
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

SymMaP: Improving Computational Efficiency in Linear Solvers
through Symbolic Preconditioning

Anonymous Authors1

Abstract
Matrix preconditioning is a critical technique to
accelerate the solving of linear systems, where
performance heavily depends on the selection
of preconditioning parameters. Traditional pa-
rameter selection approaches often define fixed
constants for specific scenarios. However, they
rely on domain expertise and fail to consider
the instance-wise features for individual prob-
lems, limiting their performance. In contrast, ma-
chine learning (ML) approaches, though promis-
ing, are hindered by high inference costs and lim-
ited interpretability. To combine the strengths
of both approaches, we propose a symbolic dis-
covery framework—namely, Symbolic Matrix
Preconditioning (SymMaP)—to learn efficient
symbolic expressions for preconditioning param-
eters. Specifically, we employ a large neural
network to search the high-dimensional discrete
space for expressions that can accurately pre-
dict the optimal parameters. The learned ex-
pression allows for high inference efficiency and
excellent interpretability (expressed in concise
symbolic formulas), making it simple and reli-
able for deployment. Experimental results show
that SymMaP consistently outperforms traditional
strategies across various benchmarks.

1. Introduction
Linear systems are foundational in the machine learning,
physics, engineering, and other scientific fields (Leon et al.,
2006; LeVeque, 2007). Since analytical solutions are of-
ten unavailable, efficient numerical algorithms become es-
sential (Demmel, 1997). Matrix preconditioning, a key
technique in this domain, accelerates iterative solvers and
improves computational stability (Trefethen & Bau, 2022;
Chen, 2005). For instance, the successive over-relaxation
(SOR) method optimizes convergence by integrating Gauss-
Seidel iterations with a weighted update scheme governed
by the over-relaxation factor ω (Golub & Van Loan, 2013).

The effectiveness of matrix preconditioning depends on

key parameters, such as ω in SOR. Selecting ω > 1 can
accelerate convergence, while ω < 1 may stabilize the
process. This trade-off makes ω a critical parameter, directly
influencing the performance of preconditioning.

Traditional parameter selection strategies often rely on do-
main expertise to define fixed constants for specific sce-
narios. However, (challenge 1) different problem param-
eters often require distinct optimal preconditioning pa-
rameters. Traditional strategies ignore instance-wise fea-
tures—specific characteristics of individual problems, such
as equation coefficients. This limits their adaptability to
varying problem instances and tasks.

In contrast, machine learning (ML) approaches hold great
promise but come with other challenges. First, (challenge
2) ML inference,while efficient on GPUs, performs poorly
in CPU-only environments due to limited parallel process-
ing capabilities. This is particularly problematic in linear
system solver deployments, where GPU resources are often
unavailable. Second, (challenge 3) the ”black-box” nature
of many ML techniques hinders a deeper understanding of
the learned policies, raising concerns about their reliability.

In light of this, a natural solution is to combine the relia-
bility and superior performance of these two paradigms.
We propose a symbolic discovery framework—namely,
Symbolic Matrix Preconditioning (SymMaP)—to learn ef-
ficient symbolic expressions for preconditioning parameters.
The framework consists of three main steps. SymMaP first
begins by applying grid search to identify the optimal pre-
conditioning parameters based on task-specific performance
metrics. Next, the framework performs a risk-seeking search
in the high-dimensional discrete space of symbolic expres-
sions, evaluating the best-found symbolic expression using
a risk-seeking strategy. Finally, these symbolic expressions
can be directly integrated into the modern solvers for linear
systems, significantly improving computational efficiency.

The key contributions and advantages of SymMaP are sum-
marized as follows:

• We propose a symbolic discovery framework, SymMaP,
to learn efficient symbolic expressions for precondi-
tioning parameters.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

• SymMaP exhibits excellent generalization, making it
adaptable to a wide range of preconditioning methods
and optimization objectives.

• The symbolic expressions derived by SymMaP are both
interpretable and easy to integrate into solver environ-
ments, offering a practical and transparent approach to
enhancing the performance of linear system solvers.

2. Preliminaries
2.1. Matrix Preconditioning Technique

Matrix preconditioning is a technique employed to accel-
erate the convergence of iterative solvers and enhance the
stability of algorithms. It is generally employed in solv-
ing linear systems (Chen, 2005; Golub & Van Loan, 2013),
which are typically expressed in the form:

Ax = b. (1)

The fundamental idea of preconditioning is to transform the
original problem into an equivalent one with better numeri-
cal properties. Specifically, this technique involves finding a
preconditioner M that approximates either the inverse of A
or some form conducive to iterative solutions (Chen, 2005).
Consequently, the original (1) is transformed into

MAx = Mb. (2)

There are generally two optimization objectives: 1. to accel-
erate the convergence of iterations by altering the spectral
distribution of the matrix A. 2. to reduce the condition num-
ber of the matrix A, thereby lessening its ill-conditioning
and enhancing the stability of iteration. Some common pre-
conditioning techniques include the Jacobi, Gauss-Seidel,
SOR (Young, 1954), algebraic multigrid (AMG) (Trotten-
berg et al., 2000), etc.

2.2. Prefix Notation

Prefix notation is a mathematical format where every opera-
tor precedes its operands, eliminating the need for parenthe-
ses required in conventional infix notation and simplifying
symbolic manipulation. This representation is particularly
advantageous in symbolic regression, as it allows mathemat-
ical expressions to be expressed as sequences of tokens that
can be easily processed by neural networks.

In this notation, operators can be unary (e.g., sin, cos) or bi-
nary (e.g., +, −, ×, ÷), while operands can be constants or
variables (Landajuela et al., 2021). Each prefix expression
uniquely corresponds to a symbolic tree structure, facil-
itating the conversion back to the original mathematical
expression (Lample & Charton, 2019).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
SOR preconditioning parameter

101

102

103

104

105

Ite
ra

tio
ns

Iterations

10 2

10 1

100

101

102

Ti
m

e(
s)

optimal parameter
op

Time

Figure 1: Variation in iteration counts and computation
times under different SOR preconditioning parameters ap-
plied to a linear system from a second-order elliptic PDE.

The sequential nature of prefix notation aligns well with the
architecture of recurrent neural networks (RNNs), which
process information step by step. Unlike infix notation
which may require variable-length look-ahead to determine
the next valid token, prefix notation allows RNN to generate
expressions through an auto-regressive process where each
decision is well-defined based on previous tokens, and by
removing the need for parentheses, it reduces the vocabu-
lary size of possible tokens, which greatly enhances model
training efficiency.

3. Motivation
The selection of matrix preconditioning parameters signif-
icantly affects their effectiveness (Chen, 2005). To design
appropriate algorithmic prediction parameters, we first ana-
lyze the optimization space for preconditioning parameter
selection and investigate the existence of optimal parame-
ters. Next, we analyze the unique challenges present in this
scenario. Finally, to address these challenges, we design a
symbolic discovery framework to select the parameters.

3.1. Motivation for Optimizing Preconditioning
Parameters

As illustrated in figure 1, the choice of relaxation factors ω
significantly impacts the iteration count and computation
time, when solving a second-order elliptic partial differen-
tial equation (PDE) (Evans, 2022) using SOR precondition-
ing (Golub & Van Loan, 2013). There exists an optimal
parameter ωop that minimizes the computation time, with
specific details available in the Appendix B.2.

To further analyze the optimization space of precondition-
ing parameters, we evaluate the impact of various param-
eter selection strategies on preconditioning performance.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

1e-5 1e-6 1e-7 1e-8
Tolerance (2 Norm)

60%

70%

80%

90%

100%

Ti
m

e
Ra

tio

83%

78%

73%

85%85%

78%

73%

87%87%

92%

86%

94%

100% 100% 100% 100%

Optimal Parameter op

SymMaP
Optimal Fixed Constant
Default Parameter

Figure 2: Ratio of average computation times at various
tolerances to default parameter times under different SOR
parameter selection schemes, evaluated on the second-order
elliptic PDE dataset.

As shown in Figure 2, the ’Optimal Parameter ωop’ rep-
resents the parameter that minimizes computation time in
each experiment, serving as the theoretical upper limit of
our optimization. The ’Optimal Fixed Constant’ refers to
a fixed constant that minimizes average computation time,
and ’Default Parameter’ corresponds to the default setting
of ω = 1 in the portable extensible toolkit for scientific com-
putation (PETSc) (Balay et al., 2024). The gap between the
optimal fixed constant and the optimal parameter highlights
significant potential for optimizing preconditioning param-
eter selection, motivating this paper. The performance of
our SymMaP algorithm approaches the optimal parameter,
demonstrating its accuracy in learning the optimal parameter
expression.

3.2. Challenges in Predicting Efficient Preconditioning
Parameters

We aim to develop a universal framework for predicting
efficient parameters. However, the context of solving linear
systems imposes specific challenges:

(C1) Strong Generalization Capability: Real-world sci-
entific computing scenarios vary significantly. For instance,
the choice of PDE grid form can lead to significant variations
in matrix structure (Johnson, 2009), resulting in distinct
optimal parameters. Moreover, preconditioning addresses
various optimization goals, such as reducing computational
time, the number of iterations, and lowering condition num-
bers (Chen, 2005). This necessitates that parameter predic-
tion algorithms possess robust generalization capabilities:
they should take problem scenarios and features as inputs
while applying them to different preconditioning methods
and optimization goals.

(C2) Computational Efficiency: linear system solver typ-
ically relies on Krylov subspace methods implemented in
low-level libraries optimized for CPU architectures, such
as PETSc (Balay et al., 2024), LAPACK (Anderson et al.,
1999). Algorithms like generalized minimal residual method
(GMRES) (Saad & Schultz, 1986) and conjugate gradient
(CG) (Greenbaum, 1997) iteratively compute the matrix’s in-
variant subspace, favoring single-threaded or limited multi-
threaded execution modes. Preconditioning techniques aim
to accelerate these solvers without significant additional
computational overhead, often adopting implicit iterative
formats (e.g., SOR (Chen, 2005)) or utilizing low-cost ma-
trix decompositions (e.g., AMG (Trottenberg et al., 2000)).
Therefore, any parameter prediction algorithms must be
compatible with CPU environments and seamlessly inte-
grated into existing algorithm libraries. At the same time,
it must maintain low computational costs to preserve the
performance benefits of preconditioning.

(C3) Algorithmic Transparency: Algorithms in scientific
computing often require rigorous analysis under mathemati-
cal theories. Opaque prediction algorithms could confuse
researchers. For instance, the relaxation factor ω in SOR
needs to avoid being too close to 0 or 2 in some scenar-
ios (Agarwal, 2000). This is an issue that opaque algo-
rithms cannot avoid in advance. Moreover, interpretable
algorithms can guide researchers to conduct further studies
and reveal the underlying mathematical structures of prob-
lems. Therefore, these pose challenges to the transparency
and interpretability of the parameter prediction algorithms.

3.3. Symbolic Discovery to Preconditioning Parameter
Selection

Symbolic discovery extracts mathematical expressions from
data, establishing relationships between problem features
and optimal preconditioning parameters. Its integration
into matrix preconditioning overcomes parameter selection
challenges through a generalizable, efficient, and transparent
approach.

Firstly, symbolic discovery can accommodate various types
of input parameters and can specifically tailor symbolic ex-
pression learning for different preconditioning methods and
optimization goals (Cranmer et al., 2020), thereby meeting
the requirement for broad applicability in scientific comput-
ing tasks (C1).

Secondly, the explicit expressions derived are computation-
ally lightweight and can be quickly evaluated at runtime.
They integrate seamlessly into existing CPU-based algo-
rithm libraries like PETSc (Balay et al., 2024) with almost
no overhead (C2).

Thirdly, the symbolic discovery provides transparent and in-
terpretable expressions (Rudin, 2019), allowing researchers

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

R
L

tra
in

er

dataset
initial parameter

generationg expression

constant optimization

calculate

NO

expression

Yes

 or

Parent
& Sibling RNN

prefix
expression
sequence

Token Library

3. Sequential Model

Symbolic
Experssion

Tree

log

log

log

log

const

const

const

const

const

exp

Sampled
Token

2. Evalutate Expressions and
Train the Deep Symbolic Model

4. Deployment in linear solvers

compilled to
library

integrated to
linear solver

update

1. Training Data Generation

adaptive
grid search

co
m

pu
ta

tio
n

tim
e

parameter

parameter

optimal parameter

preconditioner

dataset

Figure 3: Illustration of how SymMaP discovers efficient symbolic expressions for preconditioning parameters. Part 1
demonstrates the acquisition of optimal parameters and dataset generation; Part 2 illustrates the training process of the
RL-based deep symbolic discovery framework; Part 3 shows how the sequential model generates symbolic policies; Part 4
presents the deployment of symbolic expressions.

to understand the influence of parameters within existing
theoretical frameworks and identify potential numerical sta-
bility issues. This interpretability fosters trust in the algo-
rithm’s predictions and supports further theoretical explo-
ration (C3).

4. Method
This study focuses on enhancing the performance of param-
eterized preconditioners in solving linear systems derived
from parameterized PDEs. Specifically, we investigate pre-
conditioners with continuous parameters, such as the relax-
ation factor in SOR, while excluding those with discrete
parameters like the level of fill-in ICC or ILU factorization.

We introduce a novel framework, SymMaP, for symbolic dis-
covery in matrix preconditioning. As shown in Figure 3, we
first obtain the optimal preconditioning parameters through
a grid search to construct a training dataset. Then we em-
ploy an RNN to generate symbolic expressions in prefix
notation, which are then evaluated for their fitness. The
RNN is trained using a reward function based on the per-
formance of the generated expressions. By optimizing the
RNN parameters to maximize this reward function, we gen-
erate symbolic expressions that approximate the relationship
between the problem’s feature parameters (PDE parameters)
and the optimal preconditioning parameters. Finally, we
deploy the learned symbolic expressions into linear system
solvers. The detailed steps are as follows and pseudocode is

provided in the Appendix C.

4.1. Input Features and Training Data Generation

Input Features. In the context of solving parameterized
PDEs, which frequently arise in linear systems, we consider
feature parameters that characterize the equations. For in-
stance, a second-order elliptic PDE can be expressed as:
a11uxx + a12uxy + a22uyy + a1ux + a2uy + a0u = f,
where the coefficients a11, a12, a22, . . . represent the feature
parameters of PDE (see Appendix D.1 for details). These
feature parameters, denoted as xi, serve as input features
for the symbolic discovery process in SymMaP.

Training Data Generation. For each linear system, we
determine optimal preconditioning parameters through an
adaptive grid search. Using SOR preconditioning as an
example, we optimize the relaxation factor ω within [0, 2]
to minimize computation time (or condition number). The
search process involves: 1. Conducting an initial coarse
grid search (step size: 0.01) to evaluate computation time
(or condition number) for each ω. 2. Identifying candidate
regions with optimal performance. 3. Performing a refined
grid search (step size: 0.001) within these regions.

This process yields the required training dataset, where each
data point contains: 1. the problem feature parameters xi; 2.
the optimal preconditioning parameters yi. i = 1, 2, . . . , n,
and n is the number of data, typically set to n = 1200, with
1000 allocated for the training set and 200 for the test set.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

4.2. The Generation of Symbolic Expressions

Token Library. For SymMaP, we define the library L of
mathematical operators and operands as {+,−,×,÷, sqrt,
exp, log, pow, 1.0}. Although other operators such as poly,
sin and cos are frequently used (Udrescu & Tegmark, 2020),
we decided to exclude them because they offer limited ex-
planatory power in matrix preconditioning and significantly
increase the time and memory consumption during training.

After converting the mathematical expressions into prefix
notation, we use this tokenized representation as a pre-
order traversal of the expression tree (Zaremba & Sutskever,
2014). In each iteration, the RNN receives a pair consist-
ing of a parent node and a sibling node as inputs. Then
the RNN outputs a categorical distribution over all possible
next tokens. The parent node refers to the last incomplete
operator that requires additional operands to form a com-
plete expression. The sibling node, in the context of a binary
operator, represents the operand that has already been pro-
cessed and incorporated into the expression. In cases where
no parent or sibling node is applicable, they are designated
as empty nodes. This structured input method enables the
RNN to maintain contextual awareness and effectively pre-
dict the sequence of tokens that form valid mathematical
expressions.

The Sequential Model. During the generation of a single
symbolic expression, the RNN emits a categorical distribu-
tion for each ”next token” at each step. This distribution
is represented as a vector ψ(i)

θ , where i denotes the i-th
step and θ represents the parameters of the RNN. The ele-
ments of the vector correspond to the probabilities of each
token, conditioned on the previously selected tokens in the
traversal (Petersen et al., 2019):

ψ
(i)
θ (τi) = p(τi|τ1:i−1;θ). (3)

Here, τi denotes the index of the token selected at the i-
th step. The probability of generating the entire symbolic
expression τ is then the product of the conditional probabil-
ities of all tokens (Petersen et al., 2019; Landajuela et al.,
2021):

p(τ |θ) =
N∏
i=1

ψ
(i)
θ (τi). (4)

Optimization of Constants: The library L incorporates
a ‘constant token,’ which allows for the inclusion of var-
ious constant placeholders within sampled expressions.
These placeholders serve as the parameters ξ in the sym-
bolic expression. We seek to find the optimal values

of these parameters by maximizing the reward function:
ξ∗ = argmaxξ R(τ ; ξ), utilizing a nonlinear optimization
method. This optimization is executed within each sampled
expression as an integral part of computing the reward, prior
to each training iteration.

4.3. The Reward Function

Once a symbolic expression is fully generated (i.e., the
symbolic tree reaches all its leaf nodes), we evaluate its
fitness by calculating the normalized root-mean-square error
(NRMSE), a metric frequently used in genetic programming
symbolic discovery (Schmidt & Lipson, 2009). It is defined
as

NRMSE =
1

σy

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (5)

where ŷi = τ (xi) is the predicted value for the i-th sam-
ple, xi is the problem feature parameter, yi is the optimal
preconditioning parameter, σy is the standard deviation of
the target values y, and n is the number of data. To bound
this fitness value between 0 and 1, we apply a squashing
function:

R(τ) =
1

1 + NRMSE
. (6)

Our objective is to maximize R(τ), thereby minimizing
the NRMSE and improving the accuracy of the generated
expressions.

4.4. The Training Algorithm

Although the objective function is well-defined, it is im-
portant to note that R(τ) is not a deterministic value but
a random variable dependent on the RNN’s parameters θ.
Therefore, the key challenge is to establish an appropriate
criterion for evaluating this random variable, and then apply
gradient-based optimization methods accordingly.

Risk-seeking Policy. It is natural to consider the expectation
of the reward function, i.e., Eτ∼p(τ ;θ)[R(τ)], as the objec-
tive function to optimize. We can apply the ’log-integral’
trick (Williams, 1992) and obtain

∇θ Eτ∼p(τ ;θ)[R(τ)] = Eτ∼p(τ ;θ)[R(τ)∇θ log p(τ ;θ)].
(7)

Thus, even though the expectation of the reward function is
not directly differentiable with respect to θ, we can approxi-
mate the gradient using the sample mean.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Table 1: Comparison of average computation times (seconds) for SOR with different ω selections, and tolerance is 1e-7.
SymMaP 1 and 2 are the two learned expressions that achieved the highest reward function scores, with the best-performing
method highlighted in bold.

Dataset Matrix size
No PETSc default Fixed constant Fixed constant

Optimal constant SymMaP 1 SymMaP 2
precondition ω = 1 ω = 0.2 ω = 1.8

Biharmonic 4.2× 103 7.67 2.04 4.86 1.60 1.31 1.24 1.26

Darcy Flow 1.0× 104 33.1 13.5 17.5 9.91 9.54 8.50 8.60

Elliptic PDE 4.0× 104 31.3 21.0 21.4 17.5 16.6 15.8 16.3

Poisson 2.3× 103 4.12×10−2 1.95×10−2 2.15×10−2 1.95×10−2 1.38×10−2 1.35×10−2 1.36×10−2

Thermal 2.8× 103 2.23×10−1 5.98×10−2 2.07×10−1 1.18×10−1 5.94×10−2 5.76×10−2 5.91×10−2

In the context of symbolic regression, model performance
is often driven by a few exceptional results that outperform
others by a significant margin (Petersen et al., 2019; Tamar
et al., 2015). With this in mind, we adopt a risk-seeking
policy, which aims to maximize:

J(θ, ε) = Eτ∼p(τ ;θ)[R(τ)|R(τ) > Q(θ, ε)]. (8)

Here, ε is the risk factor, typically ε = 0.05, Q(θ, ε) is the
(1− ε)-quantile of the reward distribution under parameter
θ, i.e.

Q(θ, ε) = inf{q ∈ R|CDF(R(τ);θ) ≥ 1− ε}, (9)

where CDF(R(τ);θ) refers to the cumulative distribution
function. From this, the gradient of J(θ, ε) can be derived
as (Petersen et al., 2019):

∇θJ(θ, ε) = Eτ∼p(τ ;θ)

[(
R(τ)−Q(θ, ε)

)
· ∇θ log p(τ ;θ)

∣∣∣R(τ) > Q(θ, ε)
]
.

(10)

This gradient can be estimated using Monte Carlo sam-
pling:

∇θJ(θ, ε) ≈ ĝ ≜ (11)

1

εN

N∑
i=1

(R(τ (i))− Q̃(θ, ε))∇θ log p · 1R(τ (i))>Q̃(θ,ε),

Q̃(θ, ε) is the empirical (1− ε)-quantile of the reward func-
tion. By concentrating on the top ε percentile of samples,
SymMaP emphasizes optimizing the best-performing so-
lutions in preconditioning, thereby obtaining the optimal
symbolic expressions for preconditioning parameters.

4.5. Deployment in Linear System Solver

After the training process, we obtained a symbolic expres-
sion for predicting the preconditioning parameter. The

learned formula is exceptionally concise and incurs min-
imal computational cost. Therefore, we directly compile
the learned policy into a lightweight shared object using
a simple script and then integrate it into the linear system
solver package (e.g., PETSc).

5. Experiments
We conducted comprehensive experiments to evaluate the
SymMaP framework, organized into three primary sections:
1. Assessment of three different preconditioners and opti-
mization goals across various datasets to determine the ef-
fectiveness of SymMaP algorithm, 2. Analysis of associated
computational cost and the interpretability of the learned
symbolic expressions, 3. Ablation studies of SymMaP.

Preconditioners: We considered three different precondi-
tioners and various optimization metrics: 1. SOR precon-
ditioner with the relaxation factor ω (Golub & Van Loan,
2013); 2. SSOR preconditioner with the relaxation factor
ω (Golub & Van Loan, 2013); 3. AMG preconditioner with
the threshold parameters θT (Trottenberg et al., 2000).

Datasets: We investigated linear systems derived from five
distinct PDE classes: 1. Darcy Flow Problems (Li et al.,
2020), 2. Second-order Elliptic PDEs (Evans, 2022), 3.
Biharmonic Equations (Barrata et al., 2023), 4. Thermal
Problems (Wang et al., 2024). 5. Poisson Equations (Wang
et al., 2024). All cases except biharmonic equations yield
symmetric matrices. Notably, the non-symmetric matrices
from biharmonic equations are incompatible with SSOR
and AMG preconditioning techniques.

Baselines: We compared SymMaP against various parame-
ter selection methods for preconditioning. Specifically, the
comparison involved the following scenarios: 1. No matrix
preconditioning, 2. Default parameters in PETSc (Balay
et al., 2024), 3. Fixed constants, 4. Optimized fixed con-
stants.

Experiment Settings: All preconditioning procedures

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Table 2: Comparison of average computation times (seconds) for SSOR with different ω selections, and tolerance is 1e-7.
SymMaP 1 and 2 are the two learned expressions that achieved the highest reward function scores, with the best-performing
method highlighted in bold.

Dataset Matrix size
No PETSc default Fixed constant Fixed constant

Optimal constant SymMaP 1 SymMaP 2
precondition ω = 1 ω = 0.2 ω = 1.8

Darcy Flow 4.9× 103 4.18 0.488 0.757 1.09 0.448 0.412 0.523

Elliptic PDE 4.0× 104 23.9 10.5 14.7 8.72 8.68 7.70 7.74

Poisson 2.3× 103 2.12×10−2 1.02×10−2 1.93×10−2 9.91×10−3 9.89×10−3 9.10×10−3 9.92×10−3

Thermal 2.8× 103 2.34×10−1 2.69×10−2 5.08×10−2 9.87×10−2 2.24×10−2 2.13×10−2 2.14×10−2

Table 3: Comparison of average condition numbers for preconditioned matrices using different threshold parameter θT
selections in AMG. SymMaP 1 and 2 are the two learned expressions that achieved the highest reward function scores, with
the best-performing method highlighted in bold.

Dataset Matrix size
No PETSc default Fixed constant Fixed constant

Optimal constant SymMaP 1 SymMaP 2
precondition θT = 0 θT = 0.2 θT = 0.8

Darcy Flow 1.0× 104 752862 8204 19146 11426 7184 4824 5786

Elliptic PDE 4.0× 104 6792 184.6 205.4 212.5 182.8 168.8 170.3

Poisson 1.0× 104 1242 4.55 68.85 68.85 4.55 3.72 3.72

Thermal 2.8× 103 7325 11.9 627.2 627.2 9.91 9.71 9.71

were uniformly implemented using the C-based PETSc li-
brary (Balay et al., 2024) to maintain evaluation consistency.
The experiments were conducted within PETSc’s GMRES
linear solver framework (Golub & Van Loan, 2013), with
condition numbers computed through the built-in function
KSPComputeExtremeSingularValues.

Details on preconditioners, the mathematical forms of
datasets, and the runtime environment are available in Ap-
pendices B, D.1, and D.2, respectively. Information on the
generation of training datasets for the following experiments
and parameters of the SymMaP algorithm are outlined in
Appendices D.3 and D.4. The generated dataset and training
time are available in Appendix D.5. For an introduction to
related work, see Appendix A.

5.1. Main Experiments

In these experiments, as shown in Tables 1, 2, 3, we opti-
mized relaxation factors ω in both SOR and SSOR precon-
ditioning, and threshold parameters θT in AMG precondi-
tioning. For SOR and SSOR, we identified ω values that
minimize computation time, forming the training dataset
for SymMaP to learn symbolic expressions that optimize
computational times for solutions. Similarly, for AMG, we
selected θT values that minimize the condition number of
preconditioned matrices. Partial symbolic expressions can
be found in Appendix E.1.

Experimental results indicate that SymMaP consistently
outperforms all others across all experimental tasks. For
SOR, Table 1 shows that SymMaP reduces computation
times by up to 40% compared to PETSc’s default settings
and by 10% against the optimal constants. In SSOR, Table 2
shows that it cuts computation time and iteration counts by
up to 27%, over PETSc’s defaults, and achieves reductions
of 11% in time compared to optimal constants. For AMG,
Table 3 shows that SymMaP lowers the condition number
by up to 40% relative to PETSc’s defaults and 32% against
the optimal constants.

These results highlight SymMaP’s ability to effectively de-
rive high-performance symbolic expressions for various pre-
conditioning parameters, showcasing its broad applicability
and strong generalization across different preconditioning
tasks.

5.2. Comparison with Neural Network Performance

To evaluate the deployment overhead and prediction perfor-
mance of SymMaP, we compared it with a basic multilayer
perceptron (MLP) architecture. The MLP implementation
consists of three fully connected layers, taking PDE param-
eters as input and generating preconditioning parameters
as output. We employed ReLU activation functions and
trained the model using mean squared error (MSE) between
predicted and optimal parameters as the loss function. Both

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Table 4: Comparison of the runtime required for symbolic
expression and MLP to predict the SOR relaxation factor
and the subsequent average solution time for linear systems,
using the Darcy flow dataset with a matrix size of 103 and
tolerance is 1e-5.

Runtime (s) Solution time (s)
MLP 5.1e-5 7.1e-1
Symbol 1.1e-5 7.1e-1

symbolic expression and MLP were executed in a CPU
environment to simulate a modern solver environment.

Table 5: Partial symbolic expressions learned from some of
the main experiments

Precondition Dataset Symbolic expression

SOR Biharmonic 1.0 + 1.0/(4.0 + 1.0/x2) + 1.0/x1

SOR Elliptic PDE 1.0 + 1.0/(x2 + 1.0 + 1.0/(x2 + 4.0))

SOR Darcy Flow 1.0 + 1.0/(x4 + 1.0)

SSOR Elliptic PDE 1.0 + 1.0/(x2 + 1.2)

AMG Elliptic PDE (x1x3 + 1)/7

As shown in Table 4, the runtime of symbolic expressions
learned by SymMaP was only 20% of that of the MLP, pri-
marily due to the poor performance of neural networks in a
pure CPU environment, highlighting SymMaP’s computa-
tional efficiency. Furthermore, the average solution times
for parameters predicted by both symbolic expressions and
MLP were closely matched. This demonstrates that sym-
bolic expressions possess equivalent expressive capabilities
to neural networks in this scenario, effectively approximat-
ing the optimal parameter expressions.

5.3. Interpretable analysis

In Table 5, we report a subset of the learned symbolic ex-
pressions, with the mathematical significance of the related
symbols detailed in Appendix E.2. More symbolic expres-
sions can be found in Appendix E.1. These symbolic expres-
sions are notably more concise and selective, not utilizing all
candidate parameters and symbols, which aids researchers
in analyzing their underlying relationships.

For instance, in the context of SOR and SSOR precondi-
tioning, empirical evidence suggests that smaller relaxation
factors should be chosen when diagonal components are
relatively small. Our experimental findings corroborate this:
for the second-order elliptical PDE dataset, the symbolic
expressions derived for SOR and SSOR preconditioning de-
pend solely on x2, with larger x2 values leading to smaller
predicted relaxation factors, exemplified by 1.0 + 1.0

(x2+1.2) .
Here, x2 represents the coupling coefficient of the elliptical

Table 6: Ablation study examining the selection of mathe-
matical operators, comparing the effects on preconditioning
and training times. The first column lists the selected op-
erators, the second column shows the condition numbers
of preconditioned matrices derived from AMG parameter
predictions on the Darcy flow dataset (lower is better), and
the third column displays SymMaP training times.

Functionset Condition number time(s)

+,−,×,÷, poly 6803.8 15351

+,−,×,÷, sqrt, exp, log, pow, 1.0 7086.9 703.17

+,−,×,÷, sqrt, exp, log, sin, cos, pow, 1.0 7172.6 635.82

+,−,÷, 1.0, pow 7241.8 703.26

+,−,×,÷, sqrt, pow, 1.0 7271.1 746.80

+,−,×,÷, pow, 1.0 7301.4 702.46

PDE, which directly influences the relative size of the non-
diagonal components of the generated matrix, whereas other
coefficients have minimal impact. As the coupling coeffi-
cient increases, the relative numerical of the non-diagonal
components increases, and the diagonal components reduce
correspondingly, aligning with empirical observations.

These experimental outcomes demonstrate that SymMaP
can derive interpretable and efficient symbolic expressions
for parameters, further aiding researchers in understanding
and exploring the underlying mathematical principles.

5.4. Ablation Experiments

We conducted an ablation study using SymMaP to evaluate
the impact of different mathematical operator selections, as
described in Table 6. In the main experiments, We utilized
the operator set {+,−,×,÷, sqrt, exp, log, pow, 1.0} listed
in the second row.

The results indicate that this selection of operators achieves
a balance between predictive performance and training time
efficiency, meeting our expectations. Furthermore, experi-
ments detailing the performance of SymMaP about varia-
tions in learning rate, batch size, and dataset size are docu-
mented in Appendix E.3.

6. Conclusions
In this paper, we propose SymMaP, a deep symbolic discov-
ery framework designed for predicting efficient matrix pre-
conditioning parameters. Experiments show that SymMaP
can predict high-performance parameters and is applica-
ble across a variety of preconditioning and optimization
objectives. Additionally, SymMaP is easy to deploy with
virtually no computational cost. We are confident in the
symbolic model’s immense potential for broad real-world
applications, especially in matrix preconditioning.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Agarwal, R. P. Difference equations and inequalities: theory,

methods, and applications. CRC Press, 2000.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel,
J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammar-
ling, S., McKenney, A., and Sorensen, D. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999. ISBN 0-89871-447-
8 (paperback).

Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown,
J., Brune, P., Buschelman, K., Constantinescu, E. M.,
Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J.,
Gropp, W. D., Hapla, V., Isaac, T., Jolivet, P., Karpeev,
D., Kaushik, D., Knepley, M. G., Kong, F., Kruger, S.,
May, D. A., McInnes, L. C., Mills, R. T., Mitchell, L.,
Munson, T., Roman, J. E., Rupp, K., Sanan, P., Sarich,
J., Smith, B. F., Zampini, S., Zhang, H., Zhang, H., and
Zhang, J. PETSc Web page. https://petsc.org/,
2024. URL https://petsc.org/.

Barrata, I. A., Dean, J. P., Dokken, J. S., Habera, M., HALE,
J., Richardson, C., Rognes, M. E., Scroggs, M. W., Sime,
N., and Wells, G. N. Dolfinx: The next generation fenics
problem solving environment. 2023.

Bers, L., John, F., and Schechter, M. Partial differential
equations. American Mathematical Soc., 1964.

Chen, K. Matrix preconditioning techniques and applica-
tions. Number 19. Cambridge University Press, 2005.

Chen, X., Liang, C., Huang, D., Real, E., Wang, K., Pham,
H., Dong, X., Luong, T., Hsieh, C.-J., Lu, Y., et al. Sym-
bolic discovery of optimization algorithms. Advances in
neural information processing systems, 36, 2024.

Ciarlet, P. G. and Raviart, P.-A. A mixed finite element
method for the biharmonic equation. In Mathematical
aspects of finite elements in partial differential equations,
pp. 125–145. Elsevier, 1974.

Cranmer, M., Sanchez Gonzalez, A., Battaglia, P., Xu, R.,
Cranmer, K., Spergel, D., and Ho, S. Discovering sym-
bolic models from deep learning with inductive biases.
Advances in neural information processing systems, 33:
17429–17442, 2020.

Demmel, J. W. Applied numerical linear algebra. SIAM,
1997.

Driscoll, T. A., Hale, N., and Trefethen, L. N. Chebfun
guide, 2014.

Evans, L. C. Partial differential equations, volume 19.
American Mathematical Society, 2022.

Glowinski, R. and Pironneau, O. Numerical methods for
the first biharmonic equation and for the two-dimensional
stokes problem. SIAM review, 21(2):167–212, 1979.

Golub, G. H. and Van Loan, C. F. Matrix computations.
JHU press, 2013.

Götz, M. and Anzt, H. Machine learning-aided numerical
linear algebra: Convolutional neural networks for the
efficient preconditioner generation. In 2018 IEEE/ACM
9th Workshop on Latest Advances in Scalable Algorithms
for Large-Scale Systems (scalA), pp. 49–56. IEEE, 2018.

Greenbaum, A. Iterative methods for solving linear systems.
SIAM, 1997.

Greenfeld, D., Galun, M., Basri, R., Yavneh, I., and Kimmel,
R. Learning to optimize multigrid pde solvers. In Interna-
tional Conference on Machine Learning, pp. 2415–2423.
PMLR, 2019.

Hsieh, J.-T., Zhao, S., Eismann, S., Mirabella, L., and Er-
mon, S. Learning neural pde solvers with convergence
guarantees. arXiv preprint arXiv:1906.01200, 2019.

Johnson, C. Numerical solution of partial differential equa-
tions by the finite element method. Courier Corporation,
2009.

Koric, S. and Abueidda, D. W. Data-driven and physics-
informed deep learning operators for solution of heat
conduction equation with parametric heat source. Inter-
national Journal of Heat and Mass Transfer, 203:123809,
2023.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021.

Lample, G. and Charton, F. Deep learning for symbolic
mathematics. arXiv preprint arXiv:1912.01412, 2019.

Landajuela, M., Petersen, B. K., Kim, S., Santiago, C. P.,
Glatt, R., Mundhenk, N., Pettit, J. F., and Faissol, D.
Discovering symbolic policies with deep reinforcement
learning. In International Conference on Machine Learn-
ing, pp. 5979–5989. PMLR, 2021.

9

https://petsc.org/
https://petsc.org/

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Leon, S. J., De Pillis, L. G., and De Pillis, L. G. Linear
algebra with applications. Pearson Prentice Hall Upper
Saddle River, NJ, 2006.

LeVeque, R. J. Finite difference methods for ordinary
and partial differential equations: steady-state and time-
dependent problems. SIAM, 2007.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020.

Lu, L., Meng, X., Cai, S., Mao, Z., Goswami, S., Zhang,
Z., and Karniadakis, G. E. A comprehensive and fair
comparison of two neural operators (with practical exten-
sions) based on fair data. Computer Methods in Applied
Mechanics and Engineering, 393:114778, 2022.

Luz, I., Galun, M., Maron, H., Basri, R., and Yavneh, I.
Learning algebraic multigrid using graph neural networks.
In International Conference on Machine Learning, pp.
6489–6499. PMLR, 2020.

Mankowitz, D. J., Michi, A., Zhernov, A., Gelmi, M., Selvi,
M., Paduraru, C., Leurent, E., Iqbal, S., Lespiau, J.-B.,
Ahern, A., et al. Faster sorting algorithms discovered
using deep reinforcement learning. Nature, 618(7964):
257–263, 2023.

Petersen, B. K., Landajuela, M., Mundhenk, T. N., Santi-
ago, C. P., Kim, S. K., and Kim, J. T. Deep symbolic
regression: Recovering mathematical expressions from
data via risk-seeking policy gradients. arXiv preprint
arXiv:1912.04871, 2019.

Poli, R., Langdon, W., and McPhee, N. A field guide to ge-
netic programming (with contributions by jr koza)(2008).
Published via http://lulu. com, 2008.

Rahman, M. A., Ross, Z. E., and Azizzadenesheli, K.
U-no: U-shaped neural operators. arXiv preprint
arXiv:2204.11127, 2022.

Rudin, C. Stop explaining black box machine learning
models for high stakes decisions and use interpretable
models instead. Nature machine intelligence, 1(5):206–
215, 2019.

Ruge, J. W. and Stüben, K. Algebraic multigrid. In Multi-
grid methods, pp. 73–130. SIAM, 1987.

Saad, Y. Iterative methods for sparse linear systems. SIAM,
2003.

Saad, Y. and Schultz, M. H. Gmres: A generalized mini-
mal residual algorithm for solving nonsymmetric linear
systems. SIAM Journal on scientific and statistical com-
puting, 7(3):856–869, 1986.

Schmidt, M. and Lipson, H. Distilling free-form natural
laws from experimental data. science, 324(5923):81–85,
2009.

Sharma, R., Farimani, A. B., Gomes, J., Eastman, P., and
Pande, V. Weakly-supervised deep learning of heat
transport via physics informed loss. arXiv preprint
arXiv:1807.11374, 2018.

Stanaityte, R. ILU and Machine Learning Based Precondi-
tioning for the Discretized Incompressible Navier-Stokes
Equations. PhD thesis, University of Houston, 2020.

Taghibakhshi, A., MacLachlan, S., Olson, L., and West, M.
Optimization-based algebraic multigrid coarsening using
reinforcement learning. Advances in neural information
processing systems, 34:12129–12140, 2021.

Tamar, A., Glassner, Y., and Mannor, S. Policy gradients
beyond expectations: Conditional value-at-risk. Citeseer,
2015.

Trefethen, L. N. and Bau, D. Numerical linear algebra.
SIAM, 2022.

Trottenberg, U., Oosterlee, C. W., and Schuller, A. Multi-
grid. Elsevier, 2000.

Udrescu, S.-M. and Tegmark, M. Ai feynman: A physics-
inspired method for symbolic regression. Science Ad-
vances, 6(16):eaay2631, 2020.

Wang, H., Hao, Z., Wang, J., Geng, Z., Wang, Z., Li, B.,
and Wu, F. Accelerating data generation for neural op-
erators via krylov subspace recycling. arXiv preprint
arXiv:2401.09516, 2024.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8:229–256, 1992.

Young, D. Iterative methods for solving partial difference
equations of elliptic type. Transactions of the American
Mathematical Society, 76(1):92–111, 1954.

Zaremba, W. and Sutskever, I. Learning to execute. arXiv
preprint arXiv:1410.4615, 2014.

Zhang, E., Kahana, A., Turkel, E., Ranade, R., Pathak, J.,
and Karniadakis, G. E. A hybrid iterative numerical
transferable solver (hints) for pdes based on deep op-
erator network and relaxation methods. arXiv preprint
arXiv:2208.13273, 2022.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

A. Related work
A.1. Machine Learning for Algorithm Discovery

Machine learning has the potential to uncover implicit rules beyond human intuition from training data, enabling the
construction of algorithms that outperform handcrafted programs. Approaches to algorithm discovery in machine learning
encompass symbolic discovery, program search, and more. Specifically, program search focuses on optimizing the
computational processes of algorithms. For example, Mankowitz et al. (2023) explores the discovery of faster sorting
algorithms, while Chen et al. (2024) investigates efficient optimization algorithms.

In contrast, symbolic discovery aims to search within the space of small mathematical expressions rather than computational
streams (Petersen et al., 2019; Landajuela et al., 2021). This approach is analogous to an extreme form of model distillation,
where knowledge extracted from black-box neural networks is distilled into explicit mathematical expressions. Traditional
methods for symbolic discovery have relied on evolutionary algorithms, including genetic programming (Poli et al., 2008).
Recently, deep learning has emerged as a powerful tool in this domain, offering enhanced representational capacity and new
avenues for solving symbolic discovery problems (Schmidt & Lipson, 2009; Cranmer et al., 2020).

A.2. Neural Networks for Matrix Preconditioning

Recent studies have explored the use of neural networks to improve matrix preconditioning techniques. (Greenfeld et al.,
2019; Luz et al., 2020; Taghibakhshi et al., 2021) demonstrate the effectiveness of neural networks in refining multigrid
preconditioning algorithms, thus streamlining the computational process. (Götz & Anzt, 2018) utilized Convolutional Neural
Networks (CNNs) for the optimization of block Jacobi preconditioning algorithms, while (Stanaityte, 2020) developed
corresponding Incomplete Lower-Upper Decomposition (ILU) preconditioning algorithms leveraging machine learning
insights. Although these algorithms achieved impressive results, they still face challenges such as limited interpretability
and reduced computational efficiency when deployed in pure CPU environments. This paper attempts to address these issues
by incorporating symbolic discovery into the framework.

B. Detailed introduction of matrix preconditioning
B.1. Overview of Matrix Preconditioning Methods

• Jacobi Method: The Jacobi preconditioner utilizes only the diagonal elements of a matrix to precondition a linear
system. By approximating the inverse of the diagonal matrix, this method is computationally simple and effective for
systems with strong diagonal dominance. However, its convergence rate can be slow, and its performance diminishes
for poorly conditioned or weakly diagonally dominant matrices. The Jacobi method is typically used as a baseline for
comparison with more sophisticated preconditioners (Saad, 2003).

• Gauss-Seidel (GS) Method: The Gauss-Seidel preconditioner improves upon the Jacobi method by considering both
the lower triangular and diagonal parts of the matrix in a sequential manner. Unlike the Jacobi method, which updates
all variables simultaneously, the GS method updates each variable in sequence using the most recent values. This leads
to faster convergence, especially for diagonally dominant matrices. However, the GS method can still struggle with
poorly conditioned systems, and its forward-only approach can limit performance in some applications (Saad, 2003).

• Successive Over-Relaxation (SOR): The SOR method builds on the Gauss-Seidel method by introducing a relaxation
factor ω to accelerate convergence. This factor allows for over-relaxation (ω > 1) or under-relaxation (ω < 1), tuning
the method for faster performance on certain types of problems. SOR can significantly reduce the number of iterations
needed for convergence compared to both the Jacobi and GS methods, but choosing the optimal relaxation factor is
problem-dependent (Young, 1954).

• Symmetric Successive Over-Relaxation (SSOR): SSOR is a symmetric version of the SOR method, where relaxation
is applied in both forward and backward sweeps of the matrix. This bidirectional process improves stability and is
well-suited for use with iterative solvers like the conjugate gradient method, which requires symmetric preconditioners.
SSOR’s symmetry ensures that the preconditioner maintains the properties needed for efficient and stable convergence,
making it a popular choice for symmetric positive-definite systems (Golub & Van Loan, 2013).

• Algebraic Multigrid (AMG): AMG is an advanced preconditioning technique designed to handle large, sparse systems
of linear equations, especially those arising from the discretization of partial differential equations. Unlike traditional

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

methods, AMG operates on multiple levels of the matrix structure, coarsening the matrix to form a hierarchy of smaller
systems that are easier to solve. Solutions on the coarser grids are then interpolated back to the finer grids. This
multilevel approach makes AMG highly efficient for large-scale problems, as it can dramatically reduce the number of
iterations needed to achieve convergence. AMG is often used in combination with methods like SSOR or Gauss-Seidel
as a smoother on each grid level, and it is particularly effective in cases where the problem exhibits a multiscale
nature (Ruge & Stüben, 1987).

Relationship Among Jacobi, GS, and SOR Methods: The Jacobi method is the simplest of the three, using only diagonal
information. The GS method improves upon the Jacobi method by using both diagonal and lower triangular matrix elements
to achieve faster convergence. SOR further refines the GS method by introducing a relaxation factor to optimize the update
process. Both the GS and SOR methods can be seen as iterative improvements on the Jacobi method, with SOR offering a
more flexible and potentially faster alternative by adjusting the relaxation factor. SSOR extends SOR symmetrically, making
it suitable for use in more advanced iterative solvers like the conjugate gradient method (Saad, 2003; Golub & Van Loan,
2013).

B.2. Parameters in Matrix Preconditioning

The choice of preconditioning parameters significantly influences the effectiveness of the preconditioning process, especially
in the iterative solving of linear systems (Chen, 2005). Below, we discuss three specific preconditioning techniques—SOR,
SSOR, and AMG—focusing particularly on how their key parameters affect the preconditioning results.

B.2.1. RELAXATION FACTOR ω IN SOR AND SSOR METHODS

In the SOR preconditioning method, the relaxation factor ω is a critical parameter that determines the acceleration of
iteration. SOR evolves from the Gauss-Seidel method by introducing ω to speed up convergence. The SOR iteration formula
is given by:

x(k+1) = (D + ωL)−1
[
(1− ω)Dx(k) + ωb− ωUx(k)

]
, (12)

where D, L, and U are the diagonal, strictly lower triangular, and strictly upper triangular parts of the matrix A, respec-
tively (Golub & Van Loan, 2013).

The SSOR preconditioning method can be represented by the following formula:

MSSOR =
1

ω(2− ω)
(D − ωU)D−1(D − ωL), (13)

where MSSOR constitutes the preconditioner, and D, L, U , and ω are defined similarly to their roles in the SOR method. This
symmetrical formulation enhances the stability and effectiveness of the preconditioning, particularly benefiting symmetric
positive-definite matrices by optimizing the convergence properties of the iterative solver (Golub & Van Loan, 2013).

The choice of ω directly impacts the speed of convergence and the condition number of the matrix. Different problems and
scenarios often require different choices of ω, which typically need to be determined based on the specific properties of the
problem and through numerical experimentation (Golub & Van Loan, 2013). In the PETSc library, the default relaxation
factor ω for both SOR and SSOR is set to 1, at which point SOR degenerates to GS preconditioning.

B.2.2. THRESHOLD PARAMETERS θT IN AMG

In the AMG method, the threshold parameter θT determines whether the non-zero elements of the matrix are ”strong”
enough to be considered in the construction of a coarse grid during the multigrid process. This parameter is crucial for
establishing the connectivity between coarse and fine grids in the hierarchical multilevel structure (Ruge & Stüben, 1987).

The AMG method solves the equation system through multiple levels of grids, each corresponding to a coarser version of
the original problem. During this process, the threshold parameter is used to determine whether a given non-zero matrix
element is strong enough to keep the corresponding grid points connected during coarsening.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

• A lower threshold often leads to more elements being considered as strong connections, which might increase the
complexity of the coarse grid but can help preserve the essential features of the original problem, thus improving the
efficiency and convergence of the multigrid method.

• A higher threshold might result in fewer strong connections, thereby reducing the complexity of the coarse grid.
However, this can weaken the effectiveness of the AMG method, especially in maintaining the features of the original
problem.

Different values of θT directly influence the condition number of the preconditioned matrix. Selecting the appropriate
threshold parameter typically involves considering the specific structure and features of the problem, and adjustments are
made through experimental fine-tuning to achieve the optimal balance (Trottenberg et al., 2000). In the PETSc library, the
default threshold parameter θT is set to 0.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

C. Algorithm Pseudocode

Algorithm 1 RNN-based Symbolic Discovery Process
Input: RNN with parameter θ, the library of tokens L
τ ← [] parent(0), sibling(0)← empty node x0 ← parent(0)||sibling(0) // x is the concatenation of
parent and sibling nodes
h0 ← 0 // Initialize hidden state of RNN
for t = 1, 2, · · · do

(ψt, ht)← RNN(xt−1, ht−1;θ) // ψt is the categorical distribution of the next token
ψt ← ApplyConstraint(ψt,L, τ) // Regularize the distribution
Sample token τt ∼ ψt if Arity(τt) > 0 then

// Arity(τi) denotes the number of operands of τi
parent(t)← τt
sibling(t)← empty node

else
// When Arity(τt) = 0, go back to the last incomplete operator node

count← 0 for i = t, t− 1, . . . , 1 do
// Backward iteration

count← count + Arity(τi) −1 if count = 0 then
parent(t)← τi
sibling(t)← τi+1 break

if count = −1 then
// The expression sequence is complete

break
xt ← parent(t)||sibling(t)

Output: Prefix expression sequence τ

Algorithm 2 Deep Symbolic Optimization for Matrix Preconditioning Parameter
Input :RNN with initial parameter θ0, the library of tokens L, batch size N , iteration number J , risk factor ε, and learning

rate α
θ ← θ0
j ← 0
repeat

for i = 1, 2, . . . , N do
τ (i) ← SymbolicDiscover(θ,L)
ξ∗ ← {ξ in τ as constant placeholder : R(τ ; ξ)} // Constant optimization

τ (i) ← ReplaceConstant(τ (i), ξ∗)
Compute ĝ1 using τ (i) and θ // See Eq. (11)
Compute ĝ2 as entropy gradient
θ ← θ + α(ĝ1 + ĝ2) // Update the parameter
Train model: update pθ via PPO by optimizing J(θ; ϵ)

until j = J or convergence
Output :The best symbolic expression τ ∗

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

D. Experiment Settings
D.1. Datasets

1. Darcy Flow Problem

We consider two-dimensional Darcy flows, which can be described by the following equation (Li et al., 2020; Rahman et al.,
2022; Kovachki et al., 2021; Lu et al., 2022):

−∇ · (K(x, y)∇h(x, y)) = f,

whereK is the permeability field, h is the pressure, and f is a source term which can be either a constant or a space-dependent
function.

In our experiment, K(x, y) is generated using truncated Chebyshev polynomials. We convert the Darcy flow problem into a
system of linear equations using the central difference scheme of Finite Difference Methods (FDM) (LeVeque, 2007). The
coefficients of the Chebyshev polynomials serve as input features for our symbolic discovery framework.

2. Second-order Elliptic Partial Differential Equation

We consider general two-dimensional second-order elliptic partial differential equations, which are frequently described by
the following generic form (Evans, 2022; Bers et al., 1964):

Lu ≡ a11uxx + a12uxy + a22uyy + a1ux + a2uy + a0u = f,

where a0, a1, a2, a11, a12, a22 are constants, and f represents the source term, depending on x, y. The variables u, ux, uy
are the dependent variable and its partial derivatives. The equation is classified as elliptic if 4a11a22 > a212.

In our experiments, a11, a22, a1, a2, a0 are uniformly sampled within the range (−1, 1), while the coupling term a12 is
sampled within (−0.01, 0.01). We then select equations that satisfy the elliptic condition to form our dataset. Similar to the
approach with the Darcy flow problem, we convert the PDE into a system of linear equations using the central difference
scheme of FDM. The coefficients a0, a1, a2, a11, a12, a22 serve as input features for our symbolic discovery framework.
When discussing SSOR preconditioning, we set a1 and a2 to zero to ensure the resulting matrix remains symmetric.

3. Biharmonic Equation

We consider the biharmonic equation, a fourth-order elliptic equation, defined on a domain Ω ⊂ R2. The equation is
expressed as follows (Ciarlet & Raviart, 1974; Glowinski & Pironneau, 1979; Barrata et al., 2023):

∇4u = f in Ω = [0, a]× [0, b],

where∇4 ≡ ∇2∇2 represents the biharmonic operator and f = 4.0π4 sin(πx) sin(πy) is the prescribed source term.

In our experiments, we construct the dataset by varying the solution domain Ω = [0, a]× [0, b]. We utilize the discontinuous
Galerkin finite element method from the FEniCS library to transform this problem into a system of linear equations (Barrata
et al., 2023). The parameters a, b of the domain serve as input features for our symbolic discovery framework.

4. Poisson Equation

We consider a two-dimensional Poisson equation, which can be described by the following equation (Wang et al., 2024;
Hsieh et al., 2019; Zhang et al., 2022):

∇2u = f in Ω = [0, 1]2.

Physical Contexts in which the Poisson Equation Appears: 1. Electrostatics; 2. Gravitation; 3. Fluid Dynamics.

In our experiments, we address the Poisson equation within a square domain , where both the boundary conditions on
all four sides and the source term f on the equation’s left-hand side are generated using third-order truncated Chebyshev
polynomials. The finite difference method with a central difference scheme is employed to discretize the equation into a
linear system. The Chebyshev coefficients serve as parameters for our symbolic discovery framework (Driscoll et al., 2014).

5. Thermal Problem

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

We consider a two-dimensional thermal steady state equation, which can be described by the following equation (Wang
et al., 2024; Sharma et al., 2018; Koric & Abueidda, 2023):

∂2T

∂x2
+
∂2T

∂y2
= 0,

where T is the temperature. We examine the steady-state thermal equation in thermodynamics. As with the previous
equation, we still solve this equation in the square domain. The boundary temperatures on the left and right boundaries are
determined by random values ranging from -100 to 0 and 0 to 100, respectively. The top and bottom boundary temperature
functions are generated by third-order truncated Chebyshev polynomials. The boundary temperature and the coefficients of
the Chebyshev polynomials serve as parameters for our symbolic discovery framework.

D.2. Environment

To ensure consistency in our evaluations, all comparative experiments were conducted under uniform computing environ-
ments. Specifically, the environments used are detailed as follows:

1. Environment (Env1):

• Platform: Windows11 version 22631.4169, WSL
• Operating System: Ubuntu 22.04.3
• CPU Processor: AMD Ryzen 9 5900HX with Radeon Graphics CPU, clocked at 3.30GHz

2. Environment (Env2):

• Platform & Operating System: Ubuntu 18.04.4 LTS
• CPU Processor: Intel(R) Xeon(R) Gold 6246R CPU at 3.40GHz
• GPU Processor: GeForce RTX 3090 24GB
• Library: CUDA Version 11.3

Speed tests for solving linear systems were performed in Env 1, while all training related to symbolic discovery was
conducted in Env 2.

D.3. Training Data Generation

We employed an adaptive grid search to generate the training dataset. Initially, we traversed a coarse grid, sampling every
0.05, and from this dataset, we selected the three points with the smallest values. Subsequently, we conducted a finer grid
search around these points, sampling every 0.001, to identify the point with the minimum value, which we designated as our
optimal parameter. Particularly, after experimental validation confirmed the dataset’s convexity, we utilized a binary search
sampling method for a dataset derived from the second-order elliptic equation’s SOR preconditioning. Starting with points
at 0.0, 1.0, and 2.0, we compared these values. If the value at 0.0 was lowest, we computed at 0.5; if at 2.0, then at 1.5; and
if at 1.0, then at both 0.5 and 1.5. This process was repeated until achieving a minimum point with a precision of 0.001.

For SOR preconditioning, we evaluated second-order elliptic equations, Darcy flow equations, and biharmonic equations,
with solution time as the metric for optimal preprocessing parameters, achieved by minimizing solution time using the
previously described grid method. In SSOR preconditioning, applied to second-order elliptic and Darcy flow equations, we
utilized a hybrid metric that combined normalized computation time and iteration counts, aiming to simultaneously optimize
both iteration counts and solution times. For AMG preconditioning, also examined with second-order elliptic and Darcy
flow equations, we used the condition number of the preconditioned matrix as the metric, where a lower value indicates
better performance.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

D.4. Parameters of SymMAP

Experimental Setup. SymMAP is implemented using the LSTM architecture with one layer and 32 units. More details
about the hyperparameters are provided in Table 7.

Table 7: Hyperparameters of SymMAP (Default Model)

Hyperparameter Value

Number of LSTM layers 1
Number of LSTM units 32

Number of training samples 2,000,000
Batch size 1,000

Risk factor ε 0.05
Minimal expression length 4
Maximal expression length 64

Learning rate 0.0005
Weight of entropy regularization 0.03

Restricting searching space. We employ specific constraints within our framework to streamline the exploration of
expression spaces effectively and ensure they remain within practical and manageable bounds:

1. Bounds on expression length. To strike a balance between complexity and manageability, we set boundaries for
expression lengths: a minimum of 4 and a maximum of 64 characters. This ensures that expressions are neither overly
trivial nor excessively complicated.

2. Constant combination. We restrict expressions such that the operands of any binary operator are not both constants.
This is out of the simple intuition that, if both operands are constants, the combination of the two can be precomputed
and replaced with a single constant.

3. Inverse operator exclusion. We preclude unary operators from having their inverses as children to avoid redundant
computations and meaningless expressions, such as in log(exp(x)).

4. Trigonometric Constraints. Expressions involving trigonometric operators should not include descendants within
their formulation. For instance, sin(x+ cos(x)) is restricted because it combines trigonometric operators in a way that
is uncommon in scientific contexts.

D.5. Computational Time for Related Algorithms

• Dataset Generation Time:

– Darcy Flow Problem: 40 hours
– Second-order Elliptic Partial Differential Equation: 40 hours
– Biharmonic Equation: 100 hours
– Poisson Equation: 6 hours
– Thermal Problem: 6 hours

• SymMAP Execution Time: For each run, 1000 iterations are performed.

– Without polynomials in the Token Library: approximately 800 seconds.
– With polynomials in the Token Library: approximately 2600 seconds.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

E. Experimental Data and Supplementary Experiments
E.1. Symbolic Expressions from Main Experiments

This section documents some of the learned expressions from the main experiments, corresponding to ”SymMaP1” in
Tables 1, 2, and 3.

• Second-order elliptic PDE problem, AMG preconditioning:

x1x3 + 1.0

x1 + 7.0

Parameter meanings: x1-x6 represent the coefficients a11, a12, a22, a1, a2, and a0 in the second-order elliptic equation.

• Second-order elliptic PDE problem, SSOR preconditioning:

(2x2 −
1

4x1 + 2x3
)(−0.21785x31 − 63.6118x21x2 + 0.206541x21x3 − 0.235667x21x4

+ 0.269472x21 − 967.517x1x
2
2 − 61.2291x1x2x3 + 1.68205x1x2x4 + 5.07925x1x2

− 0.0221322x1x
2
3 − 0.454257x1x3x4 − 0.0693756x1x3 + 0.411528x1x

2
4 + 0.0311608x1x4

− 7.53439x1 + 9506.4x32 − 468.735x22x3 − 154.885x22x4 + 410.223x22 − 25.5913x2x
2
3

+ 7.92627x2x3x4 + 5.30828x2x3 + 3.82512x2x
2
4 − 7.0487x2x4 − 0.612507x2 − 0.180432x33

− 0.0462734x23x4 + 0.310649x23 + 0.257121x3x
2
4 − 0.0962336x3x4 − 3.86012x3 + 0.13906x34

− 0.389893x24 + 0.3144x4 − 0.0111835)

Parameter meanings: x1-x4 represent the coefficients a11, a12, a22, and a0 in the second-order elliptic equation.

• Darcy flow problem, SSOR preconditioning:

1.0

x1(x14 + x4) + 1.0

Parameter meanings: x1-x16 represent the 16 coefficients of a second-order truncated Chebyshev polynomial in two
dimensions, ordered as follows: 1, x, x2, x3, y, xy, x2y, x3y, y2, xy2, x2y2, x3y2, y3, xy3, x2y3, and x3y2.

• Darcy flow problem, AMG preconditioning:

1.0 +
1.0

1.0 + 1.0
x16+x3+x2

9+2.0

Parameter meanings: x1-x16 represent the 16 coefficients as described above.

• Biharmonic Equation, SOR preconditioning:(
1.0x2

−4x2 − 1.0 + 1.0
x2

+ 1.0

)4

Parameter meanings: x1 and x2 represent the length and width of the equation’s boundary, respectively.

• Biharmonic Equation, AMG preconditioning:

1.0 +
1.0

3.0 + 1.0x1+1.0
x2

+
1.0

x2

Parameter meanings: x1 and x2 represent the length and width of the equation’s boundary, respectively.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

• Poisson Equation, SOR preconditioning: √
exp

(
1.0

x3 + exp(2 exp(x21))

)
Parameter meanings: x1-x8 represent the coefficients of two second-order truncated Chebyshev polynomials for the
boundary functions.

• Poisson Equation, SSOR preconditioning:

1.15024107160485
(
0.106506978919201x22 + 1

)1/16
Parameter meanings: x1-x8 represent the coefficients of two second-order truncated Chebyshev polynomials for the
boundary functions.

• Poisson Equation, AMG preconditioning:
1.0

x28 + 7.0

Parameter meanings: x1-x8 represent the coefficients of two second-order truncated Chebyshev polynomials for the
boundary functions.

• Thermal problem, SOR preconditioning:

exp

(
0.778800783071405

(1− x6)1/4

)1/4

Parameter meanings: x1-x4 represent the coefficients of the Chebyshev polynomial for the boundary temperature
function on the upper and lower boundaries, while x5 and x6 represent the coefficients for the boundary temperature
function on the left and right boundaries.

• Thermal problem, SSOR preconditioning:

1.0− 1.0

log (4.0(1− 0.5x6)2)

Parameter meanings: x1-x4 represent the coefficients of the Chebyshev polynomial for the boundary temperature
function on the upper and lower boundaries, while x5 and x6 represent the coefficients for the boundary temperature
function on the left and right boundaries.

• Thermal problem, AMG preconditioning:

1.0

2.71828182845905 exp(0.135335283236613x6) + 8.15484548537714

Parameter meanings: x1-x4 represent the coefficients of the Chebyshev polynomial for the boundary temperature
function on the upper and lower boundaries, while x5 and x6 represent the coefficients for the boundary temperature
function on the left and right boundaries.

E.2. Interpretable Analysis Details

As shown in Table 8, the variables are defined as follows: in the first row, x1 and x2 represent the size of the boundary for
PDE solutions; in the second row, x2 represents the coefficient of a second-order coupling term; in the third row, x4 is the
coefficient of the fourth x-term multiplied by the first y-term in a two-dimensional Chebyshev polynomial; in the fourth
row, x2 again denotes the coefficient of a second-order coupling term; in the fifth row, x1x3 signifies the coefficient of a
second-order non-coupling term.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Table 8: Symbolic expressions learned from the main experiments

Precondition Dataset Symbolic expression

SOR Biharmonic 1.0 + 1.0/(4.0 + 1.0/x2) + 1.0/x1

SOR Elliptic PDE 1.0 + 1.0/(x2 + 1.0 + 1.0/(x2 + 4.0))

SOR Darcy Flow 1.0 + 1.0/(x4 + 1.0)

SSOR Elliptic PDE 1.0 + 1.0/(x2 + 1.2)

AMG Elliptic PDE (x1x3 + 1)/7

E.3. Analysis of Hyperparameters

The performance of SymMaP is primarily influenced by the learning rate of the RNN, batch size, and dataset size. We
conducted experiments to study the impact of these hyperparameters.

Symbolic Learning RNN Parameters:

Table 9: Performance comparison of SymMaP under various symbolic learning RNN parameters (lower condition numbers
are preferable). The experiment focuses on optimizing AMG preconditioning coefficients in the Darcy Flow dataset.

Learning Rate Batch Size Condition number Training time(s)

0.01
500 6780 1173.09

1000 5168 863.51
2000 6898 522.80

0.001
500 5935 1104.16

1000 11774 676.40
2000 5935 505.85

0.0005
500 4718 1026.45

1000 5935 703.17
2000 5935 549.36

0.0001
500 12228 1324.00

1000 7508 837.18
2000 6884 603.62

Results in Table 9 indicate that an appropriate combination of RNN learning rate and batch size can enhance performance.

Dataset size:

Table 10: Performance comparison of SymMaP across varying dataset sizes (lower condition numbers indicate better
performance). The experiment evaluates the optimization of AMG preconditioning coefficients for the Darcy Flow dataset.

Dataset size Condition number Training time (s)

10 7032 669.68
50 6980 737.80
100 4892 812.02
500 3811 699.54
1000 5345 703.17

Table 10 demonstrates that increasing the dataset size enhances the performance of symbolic expressions learned by SymMaP,
as expected.

20

