block Index

0.5

0.6

0.7

0.8

T
es

t
A

U
C

0
.5

3

0
.5

5

0
.5

3

0
.5

1 0
.5

4

0
.5

9

0
.5

5

0
.5

2

0
.5

0 0
.5

3

0
.4

8

0
.5

4

0
.5

5

0
.5

1 0
.5

4

0
.5

4

0
.5

2 0
.5

4

0
.5

2

0
.5

0 0
.5

3

0
.5

5

0
.5

4

0
.5

4

0
.5

1

0
.5

6

0
.4

7

0
.5

3 0
.5

5

0
.5

1

0
.5

0

0
.4

9

0
.5

4

0
.5

5

0
.5

3

0
.5

1

0
.5

6 0
.5

9

0
.5

6

0
.5

3 0
.5

5

0
.5

0

0
.5

5 0
.5

8

0
.6

3

0
.6

1

0
.5

8

0
.5

6

0
.5

2

0
.6

1

0
.6

1

0
.6

0

0
.5

6

0
.5

3

0
.5

7

0
.5

6

0
.5

4

0
.5

5

0
.5

3 0
.5

6

0
.5

6

0
.5

5

0
.5

1

0
.5

7

Base model FTed model

(c) 5-person puzzles under leaf perturbation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Transformer Block Index

0.5

0.6

0.7

0.8

T
es

t
A

U
C

0
.5

1

0
.5

2

0
.5

1

0
.4

8

0
.5

2

0
.5

0

0
.5

0

0
.5

0 0
.5

3

0
.4

9

0
.4

7

0
.4

4 0
.4

7

0
.4

6 0
.4

8

0
.4

9 0
.5

2

0
.5

0

0
.4

9

0
.4

9

0
.4

7 0
.4

9 0
.5

1 0
.5

4

0
.5

1

0
.5

2

0
.5

3

0
.5

1 0
.5

4

0
.5

5

0
.5

3

0
.4

90
.5

1

0
.5

2

0
.5

1

0
.4

8

0
.5

3

0
.5

2

0
.5

1

0
.4

9

0
.5

1

0
.5

5

0
.5

6

0
.4

9

0
.5

4

0
.5

2

0
.6

0

0
.5

4

0
.5

4

0
.5

5

0
.5

4

0
.5

2

0
.5

1 0
.5

4

0
.5

1 0
.5

4 0
.5

6

0
.5

3 0
.5

6

0
.5

3

0
.5

4

0
.5

2

0
.5

8

0
.5

8

Base model FTed model

(d) 5-person puzzles under statement perturbation.

Figure 35: Test AUC for predicting whether N -person puzzles can be consistently solved under perturbations
by Direct-FTed Llama3-8B models.

41

	Introduction
	How to Measure Memorization in Reasoning Tasks
	Memorization Metrics for Reasoning Tasks
	Knights and Knaves Logical Reasoning Benchmark

	Quantifying LLM Memorization in Reasoning Tasks
	Off-the-shelf Models
	Fine-tuned Models

	LLMs Learn to Reason by Fine-tuning With Answers Only
	Reasoning capabilities of Direct FT-ed model
	Probing Direct FTed models
	Direct FT with Wrong Answers

	LLMs Learn to Reason by Fine-tuning with CoTs
	Distinguishing Memorization from Reasoning
	Related Work
	Conclusion
	Discussion and Future Work
	Extended Related Work
	Details on K&K Benchmark
	The Abstract Representation
	The Abstract Puzzle Module: Generator
	The Abstract Puzzle Module: Solver and Reasoner
	The Abstract Puzzle Module: Perturber
	The Natural Language Module: NL-Generator
	The Natural Language Module: NL-Reasoner
	The Natural Language Module: NL-Perturber
	Dataset Generation

	Experimental Setups
	Models
	Experimental Details
	Evaluation
	Fine-tuning
	Probing
	Distinguishing Memorization from Reasoning
	Computation Resources

	Additional Experimental Results
	Memorization Measurement
	Evaluation on Reasoning Capability
	Llama3-8B
	GPT4o-mini

	Direct FT with Wrong Answers
	Llama3-8B
	GPT4o-mini

	Probing
	Distinguishing Memorization from Reasoning

