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Abstract
Nowadays text-to-speech synthesis (TTS) systems are most
commonly trained using phonetic input. This is mostly due to
the poor performance of the letter-to-sound (L2S) mapping (in
particular with languages with opaque orthography) performed
by end-to-end TTS: the empirical distribution of the words sam-
pled in the sole training corpus cannot compete with pronunci-
ation dictionaries. Taylor and Richmond [1] actually reported
letter-to-sound errors – implicitly performed by end-to-end sys-
tems from raw text input – close to 10%.

This paper nevertheless shows that speakers produce law-
ful phonological variations and that end-to-end TTS systems
trained to accept text input – once trained adequately – can cap-
ture these variations of pronunciation that are strong markers
of sociolinguistic features. We illustrate such variations on li-
aisons and schwas in French and r-linking in British English.
We therefore advocate for restoring text input for TTS, so that
the many aspects of style variations (produced by speakers as
well as stylistic variations) encoded by suprasegmental features
can also be reflected in actual variations of pronunciation.
Index Terms: text-to-speech synthesis, multi-speaker, letter-to-
sound, mixed-input

1. Introduction
Sociophonetics [2] studies how socially constructed variations
in the sound system are used and learned. There are in fact
large differences in pronunciation between regions (e.g. phono-
logical variations of American Spanish [3]), social classes (e.g.
the derhoticisation of high-class Scottish English [4]), ethnici-
ties [5], genders, sexes, sexual orientations (e.g. realization of
syllable-final /s/ as a function of sexual orientation in Puerto
Rican Spanish [6]), ages [7], and within speakers.

We propose here to add a phone predictor to state-of-the
art end-to-end TTS systems in order to train their text encoder
to accept text input. We show that the text encoder can then
be properly biased by speaker embeddings in order to generate
variations of pronunciation that are strong markers of sociopho-
netic features.

We illustrate the generation of sociophonetic variations on
liaisons and schwas in French and r-linking in British English,
using two state-of-the art multi-speaker end-to-end TTS archi-
tectures: Tacotron2 [8] and FastSpeech 2 [9].

2. State of the art
2.1. Sociophonetics and phonological variations in French

Several works have studied phonological variations in French.
Sources of variations are numerous: stylistic, idiosyncratic,
socio-dialectal or resulting from multilingual environments or

education. Brognaux et al. [10] studied 3 sociophonetic varia-
tions in French:
• schwa deletion in monosyllabic grammatical words (such as

in “j(e) pense”) and at the initial syllable of polysyllabic
words (such as in “il lui a d(e)mandé”)

• liaison i.e. the phenomenon whereby a latent final consonant
in a word (Word-1) may or may not be pronounced as the
onset of a following vowel-initial word (Word-2), such as in
“ils vont-(t)-au cinéma”

• deletion of /l/ and /K/ in word-final obstruent-liquid clusters,
such as “in pénib(le)” or in the singular personal clitic subject
pronouns, such as in “i(l) va”.

They analyzed a 13-hour speech corpus, including productions
of 120 speakers originating from 3 French-speaking countries
(Belgium, France and Switzerland) and recorded in two dif-
ferent tasks (reading and conversation). They found an impor-
tant effect of speaking style on schwa distribution at the start of
polysyllabic words and in grammatical items, as well as on liq-
uid deletion in word-final obstruent-liquid and in 3rd personal
clitic subjects pronouns. They also found an effect of age on
liaison distribution.

Adda et al. [11] studied data from read speech (BREF:
66,500 sentences from 120 speakers) vs. spontaneous speech
(MASK: 38,000 sentences from 409 speakers). For both cor-
pora, the speakers displayed no marked accent. They show that
liaison realization rate for MASK is significantly lower than for
BREF. Similarly, the schwa occurs more frequently in BREF
than MASK.

Another aspect of sociophonetic variations is its conscious
use as a social marker. Jacques Chirac, former president of
France, was playing with liaisons by realizing forbidden li-
aisons, producing some liaisons without “enchaı̂nement” [12]
(i.e. keeping the consonant as coda of the source syllable in-
stead of migrating to the onset of the next word: “il faut avouer”
pronounced as [il fOt avwe] instead of [il fO tavwe]. He per-
formed 33.7% of liaisons without “enchaı̂nement” in one dis-
course in 1981 while only .35% occurred in the PFC1 cor-
pus [13]. Such “prestigious liaisons” are often used as markers
of social position: signaling the mastering of language.

2.2. TTS and phonological variations

State-of-the-art TTS systems have different ways to cope with
phonological variations, either by explicitly choosing among
pronunciation variants or implicitly biasing latent representa-
tions that are built along the text-to-signal mapping.

Most TTS use a pronunciation lexicon (e.g. CMUDict)
where each word is assigned with a phonetic transcription that

1https://www.ortolang.fr/market/corpora/pfc



represents its canonical form, i.e. its standard pronunciation
in the language the system is designed for. As an example,
the phonetic input for “the” is [D@]: it’s up to further process-
ing to harmonize the vowel before a vowel sound such as in
[Di "eIÃ]. Such contextualization rules can be implemented by
augmenting entries with latent phones, phonotactic or morpho-
syntactic tags, or by post-processing rules. Note that letter-
to-sound (L2S) front-ends have poor performance on lexicons:
[14] report 4.6% Phoneme Error Rate (PER) vs. 19.88% Word
Error Rate (WER) on the CMUDict dataset using Token-Level
Ensemble Distillation, while [15] report similar performance on
CMUDict, Pronlex and NetTalk using encoder-decoder models.
L2S front-ends for phonetic-to-speech synthesis are thus likely
to produce similar PER as implicit L2S conversion reported by
end-to-end TTS for English [1] or French [16].

Moreover speakers frequently produce variants that deviate
markedly from the canonical form, as underlined in the previ-
ous section. One solution is to rely on speaker and style em-
beddings to properly bias the output of “text” encoders fed by
the canonical phonetic transcription of the input text . . . already
flawed by a speaker-independent L2S front-end. Typically, an
L2S front-end performs text normalization to expand numbers,
acronyms, etc., then looks up pronunciations of words in a pro-
nunciation lexicon, and finally predicts pronunciations using an
L2S model for words not in the lexicon. Another solution is
to bias the L2S front-end by speaker- and style-specific rules
of phonological variations [17] . . . hoping that segmental and
suprasegmental structures will match.

Our hypothesis is that feeding end-to-end TTS with text
enables speaker and style embeddings to properly bias the la-
tent phonological representations in a coherent way, including
pronunciation variants, syllabification. phrasing and intonation,
while keeping a high spelling accuracy. This paper is the first
step towards this goal. Section 3 first introduces a new method
to learn a TTS model with text input in an end-to-end manner.
Section 4 then demonstrates the successful effect of speaker em-
bedding on text input in the generation of pronunciation vari-
ants.

Figure 1: Activations in the attention map for the sentence “et
qui peuvent aller ailleurs?” showing silent letters (e.g. no at-
tention weight on “u” in “qui”, “en” in “peuvent” and “il”
in “ailleurs”) and realization of an optional liaison (attention
weight on the “t” in “peuvent⌣aller”). Note that, for contex-
tualizing the utterance, the sentence is prefixed by the punctua-
tion(s) ending the previous one (“,” here) and postfixed by the
paragraph symbol (“§”) and the punctuation(s) beginning the
next utterance if any (speaking turn “¬” here). Final frames
often pay attention to both places.
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Figure 2: Distributions of durations of activation (ms) of char-
acter sequences: when one phoneme is encoded by two letters,
the second character gets mostly activated in double conso-
nants, while the first is activated for vowels.

3. Proposed framework: mixed input and
phone prediction

We trained an end-to-end TTS system with both text and pho-
netic input, in a way similar to the representation mixing pro-
posed by [18], and assigned two tasks to the front-end text en-
coder: speech and phone prediction. When a proper letter-to-
sound alignment is performed prior to the mixing of text and
phonetic input, end-to-end TTS are capable of remarkable per-
formance of L2S prediction (see Figure 3).

3.1. Representation mixing and letter-to-sound alignment

If letter-to-sound alignment is a many-to-many mapping (a clus-
ter of letters can correspond to one sound, and vice-versa), the
text encoder of an end-to-end system is a one-to-many mapping,
i.e., it assigns a sound to each individual letter input, which can
be either a phone, a diphone, or in the case of letter clusters,
a silence for each letter that does not carry the phone informa-
tion. To train our letter-to-sound conversion system in a su-
pervised fashion, we therefore split the task in two steps: 1)
extract a set of one-to-many letter-to-sound alignment rules to
create any aligned letter / sound corpus. This processed is done
once and for all subsequent TTS trainings, from the analysis
of a Tacotron2 attention map using non-aligned mixed input ;
2) for each new TTS model, train the phone predictor from an
aligned letter / sound corpus. These two steps are implemented
in Tacotron2 and described below.

3.1.1. Generating a set of letter-to-sound alignment rules

Tacotron2 was first trained to predict mel-spectrograms from
both text and phonetic input when available (we hand-checked
the phonetic alignment of 43% of the utterances): while this
representation mixing has been shown to improve spectrogram
estimation [18], it also provides a letter-to-sound alignment [19]
as a by-product of the Tacotron2 attention map as illustrated on
Fig. 1. We can observe that for clusters of letters that produce a
single sound, the attention is focused on only one letter, leaving
the other ones as silent. Statistics performed on all the letter
clusters of French [20] and displayed in Fig. 2 show a system-
atic pattern of activation for each cluster. For instance, in con-
sonant doubling, the second letter takes the phone information



Table 1: Multispeaker audio data used to train the French TC2.

Speaker Sex Type #Utts Duration (hh:mm)
All Aligned All Aligned

NEBa F Audiobooks 81395 44589 69:45 34:30
DG M Audiobooks 20179 7461 17:16 6:31
RO F Read sentences 9940 584 10:31 9:57
IZ F Scripted dialogs 10718 726 9:17 0:37
AD F Read sentences 6506 6506 5:05 5:05
Total 128738 59866 111:54 56:80

a Part of this data is available at https://zenodo.org/record/4580406.

and the first is silent. We derived a set of rules from these statis-
tics, that allow us to build any aligned letter / sound corpus that
can be used for training phone predictors in TTS models.

3.1.2. Training a phone predictor plugged at the output of the
text encoder

Tacotron2 was further trained to predict both mel-spectrograms
and phones from all available text and phonetic input. For this, a
phone predictor was adjoined to the original Tacotron2 (we will
refer to this system as TC2 from now on). This prediction is
simply performed by a full-connected layer with softmax. The
set of target phones comprises the input phone inventory aug-
mented with a “silent” symbol – in order to cope with silent
letters, as well as spaces or mute word finals – and several “di-
phones” such as /k&s/, /i&j/, /d&zˆ/ (/dZ/), etc. paired
with single characters such as “x” (in “six”), “y” (in “appuyer”)
or “j” (as in “jazz”), respectively. We also have symbols for hia-
tus, syntactic vs. breath pauses, often paired with punctuations
and sometimes with spaces.

Note that the text encoder and phone predictor can be
trained without target audio: this enables our TC2 to be trained
using aligned word dictionaries to cover the pronunciation of
words not covered by the empirical distribution of the speech
corpus2: we added L2S alignment of 95879 words from [21].
In order to cope with heterophonic homographs, we furthermore
added 8137 sentences comprising at least one heterophonic ho-
mograph in context [22].

3.2. Data, multi-speaker embeddings and dual-task train-
ing

We trained TC2 with speech data from 5 speakers (see Table 1):
four female speakers (NEB, RO, IZ and AD) and one male
speaker (DG). Each corpus is first chunked into utterances by
detecting silences > 400ms. Each utterance is then aligned
with text. Note that for contextualizing utterances produced in
paragraphs, each sentence is prefixed by the punctuation(s) end-
ing the previous one (“,” is added by default) and postfixed by
the paragraph symbol (“§”) and the punctuation(s) beginning
the next utterance if any (see example in Fig. 1). Indeed, end-
of-paragraphs are more likely to be associated with boundary
tones than end-of-sentences inside a paragraph, e.g. often full
stops inside paragraphs are sometimes marked by transitional
prosody [23]. For sentences spelled in isolation, they are pre-
fixed by “.” and suffixed with “§”.

Almost half of the utterances of all corpora have been

2Contemporary words such as “super” or “technique” are not men-
tioned in Librivox audiobooks from the beginning of the 20th century!
These two examples are likely to be wrongly pronounced /sype/ and
/tESnik/.

aligned with their phonetic transcriptions. All phonetic align-
ments have been hand-checked. Speaker-embeddings are added
to all contextualized symbol embeddings computed by the text
encoder and learned together with the phone predictor that is
plugged after this summation.

Note that L2S alignments from dictionaries and homo-
graphs are considered as speaker-independent and thus dupli-
cated for each speaker embedding. No attempt has been made
here to simulate phonological variations. If any, phonological
variations are solely provided by ground-truth speech data.

3.3. Training policy

All models have been trained for 100 epochs with the Adam
optimizer and results are given using 10-fold cross-validation:
each set of data (signals aligned with text or phones, text aligned
with phones) for each speaker has been randomly partitioned
into 10 parts and concatenated to build the training and test
folds. Three losses are minimized for TC2: a spectrogram loss,
a gate loss [24] and a phone predictor loss.

3.4. Phone prediction performance

We report here results of phone prediction from all available
training data: 15,051,582 input letters and 1,920,108 input
phones. We have 132 input symbols: 36 phones, lower and
uppercase accented and non accented letters, space, punctua-
tion and quotation marks, special symbols for emphasis, end-
of-paragraph and begin/end of utterances. Note that all num-
bers, acronyms, etc. are spelled in full before being pro-
cessed. As output and as mentioned earlier, the set of 66
target phones supplement the input phone inventory with one
“silent” phone, 28 diphones and one “silence” phone (for now,
we do not distinguish between breath, syntactic pauses and hia-
tus) to align with text input. Diphones comprise most conso-
nants adjoined with a schwa: like in English where a schwa
sound is often pronounced at the end of words with a final un-
stressed syllable (e.g. “present”), we cope with their eventual
alignment with single letters such as “Groënland” aligned with
/g r o eˆ n l a˜ _ d&q/.

Figure 3 displays the confusion matrices for (left) the pre-
diction of L2S alignments (i.e. text input) and (right) the pre-
diction of target phones from input phones (since mixed input
is possible). L2S is quite accurate: the overall F-score is close
to .99 when all 15,051,582 letters are considered while it raises
to .999 when non-words symbols are discarded. The 1,920,108
input phones are correctly transcribed and only 7 minor ”er-
rors” are detected: mainly mid-open vs. mid-closed vowels, full
closed vowels vs. semi-vowels. When exploring L2S prediction
“errors”, Tacotron2 is often right, except for loan words.



Figure 3: Phone prediction from text vs. phonetic input. Left: the confusion matrix (displayed with log counts) features the predicted
phones (ordinate) with corresponding hand-checked ground-truth alignments with text (abscissa): the F-score is close to .99 when
all 15 millions characters are considered while it raises to .999 when non-words symbols are discarded. Right: the confusion matrix
features the predicted vs. input phones; phonetization of punctuations are ignored here (no silent nor silence output phones); this
confusion matrix is almost diagonal: we got only 9 minor ”errors” among 1,920,108 phones.

4. Exploring phonological variations
Using aligned data from the 3 most represented speakers (NEB,
DG, AD), we will further show that speaker-specific phonologi-
cal variations are implicitly captured by the speaker’s bias added
at the output of the text encoder before phone estimation.

4.1. Data and speaker embeddings

In our aligned ground-truth data for these speakers, we selected
possible placements of 4 liaisons and schwas using regular ex-
pressions:

• words ending with “r” (“alle[r]⌣ici”), “s”(“me[s]⌣amis”),
“n” (“mo[n]⌣oncle”), “t|d” (“ayan[t]⌣été”), followed by
a word beginning with a vowel or an “h” and respectively
spelled as /r/, /z/, /n/, /t/ or silent

• word-internal “e” surrounded by consonants or ending a word
(“rapp[e]ler”) spelled as a schwa or a full mid-open vowel
/œ/

We then compare the predictions of our multi-speaker TC2
model on three distinct test datasets uttered by our three speak-
ers, respectively, (a) using for each the speaker embedding of
the speaker that recorded the test dataset (this is the “Multi”
embedding in the following) or (b) imposing the embedding of
one speaker to the three datasets.

In condition (b), all phones of the three datasets are pre-
dicted with each speaker embedding. In that case, for each
individual phone, when all predictors agree, we name these
occurrences “Consensus”: they are likely to spot mandatory
vs. prohibited liaisons/schwas. Non-consensual occurrences
are likely to spot optional pronunciations and illustrate idiosyn-
cratic phonological variations across speakers. Note that in case
of consensus, if all predictors agree between them, it can be in-
congruent with any speaker ground truth value. Therefore, F-
scores are systematically reported for the predictions.

4.2. Results

Table 2 gives the overall counts and percentages of pronounced
phones for our 3 speakers as well as the F-scores for consensual
vs. non-consensual predictions.

4.2.1. Ground truth realisation of liaisons and schwas

Note first that percentages of pronounced segments differ be-
tween speakers, since corpora have different textual contents:
consensual percentages certainly reflect corpus biases. Non-
consensual percentages should thus be compared to percentages
of consensual percentages for each speaker.

The percentage of consensual predictions differ between
the types of liaisons: while the “n” liaison is almost always con-
sensual (only 14 are non consensual, 10 on the NEB test set and
4 on the AD test set), more phonological variation is observed
on other segments. Non-consensual predictions clearly reflect
idiosyncratic phonological variations: while NEB tend to over-
realize all optional liaisons, DG tend to not pronounce optional
“r” liaison and schwas, and AD tend to not pronounce optional
liaisons at all.

4.2.2. System prediction of liaisons and schwas

When all predictors across speaker embedding agree (consen-
sus), predictions are quite effective: F-scores are close or above
.9. The “n” liaison is notably predicted with a F-score of .98.

In Non Consensus, and when a speaker embedding is ap-
plied to the full dataset (last row of Table 2), we see that speaker
embeddings consistently bias the pronunciation of optional li-
aisons and schwas: when applying the NEB bias on all data,
we see that all optional liaisons “r”, “s” and “t” are generated
while, on the contrary, the AD bias prohibits the generation of
all optional liaisons. The behaviours of predictions given each
speaker embedding are thus representative of the ground truth
realisation of liaison and schwas for each speaker. The F-scores
of the “Multi” policy are always superior to the imposition of
the embedding of a particular speaker.

5. Replicating the experiment with
FastSpeech 2 and British English.

We ran a parallel experiment for British English with two speak-
ers (one male RSM and one female RSF) using proprietary
TTS databases. We chose to use the Blizzard2023 TTS version



Table 2: Realisation of liaisons and schwas. For the ground-truth (Grd), counts and percentages of pronounced segments are given for
the different speakers. For predictions (Prd), we provide F-scores and percentages of pronounced phones on all data for the different
models. Percentages over .8 or under .2 are highlighted in blue and red, respectively.

Set Data Embeddings “r” → [K] “s” → [z] “n” → [n] “t|d” → [t] “e” → [@|œ]

Consensus Grd (#/%)
NEB / 3295/.89 10068/.78 4522/.77 10258/.69 119086/.55
DG / 562/.80 2151/.61 1014/.78 2596/.67 22707/.46
AD / 643/.55 2793/.47 1214/.54 2567/.41 27331/.43

Prd (Fscore/%) All Multi .89/.83 .90/.69 .98/.73 .92/.64 .90/.52

Non Consensus

Grd (#/%)
NEB / 454/.74 1057/.85 10/.10 1116/.88 6623/.75
DG / 118/.08 218/.32 - 298/.64 1222/.41
AD / 89/.01 301/.18 4/.50 217/.15 1311/.62

Prd (Fscore/%) All

Multi .82/.68 .79/.70 .28/.71 .73/.81 .64/.84
NEB -/.99 -/.99 -/.99 -/.99 .63/.99
DG .47/.01 .54/.23 .28/.71 .54/.69 .60/.09
AD -/.00 .56/.02 -/.00 -/.00 .49/.80

Figure 4: Phone prediction from text vs. phonetic input for the English data. Same confusion matrices as 3. Here ”only” 966197 input
characters and 989 input phones (mainly acronyms) have been transcribed. F-score of L2S (.997) is quite high despite the larger set of
phonetic labels compared to French (3 levels of accentuation for vowels and many diphones).

of FastSpeech 23 in combination with the universal HiFiGAN
vocoder. In British English, there is a phenomenon called r-
linking. It occurs when a word ends in the letter r (which only
occurs when it is preceded by a vowel) which in British English
is not pronounced unless the next word starts with a vowel. In
a rare number of cases, speakers may produce an intrusive r.
This can occur when a word ends in an open vowel and the fol-
lowing word starts with a vowel, such as in the phrase ’law(r)-
and-order”. Informal analysis of the two TTS databases used
for this study showed that there is a difference between the two
speakers in how often they use r-linking. In cases where they
don’t use it, they will introduce a glottal stop to separate the
two words.

For each speaker, we used 8260 sentences of data. The
alignments between input characters and phones was created
automatically by using m2m-aligner [25]. Similar to the French
Tacotron 2 experiment, we ran a 10-fold cross-validation, but
for 150 epochs. The phone set is similar to the CMU phone
set and encodes the phones as well as the stress in vowels. Af-
ter synthesizing the 10 test sets we found the sentences with
phone input had perfect phone prediction as expected. The sen-
tences with text input, which contained 949413 phones, had an

3https://github.com/MartinLenglet/Blizzard2023 TTS

F1 score of 0.981. The automatic m2m-aligner caused some
strange alignments and the model was not trained with non-
audio data from our pronunciation dictionaries, which can ex-
plain some of the discrepancies. Additionally, some acronyms
had not been properly aligned to the phonemes. Nevertheless,
we can say that this method does work well with FastSpeech 2
and with British English data.

Table 3 shows the results for the 4066 cases where r-linking
could occur. In the text we searched for words ending in ”r” or
”re” followed by words starting with a vowel. Speaker RSF
shows a tendency to use r-linking less frequently than speaker
RSM (40% vs. 65% of the time), and the same pattern is
observed in the predicted phonemes when using the correct
speaker embedding in the multi-speaker model. However, there
were only 110 out of 4066 cases where the different models
didn’t agree on the predicted phone. When synthesizing biased
with speaker RSM all 110 non-consensus instances were pre-
dicted with K whereas for speaker RSF they were all predicted
without. These experiments need to be replicated with other
languages that have different patterns of phonological varia-
tions.



Table 3: Realisation of r-linking in British English for the two
speakers RSM and RSF, giving counts of realised and unrealised
r-linking (same information as Table 2).

Set Data Embs “r” → [K]

Cons. Grd (#/%) RSM / 1866/.65
RSF / 2090/.40

Prd (Fscore/%) All Multi .80/.52

Non Cons.

Grd (#/%) RSM / 61/.51
RSF / 49/.36

Prd (Fscore/%) All
Multi .52/.68
RSM 1/.43
RSF 0/.57

6. Conclusions
We show that text encoders of current end-to-end TTS are capa-
ble of performing quite impressive L2S mapping, given proper
L2S alignment and mixed input training. We also demonstrate
that feeding such systems with text instead of pre-processed
phonetic input enables the systems to deal with phonological
variation, in particular speaker-specific policy for generating
optional phones such as liaisons or schwas.

Several phonological variations are idiosyncratic such as
metathesis ([areOpOK] for ”aéroport” in French) or sound shifts
([bAks] for ”box” in American English). Comparing the ability
of L2S front-ends vs. end-to-end TTS to capture such phono-
logical variations in coherence with other aspects of speakers’s
speech is both a scientific and technological challenge.

We study here the local impact of speaker biases. But their
impact surely goes beyond these elementary decisions: contex-
tual by-effects such as the generation of pauses or contextual
assimilation have to be studied. More generally, we are cur-
rently exploring the impact of speaker, emotion, or style biases
on the phonological variation and how they combine.

In a nutshell, text is surely the most efficient way to specify
what has to be said while biasing the output of the text encoder
– or any other latent representation built as a product of the text-
to-sound mapping – is the most elegant way to specify how to
say it.
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