
Where’s the Bug? Attention Probing for Scalable Fault
Localization

Adam Stein∗

University of Pennsylvania
steinad@seas.upenn.edu

Arthur Wayne∗
University of Pennsylvania

artwayne@seas.upenn.edu

Aaditya Naik
University of Pennsylvania
asnaik@seas.upenn.edu

Mayur Naik
University of Pennsylvania
mhnaik@seas.upenn.edu

Eric Wong
University of Pennsylvania
exwong@seas.upenn.edu

Abstract

Ensuring code correctness remains a challenging problem even as large language
models (LLMs) become increasingly capable at code-related tasks. While LLM-
based program repair systems can propose bug fixes using only a user’s bug
report, their effectiveness is fundamentally limited by their ability to perform fault
localization (FL), a challenging problem for both humans and LLMs. Existing
FL approaches rely on executable test cases, require training on costly and often
noisy line-level annotations, or demand resource-intensive LLMs. In this paper, we
present Bug Attention Probe (BAP), a method which learns state-of-the-art fault
localization without any direct localization labels, outperforming traditional FL
baselines and prompting of large-scale LLMs. We evaluate our approach across a
variety of code settings, including real-world Java bugs from the standard Defects4J
dataset as well as seven other datasets which span a diverse set of bug types and
languages. Averaged across all eight datasets, BAP improves by 34.6% top-1
accuracy compared to the strongest baseline and 93.4% over zero-shot prompting
GPT-4o. BAP is also significantly more efficient than prompting, outperforming
large open-weight models at a small fraction of the computational cost.2

1 Introduction

Correctness is a fundamental desirable property of code. Both human-written and LLM-generated
code are prone to bugs [1, 2] including syntax errors that prevent the execution of code, semantic
mistakes that cause incorrect or unintended behaviors, and vulnerabilities that compromise security in
otherwise correct code. While there are various methods for detecting bugs (e.g. failed tests, user bug
reports, program crashes, etc.), identifying its root cause, or localizing the bug, is still costly [3, 4].

Automated software fault localization (FL) aims to help a programmer answer the question, “Where’s
the bug?”, ideally pointing to specific lines of buggy code. The traditional FL approaches rely
on executable tests to determine the buggy lines [5]. Without relying on tests, FL is even more
challenging since such a system must reason about what is buggy without external feedback. But
recently, supervised training of models on large, labeled datasets [6, 7], and prompting of the largest
LLMs such as GPT-4o has shown promise at FL without tests [8]. On a single method context,
large-scale supervised training and prompting approaches can significantly surpass the traditional
techniques which need tests [6, 8].

∗Equal contribution.
2BAP is open-sourced here: https://github.com/adaminsky/BAP

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
pretability.

https://github.com/adaminsky/BAP

Integer vote;
public void addVote(int age) {
if (age >= 18) {

 System.out.println(
"You're a minor!");

 } else {
 vote++;
 System.out.println(

"You can vote!");
 }
}

Input: Java program snippet

1
2
3
4
5
6
7
8
9

10
11

🐞

🐞

Executable
Unit Tests DeepFL

SLM
Llama-3.2-1B

Our Method: Bug Attention Probing

BAP is scalable:
- Trained without strong FL labels, and
- Outperforms with small models (SLM).

C
od

e-
le
ve

l
At

te
nt
io
n
Pr

ob
in
g

Desired Output: Lines 3, 7

LLM
 Llama-3.2-90B

Integer vote;
public void addVote(int age) {
 if (age >= 18) {
 System.out.println(

"You're a minor!");

Scalability of baselines is inhibited:
- Require executable tests (DeepFL) or

large-scale models (LLM).

} else {
 vote++;
 System.out.println(
 "You can vote!");
 }
}

Figure 1: Comparison of our approach Bug Attention Probe (BAP) with baselines DeepFL and LLM
prompting on a Java program snippet. The program has two bugs: the age condition on line 3 is
reversed and line 6 throws a null pointer exception. BAP correctly localizes both bugs. Here, our
method is trained on Llama-3.2-1B, a “small" language model (SLM), with only weak supervision i.e.
binary bug presence labels. Obtaining comparable accuracy via prompting demands a significantly
more resource-intensive LLM, such as Llama-3.2-90B, or larger. Previous approaches like DeepFL
require executable test cases before they can attempt to provide useful information.

State-of-the-art FL methods, however, are still limited in scalability, or the ability to leverage cheaply
available supervision to reach strong performance, even with small models. This lack of scalability
leads to the impracticality of many FL techniques. For example, we show a simple buggy Java code
snippet in Figure 1 which we want to run FL on, but we encounter several issues: traditional methods
require executable tests and LLM prompting methods are only effective for the largest of models. On
large codebases, LLMs must be called at least once per function, which quickly becomes expensive.
Further, training-based approaches assume extensive amounts of strong supervision for FL, which is
rarely available in practice [9].

This leads to our central question: How do we achieve strong fault localization performance without
relying on executable tests, costly large-scale LLMs, or strong supervision?

We answer this question by proposing the Bug Attention Probe (BAP), a scalable LLM probing
technique for FL, scaling to use available bug related data without strong FL supervision and scaling
with base model size while still achieving strong performance with small models. BAP exhibits
three desirable properties: (1) lightweight, (2) code-level localization, and (3) localization of multi-
line bugs. First, lightweight refers to the limited requirement for supervision (we use an attention
mechanism to learn from binary bug presence rather than fine-grained location supervision), the test-
free nature, and the model size (BAP can probe small language models (SLMs) to elicit performance
significantly stronger than the underlying SLM). Second, BAP localizes bugs in a human-interpretable
manner to expressions, statements, or lines in code, even though LLMs operate on the token level.
Third, BAP localizes multi-line bugs, or multiple bugs in one method, better than existing approaches.
Multi-line bugs are practically relevant since the majority of real bugs are multi-line [10].

To evaluate BAP, we use eight diverse and widely-used fault localization benchmarks, including
syntax errors, semantic mistakes, and weaknesses. Our evaluation suite covers over 50,000 code
samples across three languages: Python, Java, and C. This notably includes Defects4J [11], the most
commonly used FL dataset.

We evaluate BAP on top of the Llama-3 family of models and compare it to state-of-the-art FL
methods, including traditional test-based FL and prompting of various proprietary and open-weights
LLMs. Averaged across eight datasets, BAP improves by 23.4% over the strongest baselines for
top-1 FL accuracy which includes a 24.2% improvement for Defects4J, and a 50.5% improvement on
DeepFix [12]. In addition, BAP achieves these performance improvements at over ten times greater
efficiency in terms of model size and FLOPs for inference. BAP also localizes multi-line bugs better
than existing methods and continues to have stronger performance than prompting for longer code
sequences. While BAP significantly outperforms competitive baselines, it is able to achieve 35%

2

def foo ():
 a = ict Entry (base ())
 del a [' missing ']

def foo (base () [EOS]
def foo():

 a = ict Entry (base()
 del a [' missing ']

🐞

...

...

🧊 Frozen LLM

def foo (base ()) [EOS]

MLP

Attention: raw attention score of
each token w.r.t. last (EOS) token.

Input program

Weak Supervision: learn to
classify the entire program as

buggy or non-buggy. 🫧
Attention

BAP

Tokenized input

 1

 2

/ 0.20
/ 0.42
/ 0.38

 3

Strong Localization:
Aggregate attention weights to

rank the most buggy lines.

🐞

 D

 D

))

Figure 2: Illustration of BAP as a method to elicit line-level fault localization from a frozen LLM
through weak supervision. In step one, the probe is trained as a binary classifier to distinguish buggy
from non-buggy code. Then in step two, we visualize the learned attention weights on the given
sequence. Finally, in step three, we sum the attention weights within each line to produce a line-level
“bugginess” score. BAP localizes the bug to the line with the highest score, the Top-1 result.

top-1 FL accuracy on average over our datasets, and our evaluation highlights avenues for further
advances in scalable FL.

In summary, our work makes the following contributions:

• We propose Bug Attention Probe (BAP) as a general method for scalable fault localization, requiring
only coarse-grained detection supervision and eschewing the need for localization labels (Section 3).

• BAP significantly improves over state-of-the-art fault localization methods by 34.6% top-1 accuracy
on average over eight fault localization benchmarks while using ten times less memory and FLOPs.

• BAP exhibits better length generalization and can predict multi-line bugs more effectively than
prompting. We also identify areas for further advances.

2 Background

We introduce fault localization, LLM probing, and challenges with existing FL techniques.

2.1 Fault Localization

Before defining bug localization, we first describe the problem of bug detection, or determining if
code is overall buggy or not. A bug is a concept b : P → {0, 1} where P is the space of all programs.
For a bug b, we construct a supervised detection dataset DDet = {(p, b(p)) | p ∈ P} consisting of
programs labeled as buggy or not buggy.

Bug localization is the task of identifying the line (or lines) of code where a bug occurs. A bug
localizer is a mapping l : P → Z+ from programs to one or more line numbers. For a program p ∈ P
split into lines [p0, . . . , pk], where pi is the ith line of program p, we define the ground truth bug
localization using the notion of a counterfactual explanation: a program has a bug localized to line i if
modifying pi would remove the bug. Formally, for program p such that b(p) = 1, bug b is localized to
line i if there exists a modified line p′i such that b(p′) = 0 where p′ = [p0, . . . , pi−1, p

′
i, pi+1, . . . , pk].

Some bugs require multi-line fixes, in which case changing multiple lines of the program would fix
the bug. We therefore assume that the ground truth localization consists of one or more lines of code.
We can now define a localization dataset containing direct line-level supervision:

DLoc ={(p, 0,∅) | p ∈ P and b(p) = 0} ∪ {(p, 1, l(p)) | p ∈ P and b(p) = 1}.

2.2 LLM Probing

LLM probing involves training a classifier on top of intermediate states from a model [13]. Since all
probing techniques are trained from a dataset of model hidden representations, we start by introducing
this dataset in our setting.

For a program fragment p consisting of T tokens, we call the intermediate representation from LLM
layer k, LLMRep(p, k) = z ∈ RT×d where d is the hidden dimension of the LLM. The dataset we

3

use for probing in the rest of this paper is the following:

HDet = {(LLMRep(p, k), y) : (p, y) ∈ DDet}.

We can also define HLoc equivalently which additionally includes the ground truth line numbers with
each sample, but as we discuss later, this dataset is not ideal for training.

These datasets, HDet and HLoc, are not directly amenable to standard probing since each sample,
LLMRep(p, k), is a sequence of hidden representations varying in length across samples. Producing
a general-purpose fixed-length sequence representation from an autoregressive LLM is a challenging
problem [14], so probing methods typically apply a simple pooling operation, POOL : RT×d → R1×d,
such as selecting the last token or averaging all tokens. Specific to using HLoc, existing work takes
the approach of converting the labels l(p) into a binary mask over the buggy program lines so that a
model can be trained to predict such masks [6].

2.3 Challenges

We highlight three main challenges for FL.

Need for Strong Supervision. High-quality FL datasets are rare due to the heavy manual effort
required: a failing test may reveal a bug but not its cause. As a result, real-world datasets are either
small (e.g., Defects4J with 395 samples [11]) or noisy (e.g., ManySStuBs4J [1]). In our experiments,
methods trained on such data perform worse than those avoiding strong supervision.

Localizing Multi-line Bugs. Most real-world bugs span multiple lines [10], yet existing FL methods
and datasets mainly target single-line bugs [15, 1, 16].

Resource Efficiency. State-of-the-art FL performance requires large LLMs on method-level context,
but these models are resource-intensive, API-restricted, and costly when used repeatedly. By contrast,
traditional execution-based FL methods can run locally in an IDE with modest resources.

3 Attention Probing for Fault Localization

In this section, we introduce our approach for addressing the previous challenges.

We propose the Bug Attention Probe (BAP), an LLM probing technique for performing FL which
provides scalability through lightweight requirements (both in terms of training supervision and
model size), interpretable code-level localization, and handling of multi-line bugs. We take inspiration
from attention probing [17, 18], a technique from the interpretability literature for studying linguistic
phenomena such as the attention placed on verb tokens, but we use such an approach for code-level
FL, as in localizing bugs to lines within code.

We illustrate BAP, its process of training from bug detection data, HDet, and the computation of
line-level bug localization from attention weights in Figure 2.

3.1 Why Attention Probing for Fault Localization?

Our main motivation for using an attention mechanism is that the attention pooling operation trained
for the task of bug detection encourages the probe to learn to attend to the location of bugs, without
strong FL supervision. Intuitively, the probe attends to parts of the code which are more informative
for bug detection, and we hypothesize that these locations often correspond to the location of bugs.

For bugs which are localized to multiple lines, which is the majority of real world faults, an attention
mechanism is also helpful since it operates on the token-level, making no distinction between a single
and multi-line bug location.

Finally, an attention mechanism is efficient since it operates over all tokens in parallel. This means
that a complete ranking of all the program lines in terms of the likelihood they contain a bug is
produced by a single forward pass of attention. This is in contrast to methods such as LLM prompting
which must continue to output more tokens to localize a bug to more lines.

4

Algorithm 1 BAP Line-level Fault Localization

1: Input: code sample p, layer k.
2: Tokenize p to get p = [t1, . . . , tT].
3: z = LLMRep(p, k)
4: v, a = MHA(z) where v ∈ RT×d and a ∈ RM×T×T

5: ā = 1
M

∑M
m=1 am,−1,: {Average attention over all heads, for the last token}

6: Group attention scores into lines: s1 = [ā1, . . . , āi], s2 = [āi+1, . . . , āi+j], . . .
7: li =

∑
t∈si

t for all i {Line-level attention score}
8: Return: argsorti∈[1,L] li

3.2 From Weak Supervision to Token-level Localization

To enable learning FL from weak supervision, we use a single layer Transformer decoder block as
the architecture of BAP to factorize the bug detection task into localization (attention) over tokens
and detection (classification) on the sequence-level. The input to the probe consists of a sequence of
token representations from the kth layer of the LLM, LLMRep(p, k) = [z1, . . . , zT] ∈ RT×d, for a
program p consisting of T tokens. The standard multi-head attention mechanism takes LLMRep(p, k)
as input and outputs attention scores a ∈ RM×T×T where M is the number of attention heads, and
processed token representations v ∈ RT×d. We compute token-level attention scores of all tokens to
the final token as ā = 1

M

∑M
m=1 am,−1,: ∈ RT where we average the attention from each head. The

process of producing token-level attention from input code is also shown in lines 1-5 of Algorithm 1.

To get useful token-level attention from our model, we must train it on a downstream task. To train
BAP, we use weak supervision from a bug detection dataset, HDet defined in Section 2. We pass the
last token from the processed sequence v from the attention through a feed-forward network (MLP)
to produce a scalar output representing the buggy/non-buggy prediction. The model is then optimized
using gradient descent with the binary cross-entropy loss. After training the probe for bug detection,
we then examine the learned attention weights ā which provide token-level fault localization.

3.3 From Token-level to Code-level Localization

A major challenge with this approach is that tokens are not interpretable for programmers. Therefore,
we provide a method to aggregate token-level fault localization into a code-level localization. Our
approach is summarized in lines 6 to 8 of Algorithm 1. In our experiments, we focus on line-level
granularity, but this method also allows us to perform statement-level and function-level localization
without any significant modifications.

Line 5 of Algorithm 1 computes the token-level attention scores, and we call āi the probe’s attention
score for the ith token. To produce a line-level attention score, we sum the attention scores for all
tokens in the ith line, si = [āi1 , āi2 , . . .], to produce li, the probe’s attention score for the ith line.
The computation of line-level attention scores is shown in line 7 of Algorithm 1.

Line 8 of Algorithm 1 shows that the resulting line-level localization from BAP is the ranking of
input lines based on their respective attention scores. In practice, we truncate to the top-k lines out of
total lines L. The line with the highest attention score is thus noted as the top-1 prediction.

4 Experiments

We evaluate BAP over a diverse suite of eight fault localization benchmarks. This includes Defects4J
[11], the most popular fault localization benchmark, as well as seven additional benchmarks covering
three general bug types. In the rest of this section, we first introduce the datasets, then the baseline
methods, and finally the results of each experiment. We answer the following research questions in
this section: RQ1: How effective is BAP at FL in diverse scenarios? RQ2: How does the efficiency
of BAP compare to baselines? RQ3: Can BAP effectively localize multi-line bugs? RQ4: How does
the generalization ability of BAP compare to zero-shot prompting of the base model?

5

Table 1: A summary of the datasets we use for our evaluation. For a further breakdown of buggy
samples into categories, see our discussion in Appendix A.1.

Train # Test

Dataset Bug Clean Bug Clean E[LoC]

Defects4J v1.2.0 368 368 90 90 35.8
Defects4J v3.0.1 N/A N/A 437 N/A 46.7
GitHub-Py 1323 1323 400 400 9.3
GitHub-J 1370 1370 460 460 19.3
DeepFix 1475 1475 365 365 26.3
TSSB 4085 3745 1104 1080 24.8
ManySStuBs4J 3821 3821 1093 1093 15.5
Juliet-J 4039 3061 1011 989 62.5
Juliet-C 3718 3697 966 939 44.7

Table 2: Comparison of BAP with existing FL methods across eight benchmarks. We evaluate
line-level localization performance on a method-level context, measured by top-1 accuracy. From
left-to-right: Defects4J v1.2.0, GitHub-Python, GitHub-Java, DeepFix, TSSB-3M, ManySStuBs4J,
Juliet-Java, and Juliet-C. Error bars are provided in Appendix B.

Method D4J G-Py G-J DF TSSB MS4J J-J J-C Avg.

Random 0.144 0.100 0.134 0.038 0.069 0.124 0.025 0.058 0.087

DeepFL 0.144 N/A N/A N/A N/A N/A N/A N/A 0.144
SmartFL 0.158 N/A N/A N/A N/A N/A N/A N/A 0.158
TRANSFER-FL 0.218 N/A N/A N/A N/A N/A N/A N/A 0.218

CodeLlama-70B 0.212 0.145 0.316 0.084 0.077 0.169 0.038 0.095 0.142
Llama-3.3-70B 0.269 0.225 0.272 0.092 0.114 0.211 0.072 0.040 0.162
Qwen2.5-72B 0.157 0.333 0.289 0.124 0.088 0.194 0.061 0.040 0.161
DeepSeek-R1-Llama-70B 0.221 0.188 0.218 0.035 0.138 0.185 0.041 0.025 0.131
GPT-4o 0.249 0.375 0.365 0.097 0.089 0.240 0.009 0.026 0.181

Linear Probe Llama-3.2-11B 0.279 0.373 0.300 0.140 0.202 0.235 0.048 0.043 0.202
LLMAO-Llama-3.2-11B 0.144 0.190 0.188 0.078 0.118 0.116 0.063 0.113 0.126
WELL-CodeBERT 0.090 0.575 0.532 0.129 0.094 0.111 0.216 0.059 0.226
WELL-Llama-3.2-11B 0.236 0.028 0.139 0.000 0.054 0.081 0.000 0.000 0.067
GridLoc-Llama-3.2-11B 0.291 0.498 0.206 0.332 0.262 0.339 0.158 0.039 0.266

BAP-Llama-3.2-11B 0.334 0.575 0.568 0.481 0.237 0.291 0.096 0.217 0.350

4.1 Datasets

We evaluate on eight datasets summarized below. The dataset summary is in Table 1 and a detailed
breakdown is in Appendix A.1.

• Defects4J: Bugs along with commits to fix the bug. We use two versions of the dataset: the
standard Defects4J v1.2.0 [11] containing 395 bugs, and the additional 543 bugs from Defects4J
v3.0.1 released in November 2024, which we use as a stronger evaluation of generalization. In both
versions, we split each buggy file into a set of buggy methods and evaluate on the method level
following Wu et al. [8].

• GitHub-Python [19] and GitHub-Java [20]: Code mined from GitHub with syntax errors in
Python and Java, respectively.

• DeepFix [12]: Real C programs written by students, some containing beginner syntax mistakes.
• TSSB-3M [16]: “Simple, stupid bugs” (SStuBs) in Python mined from GitHub and categorized.

Despite their name, these bugs are extremely challenging for humans to localize.
• ManySStuBs4J [1]: Java SStuBs.
• Juliet-Java [21] and Juliet-C [22]: Synthetic code corresponding to Common Weakness Enumera-

tions (CWEs). We rename variables and function names to remove indicators of the vulnerability,
remove comments, and rename imports that refer to the dataset names. In total, we consider 89
CWEs across both Juliet datasets.

6

Table 3: Resource efficiency across methods
for localizing Defects4J bugs. We measure
GPU overhead (GB) and expected inference
cost (FLOPs). BAP models shown are trained
on Llama-3.2 models of their respective sizes

Model Top-1 GPU (GB) E[FLOPs]

Llama-3.2-90B 0.269 170.0 3.4e13
CodeLlama-70B 0.212 131.7 7.9e12
Qwen2.5-72B 0.157 138.9 4.2e12
Llama-3.3-70B 0.269 154.0 3.4e13
DeepSeek-R1 0.221 141.2 1.4e14

BAP-1B 0.282 6.2 2.0e9
BAP-11B 0.334 24.2 2.2e10

1 3 11 90
Model Scale (Billion Parameters)

0.10

0.15

0.20

0.25

0.30

0.35

To
p-1

 A
cc

ura
cy BAP

Llama3.2
GPT-4o
CodeLlama
Qwen2.5
Random

Figure 3: Model scale versus Top-1 on D4J

4.2 Baselines

We group the baselines into three types: traditional FL methods that require code execution, LLM
prompting of different models, and LLM probing/training.

Traditional FL Methods For methods requiring code execution, we compare with DeepFL [23],
SmartFL [24], and TRANSFER-FL [7] on Defects4J since these are the best performing traditional
FL methods. Results for DeepFL and Transfer-FL are from Yang et al. [6], and we cite SmartFL
results directly from Zeng et al. [24]. We can not evaluate these benchmarks on the other datasets
since they do not provide tests.

Prompting Methods For models, we use a diverse set of four open-weights LLMs of size ∼70B as
well as a proprietary model. We consider Llama 3.3 70B [25], Qwen 2.5 72B [26], CodeLlama 70B
[27], and DeepSeek-R1-Distill-Llama-70B [28] as the main open-weights LLMs and we use GPT-4o
[29] as the representative proprietary LLM for prompting experiments. Llama 3.3 70B and Qwen 2.5
72B are LLMs pretrained on a diverse dataset of natural language and code while CodeLlama 70B
additionally trained on primarily code data [27]. DeepSeek-R1-Distill-Llama-70B is a “reasoning”
model in that it can use longer chain-of-thought output to solve more complex problems [28].

We experimented with several prompts based on that used by Wu et al. [8]. Our prompt asks for the
buggy line text as well as the line number in case the LLM cannot count lines. We use this prompt
with temperature 0 sampling for all models. The prompt is provided in Appendix A.2.

Probing Methods We evaluate the following LLM probing baselines:

• Linear Probing: Logistic regression on the last-token representation to predict bugs. Following Zou
et al. [30], we extend predictions to token-level scores and aggregate to line rankings as in BAP.

• GridLoc [18]: An RNN-based attention probing method. We train it for bug detection on HDet and
interpret its attention weights with our line-aggregation method.

• LLMAO [6]: Adapter trained with strong FL supervision, originally for CodeGen [31]. We use the
largest CodeGen model and adapt their code to Llama-3.2-11B.

• WELL [9]: Learns FL without strong supervision by finetuning CodeBERT [32] (a bidirectional
attention LLM) for bug detection and interpreting last-layer attention. We also report results on
Llama-3.2-11B despite its causal attention.

4.3 RQ1: FL Performance

For FL, given a program fragment with bugs, each method ranks the lines of the input program
based on the likeliness of the bug being located to that line. We note that our method was not
trained with direct localization information and instead makes use of weak supervision even though
baselines (such as LLMAO) use strong FL supervision. WELL is the only baseline which uses weak
supervision, similar to our method [9].

We compare the size of the model which BAP is trained on to the model’s zero-shot FL capabilities in
Figure 3. We focus on top-1 accuracy for Defects4J since it is the most widely used FL benchmark.

7

FL performance of BAP and baselines on eight datasets is shown in Table 2. For comparison with
prior work on Defects4J, we use 10-fold cross validation with method-level context following Wu
et al. [8]. Results for DeepFL, TRANSFER-FL, and Smart-FL are taken from Yang et al. [6], Zeng
et al. [24]. “N/A” indicates baselines requiring tests only available for Defects4J. BAP improves over
the strongest baseline by 34.6% top-1 accuracy on average, including gains of 19.7% on Defects4J
v1.2.0 and 128% on Juliet-C. The next best method is GridLoc, a probing method we adapted.

Training classifiers with weak supervision from fault detection is insufficient for localization: WELL
with Llama-3.2-11B performs worse than random guessing, nearly always predicting the first line,
which is rarely buggy. This issue does not occur with CodeBERT, which uses bidirectional attention.

Prompting ∼70B-parameter LLMs outperforms traditional FL methods requiring code execution.
GPT-4o (rumored >200B) performs comparably to Llama-3.3-70B, while DeepSeek-R1-Distill-
Llama-70B underperforms its base model, producing overly cautious ∼1000-token chain-of-thoughts
that flag benign lines as buggy. Section 4.4 discusses scaling trends of prompting and probing.

4.4 RQ2: Efficiency

Figure 3 compares BAP trained on a 1B LLM with zero-shot prompting of larger models, focusing
on Defects4J top-1 accuracy. BAP consistently outperforms zero-shot prompting—even for 70B+
models—though the margin narrows as model size increases.

While BAP scales linearly with log model size, prompting shows “emergent behavior” [33]. To test
limits, we scaled as far as resources allowed, evaluated GPT-4o via API, and tested DeepSeek-R1-
Distill-Llama-70B with test-time scaling; none exceeded BAP. Surprisingly, the DeepSeek reasoning
model performed worse than its base Llama-3.3-70B.

4.5 RQ3: Localizing Multi-line Bugs

Since our method produces a ranking for every line of the input, our method is better suited for
directly finding multiple bugs at once, or multi-line bugs. Since the top-k accuracy metric only cares
if at least one of the top k predictions are correct, we additionally use the precision at k (P@k) metric
which measures the percent of true buggy lines in the top k predictions. The exact formula is provided
in Appendix C. We compare BAP and baselines on Defects4J v1.2.0 in terms of P@k in Table 4.

4.6 RQ4: New Bug and Length Generalization

10 20 30 40 50+
Lines of Code (LoC)

0.0

0.2

0.4

0.6

To
p-1

 A
cc

ura
cy

GPT-4o
Llama3.3-70B
BAP-Llama3.2-11B
Random

Figure 4: Top-1 accuracy versus con-
text length, measured by lines of code
(LOC) on Defects4J. We compare BAP-
Llama3.2-11B against models at least six
times larger.

Apart from efficiency as discussed above, we investigate
several differences between BAP and zero-shot prompt-
ing of the underlying model.

New Bug Generalization We evaluate BAP compared
to LLM prompting and probing on 543 new bugs from
Defects4J v3.0.1 in Table 5. Our method and probing
baselines are only trained on Defects4J v1.2.0, so this
serves as an unbiased evaluation on the ability of these
methods to generalize to new bugs. Our method, as well
as the baselines, drop in performance for the new bugs,
but BAP maintains the highest top-k accuracy (14.4%
increase in top-1 over the strongest baseline).

Context Length Generalization We compare the behav-
ior of BAP to prompting in terms of length generaliza-
tion in Figure 4. We see that BAP outperforms zero-shot
prompting of various LLMs across context lengths from
10 to 50 lines. On code fragments of 60 lines and longer,
all methods perform near random, making fault localiza-
tion on code over 50 lines a challenging, but valuable
task for future work. We visualize the output of BAP on
two examples in Figure 5.

8

Table 4: Precision@K for multi-line bugs. Eval-
uated on a subset of Defects4J where functions
contain two or more buggy lines.

Method P@2 P@3 P@5

Random 0.201 0.231 0.297

CodeLlama-70B 0.250 0.284 0.351
Llama-3.3-70B 0.240 0.266 0.355
Qwen2.5-72B 0.221 0.271 0.347
DeepSeek-R1DL-70B 0.245 0.283 0.336
GPT-4o 0.218 0.288 0.359

BAP-Llama-3.2-11B 0.289 0.298 0.367

Table 5: Comparison with LLMAO on 437 new
bugs from Defects4J v3.0.1.

Defects4J v3.0.1

Method Top-1 Top-3 Top-5

Random 0.166 0.377 0.512

CodeLlama-70B 0.152 0.276 0.326
Llama-3.3-70B 0.215 0.416 0.528
Qwen-2.5-72B 0.161 0.395 0.515
GPT-4o 0.181 0.451 0.579

Linear Probe Llama-3.2-11B 0.156 0.409 0.557
LLMAO-Llama-3.2-11B 0.174 0.389 0.515
GridLoc-Llama-3.2-11B 0.165 0.377 0.512

BAP-Llama-3.2-11B 0.246 0.459 0.583

0.03 def dec(self, enc):
0.07 enc = self._unwrap(enc)
0.11 enc = list(map(ord, enc))
0.10 plain = [e ^ s for e, s in zip(enc, self.spinner_ord)]
0.28 plain = plain[1: 1 + plain[0]
0.25 plain = ''.join(map(chr, plain))
0.16 return plain

0.21 public void removeValue(int index) {
0.15 this.keys.remove(index);
0.15 this.values.remove(index);
0.28 if (index < this.keys.size()) {
0.11 rebuildIndex();
0.05 }
0.06 }

1/31/25, 3:37 AM HTML preview

about:blank 1/1

(a) Python syntax error

0.03 def dec(self, enc):
0.07 enc = self._unwrap(enc)
0.11 enc = list(map(ord, enc))
0.10 plain = [e ^ s for e, s in zip(enc, self.spinner_ord)]
0.28 plain = plain[1: 1 + plain[0]
0.25 plain = ''.join(map(chr, plain))
0.16 return plain

0.21 public void removeValue(int index) {
0.15 this.keys.remove(index);
0.15 this.values.remove(index);
0.28 if (index < this.keys.size()) {
0.11 rebuildIndex();
0.05 }
0.06 }

1/31/25, 3:37 AM HTML preview

about:blank 1/1

(b) Defects4J bug

Figure 5: Examples of bug localization with BAP on two evaluation set samples. We visualize the
line-level weights from BAP above such that lines highlighted in a darker color have higher weights.
BAP correctly identifies bug locations at Top-1.

5 Related Work

We survey related work in FL techniques and LLM probing.

Automated Fault Localization. Methods for FL include the traditional spectrum-based (SBFL) and
mutation-based (MBFL) methods which require executable code and deep-learning based approaches
[34]. SBFL methods are simple but have low accuracy while MBFL and deep learning approaches
have higher accuracy at larger computational cost [34]. Various deep learning approaches combine
SBFL and MBFL with semantic features from deep models [23, 7, 24]. Recently, LLMs have
significantly outperformed SBFL and MBFL approaches on FL on the method level [8]. Prompting
and agent-based systems can even perform repository-level FL [35, 36], but they must reduce
the problem to method-level FL [35]. LLMAO [6] trains an adapter on an LLM from strong FL
supervision to perform FL without executable tests, and WELL [9] finetunes an LLM on bug detection
supervision and interprets the attention for FL. Unlike these approaches, our method uses LLM
probing, and we leverage bug detection supervision to scale to more available data.

Probing LLMs. Probing is useful tool in LLM interpretability. There is extensive work on probing
LLMs, most notably BERT [37], to understand what linguistic knowledge it encodes. Hewitt and
Manning [38] design a probe for eliciting natural language syntax parse trees from BERT, and
Hernández López et al. [39] probe for the code abstract syntax trees. These probes are usually
trained on a fixed size input [30], but pooling sequence representations using global weights [17] and
sample-conditional weights [18] have been studied. Unlike these approaches, we adopt a traditional
Transformer layer as our probe where the attention module learns to pool the input tokens.

6 Conclusion

In this paper, we approach the problem of scalable FL, and propose a method for achieving state-
of-the-art FL performance at a fraction of the model inference cost by training on available data
without strong FL supervision. Existing methods for fault localization either require executable code,
test cases, finegrained line-level supervision, or resource intensive LLMs. To this end, we propose
Bug Attention Probe (BAP), an LLM probing method which uses an attention mechanism to learn to

9

localize bugs from only coarse-grained bug detection supervision. Using a suite of eight diverse FL
benchmarks, we demonstrate that BAP significantly outperforms existing fault localization techniques
as well as LLM prompting of models over ten times larger than that used by our probe. We also
identify avenues for future research including FL on long-code samples (over 50 lines), creation
of more bug detection datasets by running existing bug detectors on large repositories of code, and
execution-free FL on the file and project-level.

Acknowledgements

This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship under Grant No. DGE-2236662 and the Google Research Fellowship.

References
[1] Rafael-Michael Karampatsis and Charles Sutton. How often do single-statement bugs occur?

the manysstubs4j dataset. In Proceedings of the 17th International Conference on Mining
Software Repositories, pages 573–577, 2020.

[2] Kevin Jesse, Toufique Ahmed, Premkumar T Devanbu, and Emily Morgan. Large language
models and simple, stupid bugs. In 2023 IEEE/ACM 20th International Conference on Mining
Software Repositories (MSR), pages 563–575. IEEE, 2023.

[3] Iris Vessey. Expertise in debugging computer programs: A process analysis. International
Journal of Man-Machine Studies, 23(5):459–494, 1985.

[4] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey on software
fault localization. IEEE Transactions on Software Engineering, 42(8):707–740, 2016. doi:
10.1109/TSE.2016.2521368.

[5] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why don’t
software developers use static analysis tools to find bugs? In 2013 35th International Conference
on Software Engineering (ICSE), pages 672–681, 2013. doi: 10.1109/ICSE.2013.6606613.

[6] Aidan Z. H. Yang, Claire Le Goues, Ruben Martins, and Vincent Hellendoorn. Large language
models for test-free fault localization. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ICSE ’24, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400702174. doi: 10.1145/3597503.3623342. URL
https://doi.org/10.1145/3597503.3623342.

[7] Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. Improving fault
localization and program repair with deep semantic features and transferred knowledge. In
Proceedings of the 44th International Conference on Software Engineering, pages 1169–1180,
2022.

[8] Yonghao Wu, Zheng Li, Jie M Zhang, Mike Papadakis, Mark Harman, and Yong Liu. Large
language models in fault localisation. arXiv preprint arXiv:2308.15276, 2023.

[9] Huangzhao Zhang, Zhuo Li, Jia Li, Zhi Jin, and Ge Li. Well: Applying bug detectors to bug
localization via weakly supervised learning. Journal of Software: Evolution and Process, 36(9):
e2669, 2024. doi: https://doi.org/10.1002/smr.2669. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/smr.2669.

[10] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D Ernst, Deric
Pang, and Benjamin Keller. Evaluating & improving fault localization techniques. University of
Washington Department of Computer Science and Engineering, Seattle, WA, USA, Tech. Rep.
UW-CSE-16-08-03, page 27, 2016.

[11] René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database of existing faults to
enable controlled testing studies for java programs. In Proceedings of the 2014 international
symposium on software testing and analysis, pages 437–440, 2014.

10

https://doi.org/10.1145/3597503.3623342
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2669
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2669

[12] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix: Fixing common c
language errors by deep learning. In Proceedings of the aaai conference on artificial intelligence,
volume 31, 2017.

[13] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644, 2016.

[14] Tian Yu Liu, Matthew Trager, Alessandro Achille, Pramuditha Perera, Luca Zancato, and
Stefano Soatto. Meaning representations from trajectories in autoregressive models. arXiv
preprint arXiv:2310.18348, 2023.

[15] Thomas Hirsch. A fault localization and debugging support framework driven by bug tracking
data. In 2020 IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), pages 139–142. IEEE, 2020.

[16] Cedric Richter and Heike Wehrheim. Tssb-3m: Mining single statement bugs at massive scale.
In Proceedings of the 19th International Conference on Mining Software Repositories, pages
418–422, 2022.

[17] Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas McCoy, Najoung
Kim, Benjamin Van Durme, Samuel R Bowman, Dipanjan Das, et al. What do you learn from
context? probing for sentence structure in contextualized word representations. In International
Conference on Learning Representations, 2018.

[18] Jingcheng Niu, Wenjie Lu, and Gerald Penn. Does bert rediscover a classical nlp pipeline?
In Proceedings of the 29th International Conference on Computational Linguistics, pages
3143–3153, 2022.

[19] Michihiro Yasunaga and Percy Liang. Break-it-fix-it: Unsupervised learning for program repair.
In International conference on machine learning, pages 11941–11952. PMLR, 2021.

[20] Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle, and José Nelson
Amaral. Syntax and sensibility: Using language models to detect and correct syntax errors. In
2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 311–322. IEEE, 2018.

[21] Juliet java 2023, 2023. URL https://samate.nist.gov/SARD/test-suites/111.

[22] Juliet c/c++ 2023, 2023. URL https://samate.nist.gov/SARD/test-suites/112.

[23] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. Deepfl: Integrating multiple fault diagnosis
dimensions for deep fault localization. In Proceedings of the 28th ACM SIGSOFT international
symposium on software testing and analysis, pages 169–180, 2019.

[24] Muhan Zeng, Yiqian Wu, Zhentao Ye, Yingfei Xiong, Xin Zhang, and Lu Zhang. Fault
localization via efficient probabilistic modeling of program semantics. In Proceedings of the
44th International Conference on Software Engineering, pages 958–969, 2022.

[25] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[26] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[27] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation
models for code. arXiv preprint arXiv:2308.12950, 2023.

[28] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

11

https://samate.nist.gov/SARD/test-suites/111
https://samate.nist.gov/SARD/test-suites/112

[29] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[30] Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
top-down approach to ai transparency. arXiv preprint arXiv:2310.01405, 2023.

[31] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=iaYcJKpY2B_.

[32] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun
Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained model
for programming and natural languages. In Trevor Cohn, Yulan He, and Yang Liu, editors,
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1536–1547,
Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
findings-emnlp.139. URL https://aclanthology.org/2020.findings-emnlp.139/.

[33] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. Transactions on Machine Learning Research, 2022.

[34] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey on software fault
localization. IEEE Transactions on Software Engineering, 42(8):707–740, 2016.

[35] Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

[36] Yihao Qin, Shangwen Wang, Yiling Lou, Jinhao Dong, Kaixin Wang, Xiaoling Li, and Xi-
aoguang Mao. Agentfl: Scaling llm-based fault localization to project-level context. arXiv
preprint arXiv:2403.16362, 2024.

[37] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association
for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.
org/N19-1423.

[38] John Hewitt and Christopher D Manning. A structural probe for finding syntax in word
representations. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4129–4138, 2019.

[39] José Antonio Hernández López, Martin Weyssow, Jesús Sánchez Cuadrado, and Houari
Sahraoui. Ast-probe: Recovering abstract syntax trees from hidden representations of pre-
trained language models. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, pages 1–11, 2022.

[40] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. In International Conference
on Learning Representations, 2022.

12

https://openreview.net/forum?id=iaYcJKpY2B_
https://aclanthology.org/2020.findings-emnlp.139/
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423

A Additional Experimental Details

A.1 Datasets

The detailed breakdown of each of the datasets we used, other than Defects4J. We split datasets
into groups based on the three domains of syntax, single line bugs, and vulnerabilities and show the
breakdown in Table 6, 7, and 8 respectively.

Table 6: Number of samples in syntax datasets.
Subtype GitHub-Python GitHub-Java DeepFix

Train Test Train Test Train Test

Correct syntax 1323 400 1370 460 1475 365
Mismatched parentheses 400 100 110 100 400 100
Mismatched bracket 368 100 60 60 81 31
Mismatched brace 155 100 400 100 195 34
Missing semicolon — — 400 100 400 100
Python-specific 400 100 — — — —
Java-specific — — 400 100 — —
C-specific — — — — 400 100

Total 2646 800 2740 920 2950 730

Table 7: Number of samples in SStuBs datasets.
Subtype TSSB ManySStuBs

Train Test Train Test

No bug 3745 1080 3821 1093
Change identifier 400 100 400 100
Change numeral 400 100 400 100
Change binary operator 400 100 400 100
Change unary operator 202 100 301 100
Less specific if 281 100 400 100
More specific if 400 100 400 100
Same function less args 400 100 266 100
Same function more args 400 100 400 100
Swap arguments 81 80 94 93
Swap boolean literal 381 100 360 100
Python specific 400 100 — —
Java specific — — 400 100

Total 7830 2184 7642 2186

A.2 Few-shot Prompts

For all prompting experiments, we use zero-shot prompting with the prompt given below:

Q: P l e a s e a n a l y z e t h e f o l l o w i n g code s n i p p e t f o r p o t e n t i a l bugs .
Re tu rn t h e f a u l t

l o c a l i z a t i o n r e s u l t i n JSON format , c o n s i s t i n g o f f i v e JSON
o b j e c t s c a l l e d

" f a u l t L o c a l i z a t i o n " . These " f a u l t L o c a l i z a t i o n " o b j e c t s c o r r e s p o n d
t o t h e t o p

f i v e most s u s p i c i o u s l i n e s o f code . Each " f a u l t L o c a l i z a t i o n "
c o n t a i n s two

f i e l d s : 1) " c o d e C o n t e n t " s t r i n g which c o n t a i n s t h e l i n e o f code
t h a t c o r r e s p o n d s

13

Table 8: Number of samples in security vulnerabilities datasets.
CWE Class Juliet-Java Juliet-C

Train Test Train Test

Access Control 677 178 609 159
Comparison 38 11 14 4
Concurrency 21 11 172 48
Encryption 616 154 278 72
Exposed Resource 574 141 934 236
File Handling 1056 256 — —
Implementation 104 27 144 37
Improper Check or Handling of Exceptional Conditions 37 10 604 152
Improper Input Validation 523 128 304 76
Improper Neutralization — — 60 16
Incorrect Calculation 40 10 99 27
Injection 2368 571 304 76
Insufficient Control Flow Management 161 49 259 69
Memory Safety 342 86 847 217
Poor Coding Practices 665 175 1820 465
Protection Mechanism Failure — — 28 8
Randomness 52 14 14 4
Resource Control 534 126 — —
Resource Lifecycle Management 80 22 841 215
Sensitive Information Exposure 112 31 84 24

t o s u s p i c i o u s code i n t h e s n i p p e t and 2) " l ineNumber " i n t e g e r
which i n d i c a t e s t h e

l i n e number o f t h i s s u s p i c i o u s code . Outpu t j u s t t h e JSON o b j e c t s
" f a u l t L o c a l i z a t i o n " and NOTHING ELSE .
‘ ‘ ‘
{ code −example }
‘ ‘ ‘

A.3 Hyperparameters

For BAP, we trained for 30 epochs with a learning rate of 1e−4, a batch size of 16, and weight decay
of 1 for all datasets except for the TSSB dataset where we needed to use less training epochs to avoid
overfitting. For TSSB, we trained for 5 epochs with a learning rate of 1e−4, a batch size of 16, and
weight decay of 1. For the architecture of BAP, we used grouped query attentino with 32 query heads
and 8 key-value heads to match the architecture of the Llama-3.2-11B attention mechanism. For the
ablation of Llama-3.2-90B, we used 64 query heads with 8 key-value heads.

For the linear probing baseline and GridLoc, we trained for 30 epochs with a learning rate of 1e−4, a
batch size of 16, and weight decay of 0.1 for all datasets.

Parameters were chosen by splitting the training set with an 80/20 split into train and validation
samples, and selecting hyperparameters from the results on the validation set.

A.4 Compute resources

All experiments are conducted on a server with 96 Intel Xeon Gold 6248R CPUs, each with a clock
speed of 3.00 GHz, and 8 NVIDIA A100 GPUs, each with a capacity of 40GB.

The WELL baseline is the most compute intensive of the methods we explore because it requires
fintuning an LLM. To finetune Llama-3.2-11B, we had to use LoRA [40] with rank 16 to make
training this model accessible. GridLoc takes around twice the training time as BAP, and all the other
baselines take 2-3 minutes for one training run on a single dataset.

14

Table 9: Comparison of BAP with existing fault localization methods across eight diverse bug
benchmarks. We evaluate each method on line-level localization performance at the method-level,
measured by top-1 localization accuracy. From left-to-right: Defects4J v1.2.0, GitHub-Python,
GitHub-Java, DeepFix, TSSB-3M, ManySStuBs4J, Juliet-Java, and Juliet-C.

Method D4J GH-Py GH-J DeepFix TSSB MS4J Juliet-J Juliet-C

Random 0.144 0.100 0.134 0.038 0.069 0.124 0.025 0.058

DeepFL 0.144 N/A N/A N/A N/A N/A N/A N/A
SmartFL 0.158 N/A N/A N/A N/A N/A N/A N/A
TRANSFER-FL 0.218 N/A N/A N/A N/A N/A N/A N/A

CodeLlama-70B 0.212 0.145 0.316 0.084 0.077 0.169 0.038 0.095
Llama-3.3-70B 0.269 0.225 0.272 0.092 0.114 0.211 0.072 0.040
Qwen2.5-72B 0.157 0.333 0.289 0.124 0.088 0.194 0.061 0.040
DeepSeek-R1-Distill-Llama-70B 0.221 0.188 0.218 0.035 0.138 0.185 0.041 0.025
GPT-4o 0.249 0.375 0.365 0.097 0.089 0.240 0.009 0.026

Linear Probe Llama-3.2-11B 0.279±0.02 0.373±0.01 0.300±0.01 0.140±0.01 0.202±0.01 0.235±0.01 0.048±0.00 0.043±0.01
LLMAO-CodeGen 0.223 N/A N/A N/A N/A N/A N/A N/A
LLMAO-Llama-3.2-11B 0.144 0.190 0.078
WELL-CodeBERT 0.090 0.575 0.532 0.129 0.094 0.111 0.216 0.059
WELL-Llama-3.2-11B 0.236 0.028 0.139 0.000 0.054 0.081 0.000 0.000
GridLoc-Llama-3.2-11B 0.291±0.02 0.498±0.08 0.206±0.08 0.332±0.03 0.262±0.03 0.339±0.03 0.158±0.04 0.039±0.01

BAP-Llama-3.2-11B 0.334±0.02 0.575±0.02 0.568±0.01 0.481±0.04 0.237±0.02 0.291±0.04 0.096±0.03 0.217±0.00

B Additional Results

B.1 Error Bars for FL Results

Error bars for the results in Table 2 are provided in Table 9. The prompting methods have no error
bars because we use greedy decoding.

C Precision at k

The precision at k (P@k) metric which we use is calculated as:

Correct in top k

min(k,Max possible correct)
.

We use the min in the denominator to account for the case where the number of buggy lines is much
fewer than k. This is practically relevant since many bugs consist of only 2-3 buggy lines which is
less than k for P@5.

15

	Introduction
	Background
	Fault Localization
	LLM Probing
	Challenges

	Attention Probing for Fault Localization
	Why Attention Probing for Fault Localization?
	From Weak Supervision to Token-level Localization
	From Token-level to Code-level Localization

	Experiments
	Datasets
	Baselines
	RQ1: FL Performance
	RQ2: Efficiency
	RQ3: Localizing Multi-line Bugs
	RQ4: New Bug and Length Generalization

	Related Work
	Conclusion
	Additional Experimental Details
	Datasets
	Few-shot Prompts
	Hyperparameters
	Compute resources

	Additional Results
	Error Bars for FL Results

	Precision at k

