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Abstract

Ensuring code correctness remains a challenging problem even as large language1

models (LLMs) become increasingly capable at code-related tasks. While LLM-2

based program repair systems can propose bug fixes using only a user’s bug3

report, their effectiveness is fundamentally limited by their ability to perform fault4

localization (FL), a challenging problem for both humans and LLMs. Existing5

FL approaches rely on executable test cases, require training on costly and often6

noisy line-level annotations, or demand resource-intensive LLMs. In this paper, we7

present Bug Attention Probe (BAP), a method which learns state-of-the-art fault8

localization without any direct localization labels, outperforming traditional FL9

baselines and prompting of large-scale LLMs. We evaluate our approach across a10

variety of code settings, including real-world Java bugs from the standard Defects4J11

dataset as well as seven other datasets which span a diverse set of bug types and12

languages. Averaged across all eight datasets, BAP improves by 34.6% top-113

accuracy compared to the strongest baseline and 93.4% over zero-shot prompting14

GPT-4o. BAP is also significantly more efficient than prompting, outperforming15

large open-weight models at a small fraction of the computational cost.116

1 Introduction17

Correctness is a fundamental desirable property of code. Both human-written and LLM-generated18

code are prone to bugs [1, 2] including syntax errors that prevent the execution of code, semantic19

mistakes that cause incorrect or unintended behaviors, and vulnerabilities that compromise security in20

otherwise correct code. While there are various methods for detecting bugs (e.g. failed tests, user bug21

reports, program crashes, etc.), identifying its root cause, or localizing the bug, is still costly [3, 4].22

Automated software fault localization (FL) aims to help a programmer answer the question, “Where’s23

the bug?”, ideally pointing to specific lines of buggy code. The traditional FL approaches rely24

on executable tests to determine the buggy lines [5]. Without relying on tests, FL is even more25

challenging since such a system must reason about what is buggy without external feedback. But26

recently, supervised training of models on large, labeled datasets [6, 7], and prompting of the largest27

LLMs such as GPT-4o has shown promise at FL without tests [8]. On a single method context,28

large-scale supervised training and prompting approaches can significantly surpass the traditional29

techniques which need tests [6, 8].30

State-of-the-art FL methods, however, are still limited in scalability, or the ability to leverage cheaply31

available supervision to reach strong performance, even with small models. This lack of scalability32

leads to the impracticality of many FL techniques. For example, we show a simple buggy Java code33

snippet in Figure 1 which we want to run FL on, but we encounter several issues: traditional methods34

1BAP will be open-sourced upon acceptance
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Integer vote;
public void addVote(int age) {
if (age >= 18) { 

    System.out.println(
"You're a minor!");

  } else {
    vote++;                 
    System.out.println(

"You can vote!");
  }
}

Input: Java program snippet
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Desired Output: Lines 3, 7

LLM
  Llama-3.2-90B 

Integer vote;
public void addVote(int age) {
  if (age >= 18) {
    System.out.println(

"You're a minor!");

Scalability of baselines is inhibited:
- Require executable tests (DeepFL) or  

large-scale models (LLM).

} else {
    vote++;
    System.out.println(
      "You can vote!");
  }
}

Figure 1: Comparison of our approach Bug Attention Probe (BAP) with baselines DeepFL and LLM
prompting on a Java program snippet. The program has two bugs: the age condition on line 3 is
reversed and line 6 throws a null pointer exception. BAP correctly localizes both bugs. Here, our
method is trained on Llama-3.2-1B, a “small" language model (SLM), with only weak supervision i.e.
binary bug presence labels. Obtaining comparable accuracy via prompting demands a significantly
more resource-intensive LLM, such as Llama-3.2-90B, or larger. Previous approaches like DeepFL
require executable test cases before they can attempt to provide useful information.

require executable tests and LLM prompting methods are only effective for the largest of models. On35

large codebases, LLMs must be called at least once per function, which quickly becomes expensive.36

Further, training-based approaches assume extensive amounts of strong supervision for FL, which is37

rarely available in practice [9].38

This leads to our central question: How do we achieve strong fault localization performance without39

relying on executable tests, costly large-scale LLMs, or strong supervision?40

We answer this question by proposing the Bug Attention Probe (BAP), a scalable LLM probing41

technique for FL, scaling to use available bug related data without strong FL supervision and scaling42

with base model size while still achieving strong performance with small models. BAP exhibits43

three desirable properties: (1) lightweight, (2) code-level localization, and (3) localization of multi-44

line bugs. First, lightweight refers to the limited requirement for supervision (we use an attention45

mechanism to learn from binary bug presence rather than fine-grained location supervision), the test-46

free nature, and the model size (BAP can probe small language models (SLMs) to elicit performance47

significantly stronger than the underlying SLM). Second, BAP localizes bugs in a human-interpretable48

manner to expressions, statements, or lines in code, even though LLMs operate on the token level.49

Third, BAP localizes multi-line bugs, or multiple bugs in one method, better than existing approaches.50

Multi-line bugs are practically relevant since the majority of real bugs are multi-line [10].51

To evaluate BAP, we use eight diverse and widely-used fault localization benchmarks, including52

syntax errors, semantic mistakes, and weaknesses. Our evaluation suite covers over 50,000 code53

samples across three languages: Python, Java, and C. This notably includes Defects4J [11], the most54

commonly used FL dataset.55

We evaluate BAP on top of the Llama-3 family of models and compare it to state-of-the-art FL56

methods, including traditional test-based FL and prompting of various proprietary and open-weights57

LLMs. Averaged across eight datasets, BAP improves by 23.4% over the strongest baselines for58

top-1 FL accuracy which includes a 24.2% improvement for Defects4J, and a 50.5% improvement on59

DeepFix [12]. In addition, BAP achieves these performance improvements at over ten times greater60

efficiency in terms of model size and FLOPs for inference. BAP also localizes multi-line bugs better61

than existing methods and continues to have stronger performance than prompting for longer code62

sequences. While BAP significantly outperforms competitive baselines, it is able to achieve 35%63

top-1 FL accuracy on average over our datasets, and our evaluation highlights avenues for further64

advances in scalable FL.65

In summary, our work makes the following contributions:66
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def  foo ():  
 a  = ict Entry ( base ()  )
 del  a [' missing ']

def foo ( base () [EOS]
def  foo(): 
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 del a [' missing ']

🐞

...

...

🧊  Frozen LLM

def foo ( base () ) [EOS]

MLP

Attention: raw attention score of
each token w.r.t. last (EOS) token.

Input program

Weak Supervision: learn to
classify the entire program as

buggy or non-buggy. 🫧
Attention

BAP

Tokenized input

 1

 2

/ 0.20
/ 0.42
/ 0.38

 3

Strong Localization:
Aggregate attention weights to

rank the most buggy lines.

🐞

 D

 D

) )

Figure 2: Illustration of BAP as a method to elicit line-level fault localization from a frozen LLM
through weak supervision. In step one, the probe is trained as a binary classifier to distinguish buggy
from non-buggy code. Then in step two, we visualize the learned attention weights on the given
sequence. Finally, in step three, we sum the attention weights within each line to produce a line-level
“bugginess” score. BAP localizes the bug to the line with the highest score, the Top-1 result.

• We propose Bug Attention Probe (BAP) as a general method for scalable fault localization, requiring67

only coarse-grained detection supervision and eschewing the need for localization labels (Section 3).68

• BAP significantly improves over state-of-the-art fault localization methods by 34.6% top-1 accuracy69

on average over eight fault localization benchmarks while using ten times less memory and FLOPs.70

• BAP exhibits better length generalization and can predict multi-line bugs more effectively than71

prompting. We also identify areas for further advances.72

2 Background73

We introduce fault localization, LLM probing, and challenges with existing FL techniques.74

2.1 Fault Localization75

Before defining bug localization, we first describe the problem of bug detection, or determining if76

code is overall buggy or not. A bug is a concept b : P → {0, 1} where P is the space of all programs.77

For a bug b, we construct a supervised detection dataset DDet = {(p, b(p)) | p ∈ P} consisting of78

programs labeled as buggy or not buggy.79

Bug localization is the task of identifying the line (or lines) of code where a bug occurs. A bug80

localizer is a mapping l : P → Z+ from programs to one or more line numbers. For a program p ∈ P81

split into lines [p0, . . . , pk], where pi is the ith line of program p, we define the ground truth bug82

localization using the notion of a counterfactual explanation: a program has a bug localized to line i if83

modifying pi would remove the bug. Formally, for program p such that b(p) = 1, bug b is localized to84

line i if there exists a modified line p′i such that b(p′) = 0 where p′ = [p0, . . . , pi−1, p
′
i, pi+1, . . . , pk].85

Some bugs require multi-line fixes, in which case changing multiple lines of the program would fix86

the bug. We therefore assume that the ground truth localization consists of one or more lines of code.87

We can now define a localization dataset containing direct line-level supervision:88

DLoc ={(p, 0,∅) | p ∈ P and b(p) = 0} ∪ {(p, 1, l(p)) | p ∈ P and b(p) = 1}.

2.2 LLM Probing89

LLM probing involves training a classifier on top of intermediate states from a model [13]. Since all90

probing techniques are trained from a dataset of model hidden representations, we start by introducing91

this dataset in our setting.92

For a program fragment p consisting of T tokens, we call the intermediate representation from LLM93

layer k, LLMRep(p, k) = z ∈ RT×d where d is the hidden dimension of the LLM. The dataset we94

use for probing in the rest of this paper is the following:95

HDet = {(LLMRep(p, k), y) : (p, y) ∈ DDet}.
We can also define HLoc equivalently which additionally includes the ground truth line numbers with96

each sample, but as we discuss later, this dataset is not ideal for training.97

3



These datasets, HDet and HLoc, are not directly amenable to standard probing since each sample,98

LLMRep(p, k), is a sequence of hidden representations varying in length across samples. Producing99

a general-purpose fixed-length sequence representation from an autoregressive LLM is a challenging100

problem [14], so probing methods typically apply a simple pooling operation, POOL : RT×d → R1×d,101

such as selecting the last token or averaging all tokens. Specific to using HLoc, existing work takes102

the approach of converting the labels l(p) into a binary mask over the buggy program lines so that a103

model can be trained to predict such masks [6].104

2.3 Challenges105

We highlight three main challenges for FL.106

Need for Strong Supervision. High-quality FL datasets are rare due to the heavy manual effort107

required: a failing test may reveal a bug but not its cause. As a result, real-world datasets are either108

small (e.g., Defects4J with 395 samples [11]) or noisy (e.g., ManySStuBs4J [1]). In our experiments,109

methods trained on such data perform worse than those avoiding strong supervision.110

Localizing Multi-line Bugs. Most real-world bugs span multiple lines [10], yet existing FL methods111

and datasets mainly target single-line bugs [15, 1, 16].112

Resource Efficiency. State-of-the-art FL performance requires large LLMs on method-level context,113

but these models are resource-intensive, API-restricted, and costly when used repeatedly. By contrast,114

traditional execution-based FL methods can run locally in an IDE with modest resources.115

3 Attention Probing for Fault Localization116

In this section, we introduce our approach for addressing the previous challenges.117

We propose the Bug Attention Probe (BAP), an LLM probing technique for performing FL which118

provides scalability through lightweight requirements (both in terms of training supervision and119

model size), interpretable code-level localization, and handling of multi-line bugs. We take inspiration120

from attention probing [17, 18], a technique from the interpretability literature for studying linguistic121

phenomena such as the attention placed on verb tokens, but we use such an approach for code-level122

FL, as in localizing bugs to lines within code.123

We illustrate BAP, its process of training from bug detection data, HDet, and the computation of124

line-level bug localization from attention weights in Figure 2.125

3.1 Why Attention Probing for Fault Localization?126

Our main motivation for using an attention mechanism is that the attention pooling operation trained127

for the task of bug detection encourages the probe to learn to attend to the location of bugs, without128

strong FL supervision. Intuitively, the probe attends to parts of the code which are more informative129

for bug detection, and we hypothesize that these locations often correspond to the location of bugs.130

For bugs which are localized to multiple lines, which is the majority of real world faults, an attention131

mechanism is also helpful since it operates on the token-level, making no distinction between a single132

and multi-line bug location.133

Finally, an attention mechanism is efficient since it operates over all tokens in parallel. This means134

that a complete ranking of all the program lines in terms of the likelihood they contain a bug is135

produced by a single forward pass of attention. This is in contrast to methods such as LLM prompting136

which must continue to output more tokens to localize a bug to more lines.137

3.2 From Weak Supervision to Token-level Localization138

To enable learning FL from weak supervision, we use a single layer Transformer decoder block as139

the architecture of BAP to factorize the bug detection task into localization (attention) over tokens140

and detection (classification) on the sequence-level. The input to the probe consists of a sequence of141

token representations from the kth layer of the LLM, LLMRep(p, k) = [z1, . . . , zT ] ∈ RT×d, for a142

program p consisting of T tokens. The standard multi-head attention mechanism takes LLMRep(p, k)143

as input and outputs attention scores a ∈ RM×T×T where M is the number of attention heads, and144
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Algorithm 1 BAP Line-level Fault Localization

1: Input: code sample p, layer k.
2: Tokenize p to get p = [t1, . . . , tT ].
3: z = LLMRep(p, k)
4: v, a = MHA(z) where v ∈ RT×d and a ∈ RM×T×T

5: ā = 1
M

∑M
m=1 am,−1,: {Average attention over all heads, for the last token}

6: Group attention scores into lines: s1 = [ā1, . . . , āi], s2 = [āi+1, . . . , āi+j ], . . .
7: li =

∑
t∈si

t for all i {Line-level attention score}
8: Return: argsorti∈[1,L] li

processed token representations v ∈ RT×d. We compute token-level attention scores of all tokens to145

the final token as ā = 1
M

∑M
m=1 am,−1,: ∈ RT where we average the attention from each head. The146

process of producing token-level attention from input code is also shown in lines 1-5 of Algorithm 1.147

To get useful token-level attention from our model, we must train it on a downstream task. To train148

BAP, we use weak supervision from a bug detection dataset, HDet defined in Section 2. We pass the149

last token from the processed sequence v from the attention through a feed-forward network (MLP)150

to produce a scalar output representing the buggy/non-buggy prediction. The model is then optimized151

using gradient descent with the binary cross-entropy loss. After training the probe for bug detection,152

we then examine the learned attention weights ā which provide token-level fault localization.153

3.3 From Token-level to Code-level Localization154

A major challenge with this approach is that tokens are not interpretable for programmers. Therefore,155

we provide a method to aggregate token-level fault localization into a code-level localization. Our156

approach is summarized in lines 6 to 8 of Algorithm 1. In our experiments, we focus on line-level157

granularity, but this method also allows us to perform statement-level and function-level localization158

without any significant modifications.159

Line 5 of Algorithm 1 computes the token-level attention scores, and we call āi the probe’s attention160

score for the ith token. To produce a line-level attention score, we sum the attention scores for all161

tokens in the ith line, si = [āi1 , āi2 , . . . ], to produce li, the probe’s attention score for the ith line.162

The computation of line-level attention scores is shown in line 7 of Algorithm 1.163

Line 8 of Algorithm 1 shows that the resulting line-level localization from BAP is the ranking of164

input lines based on their respective attention scores. In practice, we truncate to the top-k lines out of165

total lines L. The line with the highest attention score is thus noted as the top-1 prediction.166

4 Experiments167

We evaluate BAP over a diverse suite of eight fault localization benchmarks. This includes Defects4J168

[11], the most popular fault localization benchmark, as well as seven additional benchmarks covering169

three general bug types. In the rest of this section, we first introduce the datasets, then the baseline170

methods, and finally the results of each experiment. We answer the following research questions in171

this section: RQ1: How effective is BAP at FL in diverse scenarios? RQ2: How does the efficiency172

of BAP compare to baselines? RQ3: Can BAP effectively localize multi-line bugs? RQ4: How does173

the generalization ability of BAP compare to zero-shot prompting of the base model?174

4.1 Datasets175

We evaluate on eight datasets summarized below. The dataset summary is in Table 1 and a detailed176

breakdown is in Appendix A.1.177

• Defects4J: Bugs along with commits to fix the bug. We use two versions of the dataset: the178

standard Defects4J v1.2.0 [11] containing 395 bugs, and the additional 543 bugs from Defects4J179

v3.0.1 released in November 2024, which we use as a stronger evaluation of generalization. In both180

versions, we split each buggy file into a set of buggy methods and evaluate on the method level181

following Wu et al. [8].182
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Table 1: A summary of the datasets we use for our evaluation. For a further breakdown of buggy
samples into categories, see our discussion in Appendix A.1.

# Train # Test

Dataset Bug Clean Bug Clean E[LoC]

Defects4J v1.2.0 368 368 90 90 35.8
Defects4J v3.0.1 N/A N/A 437 N/A 46.7
GitHub-Py 1323 1323 400 400 9.3
GitHub-J 1370 1370 460 460 19.3
DeepFix 1475 1475 365 365 26.3
TSSB 4085 3745 1104 1080 24.8
ManySStuBs4J 3821 3821 1093 1093 15.5
Juliet-J 4039 3061 1011 989 62.5
Juliet-C 3718 3697 966 939 44.7

Table 2: Comparison of BAP with existing FL methods across eight benchmarks. We evaluate
line-level localization performance on a method-level context, measured by top-1 accuracy. From
left-to-right: Defects4J v1.2.0, GitHub-Python, GitHub-Java, DeepFix, TSSB-3M, ManySStuBs4J,
Juliet-Java, and Juliet-C. Error bars are provided in Appendix B.

Method D4J GH-Py GH-J DeepFix TSSB MS4J Juliet-J Juliet-C Avg.

Random 0.144 0.100 0.134 0.038 0.069 0.124 0.025 0.058 0.087

DeepFL 0.144 N/A N/A N/A N/A N/A N/A N/A 0.144
SmartFL 0.158 N/A N/A N/A N/A N/A N/A N/A 0.158
TRANSFER-FL 0.218 N/A N/A N/A N/A N/A N/A N/A 0.218

CodeLlama-70B 0.212 0.145 0.316 0.084 0.077 0.169 0.038 0.095 0.142
Llama-3.3-70B 0.269 0.225 0.272 0.092 0.114 0.211 0.072 0.040 0.162
Qwen2.5-72B 0.157 0.333 0.289 0.124 0.088 0.194 0.061 0.040 0.161
DeepSeek-R1-Llama-70B 0.221 0.188 0.218 0.035 0.138 0.185 0.041 0.025 0.131
GPT-4o 0.249 0.375 0.365 0.097 0.089 0.240 0.009 0.026 0.181

Linear Probe Llama-3.2-11B 0.279 0.373 0.300 0.140 0.202 0.235 0.048 0.043 0.202
LLMAO-Llama-3.2-11B 0.144 0.190 0.188 0.078 0.118 0.116 0.063 0.113 0.126
WELL-CodeBERT 0.090 0.575 0.532 0.129 0.094 0.111 0.216 0.059 0.226
WELL-Llama-3.2-11B 0.236 0.028 0.139 0.000 0.054 0.081 0.000 0.000 0.067
GridLoc-Llama-3.2-11B 0.291 0.498 0.206 0.332 0.262 0.339 0.158 0.039 0.266

BAP-Llama-3.2-11B 0.334 0.575 0.568 0.481 0.237 0.291 0.096 0.217 0.350

• GitHub-Python [19] and GitHub-Java [20]: Code mined from GitHub with syntax errors in183

Python and Java, respectively.184

• DeepFix [12]: Real C programs written by students, some containing beginner syntax mistakes.185

• TSSB-3M [16]: “Simple, stupid bugs” (SStuBs) in Python mined from GitHub and categorized.186

Despite their name, these bugs are extremely challenging for humans to localize.187

• ManySStuBs4J [1]: Java SStuBs.188

• Juliet-Java [21] and Juliet-C [22]: Synthetic code corresponding to Common Weakness Enumera-189

tions (CWEs). We rename variables and function names to remove indicators of the vulnerability,190

remove comments, and rename imports that refer to the dataset names. In total, we consider 89191

CWEs across both Juliet datasets.192

4.2 Baselines193

We group the baselines into three types: traditional FL methods that require code execution, LLM194

prompting of different models, and LLM probing/training.195

Traditional FL Methods For methods requiring code execution, we compare with DeepFL [23],196

SmartFL [24], and TRANSFER-FL [7] on Defects4J since these are the best performing traditional197

FL methods. Results for DeepFL and Transfer-FL are from Yang et al. [6], and we cite SmartFL198
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Table 3: Resource efficiency across methods
for localizing Defects4J bugs. We measure
GPU overhead (GB) and expected inference
cost (FLOPs). BAP models shown are trained
on Llama-3.2 models of their respective sizes

Model Top-1 GPU (GB) E[FLOPs]

Llama-3.2-90B 0.269 170.0 3.4e13
CodeLlama-70B 0.212 131.7 7.9e12
Qwen2.5-72B 0.157 138.9 4.2e12
Llama-3.3-70B 0.269 154.0 3.4e13
DeepSeek-R1 0.221 141.2 1.4e14

BAP-1B 0.282 6.2 2.0e9
BAP-11B 0.334 24.2 2.2e10

1 3 11 90
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Figure 3: Model scale versus Top-1 on D4J

results directly from Zeng et al. [24]. We can not evaluate these benchmarks on the other datasets199

since they do not provide tests.200

Prompting Methods For models, we use a diverse set of four open-weights LLMs of size ∼70B as201

well as a proprietary model. We consider Llama 3.3 70B [25], Qwen 2.5 72B [26], CodeLlama 70B202

[27], and DeepSeek-R1-Distill-Llama-70B [28] as the main open-weights LLMs and we use GPT-4o203

[29] as the representative proprietary LLM for prompting experiments. Llama 3.3 70B and Qwen 2.5204

72B are LLMs pretrained on a diverse dataset of natural language and code while CodeLlama 70B205

additionally trained on primarily code data [27]. DeepSeek-R1-Distill-Llama-70B is a “reasoning”206

model in that it can use longer chain-of-thought output to solve more complex problems [28].207

We experimented with several prompts based on that used by Wu et al. [8]. Our prompt asks for the208

buggy line text as well as the line number in case the LLM cannot count lines. We use this prompt209

with temperature 0 sampling for all models. The prompt is provided in Appendix A.2.210

Probing Methods We evaluate the following LLM probing baselines:211

• Linear Probing: Logistic regression on the last-token representation to predict bugs. Following Zou212

et al. [30], we extend predictions to token-level scores and aggregate to line rankings as in BAP.213

• GridLoc [18]: An RNN-based attention probing method. We train it for bug detection on HDet and214

interpret its attention weights with our line-aggregation method.215

• LLMAO [6]: Adapter trained with strong FL supervision, originally for CodeGen [31]. We use the216

largest CodeGen model and adapt their code to Llama-3.2-11B.217

• WELL [9]: Learns FL without strong supervision by finetuning CodeBERT [32] (a bidirectional218

attention LLM) for bug detection and interpreting last-layer attention. We also report results on219

Llama-3.2-11B despite its causal attention.220

4.3 RQ1: FL Performance221

For FL, given a program fragment with bugs, each method ranks the lines of the input program222

based on the likeliness of the bug being located to that line. We note that our method was not223

trained with direct localization information and instead makes use of weak supervision even though224

baselines (such as LLMAO) use strong FL supervision. WELL is the only baseline which uses weak225

supervision, similar to our method [9].226

We compare the size of the model which BAP is trained on to the model’s zero-shot FL capabilities in227

Figure 3. We focus on top-1 accuracy for Defects4J since it is the most widely used FL benchmark.228

FL performance of BAP and baselines on eight datasets is shown in Table 2. For comparison with229

prior work on Defects4J, we use 10-fold cross validation with method-level context following Wu230

et al. [8]. Results for DeepFL, TRANSFER-FL, and Smart-FL are taken from Yang et al. [6], Zeng231

et al. [24]. “N/A” indicates baselines requiring tests only available for Defects4J. BAP improves over232

the strongest baseline by 34.6% top-1 accuracy on average, including gains of 19.7% on Defects4J233

v1.2.0 and 128% on Juliet-C. The next best method is GridLoc, a probing method we adapted.234
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Training classifiers with weak supervision from fault detection is insufficient for localization: WELL235

with Llama-3.2-11B performs worse than random guessing, nearly always predicting the first line,236

which is rarely buggy. This issue does not occur with CodeBERT, which uses bidirectional attention.237

Prompting ∼70B-parameter LLMs outperforms traditional FL methods requiring code execution.238

GPT-4o (rumored >200B) performs comparably to Llama-3.3-70B, while DeepSeek-R1-Distill-239

Llama-70B underperforms its base model, producing overly cautious ∼1000-token chain-of-thoughts240

that flag benign lines as buggy. Section 4.4 discusses scaling trends of prompting and probing.241

4.4 RQ2: Efficiency242

Figure 3 compares BAP trained on a 1B LLM with zero-shot prompting of larger models, focusing243

on Defects4J top-1 accuracy. BAP consistently outperforms zero-shot prompting—even for 70B+244

models—though the margin narrows as model size increases.245

While BAP scales linearly with log model size, prompting shows “emergent behavior” [33]. To test246

limits, we scaled as far as resources allowed, evaluated GPT-4o via API, and tested DeepSeek-R1-247

Distill-Llama-70B with test-time scaling; none exceeded BAP. Surprisingly, the DeepSeek reasoning248

model performed worse than its base Llama-3.3-70B.249

4.5 RQ3: Localizing Multi-line Bugs250

Since our method produces a ranking for every line of the input, our method is better suited for251

directly finding multiple bugs at once, or multi-line bugs. Since the top-k accuracy metric only cares252

if at least one of the top k predictions are correct, we additionally use the precision at k (P@k) metric253

which measures the percent of true buggy lines in the top k predictions. The exact formula is provided254

in Appendix C. We compare BAP and baselines on Defects4J v1.2.0 in terms of P@k in Table 4.255

4.6 RQ4: New Bug and Length Generalization256

10 20 30 40 50+
Lines of Code (LoC)

0.0

0.2

0.4

0.6

To
p-1

 A
cc

ura
cy

GPT-4o
Llama3.3-70B
BAP-Llama3.2-11B
Random

Figure 4: Top-1 accuracy versus con-
text length, measured by lines of code
(LOC) on Defects4J. We compare BAP-
Llama3.2-11B against models at least six
times larger.

Apart from efficiency as discussed above, we investigate257

several differences between BAP and zero-shot prompt-258

ing of the underlying model.259

New Bug Generalization We evaluate BAP compared260

to LLM prompting and probing on 543 new bugs from261

Defects4J v3.0.1 in Table 5. Our method and probing262

baselines are only trained on Defects4J v1.2.0, so this263

serves as an unbiased evaluation on the ability of these264

methods to generalize to new bugs. Our method, as well265

as the baselines, drop in performance for the new bugs,266

but BAP maintains the highest top-k accuracy (14.4%267

increase in top-1 over the strongest baseline).268

Context Length Generalization We compare the behav-269

ior of BAP to prompting in terms of length generaliza-270

tion in Figure 4. We see that BAP outperforms zero-shot271

prompting of various LLMs across context lengths from272

10 to 50 lines. On code fragments of 60 lines and longer,273

all methods perform near random, making fault localiza-274

tion on code over 50 lines a challenging, but valuable275

task for future work. We visualize the output of BAP on276

two examples in Figure 5.277

5 Related Work278

We survey related work in FL techniques and LLM probing.279

Automated Fault Localization. Methods for FL include the traditional spectrum-based (SBFL) and280

mutation-based (MBFL) methods which require executable code and deep-learning based approaches281

[34]. SBFL methods are simple but have low accuracy while MBFL and deep learning approaches282
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Table 4: Precision@K for multi-line bugs. Eval-
uated on a subset of Defects4J where functions
contain two or more buggy lines.

Method P@2 P@3 P@5

Random 0.201 0.231 0.297

CodeLlama-70B 0.250 0.284 0.351
Llama-3.3-70B 0.240 0.266 0.355
Qwen2.5-72B 0.221 0.271 0.347
DeepSeek-R1DL-70B 0.245 0.283 0.336
GPT-4o 0.218 0.288 0.359

BAP-Llama-3.2-11B 0.289 0.298 0.367

Table 5: Comparison with LLMAO on 437 new
bugs from Defects4J v3.0.1.

Defects4J v3.0.1

Method Top-1 Top-3 Top-5

Random 0.166 0.377 0.512

CodeLlama-70B 0.152 0.276 0.326
Llama-3.3-70B 0.215 0.416 0.528
Qwen-2.5-72B 0.161 0.395 0.515
GPT-4o 0.181 0.451 0.579

Linear Probe Llama-3.2-11B 0.156 0.409 0.557
LLMAO-Llama-3.2-11B 0.174 0.389 0.515
GridLoc-Llama-3.2-11B 0.165 0.377 0.512

BAP-Llama-3.2-11B 0.246 0.459 0.583

0.03 def dec(self, enc):
0.07 enc = self._unwrap(enc)
0.11 enc = list(map(ord, enc))
0.10 plain = [e ^ s for e, s in zip(enc, self.spinner_ord)]
0.28 plain = plain[1: 1 + plain[0]
0.25 plain = ''.join(map(chr, plain))
0.16 return plain

0.21 public void removeValue(int index) {
0.15 this.keys.remove(index);
0.15 this.values.remove(index);
0.28 if (index < this.keys.size()) {
0.11 rebuildIndex();
0.05 }
0.06 }

1/31/25, 3:37 AM HTML preview

about:blank 1/1

(a) Python syntax error

0.03 def dec(self, enc):
0.07 enc = self._unwrap(enc)
0.11 enc = list(map(ord, enc))
0.10 plain = [e ^ s for e, s in zip(enc, self.spinner_ord)]
0.28 plain = plain[1: 1 + plain[0]
0.25 plain = ''.join(map(chr, plain))
0.16 return plain

0.21 public void removeValue(int index) {
0.15 this.keys.remove(index);
0.15 this.values.remove(index);
0.28 if (index < this.keys.size()) {
0.11 rebuildIndex();
0.05 }
0.06 }

1/31/25, 3:37 AM HTML preview

about:blank 1/1

(b) Defects4J bug

Figure 5: Examples of bug localization with BAP on two evaluation set samples. We visualize the
line-level weights from BAP above such that lines highlighted in a darker color have higher weights.
BAP correctly identifies bug locations at Top-1.

have higher accuracy at larger computational cost [34]. Various deep learning approaches combine283

SBFL and MBFL with semantic features from deep models [23, 7, 24]. Recently, LLMs have284

significantly outperformed SBFL and MBFL approaches on FL on the method level [8]. Prompting285

and agent-based systems can even perform repository-level FL [35, 36], but they must reduce286

the problem to method-level FL [35]. LLMAO [6] trains an adapter on an LLM from strong FL287

supervision to perform FL without executable tests, and WELL [9] finetunes an LLM on bug detection288

supervision and interprets the attention for FL. Unlike these approaches, our method uses LLM289

probing, and we leverage bug detection supervision to scale to more available data.290

Probing LLMs. Probing is useful tool in LLM interpretability. There is extensive work on probing291

LLMs, most notably BERT [37], to understand what linguistic knowledge it encodes. Hewitt and292

Manning [38] design a probe for eliciting natural language syntax parse trees from BERT, and293

Hernández López et al. [39] probe for the code abstract syntax trees. These probes are usually294

trained on a fixed size input [30], but pooling sequence representations using global weights [17] and295

sample-conditional weights [18] have been studied. Unlike these approaches, we adopt a traditional296

Transformer layer as our probe where the attention module learns to pool the input tokens.297

6 Conclusion298

In this paper, we approach the problem of scalable FL, and propose a method for achieving state-299

of-the-art FL performance at a fraction of the model inference cost by training on available data300

without strong FL supervision. Existing methods for fault localization either require executable code,301

test cases, finegrained line-level supervision, or resource intensive LLMs. To this end, we propose302

Bug Attention Probe (BAP), an LLM probing method which uses an attention mechanism to learn to303

localize bugs from only coarse-grained bug detection supervision. Using a suite of eight diverse FL304

benchmarks, we demonstrate that BAP significantly outperforms existing fault localization techniques305

as well as LLM prompting of models over ten times larger than that used by our probe. We also306

identify avenues for future research including FL on long-code samples (over 50 lines), creation307

of more bug detection datasets by running existing bug detectors on large repositories of code, and308

execution-free FL on the file and project-level.309
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A Additional Experimental Details438

A.1 Datasets439

The detailed breakdown of each of the datasets we used, other than Defects4J. We split datasets440

into groups based on the three domains of syntax, single line bugs, and vulnerabilities and show the441

breakdown in Table 6, 7, and 8 respectively.442

Table 6: Number of samples in syntax datasets.
Subtype GitHub-Python GitHub-Java DeepFix

Train Test Train Test Train Test

Correct syntax 1323 400 1370 460 1475 365
Mismatched parentheses 400 100 110 100 400 100
Mismatched bracket 368 100 60 60 81 31
Mismatched brace 155 100 400 100 195 34
Missing semicolon — — 400 100 400 100
Python-specific 400 100 — — — —
Java-specific — — 400 100 — —
C-specific — — — — 400 100

Total 2646 800 2740 920 2950 730

Table 7: Number of samples in SStuBs datasets.
Subtype TSSB ManySStuBs

Train Test Train Test

No bug 3745 1080 3821 1093
Change identifier 400 100 400 100
Change numeral 400 100 400 100
Change binary operator 400 100 400 100
Change unary operator 202 100 301 100
Less specific if 281 100 400 100
More specific if 400 100 400 100
Same function less args 400 100 266 100
Same function more args 400 100 400 100
Swap arguments 81 80 94 93
Swap boolean literal 381 100 360 100
Python specific 400 100 — —
Java specific — — 400 100

Total 7830 2184 7642 2186

A.2 Few-shot Prompts443

For all prompting experiments, we use zero-shot prompting with the prompt given below:444

445
Q: P l e a s e a n a l y z e t h e f o l l o w i n g code s n i p p e t f o r p o t e n t i a l bugs .446

Re tu rn t h e f a u l t447

l o c a l i z a t i o n r e s u l t i n JSON format , c o n s i s t i n g o f f i v e JSON448

o b j e c t s c a l l e d449

" f a u l t L o c a l i z a t i o n " . These " f a u l t L o c a l i z a t i o n " o b j e c t s c o r r e s p o n d450

t o t h e t o p451

f i v e most s u s p i c i o u s l i n e s o f code . Each " f a u l t L o c a l i z a t i o n "452

c o n t a i n s two453

f i e l d s : 1 ) " c o d e C o n t e n t " s t r i n g which c o n t a i n s t h e l i n e o f code454

t h a t c o r r e s p o n d s455
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Table 8: Number of samples in security vulnerabilities datasets.
CWE Class Juliet-Java Juliet-C

Train Test Train Test

Access Control 677 178 609 159
Comparison 38 11 14 4
Concurrency 21 11 172 48
Encryption 616 154 278 72
Exposed Resource 574 141 934 236
File Handling 1056 256 — —
Implementation 104 27 144 37
Improper Check or Handling of Exceptional Conditions 37 10 604 152
Improper Input Validation 523 128 304 76
Improper Neutralization — — 60 16
Incorrect Calculation 40 10 99 27
Injection 2368 571 304 76
Insufficient Control Flow Management 161 49 259 69
Memory Safety 342 86 847 217
Poor Coding Practices 665 175 1820 465
Protection Mechanism Failure — — 28 8
Randomness 52 14 14 4
Resource Control 534 126 — —
Resource Lifecycle Management 80 22 841 215
Sensitive Information Exposure 112 31 84 24

t o s u s p i c i o u s code i n t h e s n i p p e t and 2) " l ineNumber " i n t e g e r456

which i n d i c a t e s t h e457

l i n e number o f t h i s s u s p i c i o u s code . Outpu t j u s t t h e JSON o b j e c t s458

" f a u l t L o c a l i z a t i o n " and NOTHING ELSE .459

‘ ‘ ‘460

{ code −example }461

‘ ‘ ‘462463

A.3 Hyperparameters464

For BAP, we trained for 30 epochs with a learning rate of 1e−4, a batch size of 16, and weight decay465

of 1 for all datasets except for the TSSB dataset where we needed to use less training epochs to avoid466

overfitting. For TSSB, we trained for 5 epochs with a learning rate of 1e−4, a batch size of 16, and467

weight decay of 1. For the architecture of BAP, we used grouped query attentino with 32 query heads468

and 8 key-value heads to match the architecture of the Llama-3.2-11B attention mechanism. For the469

ablation of Llama-3.2-90B, we used 64 query heads with 8 key-value heads.470

For the linear probing baseline and GridLoc, we trained for 30 epochs with a learning rate of 1e−4, a471

batch size of 16, and weight decay of 0.1 for all datasets.472

Parameters were chosen by splitting the training set with an 80/20 split into train and validation473

samples, and selecting hyperparameters from the results on the validation set.474

A.4 Compute resources475

All experiments are conducted on a server with 96 Intel Xeon Gold 6248R CPUs, each with a clock476

speed of 3.00 GHz, and 8 NVIDIA A100 GPUs, each with a capacity of 40GB.477

The WELL baseline is the most compute intensive of the methods we explore because it requires478

fintuning an LLM. To finetune Llama-3.2-11B, we had to use LoRA [40] with rank 16 to make479

training this model accessible. GridLoc takes around twice the training time as BAP, and all the other480

baselines take 2-3 minutes for one training run on a single dataset.481
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Table 9: Comparison of BAP with existing fault localization methods across eight diverse bug
benchmarks. We evaluate each method on line-level localization performance at the method-level,
measured by top-1 localization accuracy. From left-to-right: Defects4J v1.2.0, GitHub-Python,
GitHub-Java, DeepFix, TSSB-3M, ManySStuBs4J, Juliet-Java, and Juliet-C.

Method D4J GH-Py GH-J DeepFix TSSB MS4J Juliet-J Juliet-C

Random 0.144 0.100 0.134 0.038 0.069 0.124 0.025 0.058

DeepFL 0.144 N/A N/A N/A N/A N/A N/A N/A
SmartFL 0.158 N/A N/A N/A N/A N/A N/A N/A
TRANSFER-FL 0.218 N/A N/A N/A N/A N/A N/A N/A

CodeLlama-70B 0.212 0.145 0.316 0.084 0.077 0.169 0.038 0.095
Llama-3.3-70B 0.269 0.225 0.272 0.092 0.114 0.211 0.072 0.040
Qwen2.5-72B 0.157 0.333 0.289 0.124 0.088 0.194 0.061 0.040
DeepSeek-R1-Distill-Llama-70B 0.221 0.188 0.218 0.035 0.138 0.185 0.041 0.025
GPT-4o 0.249 0.375 0.365 0.097 0.089 0.240 0.009 0.026

Linear Probe Llama-3.2-11B 0.279±0.02 0.373±0.01 0.300±0.01 0.140±0.01 0.202±0.01 0.235±0.01 0.048±0.00 0.043±0.01
LLMAO-CodeGen 0.223 N/A N/A N/A N/A N/A N/A N/A
LLMAO-Llama-3.2-11B 0.144 0.190 0.078
WELL-CodeBERT 0.090 0.575 0.532 0.129 0.094 0.111 0.216 0.059
WELL-Llama-3.2-11B 0.236 0.028 0.139 0.000 0.054 0.081 0.000 0.000
GridLoc-Llama-3.2-11B 0.291±0.02 0.498±0.08 0.206±0.08 0.332±0.03 0.262±0.03 0.339±0.03 0.158±0.04 0.039±0.01

BAP-Llama-3.2-11B 0.334±0.02 0.575±0.02 0.568±0.01 0.481±0.04 0.237±0.02 0.291±0.04 0.096±0.03 0.217±0.00

B Additional Results482

B.1 Error Bars for FL Results483

Error bars for the results in Table 2 are provided in Table 9. The prompting methods have no error484

bars because we use greedy decoding.485

C Precision at k486

The precision at k (P@k) metric which we use is calculated as:487

Correct in top k

min(k,Max possible correct)
.

We use the min in the denominator to account for the case where the number of buggy lines is much488

fewer than k. This is practically relevant since many bugs consist of only 2-3 buggy lines which is489

less than k for P@5.490
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