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Abstract

Greedy layer-wise or module-wise training of neural networks is compelling in
constrained and on-device settings where memory is limited, as it circumvents a
number of problems of end-to-end back-propagation. However, it suffers from a
stagnation problem, whereby early layers overfit and deeper layers stop increasing
the test accuracy after a certain depth. We propose to solve this issue by introducing
a module-wise regularization inspired by the minimizing movement scheme for
gradient flows in distribution space. We call the method TRGL for Transport Regu-
larized Greedy Learning and study it theoretically, proving that it leads to greedy
modules that are regular and that progressively solve the task. Experimentally, we
show improved accuracy of module-wise training of various architectures such as
ResNets, Transformers and VGG, when our regularization is added, superior to
that of other module-wise training methods and often to end-to-end training, with
as much as 60% less memory usage.

1 Introduction

End-to-end backpropagation is the standard training method of neural networks. However, it requires
storing the whole model and computational graph during training, which requires large memory
consumption. It also prohibits training the layers in parallel. Dividing the network into modules,
a module being made up of one or more layers, accompanied by auxiliary classifiers, and greedily
solving module-wise optimization problems sequentially (i.e. one after the other fully) or in parallel
(i.e. at the same time batch-wise), consumes much less memory than end-to-end training as it does
not need to store as many activations, and when done sequentially, only requires loading and training
one module (so possibly one layer) at a time. Module-wise training has therefore been used in
constrained settings in which end-to-end training can be impossible such as training on mobile
devices [58, 57] and dealing with very large whole slide images [65]. When combined with batch
buffers, parallel module-wise training also allows for parallel training of the modules [8]. Despite its
simplicity, module-wise training has been recently shown to scale well [8, 47, 60, 45], outperforming
more complicated alternatives to end-to-end training such as synthetic [33, 14] and delayed [32, 31]
gradients, while having superior memory savings.

In a classification task, module-wise training splits the network into successive modules, a module
being made up of one or more layers. Each module takes as input the output of the previous module,
and each module has an auxiliary classifier so that a local loss can be computed, with backpropagation
happening only inside the modules and not between them (see Figure 1 below).

The main drawback of module-wise training is the well-documented stagnation problem observed in
[43, 7, 60, 47], whereby early modules overfit and learn more discriminative features than end-to-end
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training, destroying task-relevant information, and deeper modules don’t improve the test accuracy
significantly, or even degrade it, which limits the deployment of module-wise training. We further
highlight this phenomenon in Figures 2 and 3 in Section 4.4. To tackle this issue, InfoPro [60] propose
to maximize the mutual information that each module keeps with the input, in addition to minimizing
the loss. [7] make the auxiliary classifier deeper and Sedona [47] make the first module deeper. These
last two methods lack a theoretical grounding, while InfoPro requires a second auxiliary network
for each module besides the classifier. We propose a different perspective, leveraging the analogy
between residual connections and the Euler scheme for ODEs [61]. To preserve input information,
we minimize the kinetic energy of the modules along with the training loss. Intuitively, this forces
the modules to change their input as little as possible. We leverage connections with the theories of
gradient flows in distribution space and optimal transport to analyze our method theoretically.

Figure 1: Module-wise training.

Our approach is particularly well-adapted to networks that use residual connections such as ResNets
[27, 28], their variants (e.g. ResNeXt [62], Wide ResNet [63], EfficientNet [56] and MobileNetV2
[48]) and vision transformers that are made up essentially of residual connections [39, 17], but is
immediately usable on any network where many layers have the same input and output dimension
such as VGG [52]. Our contributions are the following:

• We propose a new method for module-wise training. Being a regularization, it is lighter
than many recent state-of-the-art methods (PredSim [45], InfoPro [60]) that train another
auxiliary network besides the auxiliary classifier for each module.

• We theoretically justify our method, proving that it is a transport regularization that forces
the module to be an optimal transport map making it more regular and stable. We also show
that it amounts to a discretization of the gradient flow of the loss in probability space, which
means that the modules progressively minimize the loss and explains why the method avoids
the accuracy collapse observed in module-wise training.

• Experimentally, we consistently improve the test accuracy of module-wise trained networks
(ResNets, VGG and Swin-Transformer) beating 8 other methods, in sequential and parallel
module-wise training, and also in multi-lap sequential training, a variant of sequential
module-wise training that we introduce and that performs better in many cases. In particular,
our regularization makes parallel module-wise training superior or comparable in accuracy
to end-to-end training, while consuming 10% to 60% less memory.

2 Transport-regularized module-wise training

The typical setting of (sequential) module-wise training for minimizing a loss L, is, given a dataset
D, to solve one after the other, for 1≤k≤K, Problems

(Tk, Fk) ∈ arg min
T,F

∑
x∈D

L(F, T ◦Gk−1(x)) (1)
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where Gk = Tk ◦ ... ◦ T1 for 1≤k≤K, G0=id, Tk is the module (one or many layers) and Fk is
an auxiliary classifier. Module Tk receives the output of module Tk−1, and auxiliary classifier Fk
computes the prediction from the output of Tk so the loss can be computed. The inputs are x and L has
access to their labels y to calculate the loss. i.e. L(F, T ◦Gk−1(x)) = l(F ◦ T ◦Gk−1(x), y) where
l is a machine learning loss such as cross-entropy. See Figure 1. The final network trained this way is
FK ◦GK . But, at inference, we can stop at any depth k and use Fk ◦Gk if it performs better. Indeed,
an intermediate module often performs as well or better than the last module because of the early
overfitting and subsequent stagnation or collapse problem of module-wise training [43, 7, 60, 47].

We propose below in (2) a regularization that avoids the destruction of task-relevant information
by the early modules by forcing them to minimally modify their input. Proposition 2.2 proves
that by using our regularization (2), we are indeed making the modules build upon each other to
solve the task, which is the property we desire in module-wise training, as the modules now act as
successive proximal optimization steps in the minimizing movement scheme optimization algorithm
for maximizing the separability of the data representation. The background on optimal transport
(OT), gradient flows and the minimizing movement scheme is in Appendices A and B.

2.1 Method statement

To keep greedily-trained modules from overfitting and destroying information needed later, we
penalize their kinetic energy to force them to preserve the geometry of the problem as much as
possible. If each module is a single residual block (that is a function T=id+r, which includes
many transformer architectures [39, 17]), its kinetic energy is simply the squared norm of its residue
r=T−id, which we add to the loss L in the target of the greedy problems (1). All layers that have
the same input and output dimension can be rewritten as residual blocks and the analysis applies to a
large variety of architectures such as VGG [52]. Given τ>0, we now solve, for 1≤k≤K, Problems

(T τk , F
τ
k ) ∈ arg min

T,F

∑
x∈D

L(F, T ◦Gτk−1(x)) +
1

2τ
‖T ◦Gτk−1(x)−Gτk−1(x)‖2 (2)

whereGτk=T τk ◦..◦T τ1 for 1≤k≤K andGτ0=id. The final network is F τK◦GτK . Intuitively, this biases
the modules towards moving the points as little as possible, thus at least keeping the performance of
the previous module. Residual connections are already biased towards small displacements and this
bias is desirable and should be encouraged [35, 64, 26, 15, 36]. But the method can be applied to any
module where T (x) and x have the same dimension so that T (x)−x can be computed.

To facilitate the theoretical analysis, we rewrite the method in a more general formulation using data
distribution ρ, which can be discrete or continuous, and the distribution-wide loss L that arises from
the point-wise loss L. Then Problem (2) is equivalent to Problem

(T τk , F
τ
k ) ∈ arg min

T,F
L(F, T]ρ

τ
k) +

1

2τ

∫
Ω

‖T (x)− x‖2 dρτk(x) (3)

with ρτk+1=(T τk )]ρ
τ
k, ρτ1=ρ and L(F, T]ρ

τ
k) =

∫
L(F, T (x)) dρτk(x) =

∫
L(F, z) dT]ρ

τ
k(x).

2.2 Link with the minimizing movement scheme

We now formulate our main result: solving Problems (3) is equivalent to following a minimizing
movement scheme (MMS) [50] in distribution space for minimizing Z(µ) := minF L(F, µ), which
is the loss of the best classifier. If we are limited to linear classifiers, Z(ρτk) is the linear separability
of the representation ρτk at module k of the data distribution ρ. The MMS, introduced in [24, 23], is a
metric counterpart to Euclidean gradient descent for minimizing functionals over distributions. In our
case, Z is the functional we want to minimize. We define the MMS below in Definition 2.1

The distribution space we work in is the metric Wasserstein space W2(Ω) = (P(Ω),W2), where
Ω ⊂ Rd is a convex compact set, P(Ω) is the set of probability distributions over Ω and W2 is the
Wasserstein distance over P(Ω) derived from the optimal transport problem with Euclidean cost:

W 2
2 (α, β) = min

T s.t. T]α=β

∫
Ω

‖T (x)− x‖2 dα(x) (4)

where we assume that ∂Ω is negligible and that the distributions are absolutely continous.
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Definition 2.1. Given Z : W2(Ω)→ R, and starting from ρτ1 ∈ P(Ω), the Minimizing Movement
Scheme (MMS) takes proximal steps for minimizing Z . It is s given by

ρτk+1 ∈ arg min
ρ∈P(Ω)

Z(ρ) +
1

2τ
W 2

2 (ρ, ρτk) (5)

The MMS (5) can be seen as a non-Euclidean implicit Euler step for following the gradient flow of
Z , and ρτk converges to a minimizer of Z under some conditions (see the end of this section).

So under the mentioned assumptions on Ω and absolute continuity of the distributions, we have that
Problems (3) are equivalent to the minimizing movement scheme (5):
Proposition 2.2. The distributions ρτk+1 = (T τk )]ρ

τ
k, where the functions T τk are found by solving

(3) and ρτ1 = ρ is the data distribution, coincide with the MMS (5) for Z = minF L(F, .).

Proof. The minimizing movement scheme (5) is equivalent to taking ρτk+1 = (T τk )]ρ
τ
k where

T τk ∈ arg min
T :Ω→Ω

Z(T]ρ
τ
k) +

1

2τ
W 2

2 (T]ρ
τ
k, ρ

τ
k) (6)

under conditions that guarantee the existence of a transport map between ρτk and any other measure,
and absolute continuity of ρτk suffices, and the loss can ensure that ρτk+1 is also absolutely continuous.
Among the functions T τk that solve problem (6), is the optimal transport map from ρτk to ρτk+1. To
solve specifically for this optimal transport map, we have to solve the equivalent Problem

T τk ∈ arg min
T
Z(T]ρ

τ
k) +

1

2τ

∫
Ω

‖T (x)− x‖2 dρτk(x) (7)

Problems (6) and (7) have the same minimum value, but the minimizer of (7) is now an optimal
transport map between ρτk and ρτk+1. This is immediate from the definition (4) of the W2 distance.
Equivalently minimizing first over F and then over T in (3), it follows from the definition of Z that
Problems (3) and (7) are equivalent, which concludes.

Since we solve Problems (3) over neural networks, their representation power shown by universal
approximation theorems [13, 29] is important to get close to equivalence between (5) and (3), as we
need to approximate an optimal transport map. We also know that the training of each module, if it is
shallow, converges [5, 6, 34, 22, 18].

If Z is lower-semi continuous then Problems (5) always admit a solution because P(Ω) is compact.
If Z is also λ-geodesically convex for λ>0, we have convergence of ρτk as k→∞ and τ→0 to
a minimizer of Z , potentially under more technical conditions (see Appendix B). Even though a
machine learning loss will usually not satisfy these conditions, this analysis offers hints as to why
our method avoids in practice the problem of stagnation or collapse in performance of module-wise
training as k increases, as we are making proximal local steps in Wasserstein space to minimize the
loss. This convergence discussion also suggests taking τ as small as possible and many modules.

2.3 Regularity result

As a secondary result, we show that Problem (3) has a solution and that the solution module T τk is an
optimal transport map between its input and output distributions, which means that it comes with
some regularity. [36] show that these networks generalize better and overfit less in practice. We
assume that the minimization in F is over a compact set F , that ρτk is absolutely continuous, that L is
continuous and non-negative, that Ω is convex and compact and that ∂Ω is negligible.
Proposition 2.3. Problem (3) has a minimizer (T τk , F

τ
k ) such that T τk is an optimal transport map.

And for any minimizer (T τk , F
τ
k ), T τk is an optimal transport map.

The proof is in Appendix C. OT maps have regularity properties under some boundedness assumptions.
Given Theorem A.1 in Appendix A taken from [20], T τk is η-Hölder continuous almost everywhere
and if the optimization algorithm we use to solve the discretized problem (2) returns an approximate
solution pair (F̃ τk , T̃

τ
k ) such that T̃ τk is an ε-optimal transport map, i.e. ‖T̃ τk − T τk ‖∞ ≤ ε, then we

have (using the triangle inequality) the following stability property of the module T̃ τk :

‖T̃ τk (x)− T̃ τk (y)‖ ≤ 2ε+ C‖x− y‖η (8)

4



for almost every x, y ∈ supp(ρτk) and C>0. Composing these stability bounds on T τk and T̃ τk allows
to get bounds for the composition networks Gτk and G̃τk=T̃ τk ◦ .. ◦ T̃ τ1 .

To summarize Section 2, the transport regularization makes each module more regular and it allows
the modules to build on each other as k increases to solve the task, which is the property we desire.

3 Practical implementation

3.1 Multi-block modules

For simplicity, we presented in (2) the case where each module is a single residual block. However,
in practice, we often split the network into modules that are made-up of many residual blocks each.
We show here that regularizing the kinetic energy of such modules still amounts to a transport
regularization, which means that the theoretical results in Propositions 2.2 and 2.3 still apply.

If each module Tk is made up of M residual blocks, i.e. applies xm+1=xm+rm(xm) for 0≤m<M ,
then its total discrete kinetic energy for a single data point x0 is the sum of its squared residue norms∑
‖rm(xm)‖2, since a residual network can be seen as a discrete Euler scheme for an ordinary

differential equation [61] with velocity field r:

xm+1 = xm + rm(xm) ←→ ∂txt = rt(xt) (9)

and
∑
‖rm(xm)‖2 is then the discretization of the total kinetic energy

∫ 1

0
‖rt(x)‖2 dt of the ODE.

If ψxm denotes the position of a point x after m residual blocks, then regularizing the kinetic energy
of multi-block modules now means solving

(T τk , F
τ
k ) ∈ arg min

T,F

∑
x∈D

(L(F, T (Gτk−1(x)) +
1

2τ

M−1∑
m=0

‖rm(ψxm)‖2) (10)

s.t. T = (id + rM−1) ◦ ... ◦ (id + r0), ψx0 = Gτk−1(x), ψxm+1 = ψxm + rm(ψxm)

whereGτk=T τk ◦..◦T τ1 for 1≤k≤K andGτ0=id. We also minimize this sum of squared residue norms
instead of ‖T (x)− x‖2 (the two no longer coincide) as it works better in practice, which we assume
is because it offers a more localized control of the transport. As expressed in (9), a residual network
can be seen as an Euler scheme of an ODE and Problem (10) is then the discretization of

(T τk , F
τ
k ) ∈ arg min

T,F
L(F, T]ρ

τ
k) +

1

2τ

∫ 1

0

‖vt‖2L2((φ·
t)]ρ

τ
k) dt (11)

s.t. T = φ·1, ∂tφ
x
t = vt(φ

x
t ), φ·0 = id

where ρτk+1 = (T τk )]ρ
τ
k and rm is the discretization of vector field vt at time t = m/M . Here,

distributions ρτk are pushed forward through the maps T τk which correspond to the flow φ at time
t = 1 of the kinetically-regularized velocity field vt. We recognize in the second term in the target of
(11) the optimal transport problem in its dynamic formulation (15) from [9], and given the equivalence
between the Monge OT problem (4) and the dynamic OT problem (15) in Appendix A, Problem (11)
is in fact equivalent to the original continuous formulation (3), and the theoretical results in Section 2
follow immediately (see also the proof of Proposition 2.3 in Appendix C).

3.2 Solving the module-wise problems

The module-wise problems can be solved in two ways. One can completely train each module with its
auxiliary classifier for N epochs before training the next module, which receives as input the output
of the previous trained module. We call this sequential module-wise training. But we can also do this
batch-wise, i.e. do a complete forward pass on each batch but without a full backward pass, rather a
backward pass that only updates the current module T τk and its auxiliary classifier F τk , meaning that
T τk forwards its output to T τk+1 immediately after it computes it. We call this parallel module-wise
training. It is called decoupled greedy training in [8], which shows that combining it with batch
buffers solves all three locking problems and allows a linear training parallelization in the depth of the
network. We propose a variant of sequential module-wise training that we call multi-lap sequential
module-wise training, in which instead of training each module for N epochs, we train each module
from the first to the last sequentially for N/R epochs, then go back and train from the first module to
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the last for N/R epochs again, and we do this for R laps. For the same total number of epochs and
training time, and the same advantages (loading and training one module at a time) this provides a
non-negligible improvement in accuracy over normal sequential module-wise training in most cases,
as shown in Section 4. Despite our theoretical framework being that of sequential module-wise
training, our method improves the test accuracy of all three module-wise training regimes.

3.3 Varying the regularization weight

The discussion in Section 2.2 suggests taking a fixed weight τ for the transport cost that is as small as
possible. However, instead of using a fixed τ , we might want to vary it along the depth k to further
constrain with a smaller τk the earlier modules to avoid that they overfit or the later modules to
maintain the accuracy of earlier modules. We might also want to regularize the network further in
earlier epochs when the data is more entangled. We propose in Appendix D to formalize this varying
weight τk,i across modules k and SGD iterations i by using a scheme inspired by the method of
multipliers to solve Problems (2) and (10). However, it works best in only one experiment in practice.
The observed dynamics of τk,i suggest simply finding a fixed value of τ that is multiplied by 2 for
the second half of the network, which works best in all the other experiments (see Appendix E).

4 Experiments

We call our method TRGL for Transport-Regularized Greedy Learning. For the auxiliary classifiers,
we use the architecture from DGL [7, 8], that is a convolution followed by an average pooling and
a fully connected layer, which is very similar to that used by InfoPro [60], except for the Swin
Transformer where we use a linear layer. We call vanilla greedy module-wise training with the
same architecture but without our regularization VanGL, and we include its results in all tables for
ablation study purposes. The code is available at github.com/block-wise/module-wise and
implementation details are in Appendix E.

4.1 Parallel module-wise training

To compare with other methods, we focus first on parallel training, as it performs better than sequential
training and has been more explored recently. The first experiment is training in parallel 3 residual
architectures and a VGG-19 [52] divided into 4 modules of equal depth on TinyImageNet. We
compare in Table 1 our results in this setup to three of the best recent parallel module-wise training
methods: DGL [8], PredSim [45] and Sedona [47], from Table 2 in [47]. We find that our TRGL has
a much better test accuracy than the three other methods, especially on the smaller architectures. It
also performs better than end-to-end training on the three ResNets. Parallel TRGL in this case with 4
modules consumes 10 to 21% less memory than end-to-end training (with a batch size of 256).

Table 1: Test accuracy of parallel TRGL with 4 modules (average and 95% confidence interval over 5
runs) on TinyImageNet, compared to DGL, PredSim, Sedona and E2E from Table 2 in [47], with
memory saved compared to E2E as a percentage of E2E memory consumption in red.

Architecture Parallel VanGL Parallel TRGL (ours) PredSim DGL Sedona E2E

VGG-19 56.17 ± 0.29 (↓ 27%) 57.28 ± 0.20 (↓ 21%) 44.70 51.40 56.56 58.74
ResNet-50 58.43 ± 0.45 (↓ 26%) 60.30 ± 0.58 (↓ 20%) 47.48 53.96 54.40 58.10
ResNet-101 63.64 ± 0.30 (↓ 24%) 63.71 ± 0.40 (↓ 11%) 53.92 53.80 59.12 62.01
ResNet-152 63.87 ± 0.16 (↓ 21%) 64.23 ± 0.14 (↓ 10%) 51.76 57.64 64.10 62.32

The second experiment is training in parallel two ResNets divided into 2 modules on CIFAR100
[37]. We compare in Table 2 our results in this setup to the two delayed gradient methods DDG [32]
and FR [31] from Table 2 in [31]. Here again, parallel TRGL has a better accuracy than the other
two methods and than end-to-end training. With only two modules, the memory gains from less
backpropagation are neutralized by the weight of the extra classifier and there are negligible memory
savings compared to end-to-end training. However, parallel TRGL has a better test accuracy by up to
almost 2 percentage points.
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Table 2: Test accuracy of parallel TRGL with 2 modules (average and 95% confidence interval over 3
runs) on CIFAR100, compared to DDG, FR and E2E from Table 2 in [31].

Architecture Parallel VanGL Parallel TRGL (ours) DDG FR E2E

ResNet-101 77.31 ± 0.27 77.87 ± 0.44 75.75 76.90 76.52
ResNet-152 75.40 ± 0.75 76.55 ± 1.90 73.61 76.39 74.80

The third experiment is training in parallel a ResNet-110 divided into two, four, eight and sixteen
modules on STL10 [12]. We compare in Table 3 our results in this setup to the recent methods
InfoPro [60] and DGL [8] from Table 2 in [60]. TRGL largely outperforms the other methods. It
also outperforms end-to-end training in all but one case (that with 16 modules). With a batch size of
64, memory savings of parallel TRGL compared to end-to-end training reach 48% and 58.5% with 8
and 16 modules respectively, with comparable test accuracy. With 4 modules, TRGL training weighs
24% less than end-to-end-training, and has a test accuracy that is better by 2 percentage points (see
Section 4.2 and Table 6 for a detailed memory usage comparison with InfoPro).

Table 3: Test accuracy of Parallel (Par) TRGL with K modules (average and 95% confidence interval
over 5 runs) using a ResNet-110 on STL10, compared to DGL, two variants of InfoPro and E2E from
Table 2 in [60].

K Par VanGL Par TRGL (ours) DGL InfoPro S InfoPro C E2E

2 79.85 ± 0.93 80.04 ± 0.85 75.03 ± 1.18 78.98 ± 0.51 79.01 ± 0.64 77.73 ± 1.61
4 77.11 ± 2.31 79.72 ± 0.81 73.23 ± 0.64 78.72 ± 0.27 77.27 ± 0.40 77.73 ± 1.61
8 75.71 ± 0.55 77.82 ± 0.73 72.67 ± 0.24 76.40 ± 0.49 74.85 ± 0.52 77.73 ± 1.61

16 73.57 ± 0.95 77.22 ± 1.20 72.27 ± 0.58 73.95 ± 0.71 73.73 ± 0.48 77.73 ± 1.61

The fourth experiment is training (from scratch) in parallel a Swin-Tiny Transformer [39] divided
into 4 modules on three datasets. We compare in Table 4 our results with those of InfoPro [60] and
InfoProL, a variant of InfoPro proposed in [46]. TRGL outperforms the other module-wise training
methods. It does not outperform end-to-end training in this case, but consumes 29% less memory
on CIFAR10 and CIFAR100 and 50% less on STL10, compared to 38% for InfoPro and 45% for
InfoProL in [46].

Table 4: Test accuracy of parallel TRGL with 4 modules (average and 95% confidence interval over 5
runs) on a Swin-Tiny Transformer, compared to InfoPro, InfoProL and E2E from Table 3 in [46],
with memory saved compared to E2E as a percentage of E2E memory consumption in red.

Dataset Parallel VanGL Parallel TRGL (ours) InfoPro InfoProL E2E

STL10 67.00 ± 1.36 (↓ 55%) 67.92 ± 1.12 (↓ 50%) 64.61 (↓ 38%) 66.89 (↓ 45%) 72.19
CIFAR10 83.94 ± 0.42 (↓ 33%) 86.48 ± 0.54 (↓ 29%) 83.38 (↓ 38%) 86.28 (↓ 45%) 91.37

CIFAR100 69.34 ± 0.91 (↓ 33%) 74.11 ± 0.31 (↓ 29%) 68.36 (↓ 38%) 73.00 (↓ 45%) 75.03

Finally, we compare our method to InfoPro, DGL and Sedona in Table 5 below on a large scale
experiment on ImageNet.

Table 5: Top 1 test accuracy of parallel TRGL with 2 modules on a ResNet-101 trained on ImageNet,
compared to VanGL (baseline vanilla module-wise training), DGL and Sedona from [47] and InfoPro
from [60] and end-to-end training.

Dataset Parallel VanGL Parallel TRGL (ours) DGL Sedona InfoPro E2E

ImageNet 78.11 79.41 78.47 79.28 78.15 78.71

4.2 Memory savings and training time

As seen above, parallel TRGL is lighter than end-to-end training by up to almost 60%. The extra
memory consumed by our regularization compared to parallel VanGL is between 2 and 13% of
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end-to-end memory. Memory savings depend then mainly on the size of the auxiliary classifier,
which can easily be adjusted. Note that delayed gradients method DDG and FR increase memory
usage [31], and Sedona does not claim to save memory, but rather to speed up training [47]. DGL is
architecture-wise essentially identical to VanGL and consumes the same memory.

We compare in Table 6 the memory consumption of our method to that of InfoPro [60] on a ResNet-
110 on STL10 with a batch size of 64 (so the same setting as in Table 3). InfoPro [60] also propose
to split the network into modules that have the same weight but not necessarily the same number
of layers. They only implement this for K≤4 modules. When the modules are even in weight and
not in depth, we call the training methods VanGL*, TRGL* and InfoPro*. In practice, this leads
to shallower early modules which slightly hurts performance according to [47], and as seen below.
However, TRGL* still outperforms InfoPro and end-to-end training, and it leads to even bigger
memory savings than InfoPro*. We see in Table 6 below that TRGL saves more memory than InfoPro
in two out of three cases (4 and 8 modules), and about the same in the third case (16 modules),
with much better test accuracy in all cases. Likewise, TRGL* is lighter than InfoPro*, with better
accuracy.

Table 6: Memory savings using a ResNet-110 on STL10 split into K modules trained in parallel with
a batch size of 64, as a percentage of the weight of end-to-end training. Average test accuracy over 5
runs is between brackets. Test accuracy of end-to-end training is 77.73%.

Equally deep modules Equally heavy modules

K Par VanGL Par TRGL (ours) InfoPro Par VanGL* Par TRGL* (ours) InfoPro*

4 27% (77.11) 24% (79.72) 18% (78.72) 41% (77.14) 39% (78.94) 33% (78.78)
8 50% (75.71) 48% (77.82) 37% (76.40)
16 61% (73.57) 58% (77.22) 59% (73.95)

However, parallel module-wise training does slightly slow down training. Epoch time increases by
6% with 2 modules and by 16% with 16 modules. TRGL is only slower than VanGL by 2% for all
number of modules due to the additional regularization term. This is comparable to InfoPro which
reports a time overhead between 1 and 27% compared to end-to-end training. See Appendix F for
details.

4.3 Sequential full block-wise training

Block-wise sequential training, meaning that each module is a single residual block and that the
blocks are trained sequentially, therefore requiring only enough memory to train one block and its
classifier. Even though it has been less explored in recent module-wise training methods, it has been
used in practice in very constrained settings such as on-device training [58, 57]. We therefore test our
regularization in this section in this setting, with more details in Appendix G.

We propose here to use shallower ResNets that are initially wider. These architectures are well-
adapted to layer-wise training as seen in [7]. We check first in Table 10 in Appendix G that this
architecture works well with parallel module-wise training with 2 modules by comparing it favorably
on CIFAR10 [37] with methods DGL [8], InfoPro [60] and DDG [32] that use a ResNet-110 with the
same number of parameters.

We then train a 10-block ResNet block-wise on CIFAR100. In Tables 11 and 12 in Appendix G, we
see that MLS training improves the accuracy of sequential training by 0.8 percentage points when the
trainset is full, but works less well on small train sets. Of the two, the regularization mainly improves
the test accuracy of MLS training. The improvement increases as the training set gets smaller and
reaches 1 percentage point. While parallel module-wise training performs quite close to end-to-end
training in the full data regime and much better in the small data regime, sequential and multi-lap
sequential training are competitive with end-to-end training in the small data regime. Combining the
multi-lap trick and the regularization improves the accuracy of sequential training by 1.2 percentage
points when using the entire trainset. We report further results for full block-wise training on MNIST
[38] and CIFAR10 [37] in Tables 13 and 14 in Appendix G.
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The 88% accuracy of sequential training on CIFAR10 in Table 13 is the same as in Table 2 of
[7], which is the best method for layer-wise sequential training available, with VGG networks of
comparable depth and width.

4.4 Accuracy after each module

Finally, we verify that our method avoids the stagnation or collapse in accuracy with depth. In Figure
2 below, we show the accuracy of each module with and without the regularization.

On the left, from parallel module-wise training experiments from Table 3, TRGL performs worse
than vanilla greedy learning early, but surpasses it in later modules, indicating that it does avoid early
overfitting. On the right, from sequential block-wise training experiments from Table 13, we see a
large decline in performance that the regularization avoids. We see similar patterns in Figure 3 in
Appendix G with parallel and MLS block-wise training.

Figure 2: Test accuracy after each module averaged over 10 runs with 95% confidence intervals.
Left: parallel vanilla (VanGL, in blue) and regularized (TRGL, in red) module-wise training of a
ResNet-110 with 16 modules on STL10 (Table 3). Right: sequential vanilla (VanGL, in blue) and
regularized (TRGL, in red) block-wise training of a 10-block ResNet on 2% of CIFAR10 (Table 13).

5 Limitations

The results in Appendix G show a few limitations of our method, as the improvements from the
regularization are sometimes minimal on sequential training. However, the results show that our
approach works in all settings (parallel and sequential with many or few modules), whereas other
papers don’t test their methods in all settings, and some show problems in other settings than the
original one in subsequent papers (e.g. delayed gradients methods when the number of modules
increases [31] and PredSim in [47]). Also, for parallel training in Section 4.1, the improvement from
the regularization compared to VanGL is larger and increases with the number of modules (so with
the memory savings) and reaches almost 5 percentage points. We show in Appendix H that our
method is not very sensitive to the choice of hyperparameter τ over a large scale.

6 Related work

Layer-wise training was initially considered as a pre-training and initialization method [10, 43] and
was recently shown to be competitive with end-to-end training [7, 45]. Many papers consider using
a different auxiliary loss, instead of or in addition to the classification loss: kernel similarity [42],
information-theory-inspired losses [53, 44, 41, 60] and biologically plausible losses [53, 45, 25, 11].
Methods [7], PredSim [45], DGL [8], Sedona [47] and InfoPro [60] report the best module-wise
training results. [7, 8] do it simply through the architecture choice of the auxiliary networks. Sedona
applies architecture search to decide on where to split the network into modules and what auxiliary
classifier to use before module-wise training. Only BoostResNet [30] also proposes a block-wise
training idea geared for ResNets. However, their results only show better early performance and
end-to-end fine-tuning is required to be competitive. A method called ResIST [19] that is similar
to block-wise training of ResNets randomly assigns ResBlocks to one of up to 16 modules that
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are trained independently and reassembled before another random partition. More of a distributed
training method, it is only compared to local SGD [54]. These methods can all be combined with our
regularization, and we do use the auxiliary classifier from [7, 8].

Besides module-wise training, methods such as DNI [33, 14], DDG [32] and FR [31], solve the
update and backward locking problems with an eye towards parallelization by using delayed or
predicted gradients, or even predicted inputs to address forward locking, which is what [55] do. But
they observe training issues with more than 5 modules [31]. This makes them compare unfavorably
to module-wise training [8]. The high dimension of the predicted gradient, which scales with the
size of the network, makes [33, 14] challenging in practice. Therefore, despite its simplicity, greedy
module-wise training is more appealing when working in a constrained setting.

Viewing ResNets as dynamic transport systems [16, 36] followed from their view as a discretization
of ODEs [61]. Transport regularization of ResNets in particular is motivated by the observation that
they are naturally biased towards minimally modifying their input [35, 26]. We further linked this
transport viewpoint with gradient flows in the Wasserstein space to apply it in a principled way to
module-wise training. Gradient flows on the data distribution appeared recently in deep learning.
In [1], the focus is on functionals of measures whose first variations are known in closed form and
used, through their gradients, in the algorithm. This limits the scope of their applications to transfer
learning and similar tasks. Likewise, [21, 40, 4, 3] use the explicit gradient flow of f -divergences
and other distances between measures for generation and generator refinement. In contrast, we use
the discrete minimizing movement scheme which does not require computation of the first variation
and allows to consider classification.

7 Conclusion

We introduced a transport regularization for module-wise training that theoretically links module-wise
training to gradient flows of the loss in probability space. Our method provably leads to more regular
modules and experimentally improves the test accuracy of module-wise parallel, sequential and
multi-lap sequential (a variant of sequential training that we introduce) training. Through this simple
method that does not complexify the architecture, we make module-wise training competitive with
end-to-end training while benefiting from its lower memory usage. Being a regularization, the method
can easily be combined with other layer-wise training methods. Future work can experiment with
working in Wasserstein space Wp for p6=2, i.e. regularizing with a norm ‖.‖p with p6=2.
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A Background on optimal transport

The Wasserstein space W2(Ω) with Ω a convex and compact subset of Rd is the space P(Ω) of
probability measures over Ω, equipped with the distance W2 given by the solution to the optimal
transport problem

W 2
2 (α, β) = min

γ∈Π(α,β)

∫
Ω×Ω

‖x− y‖2 dγ(x, y) (12)

where Π(α, β) is the set of probability distribution over Ω × Ω with first marginal α and second
marginal β, i.e. Π(α, β) = {γ ∈ P(Ω × Ω) | π1]γ = α, π2]γ = β} where π1(x, y) = x and
π2(x, y) = y. The optimal transport problem can be seen as looking for a transportation plan
minimizing the cost of displacing some distribution of mass from one configuration to another. This
problem indeed has a solution in our setting and W2 can be shown to be a geodesic distance (see
for example [49, 59]). If α is absolutely continuous and ∂Ω is α-negligible then the problem in (12)
(called the Kantorovich problem) has a unique solution and is equivalent to the Monge problem, i.e.

W 2
2 (α, β) = min

T s.t. T]α=β

∫
Ω

‖T (x)− x‖2 dα(x) (13)

and this problem has a unique solution T ? linked to the solution γ? of (12) through γ? = (id, T ?)]α.
Another equivalent formulation of the optimal transport problem in this setting is the dynamical
formulation [9]. Here, instead of directly pushing samples of α to β using T , we can equivalently
displace mass, according to a continuous flow with velocity vt : Rd → Rd. This implies that the
density αt at time t satisfies the continuity equation ∂tαt +∇ · (αtvt) = 0, assuming that initial and
final conditions are given by α0 = α and α1 = β respectively. In this case, the optimal displacement
is the one that minimizes the total action caused by v :

W 2
2 (α, β) = min

v

∫ 1

0

‖vt‖2L2(αt)
dt (14)

s.t. ∂tαt +∇ · (αtvt) = 0, α0 = α, α1 = β

Instead of describing the density’s evolution through the continuity equation, we can describe the
paths φxt taken by particles at position x from α when displaced along the flow v. Here φxt is the
position at time t of the particle that was at x ∼ α at time 0. The continuity equation is then equivalent
to ∂tφxt = vt(φ

x
t ). See chapters 4 and 5 of [49] for details. Rewriting the conditions as necessary,

Problem (14) becomes

W 2
2 (α, β) = min

v

∫ 1

0

‖vt‖2L2((φ·
t)]α) dt (15)

s.t. ∂tφxt = vt(φ
x
t ), φ·0 = id, (φ·1)]α = β

and the optimal transport map T ? that solves (13) is in fact T ?(x) = φx1 for φ that solves the
continuity equation together with the optimal v? from (15). We refer to [49, 59] for these results on
optimal transport.

Optimal transport maps have some regularity properties under some boundedness assumptions. We
mention the following result from [20]:
Theorem A.1. Let α and β be absolutely continuous measures on Rd and T the optimal transport
map between α and β for the Euclidean cost. Suppose there are bounded open sets X and Y , such
that the density of α (respectively of β) is null on Xc (respectively Y c) and bounded away from zero
and infinity on X (respectively Y ).

Then there exists two relatively closed sets of null measure A ⊂ X and B ⊂ Y , such that T is
η-Hölder continuous from X \A to Y \B, i.e. ∀ x, y ∈ X \A we have

‖T (x)− T (y)‖ ≤ C‖x− y‖η for constants η, C > 0

B Background on gradient flows

We follow [50, 2] for this background on gradient flows. Given a function L : Rd → R and an initial
point x0 ∈ Rd, a gradient flow is a curve x : [0,∞[→ Rd that solves the Cauchy problem{

x′(t) = −∇L(x(t))

x(0) = x0
(16)
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A solution exists and is unique if∇L is Lipschitz or L is convex. Given τ > 0 and xτ0 = x0 define a
sequence (xτk)k through the minimizing movement scheme:

xτk+1 ∈ arg min
x∈Rd

L(x) +
1

2τ
‖x− xτk‖2 (17)

L lower semi-continous and L(x) ≥ C1 − C2‖x‖2 guarantees existence of a solution of (17) for
τ small enough. L λ-convex meets these conditions and also provides uniqueness of the solution
because of strict convexity of the target. See [49, 50, 2].

We interpret the point xτk as the value of a curve x at time kτ . We can then construct a curve xτ as
the piecewise constant interpolation of the points xτk. We can also construct a curve x̃τ as the affine
interpolation of the points xτk.

If L(x0) < ∞ and inf L > −∞ then (xτ ) and (x̃τ ) converge uniformly to the same curve x as τ
goes to zero (up to extracting a subsequence). If L is C1, then the limit curve x is a solution of (16)
(i.e. a gradient flow of L). If L is not differentiable then x is solution of the problem defined using
the subdifferential of L, i.e. x satisfies x′(t) ∈ −∂L(x(t)) for almost every t.

If L is λ-convex with λ > 0, then the solution to (16) converges exponentially to the unique minimizer
of L (which exists by coercivity). So taking τ → 0 and k →∞, we tend towards the minimizer of L.

The advantage of the minimizing movement scheme (17) is that it can be adapted to metric spaces
by replacing the Euclidean distance by the metric space’s distance. In the (geodesic) metric space
W2(Ω) with Ω convex and compact, for L : W2(Ω)→ R∪{∞} lower semi-continuous for the weak
convergence of measures in duality with C(Ω) (equivalent to lower semi-continuous with respect to
the distance W2) and ρτ0 = ρ0 ∈ P(Ω), the minimizing movement scheme (17) becomes

ρτk+1 ∈ arg min
ρ∈P(Ω)

L(ρ) +
1

2τ
W 2

2 (ρ, ρτk) (18)

This problem has a solution because the objective is lower semi-continuous and the minimization is
over P(Ω) which is compact by Banach-Alaoglu.

We can construct a piecewise constant interpolation between the measures ρτk, or a geodesic inter-
polation where we travel along a geodesic between ρτk and ρτk+1 in W2(Ω), constructed using the
optimal transport map between these measures. Again, if L(x0) <∞ and inf L > −∞ then both
interpolations converge uniformly to a limit curve ρ̃ as τ goes to zero. Under further conditions on L,
mainly λ-geodesic convexity (i.e. λ-convexity along geodesics) for λ > 0, we can prove stability and
convergence of ρ̃(t) to a minimizer of L as t→∞, see [49, 50, 2].

C Proof of Proposition 2.3

Proof. Take a minimizing sequence (F̃i, T̃i), i.e. such that C(F̃i, T̃i)→ min C, where C ≥ 0 is the
target function in (3) and denote βi = T̃i]ρ

τ
k. Then by compacity F̃i → F ? and βi ⇀ β? in duality

with Cb(Ω) by Banach-Alaoglu. There exists T ? an optimal transport map between ρτk and β?. Then
C(F ?, T ?) ≤ lim C(F̃i, T̃i) = min C by continuity of L and because∫

Ω

‖T ?(x)− x‖2 dρτk(x) = W 2
2 (ρτk, β

?)

= limW 2
2 (ρτk, βi)

≤ lim

∫
Ω

‖T̃i(x)− x‖2 dρτk(x)

as W2 metrizes weak convergence of measures. We take (F τk , T
τ
k ) = (F ?, T ?). It is also immediate

that for any minimizing pair, the transport map has to be optimal. Taking a minimizing sequence
(F̃i, ṽ

i) and the corresponding induced maps T̃i we get the same result for Problem (11). Problems
(3) and (11) are equivalent by the equivalence between Problems (13) and (15).

D Varying the regularization weight

The discussion in Section 2.2 suggests taking a fixed weight τ for the transport cost that is as small as
possible. However, instead of using a fixed τ , we might want to vary it along the depth k to further
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constrain with a smaller τk the earlier modules to avoid that they overfit or the later modules to
maintain the accuracy of earlier modules. We might also want to regularize the network further in
earlier epochs when the data is more entangled. To unify and formalize this varying weight τk,i across
modules k and SGD iterations i, we use a scheme inspired by the method of multipliers to solve
Problems (2) and (10). To simplify the notations, we will instead consider the weight λk,i:=2τk,i
given to the loss. We denote θk,i the parameters of both Tk and Fk at SGD iteration i. We also denote
L(θ, x) and W (θ, x) respectively the loss and the transport regularization as functions of parameters
θ and data x. We now increase the weight λk,i of the loss every s iterations of SGD by a value that is
proportional to the current loss. Given increase factor h>0, initial parameters θk,1, initial weights
λk,1≥0, learning rates (ηi) and batches (xi), we apply for module k and i≥1:{

θk,i+1 = θk,i − ηi∇θ(λk,i L(θk,i, xi) +W (θk,i, xi))

λk,i+1 = λk,i + hL(θk,i+1, xi+1) if i mod s = 0 else λk,i

The weights λk,i will vary along modules k because they will evolve differently with iterations i
for each k. They will increase more slowly with i for larger k because deeper modules will have
smaller loss. This method can be seen as a method of multipliers for the problem of minimizing
the transport under the constraint of zero loss. Therefore it is immediate by slightly adapting the
proof of Proposition 2.3 or from [36] that we are still solving a problem that admits a solution
whose non-auxiliary part is an optimal transport map with the same regularity as stated above. We
use the same initial value λ1 = λk,1 for all modules so that this method requires choosing three
hyper-parameters (h, s and λ1). In practice (see Section 4.1 and Appendix E), it works best in only
one experiment. Simply manually finding a value of τ that is multiplied by 2 for the second half of
the network works best in all the other experiments.

E Implementation details

We use standard data augmentation and standard implementations for VGG-19, ResNet-50, ResNet-
101, ResNet-110, ResNet-152 and Swin-Tiny Transformer (the same as for the other methods in
Section 4.1). We use NVIDIA Tesla V100 16GB GPUs for the experiments. Training a Resnet-152
on TinyImageNet in Table 1 takes about 36 hours. Training a Resnet-152 on CIFAR100 in Table 1
takes about 11 hours. Training a ResNet-110 on STL10 in Table 3 takes about 3 hours. Training a
Swin-Tiny Transformer in Table 4 take between 40 minutes and 1 hour.

For sequential and multi-lap sequential training, we use SGD with a learning rate of 0.007. With the
exception of the Swin Transformer in Table 4, we use SGD for parallel training with learning rate of
0.003 in all Tables but Table 3 where the learning rate is 0.002. For the Swin Transformer in Table 4,
we use the AdamW optimizer with a learning rate of 0.007 and a CosineLR scheduler.

For end-to-end training we use a learning rate of 0.1 that is divided by five at epochs 120, 160 and
200. Momentum is always 0.9. For parallel and end-to-end training, we train for 300 epochs. For
sequential and multi-lap sequential training, the number of epochs varies per module (see Section G).

For experiments in Section 4.1, we use a batch size of 256, orthogonal initialization [51] with a gain
of 0.1, label smoothing of 0.1 and weight decay of 0.0002. The batch size changes to 64 for Table 3
and to 1024 for Table 4.

For experiments in Section 4.3, we use a batch size of 128, orthogonal initialization with a gain of
0.05, no label smoothing and weight decay of 0.0001.

In Table 1, we use τ = 500000 for the first two modules and then double it for the last two modules
for TRGL. In Table 2, we use λk,1 = 1, h = 1 and s = 50 for TRGL. In Table 3, we use τ = 0.5 and
double it at the midpoint, expect for the first line where τ = 50.

F Memory savings and training time

We compare in Table 7 the memory consumption of our method to that of InfoPro [60] on a ResNet-
110 split into K modules trained in parallel on STL10 with a batch size of 64 (so the same setting as
in Table 3 in Section 4.1). We report in Table 7 the memory saved as a percentage of the 6230 MiB
memory required by end-to-end training with the same batch size. VanGL refers to our architecture
trained without the regularization. InfoPro [60] also propose to split the network into K modules that
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have the same weight but not necessarily the same number of layers. They only implement this for
K≤4 modules. When the modules are even in weight and not in depth, we call the training methods
VanGL*, TRGL* and InfoPro*. In practice, this leads to shallower early modules which slightly
hurts performance according to [47]. We verify this in Table 8 (to be compared with Table 3 in
Section 4.1). However, TRGL* still outperforms InfoPro and end-to-end training, and it leads to even
bigger memory savings. We see in Table 7 that TRGL saves more memory than InfoPro in two out of
three cases (4 and 8 modules), and about the same in the third case (16 modules), with much better
test accuracy in all cases. Likewise, TRGL* is lighter than InfoPro*, with better accuracy. We also
see that the added memory cost of the regularization compared to vanilla greedy learning is small.
However, parallel module-wise training does slightly slow down training. Epoch time increases by
6% with 2 modules and by 16% with 16 modules. TRGL is only slower than VanGL by 2% for for
all number of modules due to the additional regularization term. This is comparable to InfoPro which
report a time overhead between 1 and 27% compared to end-to-end training.

Table 7: Memory savings using a ResNet-110 on STL10 split into K modules trained in parallel with
a batch size of 64, as a percentage of the weight of end-to-end training. Average test accuracy over 5
runs is between brackets. Test accuracy of end-to-end training is 77.73%.

Equally deep modules Equally heavy modules

K Par VanGL Par TRGL (ours) InfoPro Par VanGL* Par TRGL* (ours) InfoPro*

4 27% (77.11) 24% (79.72) 18% (78.72) 41% (77.14) 39% (78.94) 33% (78.78)
8 50% (75.71) 48% (77.82) 37% (76.40)
16 61% (73.57) 58% (77.22) 59% (73.95)

Table 8: Test accuracy of parallel (Par) TRGL* with K modules (average and 95% confidence
interval over 5 runs) on a ResNet-110 trained on STL10, compared to InfoPro* and E2E training
from Table 3 in [60]

K Par VanGL* Par TRGL* (ours) InfoPro*

2 79.05 ± 1.33 79.47 ± 1.36 79.05 ± 0.57
4 77.14 ± 1.23 78.94 ± 1.13 78.78 ± 0.72

Note that methods DDG [32] and FR [31], being delayed gradient methods and not module-wise
training methods, do no save memory (they actually increase memory usage, see FR [31]). Sedona
[47] also does not claim to save memory, as their first module (the heaviest) is deeper than the others,
but rather to speed up computation. Finally, DGL [8] is architecture-wise essentially identical to
VanGL and consumes the same memory.

G Sequential full block-wise training

To show that our method works well with all types of module-wise training when using few modules,
we train a ResNet-101 split in 2 modules on CIFAR100, sequentially and multi-lap sequentially.
Results are in Table 9. We see that our idea of multi-lap sequential training adds one percentage point
of accuracy to sequential training, and that the regularization further improves the accuracy by about
half a percentage point. As only one module has to be trained at a time, these two training methods
require only around half the memory end-to-end training requires (the size of the heaviest module
and its classifier more exactly).

Table 9: Test accuracy of sequential (Seq) and multi-lap sequential (MLS) TRGL and VanGL with 2
modules on CIFAR100 using ResNet-101 (average of 2 runs).

Seq VanGL Seq TRGL MLS VanGL MLS TRGL

73.31 73.61 74.34 74.78
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We now focus on full block-wise training, meaning that each module is a single ResBlock, mostly
sequentially. We propose here to use shallower and initially wider ResNets with a downsampling and
256 filters initially and a further downsampling and doubling of the number of filters at the midpoint,
no matter the depth. In these ResNets, we use the ResBlock from [27] with two convolutional
layers. If such a network is divided in K modules of M ResBlocks each, we call the network a
K−M ResNet. These wider shallower architectures are well-adapted to layer-wise training as seen
in [7]. We check in Table 10 that this architecture works well with parallel module-wise training by
comparing favorably on CIFAR10 ([37]) a 2-7 ResNet with DGL, InfoPro ([60]) and DDG [32]. The
2-7 ResNet has 45 millions parameters, which is about the same as the ResNet-110 divided in two
used by the other methods, and performs better when trained in parallel.

Table 10: Average test accuracy and 95% confidence interval of 2-7 ResNet over 10 runs on CIFAR10
with parallel TRGL and VanGL, compared to DGL and DDG from [8] and InfoPro from [60] that
split a ResNet-110 in 2 module-wise-parallel-trained modules.

Parallel VanGL (ours) Parallel TRGL (ours) DGL DDG InfoPro

94.01 ± .17 94.05 ± .18 93.50 93.41 93.58

We now train a 10-block ResNet block-wise on CIFAR100 (a 10-1 ResNet in our notations). We
report even the small improvements in accuracy to show that our method works in all settings (parallel
or sequential with many or few splits), which other methods don’t do. For sequential training, block
k is trained for 50+10k epochs where 0≤k≤10, block 0 being the encoder. This idea of increasing
the number of epochs along with the depth is found in [43]. For MLS training, block k is trained
for 10+2k epochs, and this is repeated for 5 laps. In block-wise training, the last block does not
always perform the best and we report the accuracy of the best block. In Table 11, we see that MLS
training improves the test accuracy of sequential training by around 0.8 percentage points when the
training dataset is full, but works less well on small training sets. Of the two, the regularization
mainly improves the test accuracy of MLS training. The improvement increases as the training set
gets smaller and reaches 1 percentage point. That is also the case for parallel module-wise training in
Table 12, which already performs quite close to end-to-end training in the full data regime and much
better in the small data regime. Combining the multi-lap trick and the regularization improves the
performance of sequential training by 1.2 percentage points.

Table 11: Average highest test accuracy and 95% confidence interval of 10-1 ResNet over 10 runs on
CIFAR100 with different train sizes and sequential (Seq), multi-lap sequential (MLS) and parallel
(Par) TRGL and VanGL, compared to E2E.

Train size Seq VanGL Seq TRGL MLS VanGL MLS TRGL E2E

50000 68.74 ± 0.45 68.79 ± 0.56 69.48 ± 0.53 69.95 ± 0.50 75.85 ± 0.70
25000 60.48 ± 0.15 60.59 ± 0.14 61.33 ± 0.23 61.71 ± 0.32 65.36 ± 0.31
12500 51.64 ± 0.33 51.74 ± 0.26 51.30 ± 0.22 51.89 ± 0.30 52.39 ± 0.97
5000 36.37 ± 0.33 36.40 ± 0.40 33.68 ± 0.48 34.61 ± 0.59 36.38 ± 0.31

Table 12: Average highest test accuracy and 95% confidence interval of 10-1 ResNet over 10 runs on
CIFAR100 with different train sizes and sequential (Seq), multi-lap sequential (MLS) and parallel
(Par) TRGL and VanGL, compared to E2E.

Train size Par VanGL Par TRGL E2E

50000 72.59 ± 0.40 72.63 ± 0.40 75.85 ± 0.70
25000 64.84 ± 0.19 65.01 ± 0.27 65.36 ± 0.31
12500 55.13 ± 0.24 55.40 ± 0.35 52.39 ± 0.97
5000 39.45 ± 0.23 40.36 ± 0.23 36.38 ± 0.31
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We report further results of block-wise training on CIFAR10 in Table 13 and on MNIST [38] in Table
14, but now we report the accuracy of the last block. We see again greater improvement due to the
regularization as the training set gets smaller, gaining up to 6 percentage points.

Table 13: Average last block test accuracy and 95% confidence interval of 10-1 ResNet over 10 runs
on CIFAR10 with different train sizes and sequential TRGL and VanGL, compared to E2E.

Train size Seq VanGL Seq TRGL E2E

50000 88.02 ± .18 88.20 ± .24 91.88 ± .18
25000 83.95 ± .13 84.28 ± .22 88.75 ± .27
10000 76.00 ± .39 77.18 ± .34 82.61 ± .35
5000 67.74 ± .49 69.67 ± .44 73.93 ± .67
1000 45.67 ± .88 51.34 ± .90 50.63 ± .98

Table 14: Average last block test accuracy and 95% confidence interval of 20-1 ResNet (32 filters,
fixed encoder, same classifier) over 20/50 runs on MNIST with different train sizes and parallel TRGL
and VanGL, compared to E2E.

Train size Par VanGL Par TRGL E2E

60000 99.07 ± .04 99.08 ± .04 99.30 ± .03
30000 98.90 ± .05 98.93 ± .06 99.22 ± .03
12000 98.52 ± .06 98.59 ± .06 98.96 ± .06
6000 98.05 ± .09 98.16 ± .07 98.62 ± .06
1500 96.34 ± .12 96.91 ± .07 97.19 ± .08
1200 95.80 ± .12 96.58 ± .09 96.88 ± .09
600 91.35 ± .99 95.16 ± .15 95.30 ± .17
300 89.81 ± .73 92.86 ± .24 92.87 ± .28
150 81.84 ± 1.22 87.48 ± .42 87.82 ± .59

The 88% accuracy of sequential training on CIFAR10 in Table 13 is the same as for sequential
training in table 2 of [7], which is the best method for layer-wise sequential training available, with
VGG networks of comparable depth and width.

Figure 3: Test accuracy after each block of 10-1 ResNet averaged over 10 runs with 95% confidence
intervals. Left: multi-lap sequential vanilla (VanGL, in blue) and regularized (TRGL, in red) block-
wise training on 10% of the CIFAR100 training set. Right: parallel vanilla (VanGL, in blue) and
regularized (TRGL, in red) block-wise training on 10% of CIFAR100 training set.
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H Sensitivity to hyper-parameters

We show in Figure 4 below that TRGL still performs better than VanGL (in the same setting as in
Table 3 in Section 4.1) for values of τ from 0.03 to 100 and is still roughly equivalent to it for values
up to 5000.

Figure 4: Average test accuracy over 5 runs of parallel TRGL using a ResNet110 on STL10 with 16
modules with different values of τ (in red), and of VanGL (blue line).

I Broader impact

Less memory usage has a positive environmental impact and allows organizations with less resources
to use deep learning.
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