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Abstract
Model-based reinforcement learning algo-
rithms (MBRL) present an exceptional potential
to enhance sample efficiency within the realm of
online reinforcement learning (RL). Nevertheless,
a substantial proportion of prevalent MBRL algo-
rithms fail to adequately address the dichotomy of
exploration and exploitation. Posterior sampling
reinforcement learning (PSRL) emerges as an
innovative strategy adept at balancing exploration
and exploitation, albeit its theoretical assurances
are contingent upon exact inference. In this paper,
we show that adopting the same methodology
as in exact PSRL can be suboptimal under
approximate inference. Motivated by the analysis,
we propose an improved factorization for the
posterior distribution of polices by removing the
conditional independence between the policy
and data given the model. By adopting such
a posterior factorization, we further propose
a general algorithmic framework for PSRL
under approximate inference and a practical
instantiation of it. Empirically, our algorithm can
surpass baseline methods by a significant margin
on both dense rewards and sparse rewards tasks
from the Deepmind control suite, OpenAI Gym
and Metaworld benchmarks.

1. Introduction
Model-based reinforcement learning has proven instrumen-
tal in enhancing the sample efficiency of reinforcement
learning. Despite this, prevalent MBRL algorithms (Ku-
rutach et al., 2018; Chua et al., 2018; Janner et al., 2019;
Eysenbach et al., 2022) often struggle to balance explo-
ration and exploitation, leading to poor performance when
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exploration is pivotal. Existing algorithms typically employ
one of three strategies to achieve this balance: 1) optimism-
based (Auer et al., 2008; Pacchiano et al., 2021; Curi et al.,
2020); 2) posterior-sampling-based (Strens, 2000; Osband
et al., 2013; 2018; Fan & Ming, 2021); or 3) information-
directed sampling (Russo & Roy, 2014).

As outlined by Osband & Roy (2017), posterior sampling
reinforcement learning (PSRL) can match the statistical effi-
ciency or regret bound of optimism-based algorithms while
providing superior computational efficiency. Information-
directed sampling methods can exhibit even greater sta-
tistical efficiency when dealing with intricate information
structures (Russo & Roy, 2014), but they require estimators
for the mutual information, which is challenging for high-
dimensional random variables. Consequently, this paper
focuses on PSRL in the episodic setting.

Within the PSRL framework, a posterior p(M|DE) of the
Markov decision process (MDP)M, based on the observa-
tions DE from a real-world environment E , is maintained.
At the onset of each episode, an MDP is sampled from
the posterior and the optimal policy π(M) for the chosen
modelM is computed. This procedure could equivalently
be perceived as the sampling of this policy from a special-
ized posterior, termed “degenerate” in this context, which is
formulated as p(π|DE) =

∫
δ(π|M)p(M|DE)dM. Here,

δ(π|M) = δ(π − π(M)) represents a Dirac delta distri-
bution of the optimal policy. This specific policy is then
applied within the real environment to collect new data.
Theoretically, such a direct approach has been proven to
achieve a Bayesian regret of Õ(

√
K) over K episodes, as

corroborated by prior studies (Osband et al., 2013; Osband
& Roy, 2014). Nonetheless, these theoretical guarantees
hold true only under specific conditions of exact inference,
namely, when one can access the exact posterior over mod-
els, denoted as p(M|DE), and when the computation of
the optimal policy is achievable. In real-world scenarios,
however, such precise conditions are unlikely to be met, and
thus we may need approximations.

An often-employed heuristic approximation to PSRL, as
seen in Fan & Ming (2021), is to substitute the posterior
over models, p(M|DE), with an approximation q(M|DE),
such as Bayesian linear regression (Box & Tiao, 2011;
Gelman et al., 2013; Murphy, 2022) applied to repre-
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sentations learned via a neural network. In this way,
the resulting policy is then sampled from qδ(π|DE) =∫
δ(π|M)q(M|DE)dM, where we use q(M|DE) to ap-

proximate the true posterior p(M|DE).

While the heuristic qδ(π|DE) may initially seem appropri-
ate due to its resemblance to the true posterior p(π|DE),
our findings demonstrate that its performance could be sub-
standard, as measured by the KL divergence between the
heuristic and the true posterior, potentially leading to in-
creased regret (Lu et al., 2021). To address this issue, we
propose the substitution of the degenerate δ(π|M) with
a non-degenerate distribution q(π|M,DE), which condi-
tions on both the model and the empirical data DE . In
this way, the posterior of polices then become q(π|DE) =∫
q(π|M,DE)q(M|DE)dM. This modification counter-

balances any potential inadequacies in the posterior over
models q(M|DE). Further tuning the dependency of π on
DE andM enables a harmonious balance between data ef-
ficiency and inference error in q(M|DE). Crucially, this
proposed modification comes with a performance guarantee:
it is assured not to underperform compared to the conven-
tional approach (i.e., qδ(π|DE)) that employs the degenerate
distribution δ(π|M).

Capitalizing on these findings, we propose a novel frame-
work for PSRL under approximate inference. To put this
method into practice, we amalgamate deep ensembles (Lak-
shminarayanan et al., 2017) and Model-based Policy Op-
timization (MBPO) (Janner et al., 2019). We also put for-
ward two distinct sampling strategies for policy selection,
leveraging our posterior approximation. Empirical evidence
demonstrates that our algorithm substantially outperforms
existing baselines on both dense reward and sparse reward
tasks (Brockman et al., 2016; Tunyasuvunakool et al., 2020;
Yu et al., 2020). In addition to these performance evalua-
tions, we perform numerous ablation studies to facilitate a
deeper understanding of our algorithm’s effectiveness.

In summary, the key contributions of this paper are:

1. We first conduct a study on how approximate inference
impacts the performance in PSRL, demonstrating that
maintaining the same methodology (i.e., qδ(π|M)) as
in exact PSRL may be less effective when the true
posterior is unavailable (Section 2).

2. Second, we design a novel framework for PSRL under
approximate inference, building on the aforementioned
observations. This framework integrates the use of
deep ensembles and Model-based Policy Optimization
(MBPO) along with two policy sampling strategies that
exploit our posterior approximation. This forms our
primary contribution (Section 3).

3. Finally, we conduct experiments on the DM control
suite, OpenAI Gym, and Metaworld benchmarks to

demonstrate the superiority of our approach. Our al-
gorithm shows significant performance improvements
over existing baselines on both dense and sparse reward
tasks. We further elucidate the effectiveness through
several ablation studies (Section 4).

2. Preliminary and Backgrounds
Notation. We consider the finite-horizon episodic Markov
Decision Process (MDP) problem, of which we denote an
instance asM := {S,A, rM, pM, H, ρ}. For each instance
M, S andA denote the set of states and actions, respectively.
rM : S ×A → [0, Rmax] is the reward function, pM is the
transition distribution, H is the length of the episode, and ρ
is the distribution of the initial state. We further define the
value function of a policy π under MDPM at timestep i as

V M
π,i (s) := EM,π

[
H∑
t=i

rM(st,at)| si = s

]
, (1)

where st+1 ∼ pM(s|st,at) and at ∼ π(a|st). We define
π⋆ as the optimal policy for an MDP M if V M

π⋆,i(s) =

maxπ V
M
π,i (s) for all s ∈ S and i ∈ [1, H]. We define

the cumulative reward obtained by policy π over H steps
sampled from modelM as follows:

RM(π) = EM,π

[
H∑
t=1

rM(st,at)

]
(2)

where st+1 ∼ pM(s|st,at) and at ∼ π(a|st),

where the initial state is sampled from s1 ∼ ρ(s).

PSRL. Posterior Sampling Reinforcement Learning or
PSRL (Strens, 2000) is a well-known algorithmic frame-
work for managing the trade-off between exploration and
exploitation in online RL. The framework is generic and
can be applied to various RL problems. At the core of
PSRL lies the computation of the posterior distribution over
MDPs, which includes the dynamics and reward models.
The quality of this posterior distribution is crucial for the
performance of PSRL. We denote the posterior of the model
as p (M|DE), which is conditioned on the dataDE collected
from the environment. Therefore, the posterior distribution
of policies can be expressed as follows:

p(π|DE) =

∫
p (π|M) p(M|DE)dM, (6)

where p (π|M) = δ(π|M), and δ(π|M) is a Dirac delta
distribution1, defined as δ(π(M)|M) = 1, and π(M) =
argmaxπ RM(π) is the optimal policy for solving the MDP
M. At the start of each episode, a Markov decision process

1Although an MDP, M, can have multiple optimal policies,
we’ll simplify by assuming just one.
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EXAMPLE 1. SUBOPTIMALITY OF qδ(π|M).

Consider a toy setting, where the support set of MDPs is {M1,M2}, and the support set of policies is {π1, π2}.
Suppose that the true posterior distribution of MDPs is p(M1|DE) = 1/3, p(M2|DE) = 2/3, and the optimal
policy per MDP is δ(π1|M1) = 1 and δ(π2|M2) = 1. This we get the following exact distribution over policies:
p(π|DE) is

p(π|DE) =
[
δ(π1|M1)=1, δ(π1|M2)=0
δ(π2|M1)=0, δ(π2|M2)=1

]
︸ ︷︷ ︸

δ(π|M)

[
p(M1|DE)=

2
3

p(M2|DE)=
1
3

]
︸ ︷︷ ︸

p(M|DE)

=
[
p(π1|DE)=

2
3

p(π2|DE)=
1
3

]
(3)

Now suppose we use the approximate posterior distribution over models, q(M1|DE) = 0 and q(M2|DE) = 1. We
can optimize q(π|M) by minimizing dKL (q(π|DE)| p(π|DE)). One solution could be

q(π|DE) =
[
q(π1|M1)=

1
2 , q(π1|M2)=

2
3

q(π2|M1)=
1
2 , q(π2|M2)=

1
3

]
︸ ︷︷ ︸

q(π|M)

[
q(M1|DE)=0
q(M2|DE)=1

]
︸ ︷︷ ︸

q(M|DE)

=
[
q(π1|DE)=

2
3

q(π2|DE)=
1
3

]
(4)

We see that the optimal q(π|M) requires modeling uncertainty in the policy even conditional on the model. By
contrast, if we adopt qδ(π|DE) as our approximation, we will have

dKL
(
qδ(π|DE)

∣∣ p(π|DE)
)
= log 3 = max

q∈∆1
dKL (q(π|DE)| p(π|DE)) . (5)

(MDP) or, equivalently, a policy, is drawn at random from
the posterior distribution. This sampled MDP is then used
to collect new data. Despite its simplicity, this algorith-
mic framework achieves a Bayesian regret of Õ(

√
K) (Os-

band et al., 2013), where K is the total number of episodes.
However, it is important to note that the theoretical results
only hold under the assumption of exact inference. In the
remainder of this section, we will discuss the impact on
performance when using approximate inference methods.

A typical instantiation of q(π|DE) is to use a distribution
that has the same functional form as the true posterior, which
is commonly adopted in practice (Fan & Ming, 2021), i.e.,

qδ(π|DE) :=

∫
δ(π|M)q(M|DE)dM. (7)

However, this choice may not always be effective for ap-
proximating the posterior of policies, as demonstrated by
the following proposition.

Proposition 1 Under approximate inference (i.e.,
q(M|DE) ̸= p(M|DE)), the optimal q(π|M) may not be
a Dirac delta distribution, i.e., there exists other q(π|DE)
such that

dKL (q(π|DE)| p(π|DE)) ≤ dKL
(
qδ(π|DE)

∣∣ p(π|DE)
)
.

As an illustration, we present an example in Example 1
that serves as a constructive proof of Proposition 1. This
example demonstrates that qδ(π|DE) can have arbitrarily
poor performance in terms of the KL divergence. Given
this observation, a reasonable and pressing question arises:

what is a better alternative to qδ(π|DE)? The subsequent
section provides an answer to this question by introducing a
novel approach that outperforms qδ(π|DE) in terms of the
KL divergence.

3. Method
Prompted by the findings delineated in the preceding sec-
tion, we initially propose a posterior decomposition that is
assuredly superior to qδ(π|DE). Subsequently, we present
a pragmatic version of the algorithm based deep ensem-
bles (Lakshminarayanan et al., 2017) and MBPO (Janner
et al., 2019). Lastly, we propose a duo of sampling method-
ologies designed to foster efficient exploration.

3.1. An improved posterior decomposition

In section 2, we demonstrated that qδ(π|DE) is not an ad-
vantageous choice, primarily due to its presumption that the
policy π is predetermined onceM is provided. This ratio-
nale prompts us to contemplate a more versatile posterior
decomposition of q(π|DE).

q(π|DE , λ) =

∫
q(π|M,DE , λ)q(M|DE)dM. (8)

From an intuitive standpoint, such a posterior decomposition
no longer operates under the assumption that the model is
fully capable of encapsulating all relevant attributes of the
data. We exemplify these two posterior approximations
in Figure 1. The additional parameter λ ∈ [0, 1] provides
a mechanism for calibrating the significance of fictitious
data (DM) originating from M and the actual data (DE )
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Figure 1: Graphical models for (a) the standard and (b) our posterior over
policies π. Differences are shown in red.

Figure 2: A comparison of cumula-
tive regret for different λ.

sourced from the environment. In particular, we define

q(π|M,DE , λ = 0) = q(π|M) = δ(π|M) (9)
q(π|M,DE , λ = 1) = q(π|DE) (10)

Consequently,when λ is small, we trust our model more,
whereas when λ is large we trust it less. In the extreme
scenario where λ = 0, this framework degenerates to the
posterior qδ(π|DE). By fine-tuning λ, an optimal balance
can be struck between minimizing the impact of approxi-
mate inference error and maximizing data efficiency. To
encapsulate this in more formal terms, the subsequent propo-
sition delineates the advantage of equation 8.

Proposition 2 By adopting the posterior decomposition of
equation 8, we have

min
λ

dKL (q(π|DE , λ)| p(π|DE)) ≤ dKL
(
qδ(π|DE)

∣∣ p(π|DE)
)
.

This proposition indicates that we have the capability to
curtail the KL divergence, and thus potentially reduce the
Bayesian regret, through a judicious selection of the λ value.
As corroborative empirical evidence, Figure 2 depicts the
cumulative regret with varying λ in the cartpole-swingup
environment with sparse reward adopted from the Deep-
Mind Control Suite (Tunyasuvunakool et al., 2020). We
can observe that a λ value of approximately 0.4 or 0.5 is
optimal, while λ = 0 is least favorable in this circumstance.

3.2. The proposed algorithm and its practical
instantiation

Leveraging the aforementioned results, we present a simple
yet general algorithmic framework for PSRL under approxi-
mate inference. This framework diverges from the standard
PSRL framework solely in the decomposition of policy pos-
terior, as delineated in Algorithm 2 in Appendix C. For
practical implementation, we employ deep ensembles (Lak-
shminarayanan et al., 2017) to approximate the posterior
distributions q(M|DE) and q(π|M,DE), as represented
using Θ and Φ in Algorithm 1. This approach aligns with
ME-TRPO (Kurutach et al., 2018), PETS (Chua et al., 2018),
and MBPO (Janner et al., 2019), with the additional facet
of modeling the uncertainty over policies, i.e., q(π|M,DE),
as well as dynamics, i.e., q(M|DE).

Delving into greater detail, each constituent of the deep
ensemble represents a conditional Gaussian distribution
over outputs, marked by its mean µ and variance σ2. For
multi-dimensional predictions, we treat each dimension in-
dependently, predicting only the marginal mean and vari-
ance for the sake of simplicity. Each ensemble member
is then trained independently by minimizing the negative
log-likelihood, represented by the following equation:

− log pθ(y|x) ∝
log σ2

θ(x)

2
+

(y − µθ(x))
2

2σ2
θ(x)

. (11)

We maintain N distinct dynamics models Θ = {θ̂n}Nn=1.
For each of the dynamics model θ̂n, we compute M dif-
ferent policies (i.e., Φ = {ϕ̂n,m}n,m=1

N,M ) employing
the soft actor-critic (SAC) (Haarnoja et al., 2018) method
(please refer to the appendix for detailed information). The
policy network πn,m with parameters ϕ̂n,m is updated based
on synthetic data Dn,m

M , generated by dynamics model n
and policy model m, in conjunction with environment data
DE collected from real-world dynamics interaction with a
sampled policy. The pseudo-code is in Algorithm1.

3.3. Sampling policies

Ensemble Sampling. Given the posterior distributions,
it remains to specify the sampling approach for policies.
The most rudimentary sampling strategy consists of uniform
sampling at the beginning of each episode. For our algo-
rithm that employs ensemble sampling, we shall use the
term PS-MBPO.

π ∼ U({π1,1, ..., πN,M}). (12)

In the context of bandits (where N = 1, as there is no transi-
tion model), this elementary strategy has been demonstrated
to achieve a regret of Õ(

√
T+T

√
A/M) (Lu & Roy, 2017)

for T steps in Gaussian linear bandits, with M denoting the
size of the ensemble and A the number of arms. This regret
bound analysis suggests that the regret can be mitigated
by adding more ensemble members, although it remains

2By mixed dataset λDE +(1−λ)Dn,m
M , we mean that for each

data point in the training batch, it is with probability of λ being
sampled from the real data DE and probability of 1− λ from the
fictitious data Dn,m

M .
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Algorithm 1 PSRL with approximate inference using Ensemble Sampling (PS-MBPO) or Optimistic Ensemble Sam-
pling (OPS-MBPO).

Require: Initialize an ensemble of dynamics models Θ = {θ̂n}Nn=1 i.i.d. ∼ q(θ).
Require: Initialize an ensemble of policy networks Φ = {ϕ̂n,m}N,M

n,m=1 i.i.d. ∼ q(ϕ).
Require: Initialize empty datasets DE and {Dn,m

M }N,M
n,m=1. Real data vs. synthetic data ratio λ.

1: for K episodes do
▷ /* Dynamics training. (Line 2) */

2: Train the ensemble models Θ on DE under the objective in equation 11.
▷ /* Policy sampling. (Line 3) */

3: Sample a policy π from Φ uniformly at random (equation 12) or based on the optimistic distribution (equation 13).
4: Sample state s1 from the initial state distribution ρ(s)
5: for h = 2 : H steps do

▷ /* Data collection. (Lines 6-11) */
6: sh = rollout(world dynamics E , policy π, initial state sh−1, num. steps 1)
7: Add sh to DE
8: Sample state s ∼ DE
9: for each model n, policy m do

10: Dn,m
M = rollout(dynamics θ̂n, policy ϕ̂n,m, initial state s, num. steps R)

11: Created mixed dataset D = λDE + (1− λ)Dn,m
M

2

▷ /* Policy optimization (Line 12) */
12: ϕ̂n,m = update-policy(ϕ̂n,m, D, num. gradient steps G)
13: end for
14: end for
15: Update the optimistic policy distribution (equation 13).
16: end for

uncertain how this theoretical result extrapolates to the RL
setting—an intriguing avenue for future research. However,
in our experiments, we observe that this aforementioned
relationship also applies to RL.

Optimistic Ensemble Sampling. Unfortunately, ensem-
ble sampling may instigate excessive exploration in certain
unpromising regions, as it treats each member of the en-
semble model equally. This could result in unnecessary or
even wasteful explorations. To counter this, we propose an
optimistic variant of ensemble sampling, which we term
OPS-MBPO. Specifically, we monitor the performance of
each ensemble member in terms of the accumulated episodic
return. Alternatively, one could also employ the value func-
tion for each policy (Agarwal & Zhang, 2022). We then
utilize this performance record to determine the probability
of selecting each member, thereby gradually phasing out
unpromising ensemble members.

More precisely, at the commencement of the kth episode,
we sample the policy from the subsequent Boltzmann distri-
bution, as opposed to a uniform random selection.

pk(π = πi) :=
exp

(∑k
l=1 RE(πi, l)/τ

)
∑N ·M

j=1 exp
(∑k

l=1 RE(πj , l)/τ
) , (13)

where τ represents the temperature term used for regulating
the level of optimism, while RE(πi, l) refers to the empirical

cumulative reward obtained by policy πi after the lth episode.
It is worth noting that when τ →∞, the resulting sampling
method becomes uniform, which we refer to as PS-MBPO.

4. Experiments
Our empirical investigation aims to: 1) verify the effec-
tiveness of our proposed methodologies on standard bench-
marks; 2) offer a profound understanding of the mechanisms
instrumental to the improved performance; and 3) conduct
supplementary ablation studies on remaining components.
We commence by presenting the experimental setup.

4.1. Experimental Setup

We examine seven tasks sourced from OpenAI Gym (Brock-
man et al., 2016), DeepMind Control Suite (Tunya-
suvunakool et al., 2020), and Metaworld (Yu et al.,
2020). This set includes four dense reward tasks (namely,
ant, half-cheetah, walker2d, and hopper),
wherein the agent garners an immediate reward at
each step. Additionally, we consider three sparse re-
ward tasks (ball-in-cup, cartpole-swingup, and
window-open-v2), where the agent is rewarded only
upon successful completion of the pertinent task. It’s im-
portant to note that efficient exploration of the environment
is of paramount importance in the case of sparse reward
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Dense reward tasks Sparse reward tasks

Figure 3: We consider seven tasks from three benchmarks: OpenAI Gym, DM Control and Metaworld. These seven tasks
cover both dense reward and sparse reward tasks.

Figure 4: Comparisons on four tasks with dense rewards. The shaded region denotes the one-standard error. The dashed
green curve corresponds to the asymptotic performance of SAC at 3M steps. PS-MBPO improves over MBPO across all
of the four tasks, and the improvement is more significant on Ant and Walker2D. OPS-MBPO achieves similar sample
efficiency with PS-MBPO.

tasks, more so than in dense reward tasks. For more de-
tailed insights, we refer the reader to Figure 3, which offers
visualizations of these tasks.

For the baseline methods, we consider a range of model-
based methods including SLBO (Luo et al., 2019),
PETS (Chua et al., 2018), and MBPO (Janner et al., 2019),
as well as a model-free approach, SAC (Haarnoja et al.,
2018). We juxtapose each method with respect to the aver-
age episodic reward, where each episode ends either upon
reaching the 1, 000 timestep or the agent’s arrival at the ter-
minal state. To ensure the robustness of our findings, each
experiment is repeated with 10 random seeds, and we report
the mean and the standard error. For further details, please
refer to Appendix A and C.

4.2. Comparison with existing methods

The results for the dense reward tasks are depicted in Fig-
ure 4. Initially, it is noteworthy that our (O)PS-MBPO
method surpasses the baseline methods across all four tasks,
including the MBPO method. We have verified that our
implementation of MBPO either matches or exceeds the per-
formance of the original implementation (please refer to the
appendix for further details). Specifically, for the hopper
task, our approach requires approximately 40K iterations
to attain an average reward around 3, 500, in contrast to
the MBPO method, which requires around 150K steps to

achieve similar performance.

The results for the sparse reward tasks are then provided
in Figure 5. Corresponding to the outcomes presented in
Figure 4, we initially observe that both PS-MBPO and OPS-
MBPO outperform the MBPO method across all three tasks.
The magnitude of improvement is notably more pronounced
on the Cartpole-swingup and Window-open-v2
tasks. In contrast to the findings depicted in Figure 4, we ad-
ditionally observe that OPS-MBPO significantly improves
upon the performance of PS-MBPO on these three tasks.
This observation underscores the potential benefits of inte-
grating an optimistic sampling strategy within sparse reward
tasks.

4.3. Ablation Studies

In this section, we conduct a series of ablation studies to
better comprehend our proposed method. Additional experi-
ments are available in the appendix, including an ablation
study with forced exploration (Phan et al., 2019), random
function prior network (Osband et al., 2018) and more.

Does the gain come from posterior sampling or en-
semble? To ascertain the impact of posterior sampling,
we draw a comparison between two performance condi-
tions: one where a policy is sampled from the poste-
rior at each episode, and another where we employ the
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Figure 5: Comparisons on three tasks (Ball-in-Cup, Cartpole-Swingup and Window-open-v2) with sparse
rewards. PS-MBPO improves over MBPO, and OPS-MBPO further improves over PS-MBPO in terms of sample efficiency.

average policy, computed by averaging the distribution
over actions across all ensemble members. The results,
as depicted in Figure 6, utilize N = 5 dynamics net-
works and M ∈ {1, 3, 5} policy networks. A clear ob-
servation from the experiment is the significant perfor-
mance degradation upon disabling the sampling procedure.

Figure 6: Ablation study
on the performance of
with (solid curves) and
without (dashed curves)
the sampling step.

Furthermore, it’s noteworthy
that performance improve-
ments are observed as the
number of ensemble members
increases (i.e., as M increases)
when posterior sampling is ac-
tive. In contrast, when pos-
terior sampling is deactivated,
increasing M does not appear
to result in performance en-
hancements. These findings
strongly support the premise
that the primary factor con-
tributing to improved perfor-
mance is the application of
posterior sampling, rather than simply the use of a larger
ensemble for both dynamics and policies.

Figure 7: Average re-
ward for varying num-
ber of dynamics model
(N ) and policies (M ).

Effect of N and M . Con-
sidering our employment of
the deep ensemble approxima-
tion, it is natural to speculate
whether enhanced performance
could be realized through the
application of a larger ensem-
ble for both dynamics models
and policies. In Figure 7, we
present the average reward of
the final 10 evaluations, each
obtained with 10 distinct ran-
dom seeds. These results utilize
N dynamics models and M policy networks for each dy-
namics model, with the values of N and M varying within
the set {1, 2, 3, 4, 5}. The results clearly indicate that in-

creasing both N and M can yield performance improve-
ments. Furthermore, both forms of uncertainty (pertaining
to policies and dynamics) seem to play a significant role.

Visualization of the State Space. To gain a more nu-
anced understanding of the exploration behavior, we project
the high-dimensional states of each trajectory gathered by
PS-MBPO and MBPO into a two-dimensional space using
Umap (McInnes et al., 2018). These visualizations are pro-
vided in Figure 8. During the initial phase, it is apparent that
PS-MBPO (as represented in the top three figures on the left)
demonstrates a more explorative approach than MBPO (top
right three figures), which subsequently leads to superior fi-
nal performance (refer to Figure 5 for details). Additionally,
we illustrate two representative trajectories of PS-MBPO
and MBPO for a qualitative comparison in Figure 8, corre-
sponding to the same training iterations. Visually, it can be
observed that PS-MBPO manages to manipulate the robot
arm to cover more diverse regions, whereas MBPO is unable
to do so, resulting in the two trajectories appearing markedly
similar to each other. This observation is also reflected in
the Umap visualization.

5. Related Works
Model-Based Reinforcement Learning (MBRL). The
field of MBRL predominantly targets two core concerns:
the manner of learning the dynamics model from the avail-
able data, and the subsequent usage of the acquired model.
The most widespread technique for model learning involves
the use of the L2 loss for one-step transitions (Kurutach
et al., 2018; Luo et al., 2019; Chua et al., 2018; Janner et al.,
2019; Rajeswaran et al., 2020). This is equivalent to max-
imum likelihood estimation under a Gaussian assumption.
Advancing beyond the scope of one-step training, Hafner
et al. (2019); Asadi et al. (2019); Lutter et al. (2021) have
demonstrated that multi-step training can further enhance
prediction accuracy for long horizons. However, this comes
with increased computational costs which scale quadrati-
cally with the number of prediction steps.
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Figure 8: The visualization of the state spaces visited by PS-MBPO (top left) and MBPO (top right) on the
Window-open-v2 during the initial stages of training is provided. We also showcase two illustrative trajectories
of PS-MBPO (bottom left) and MBPO (bottom right), which consist of four frames extracted from the corresponding videos.

Simultaneously, a separate line of research has emerged,
focusing on the objective mismatch problem in
MBRL (Ziebart, 2010; Farahmand et al., 2017; Luo
et al., 2019; Lambert et al., 2020; Eysenbach et al., 2022).
Here, the objective is to modify the model training goal
to provide a performance guarantee for the policy when it
operates in the real environment. This helps ensure that the
policy is not merely optimized for the model, but remains
effective when deployed in the real environment.

To utilize the learned model, several methodologies have
been proposed. One common method is Model Predictive
Control (MPC) (Camacho & Alba, 2013), a derivative-free
optimization technique that has found wide acceptance in
numerous preceding works (Nagabandi et al., 2018; Chua
et al., 2018; Hafner et al., 2019; Fan & Ming, 2021; Lut-
ter et al., 2021). However, while effective, MPC has some
limitations. It is sensitive to the planning horizon and strug-
gles to handle high-dimensional problems. As a mitigation
strategy, Kurutach et al. (2018); Luo et al. (2019); Janner
et al. (2019) propose training a policy on top of the model
to amortize the planning cost. This approach leverages the
model for generating synthetic data, which are then used to
train a policy using model-free methods, thereby reducing
the online sample complexity. Similarly, other research has
proposed using the model to facilitate learning of value func-
tions (Feinberg et al., 2018; Buckman et al., 2018), allowing
for more efficient policy evaluation and improvement. How-
ever, few of them have investigated the tradeoff between
exploration and exploitation in policy optimization.

Exploration and exploitation. Handling the exploration
and exploitation tradeoff is the central problem in online
learning. Typical methods can be categorized into the fol-
lowing three classes: 1) optimism-based (Auer et al., 2008;
Pacchiano et al., 2021; Curi et al., 2020); 2) posterior-
sampling-based (Strens, 2000; Osband et al., 2013; Osband
& Roy, 2014; Osband et al., 2018; Fan & Ming, 2021);
and 3) information-directed sampling (Russo & Roy, 2014;

Nikolov et al., 2019) approaches. Optimism-based meth-
ods needs one to construct the confidence set that contains
the target model/policy with high probability, which suf-
fers from scalability issues (Osband & Roy, 2017); in addi-
tion this approach empirically performs worse than Thomp-
son sampling (Chapelle & Li, 2011). Information-directed
sampling can be better than optimism-based methods and
Thompson sampling, as it directly minimizes the “regret
per information bit” (Russo & Roy, 2014). However, it re-
lies on estimating the mutual information between random
variables, which is especially difficult for high-dimensional
continuous random variables (McAllester & Stratos, 2020).
Therefore, we focus on posterior sampling. However, dif-
ferent from prior works, we study the effect of approximate
inference in an RL setting.

6. Summary and Future Works
We have introduced PS-MBPO and OPS-MBPO as inno-
vative algorithms for efficient model-based reinforcement
learning in intricate environments. We demonstrate that
both PS-MBPO and OPS-MBPO significantly enhance the
sample efficiency in online reinforcement learning and out-
perform various benchmark methods by a considerable mar-
gin, especially in sparse reward tasks. Our hope is that our
analysis, beyond our specific approach, will inspire future
research to propose advanced factorizations of the posterior
over policies and models.

Moving forward, we intend to explore the possibility of
automatically adapting the value of λ in an online manner.
(See Section B.2 for preliminary results.) Furthermore, we
aim to extend the results of Phan et al. (2019) and establish
sublinear regret for PSRL under approximate inference. It
would also be intriguing to examine epistemic neural net-
works (Osband et al., 2021) and transformers (Vaswani et al.,
2017; Müller et al., 2022) as alternatives to deep ensembles
for approximate posterior inference.
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E. B., and Garnett, R. (eds.), Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
8801–8811, 2019. URL https://proceedings.
neurips.cc/paper/2019/hash/
f3507289cfdc8c9ae93f4098111a13f9-Abstract.
html.

Pineda, L., Amos, B., Zhang, A., Lambert, N. O., and Ca-
landra, R. Mbrl-lib: A modular library for model-based
reinforcement learning. Arxiv, 2021.

Rajeswaran, A., Mordatch, I., and Kumar, V. A game the-
oretic framework for model based reinforcement learn-
ing. In Proceedings of the 37th International Confer-
ence on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Ma-
chine Learning Research, pp. 7953–7963. PMLR, 2020.
URL http://proceedings.mlr.press/v119/
rajeswaran20a.html.

Russo, D. and Roy, B. V. Learning to optimize via
information-directed sampling. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., and Wein-
berger, K. Q. (eds.), Advances in Neural Information
Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, pp. 1583–
1591, 2014. URL https://proceedings.
neurips.cc/paper/2014/hash/
301ad0e3bd5cb1627a2044908a42fdc2-Abstract.
html.

Russo, D. and Van Roy, B. An information-theoretic anal-
ysis of thompson sampling. The Journal of Machine
Learning Research, 17(1):2442–2471, 2016.

Strens, M. J. A. A bayesian framework for reinforcement
learning. In Langley, P. (ed.), Proceedings of the Seven-
teenth International Conference on Machine Learning
(ICML 2000), Stanford University, Stanford, CA, USA,
June 29 - July 2, 2000, pp. 943–950. Morgan Kaufmann,
2000.

Tiapkin, D., Belomestny, D., Calandriello, D., Moulines,
E., Munos, R., Naumov, A., Rowland, M., Valko, M.,
and MENARD, P. Optimistic posterior sampling for

reinforcement learning with few samples and tight guar-
antees. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho,
K. (eds.), Advances in Neural Information Processing
Systems, 2022a.

Tiapkin, D., Belomestny, D., Moulines, E., Naumov,
A., Samsonov, S., Tang, Y., Valko, M., and Ménard,
P. From dirichlet to rubin: Optimistic explo-
ration in RL without bonuses. In Chaudhuri, K.,
Jegelka, S., Song, L., Szepesvári, C., Niu, G., and
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A. Extended Discussions
A.1. Dynamics model

We use deep ensemble for fitting the environment dynamics. For each network in the ensemble fθ , it takes a whitened state
and action pair as input, and predicts the residual of the next state as well as the reward, i.e.,

fθ

(
st − µs

σs
,
at − µa

σa

)
= N

([
∆st

r(st,at)

]
,

[
diag(σ2

∆st
), 0

0, σ2
rt

])
, (14)

where µs, µa are the empirical mean of the states and actions, σs and σa are the empirical standard deviation of them.
Then, the predictions of next state and reward will be[

st+1

rt

]
∼ N

([
st +∆st
r(st,at)

]
,

[
diag(σ2

∆st
), 0

0, σ2
rt

])
. (15)

Below is our implementation of each individual neural network in JAX (Bradbury et al., 2018).

class GaussianMLP(hk.Module):
"""MLP with Gaussian distribution outputs."""

def __init__(
self,
output_size: int,
hidden_sizes: Sequence[int],
*,
activation=jax.nn.swish,
min_logvar: float = -10.0,
max_logvar: float = 2.0,
name: Optional[str] = None,

):
super().__init__(name=name)
self.output_size = output_size
w_init = hk.initializers.VarianceScaling(1.0, ’fan_in’, ’truncated_normal’)
self.mlp = hk.nets.MLP(

hidden_sizes, w_init=w_init, activation=activation, activate_final=True)
self.min_logvar = jnp.ones(output_size) * min_logvar
self.max_logvar = jnp.ones(output_size) * max_logvar
self.mean_and_logvar = hk.Linear(

self.output_size * 2, w_init=w_init, name=’mean_and_logvar’)

def __call__(self, x):
h = self.mlp(x)
mean, logvar = jnp.split(self.mean_and_logvar(h), 2, axis=-1)
logvar = self.max_logvar - jax.nn.softplus(self.max_logvar - logvar)
logvar = self.min_logvar + jax.nn.softplus(logvar - self.min_logvar)
return mean, logvar

A.2. Soft actor-critic (SAC)

We use SAC for learning the policies. In a highlevel, SAC is a maximum entropy RL algorithm, which typically optimizes
the following objective,

J(π) =

T∑
t=0

E(s,a)∼ρπ
[r(s,a) + αH(π(·|s))]. (16)

As a result, maximum entropy RL algorithm will favor those policies that not only optimize for the reward, but also has
a large entropy. This can in turn improve the robustness of the optimized policy. As for SAC, it searches the policy by
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iteratively solving the policy evaluation and policy improvement steps.

Policy Evaluation: Qπt(s,a)← r(s,a) + γEs′∼p(·|s,a)[V
πt(s′)], (17)

V πt(s) = Ea∼πt(·|s)[Q
πt(s,a)− log πt(a|s)]; (18)

Policy Improvement: πt+1 ← argmin
π

dKL (π(·|s0)| exp(Qπt(s0, ·))) . (19)

In the practical implementation of SAC, it uses a separate function approximator for the state value to stabilize the training.
Specifically, there are three components in SAC, a parameterized state value function Vψ(s), a soft Q-function Qθ(s,a),
and a policy πϕ(a|s). The objectives for each component are

JV (ψ) = Es∼D

[
1

2

(
Vψ(s)− Ea∼πϕ(·|s)[Q

πϕ(s,a)− log πϕ(a|s)]
)2]

, (20)

JQ(θ) = E(s,a)∼D

[
1

2

(
Qθ(s,a)− Q̂(s,a)

)2]
, (21)

Jπ(ϕ) = Es∼D [dKL (πϕ(·|s)| exp(Qθ(s, ·)))] , (22)

where Zθ(·) is a normalizing constant, and Q̂(s,a) is defined as

Q̂(s,a) := r(s,a) + γEs′∼p(·|s,a)
[
Vψ̄(s

′)
]
. (23)

Additionally, ψ̄ is the exponentially moving average of the weights of the value network, and Jπ(ϕ) can be optimized with
reparameterization trick under Gaussian case, which can further reduces the variance of the gradient estimator and hence
stabilizes the training. We adopt the SAC implementation from Acme (Hoffman et al., 2020).

A.3. Revisiting MBPO, PETS and ME-TRPO

Popular model-based reinforcement learning algorithms such as ME-TRPO (Kurutach et al., 2018), PETs (Chua et al., 2018)
and MBPO (Janner et al., 2019) typically repeat the following three steps: 1) train a dynamics model (or an ensemble of
models) q(M|DE); 2) train/extract a policy π⋆ from the learned model; 3) collect data from the environment with the policy.
Consequently, their policy is (approximately) equivalent to the one obtained by solving

π⋆ = argmax
π∈Π

EM[RM(π)] = argmax
π∈Π

∫
RM(π)q(M|DE)dM, (24)

where the posterior of the modelM is approximated by an ensemble of neural networks, Π is the search space of policies,
and the cumulative reward RM(π) for an episode of length H of a policy π under dynamics modelM is defined as

RM(π) = E

[
H∑
t=1

rM(st,at)

]
where st+1 ∼ pM(s|st,at) and at ∼ π(a|st). (25)

However, the above strategy only accounts for exploitation, so will lead to low data efficiency.

A.4. Posterior sampling reinforcement learning

The idea of PSRL is introduced by Strens (2000). The first regret bound Õ(HS
√
AT ) for PSRL is proved by Osband

et al. (2013) for a tabular case with S, A, T , H denotes the number of state, number of actions, number of time steps,
and the length of each episode, respectively. In Osband & Roy (2017), the bound was improved to Õ(H

√
SAT ). For the

continuous case, Osband & Roy (2014) provides the first regret bound Õ(
√
dKdET ) based on the eluder dimension dE and

Kolmogorov dimension dK . More recently, Fan & Ming (2021) study the regret bound for PSRL under Gaussian process
assumption, and obtain a regret bound of Õ(H3/2d

√
T ). In addition to the bound on Bayesian regret, there is also a line of

works studying the worst-case or frequentist regret bound for PSRL (Agrawal & Jia, 2017; Tiapkin et al., 2022b;a), and
achieve a regret bound of order Õ(

√
T ). Nevertheless, all these regret bounds are derived under exact Thompson sampling.

A.5. Limitations of our approach

Our methodology hinges on the employment of an ensemble technique to approximate the posterior for both the dynamic
models and the policies. Despite the ensemble method being lauded as one of the most efficacious methods for approximating
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the posterior distribution in practical scenarios, it may potentially necessitate extensive computational resources. Furthermore,
while our algorithm might be assured to outperform traditional methodologies (i.e., qδ), it remains ambiguous whether
sublinear regret can be attained under approximate inference, and how the inference error is influenced by the ensemble size
in reinforcement learning. These facets constitute the primary constraints of our research and provide intriguing prospects
for future exploration.

B. Additional Results for (O)PS-MBPO

Figure 9: Visualization of the optimistic weights of the first 40K iterations (left) and during the entire training process (mid-
dle), and the reward curve (right) on Hopper. Each chart in the left and middle figures corresponds to the weights of each
single policy.

Figure 10: Visualization of the optimistic weights of the first 100K iterations (left) and during the entire training pro-
cess (middle), and the reward curve (right) on Cartpole-Swingup. Each chart in the left and middle figures corresponds
to the weights of each single policy.

B.1. Visualization of the optimistic weights

For OPS-MBPO, we will maintain the weights for each policy throughout the entire process of online learning. To investigate
how those weights evolve, we plot the weights of each policy in Figure 9 and Figure 10, which covers one dense reward task
and one sparse reward task. The leftmost figure corresponds to the weights in the initial phase, which will change more
rapidly than the later phases. We observe that the weights of some polices will first go up and than go down, and finally
it will converge to a single policy. More interestingly, the reward curve in the rightmost figure is also consistent with the
pattern in the optimistic weights curve.

B.2. How does the temperature term τ affect the performance?

We further study how does the temperature term will affect the performance on both dense reward and sparse reward tasks.
The results can be found in Figure 11 and Figure 12. We observe that the temperature term will affect the convergence speed
of the reward on most of the tasks. For some of the tasks, such as Ant, Hopper and Walker2d, it will also affect the
converged reward slightly. In general, we recommend the temperature term to be around five times of the best averaged
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Figure 11: Ablation study on how the choice of the temperature will affect the performance on dense reward tasks. All the
experimental setups are the same as those experiments in our main paper, except for the temperature term.

Figure 12: Ablation study on how the choice of the temperature will affect the performance on sparse reward tasks. All the
experimental setups are the same as those experiments in our main paper, except for the temperature term.

episodic reward that can be achieved.

B.3. How does the schedule of λ affect the performance?

Since λ plays a role in balancing the effect of approximate inference error and data efficiency, we are interested in how
different schedules of λ will affect the reward curve. We consider two schemes for adjusting λ, i.e., 1) a constant schedule;
and 2) a linear schedule. For constant schedule, we fix the value of λ throughout training, whereas for linear schedule, we
decrease the value of λ from 1 to 0 linearly. The rightmost figure in Figure 13 visualizes the difference between these two
schedules. To make them comparable, we ensure that the areas under both curves are of the same size, so that the total
amount of real-world data is the same. The comparison on three tasks are shown in the left three figures of Figure 13. We
observe that the linear schedule has very little effect on the dense reward tasks, though slightly improves the the final reward
in Hopper. For Cartpole-swingup, the performance of linear schedule improves faster than constant schedule, but
achieves similar rewards in the end. Nevertheless, we believe that there might be more sophisticated schedules for λ that can
achieve better performance than the constant schedule, e.g., adapting the value of λ based on the model’s validation loss.
For simplicity, we recommend to use a constant schedule in practice. For sparse reward tasks, the search range of λ can be
{0, 0.1, 0.3, 0.5, 0.7}, and {0, 0.05, 0.15, 0.3} for dense reward tasks.

In addition to the grid search, we believe it’s also possible to adapt the value of λ online. We can cast the the problem of
choosing the optimal value of λ as a bandit problem. The high-level idea of the algorithm is: 1) Initialize a set of possible
values for λ, and treat each value of λ as an arm in bandit. 2) Apply any no-regret learning algorithms for solving it, e.g.,
explore-then-commit. However, we haven’t test this algorithm yet, and it would be interesting as a future extension.

C. Additional Details about the Algorithm and Experiments
C.1. Algorithm Details

In Algorithm 1, we approximate the posterior of MDPs and policies, i.e., q(M|DE) and q(π|M,DE , λ) using deep
ensemble, which can be regarded as a finite particle approximation to the posterior. Specifically, q(M|DE) is approximated
by {Mθ̂n

}Nn=1 and q(π|Mθ̂n
,DE , λ) is approximated by {πϕ̂n,m

}Mm=1 for all n ∈ [N ], where bothMθ̂n
and πϕ̂n,m

are
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Figure 13: Ablation study on how the schedule of λ affect the performance with PS-MBPO. All the experimental setups are
the same as the experiments in main paper.

.....
.....

.....

.....
.....

Uncertainty Propagation Blocked Model Policy

(a) (b) (c)

Figure 14: An illustration of the differences between (a) MBPO, (b) PS-MBPO with λ = 0 and (c) PS-MBPO with
λ ∈ (0, 1). MBPO adopt a point estimation to the policy, which is obtained by MAP inference. Thus, the uncertainty
propagation from the dynamics model to the policy is blocked. For (b), it implicit assumes the dynamics model captures all
the relevant properties of the data. For (c), we add a short cut from data directly to the policy, which is controlled by the
value of λ. Hence, the policy can further utilize the information in the data that are not captured in the dynamics model.

implemented using a multi-layer perceptron (MLP) with parameters θ̂n trained on DE and ϕ̂n,m trained on the mixed
dataset λDE + (1− λ)Dn,m

M , respectively. By mixed dataset λDE + (1− λ)Dn,m
M , we mean that for each data point in the

training batch, it is with probability of λ being sampled from the real data DE and probability of 1− λ from the fictitious
data Dn,m

M .

C.2. Implementation Details

In this section, we provide the additional details about our algorithm and experiments. We provide a detailed description
of our approach in Algorithm 1 and a visual illustration about its difference with MBPO in Figure 14. In terms of the
hyperparameters, our choice of them are mostly the same as the ones adopted in MBPO (Janner et al., 2019) and Pineda
et al. (2021) for Ant, Halfcheetah, Hopper, Walker2D and Cartpole-swingup, and Eysenbach et al. (2022)
for Window-open-v2, which are sufficiently optimized by the authors for MBPO. Specifically, the hyperparameters of
MBPO are directly adopted from https://github.com/facebookresearch/mbrl-lib for dense reward tasks.
For sparse reward tasks, the hyperparameters are adopted from Eysenbach et al. (2022). The hyperparameters for our method
on each task are reported in Table 1. We will also release our code for reproducing all the experiments. Next, we introduce
the details about each tasks.

C.3. Task Details

Ant, Halfcheetah, Hopper and Walker2D. These tasks are taken from the official Github repository of MBPO (Janner
et al., 2019), https://github.com/jannerm/mbpo.

Ball-in-Cup and Cartpole-swingup. These tasks are taken from the deepmind control suite (Tunyasuvunakool et al., 2020).
More details can be found in the Github repository at https://github.com/deepmind/dm_control/.

Window-open-v2. This task is based on the original Window-open-v2 in Metaworld benchmakr (Yu et al., 2020). The
sparse reward is 0 only if the window is within 3 units of the open position, and −10 for all other positions.

https://github.com/facebookresearch/mbrl-lib
https://github.com/jannerm/mbpo
https://github.com/deepmind/dm_control/
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Algorithm 2 PS-MBPO (abstract formulation)

Require: Prior distributions q(M), q(π) and tuning hyperparameter λ.
Require: Initialize an empty dataset DE for storing data collected from the environment.

1: for K episodes do
2: Fit the posterior of the policy q(π|DE , λ) on data DE using equation 8.
3: Sample a policy πk ∼ q(π|DE , λ) from the posterior distribution.
4: for H steps do
5: Run the policy πk in the environment and add the collected data to DE .
6: end for
7: end for

Figure 15: Comparisons on four tasks with dense rewards including Halfcheetah, Ant, Hopper and Walker2D.
MBPO⋆ is the curve from the original paper by Janner et al. (2019). To be noted, in the original implementation of MBPO,
they use 7 networks for the ensemble of dynamics model, whereas our implementation only uses 5 networks. But still, our
implementation mostly reproduces their results and sometimes is even better.

D. Forced Exploration
Forced exploration is proposed in Phan et al. (2019) to improve approximate Thompson sampling for bandit problems.
Without properly dealing with the approximate inference error, there will be an extra term in the regret that is linear in T ,
regardless how small the error is. In their paper, they use the α-divergence for measuring the approximate inference error,
defined as

Dα(P,Q) =
1−

∫
p(x)αq(x)1−αdx

α(1− α)
. (26)

The α-divergence can capture many divergences, including forward KL divergence (α→ 1), backward KL divergence (α→
0), Hellinger distance (α = 0.5) and χ2 divergence (α = 2). Different inference methods will give error guarantee measured
by α-divergence with different α.

We are interested in the error guarantee under the reverse KL-divergence, i.e., α = 0, as the ensemble sampling (Lu & Roy,
2017) provides error guarantees under the reverse Kl-divergence. In Phan et al. (2019), they prove that forced exploration
can make the posterior concentrate and hence restore the sub-linear regret bound, if the inference error is bounded by
α-divergence with α ≤ 0. The reverse KL-divergence falls in this case. Specifically, the forced exploration is a simple
method, that maintains a probability of random exploration. This probability decays as t, the online steps, grows.

Though the above results only hold for bandit setting and it’s unclear for reinforcement learning, we are interested in testing
its empirical performance in RL. In our experiments, we consider the following exploration rate

pk(random explore=True) = Bern(τ/k), (27)

where k is the index for the episode, and τ is the hyperparameter for controlling the frequency of forced exploration. As k
increases, the random exploration probability will decrease. In our experiments, we consider τ ∈ {1, 5, 10}. All the other
settings are the same as our experiments in the main paper. The results are presented in Figure 16. We observe that forced
exploration is mostly not helpful in our experiments, except for the Hopper task. Moreover, increasing τ usually make
the performance even worse. On the other hand, this may not be so surprising as the forced exploration is designed for
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Table 1: Hyperparameters for each task. x → y over episodes a → b denotes a segment linear function, f(k) =
⌊min(max(x+(k−a)/(b−a) · (y−x), x), y)⌋. We use Ball, Cart, Cheetah, Walker and Window as abbreviations
for Ball-in-Cup, Cartpole-Swingup, Halfcheetah, Walker2D and Window-open-v2 so as to make the
table fit in the page.

Hyper-parameter Ant Ball Cart Cheetah Hopper Walker Window

Replay buffer capacity 106 106 106 106 106 106 106

Episode length 1000 1000 1000 1000 1000 1000 250
Number of episodes 300 150 400 300 125 300 600

Batch size for model 256 256 256 256 256 256 256
Model update frequency 250 250 250 250 250 250 250
Model Hidden dim. 200 200 200 200 200 200 200
Model #Hidden layers 4 4 4 4 4 4 4
Learning rate for model 10−3 10−3 10−3 10−3 10−3 10−3 10−3

Weight decay for model 10−4 5× 10−5 5× 10−5 10−4 10−4 10−4 10−4

#Model ensemble (N) 5 5 5 5 5 5 5
Validation ratio 20% 20% 20% 20% 20% 20% 20%
Rollout batch size 105 105 105 105 105 105 5× 104

Model horizon
1→ 25

over episodes
20→ 100

1 1 1
1→ 15

over episodes
20→ 100

1 1

Batch size for policy 256 256 256 256 256 256 256
Learning rate for policy 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
#Policy per model (M) 5 5 5 5 5 5 5
Discount (γ) 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Target entropy −4 −0.05 −0.05 −3 −1 −3 −1
Policy update frequency 1 1 1 1 1 1 1

Optimizer Adam Adam Adam Adam Adam Adam Adam

λ 0.05 0.5 0.5 0.05 0.05 0.05 0.5
τ for OPS 50000 1000 5000 15000 15000 50000 5000

approximate Thompson sampling in the bandit setting, and the result may not necessary generalize to the RL setting. We
leave the theoretical analysis as a future work.

E. Random Function Prior
The random function prior (RFP) is proposed in Osband et al. (2018) for improving the uncertainty estimation. The prior
network are chosen for modelling the uncertainty that does not come from the observed data. The RFPs can also be viewed
as a regularization in the output space. In contrast to weight space regularization, RFP makes it easier to incorporate different
property (e.g., periodicity) of the function to be learned as a prior information. More importantly, when using deep ensemble,
incorporating the RFP is fairly simple. It modifies the original training objective ℓ(fθ,D) by adding an extra regularization
term,

ℓRFP (fθ,D) := ℓ(fθ + βfθ0 ,D), (28)

where β is a scaling term for adjusting the effect of the prior, fθ0 is the prior network which is held fixed during training.
Hence, we also conduct experiments with RFPs in our experiments to investigate how does the RFPs will affect the learning
of dynamics models.

We vary the value of β in {0.1, 0.3, 1}. The results are reported in Figure 17. Firstly, by properly choosing the value of β,
RFPs slightly improve the performance on Hopper, and don’t affect the performance a lot on Walker2D. However, for
Window-open-v2, RFPs will hurt the performance a lot. We conjecture that this might because our choice of the prior
function on Window-open-v2 is not suitable for the task, i.e., the reward is sparse in Window-open-v2, but the RFPs
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Figure 16: Experiments of forced exploration on Walker2d, Hopper and Window-open-v2. The shaded region
denotes the one-standard error. τ = 0 is the one without forced exploration.

Figure 17: Experiments with random function prior networks (RFPs) on Walker2d, Hopper and Window-open-v2.
The shaded region denotes the one-standard error. β = 0 corresponds to the one without using random function prior
networks.

don’t induce sparsity on the predictions.

Nevertheless, one interesting observation is that both forced exploration and RFPs seem to help on Hopper, and their
overall pattern on three tasks is a bit consistent. Therefore, it would be interesting to figure out if there is a deep connection
between the forced exploration and RFPs.
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F. Theoretical Analysis of PSRL under Approximate Inference
In this section, we present the proof of Theorem 1. The proof of this theorem is inspired by the techniques in Russo &
Van Roy (2016), with some additional modifications to extend the results from bandit setting to the reinforcement learning
setting.

Regret. For a given MDPM, the regret is defined as the difference between value function of the optimal policy in
hindsight and that of the actual policy executed by the algorithm A ,

Regret(T,A ,M) :=

K∑
k=1

∫
ρ(s1)

(
V M
π⋆,1(s1)− V M

πk,1(s1)
)
ds1︸ ︷︷ ︸

:=∆k

, (29)

where π⋆ is the optimal policy forM, and πk is the policy employed by the algorithm for kth episode. Correspondingly, the
Bayesian regret is defined as the expectation of the above regret, i.e.,

BayesianRegret(T,A , p(M)) := E [Regret(T,A ,M)] .

Here the expectation is taken over the prior distribution of dynamics models p(M) and the randomness in the algorithm A
and environment.

Bayesian regret under approximate inference. Let us denote the approximate and true posterior distribution of polices
at kth episode by

qk(π) = q(π|Dk
E) and pk(π) =

∫
δ(π|M)p(M|Dk

E)dM.

whereDk
E denotes all the data collected from the environment E till the k-th episode . Next we characterize how approximate

posterior inference affects the Bayesian regret.

Theorem 1 For K episodes, the Bayesian regret of posterior sampling reinforcement learning algorithm A with any
approximate posterior distribution qk at episode k is upper bounded by

√
CK(HRmax)2H (π⋆) + 2HRmax

K∑
k=1

√
E
[
dKL (qk(π)| pk(π))

]
, (30)

where H(π⋆) is the entropy of the prior distribution of optimal polices, i.e., p(π) =
∫
δ(π|M)p(M)dM, C is a problem-

dependent constant (see Appendix for details) and dKL ( ·| ·) is the KL-divergence.

Our Theorem 1 is a general result with minimal assumptions. For a specific problem setup, it remains to instantiate the
problem-dependent constant C and H(π⋆) for deriving the regret bound. Although a detailed investigation is out the scope
of this work, we provide a concrete example for showing that the constant C can be bounded well.

Remark 1 When the number of policies |Π| is finite, and the value function V M
π,1 is linear with its parameter lives in Rd,

then C can be upper bounded by d, i.e., C ≤ d.

To be noted, the first term of the regret is Õ(
√
K), which is the standard result. The second term will be zero under exact

posterior inference. However, when performing approximate inference (which is usually the case in practice), the second
term could result in a linear regret (i.e., Õ(K)) due to the approximation error (i.e., minq dKL (q| p) > 0). Therefore, the
second term will dominate the entire regret under approximate inference. To reduce it, we should choose an approximate
posterior distribution q(π|DE) as “close” to the true distribution p(π|DE) as possible.
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F.1. Proof of Theorem 1

Proof: Recall the definition of Bayesian regret,

BayesianRegret(T,A , p(M)) := E [Regret(T,A ,M)] = E

[
K∑

k=1

∆k

]
. (31)

Let’s denote history at the beginning of episode k as Hk. Then, we can rewrite the Bayesian regret as

BayesianRegret(T,A , p(M)) =

K∑
k=1

EHk
[E [∆k|Hk]] . (32)

By doing so, we can bound each term E[∆k|Hk] separately. For convenience, we define Ek[∆k] := E[∆k|Hk]. Then, by
Lemma 1, we can further decompose it into,

E[∆k|Hk] = Gk +Dk, (33)

where

Gk :=

∫ √
qk(π)pk(π)

(
Ek

[
V M
π,1(s1)|π⋆ = π

]
− Ek

[
V M
π,1(s1)

])
dπ (34)

and

Dk :=

∫ (√
pk(π)−

√
qk(π)

)(√
pk(π)Ek

[
V M
π,1(s1)|π⋆ = π

]
+
√
qk(π)Ek

[
V M
π,1(s1)

])
dπ. (35)

Then, it remains to bound
∑K

k=1 E[Gk] and
∑K

k=1 E[Dk]. By Lemma 2, we can bound the sum of expectation of Dk by

K∑
k=1

E[Dk] ≤ 2HRmax

K∑
k=1

√
E [dKL (qk| pk)]. (36)

By Lemma 3, the upper bound for the sum of the expectation of Gk is

K∑
k=1

E[Gk] ≤
√
CK ((HRmax)2/2)H (π⋆). (37)

Hence, the term Dk captures the regret incurred by the approximate inference error, and Gk captures the standard regret for
Thompson sampling, which is of order Õ(

√
K). By combining them together, we finally arrive at the upper bound of the

Bayesian regret

BayesianRegret(T,A , p(M)) ≤
√
CK(HRmax)2H (π⋆)

+ 2HRmax

K∑
k=1

√
E
[
dKL (qk(π)| pk(π))

]
. (38)

□

F.2. Proof of Remark 1

Proof: Recall that the definition of C is

C = max
k∈Z+

[
∑

π gk(π, π))]
2∑

π

∑
π′ [gk(π, π′)]2

(39)

where gk(π, π
′) is defined as

gk(π, π
′) =

√
qk(π)pk(π′)(Ek[V

M
π,1|π⋆ = π′]− Ek[V

M
π,1]) (40)
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Since the number of polices |Π| is finite, we then define the following matrix

Gk =


gk(π1, π1) gk(π1, π2) . . . gk(π1, π|Π|)
gk(π2, π1) gk(π2, π2) . . . gk(π2, π|Π|)

. . . . . . . . . . . .
gk(π|Π|, π1) gk(π|Π|, π2) . . . gk(π|Π|, π|Π|)

 (41)

Then, we can rewrite C as

C = max
k∈Z+

Trace(Gk)
2

∥Gk∥2F
(42)

By the fact that, Trace(A)2 ≤ rank(A)∥A∥2F , we will have

Trace(Gk)
2

∥Gk∥2F
≤ rank(Gk) (43)

Since Gk is a |Π|-by- |Π| matrix, we must have

rank(Gk) ≤ |Π| (44)

Since we also assume that the value function is linear in its parameters which is in Rd, then by the linearity of expectation,
we can write each gk(πi, πj) as (for some vi, θj)

gk(πi, πj) =
√
qk(πi)pk(πj)(v

⊤
i θj − v⊤

i θ) (45)

Then, we can define ui =
√

qk(πi)vi and wj =
√
pk(πj)(θj − θ), which further gives us

Gk =


u⊤
1

u⊤
2

. . .
u⊤
|Π|


︸ ︷︷ ︸

:=U

[
w1 w2 . . . w|Π|

]︸ ︷︷ ︸
:=W

= UW (46)

Since the parameters θ is in Rd, we must have the rank of both U,W no greater than d. Therefore, we then have
rank(Gk) ≤ d. By combining the above two, we can conclude that ∀k ∈ Z+

rank(Gk) ≤ min{|Π|, d}, (47)

which further implies that C ≤ min{|Π|, d} and concludes the proof. □

F.3. Technical Lemmas

Lemma 1 For each time k = 1, ...,K, we have

E [∆k|Hk] = E
[
V M
π⋆,1(s1)− V M

πk,1(s1)|Hk

]
:= Ek

[
V M
π⋆,1(s1)− V M

πk,1(s1)
]
= Gk +Dk, (48)

where

Gk :=

∫ √
qk(π)pk(π)

(
Ek

[
V M
π,1(s1)|π⋆ = π

]
− Ek

[
V M
π,1(s1)

])
dπ (49)

and

Dk :=

∫ (√
pk(π)−

√
qk(π)

)(√
pk(π)Ek

[
V M
π,1(s1)|π⋆ = π

]
+
√
qk(π)Ek

[
V M
π,1(s1)

])
dπ. (50)
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Proof: Conditioning on the history Hk, we can write the conditional Bayesian regret as

Ek

[
V M
π⋆,1(s1)− V M

πk,1(s1)
]

(51)

=

∫
pk(π)Ek

[
V M
π,1(s1)|π⋆ = π

]
dπ −

∫
qk(π)Ek

[
V M
π,1(s1)|πk = π

]
dπ (52)

=

∫
pk(π)Ek

[
V M
π,1(s1)|π⋆ = π

]
dπ −

∫
qk(π)Ek

[
V M
π,1(s1)

]
dπ (53)

= Gk +Dk, (54)

where the second equality holds because the value function is independent of the instantiation of the policy πk when given
the history Hk. □

Lemma 2 For any k = 1, ...,K, we have

K∑
k=1

E[Dk] ≤ 2HRmax

K∑
k=1

√
E [dKL (qk| pk)]. (55)

Proof: Recall Dk,

Dk :=

∫ (√
pk(π)−

√
qk(π)

)(√
pk(π)Ek

[
V M
π,1(s1)|π⋆ = π

]
+

√
qk(π)Ek

[
V M
π,1(s1)

])
dπ (56)

By using the Cauchy-Schwarz inequality, we have

Dk ≤

(√∫ (√
pk(π)−

√
qk(π)

)2
dπ

)

·

(√∫
pk(π)E

[
V M
π,1(s1)|π⋆ = π

]2
dπ +

√∫
qk(π)Ek

[
V M
π,1(s1)

]2
dπ

)
. (57)

By the definition of Hellinger distance dH ( ·| ·) between two random variables, we have

Dk ≤ dH (qk| pk)

(√∫
pk(π)E

[
V M
π,1(s1)

2|π⋆ = π
]
dπ +

√∫
qk(π)Ek

[
V M
π,1(s1)

2
]
dπ

)
. (58)

Since [dH ( ·| ·)]2 ≤ dKL ( ·| ·) and V M
π,1 is a bounded random variable with HRmax as its upper bound, we have

Dk ≤ 2dH (qk| pk)HRmax ≤ 2
√
dKL (qk| pk)HRmax. (59)

Hence, we have

K∑
k=1

E[Dk] ≤ 2HRmax

K∑
k=1

√
E [dKL (qk| pk)]. (60)

□

Lemma 3 For each k = 1, ...,K, we have

K∑
k=1

E[Gk] ≤
√
CK ((HRmax)2/2)H (π⋆). (61)

Proof: Recall the definition of Gk,

Gk :=

∫ √
qk(π)pk(π)

(
Ek

[
V M
π,1(s1)|π⋆ = π

]
− Ek

[
V M
π,1(s1)

])
dπ. (62)
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Since V M
π,1 (here, we drop the dependency on s1 for clearness) is a bounded random variable, and more specifically, it’s

((HRmax)/2)-sub-Gaussian. Hence, by Lemma 4, the following holds,

Ek

[
V M
π,1|π⋆ = π

]
− Ek

[
V M
π,1

]
≤
(
HRmax

2

)√
2dKL

(
pk(V M

π,1|π⋆ = π)
∣∣ pk(V M

π,1)
)
. (63)

This gives us that

Gk ≤
∫ √

qk(π)pk(π)

(
HRmax

2

)√
2dKL

(
pk(V M

π,1|π⋆ = π)
∣∣ pk(V M

π,1)
)
dπ. (64)

Then, we can further rewrite the KL-divergence using the conditional mutual information Ik(·; ·) (i.e., conditioning on the
history Hk), ∫∫

qk(π)pk(π
′)dKL

(
pk(V

M
π,1|π⋆ = π′)

∣∣ pk(V M
π,1)
)
dπdπ′ =

∫
qk(π)Ik(π⋆;V M

π,1)dπ. (65)

When conditioning on the history Hk, the optimal policy π⋆ and M is independent of the πk, hence we have∫
qk(π)Ik(π⋆;V M

π,1)dπ =

∫
qk(π)Ik(π⋆;V M

πk,1|π
k = π)dπ = Ik(π⋆;V M

πk,1|π
k). (66)

By the fact that π⋆ is jointly independent of V M
πk,1 and πk when conditioning on the history Hk, hence we have

Ik(π⋆;V M
πk,1|π

k) = Ik(π⋆;V M
πk,1|π

k) + Ik(π⋆;πk). (67)

By the chain rule of mutual information, we finally get

Ik(π⋆;V M
πk,1|π

k) + Ik(π⋆;πk) = Ik(π⋆; (V M
πk,1, π

k)). (68)

Now, let’s define the following function gk and C,

gk(π, π
′) :=

√
qk(π)pk(π′)

(
Ek

[
V M
π,1|π⋆ = π′]− Ek

[
V M
π,1

])
. (69)

C := max
k∈Z+

(
∫
gk(π, π)dπ)

2∫∫
[gk(π, π′)]2dπdπ′ . (70)

Thus, we further have

Ik(π⋆; (V M
πk,1, π

k)) ≥ 2

(HRmax)2

∫∫
[gk(π, π

′)]2dπdπ′. (71)

On the other hand, we can rewrite Gk as

Gk =

∫
gk(π, π)dπ. (72)

By rearranging the terms, we get

G2
k

Ik(π⋆; (πk, V M
πk,1

))
≤
(
(HRmax)

2/2
)
(
∫
gk(π, π)dπ)

2∫∫
[gk(π, π′)]

2
dπdπ′

≤ C
(
(HRmax)

2/2
)
. (73)

Hence,

Gk ≤
√
C ((HRmax)2/2) Ik(π⋆; (πk, V M

πk,1
)). (74)
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Hence, we have

K∑
k=1

E[Gk] ≤
K∑

k=1

E
[√

C ((HRmax)2/2) Ik(π⋆; (πk, V M
πk,1

))
]

(75)

=
√
C ((HRmax)2/2)

K∑
k=1

E
[√

Ik(π⋆; (πk, V M
πk,1

))
]

(76)

≤
√
C ((HRmax)2/2)

√√√√KE

[
K∑

k=1

Ik(π⋆; (πk, V M
πk,1

))

]
(77)

=
√
CK ((HRmax)2/2)

√√√√E

[
K∑

k=1

Ik(π⋆; (πk, V M
πk,1

))

]
(78)

≤
√
CK ((HRmax)2/2)H (π⋆), (79)

□

Lemma 4 (Russo & Van Roy (2016)) Suppose that there is a Hk-measurable random variable η, such that for each π ∈ Π,
V M
π,1 is a η-sub-Gaussian random variable when conditioned on Hk, then for every π, π′ ∈ Π, the following holds with

probability 1,

Ek[V
M
π,1|π⋆ = π′]− Ek[V

M
π,1] ≤ η

√
2dKL

(
pk(V M

π,1|π⋆ = π′)
∣∣ pk(V M

π,1)
)
. (80)

F.4. An Alternative Analysis of the Bayesian Regret Bound of PSRL under Approximate Inference

Theorem 2 For K episodes, the Bayesian regret of posterior sampling reinforcement learning algorithm A with any
approximate posterior distribution qk at episode k is upper bounded by

BR(K,TS, p(M)) + 4HRmax

K∑
k=1

√
dKL (q(π0:k−1)| pexact(π0:k−1)) + 2HRmax

K∑
k=1

√
E [dKL (qk(π)| pk(π))]. (81)

where BR(K,TS, p(M)) denotes the Bayesian regret under exact Thompson sampling, dKL ( ·| ·) is the KL-divergence, and
q(π0:k−1) and qexact(π0:k−1) are the joint likelihood of the polices under the approximate posterior q and the exact posterior
p, respectively.

Proof: We first define the following notations,

V M
π,1 =

∫
ρ(s)V M

π,1(s)ds. (82)

Recall the definition of the Bayesian regret,

E

[
K∑

k=1

∆k

]
= E

[
K∑

k=1

V M
π⋆,1 − V M

πk,1

]
. (83)

By denoting π⋆,k as a sample from the true posterior distribution pk(π), we can further rewrite the Bayesian regret as

E

[
K∑

k=1

∆k

]
= E

[
K∑

k=1

V M
π⋆,1 − V M

π⋆,k,1 + V M
π⋆,k,1 − V M

πk,1

]
(84)

= E

[
K∑

k=1

V M
π⋆,1 − V M

π⋆,k,1

]
+ E

[
K∑

k=1

V M
π⋆,k,1 − V M

πk,1

]
(85)
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We can further expand the first term of Equation 85 as

E

[
K∑

k=1

V M
π⋆,1 − V M

π⋆,k,1

]
= E

[
K∑

k=1

E
[
V M
π⋆,1 − V M

π⋆,k,1

∣∣∣Hk−1 ∼ q(Hk−1)
]]

, (86)

where q(Hk−1) is the marginal likelihood of the history Hk−1 under approximate inference. We can further rewrite the
above equation as

E

[
K∑

k=1

E
[
V M
π⋆,1 − V M

π⋆,k,1

∣∣∣Hk−1 ∼ q(Hk−1)
]]

(87)

=

K∑
k=1

∫
E
[
V M
π⋆,1 − V M

π⋆,k,1

∣∣∣Hk−1

]
q(Hk−1)dHk−1 (88)

=

K∑
k=1

∫
E
[
V M
π⋆,1 − V M

π⋆,k,1

∣∣∣Hk−1

]
pexact(Hk−1)dHk−1 (89)

+

∫
E
[
V M
π⋆,1 − V M

π⋆,k,1

∣∣∣Hk−1

]
(q(Hk−1)− pexact(Hk−1)) dHk−1

= BR(K,TS, p(M)) +

K∑
k=1

∫
E
[
V M
π⋆,1 − V M

π⋆,k,1

∣∣∣Hk−1

]
(q(Hk−1)− pexact(Hk−1)) dHk−1 (90)

≤ BR(K,TS, p(M)) + 2HRmax

K∑
k=1

∫
|q(Hk−1)− pexact(Hk−1)|dHk−1 (91)

= BR(K,TS, p(M)) + 4HRmax

K∑
k=1

dTV(q(Hk−1)|pexact(Hk−1)). (92)

where BayesianRegret(K,TS, p(M)) denotes the Bayesian regret under exact Thompson sampling, which has been well-
studied in Agrawal & Jia (2017); Osband et al. (2013); Osband & Roy (2014; 2017); Fan & Ming (2021); Tiapkin et al.
(2022a;b). pexact(Hk−1) is the marginal likelihood of the history Hk−1 under the exact posterior. By Pinsker’s inequality,
for any two distributions p and q, we have

dTV(q|p) ≤
√

1

2
dKL (q| p). (93)

Therefore, we have

dTV(q(Hk)|pexact(Hk)) ≤
√

1

2
dKL (q(Hk)| pexact(Hk)) (94)

≤
√

1

2
dKL (q(Hk, π0:k−1)| pexact(Hk, π0:k−1)). (95)

By the definition of the joint distributions,

q(Hk, π0:k−1) = p(Hk|π0:k−1)q(π0:k−1) (96)
pexact(Hk, π0:k−1) = p(Hk|π0:k−1)pexact(π0:k−1) (97)

Thus, we can further simplify the Equation 95 as√
1

2
dKL (q(Hk, π0:k−1)| pexact(Hk, π0:k−1)) =

√
1

2
dKL (q(π0:k−1)| pexact(π0:k−1)) (98)
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Similarly, we can bound the second term in Equation 85 by

E

[
K∑

k=1

V M
π⋆,k,1 − V M

πk,1

]
= E

[
K∑

k=1

(V M
π⋆,k,1 − V M

πk,1)1(π
k = π⋆,k)

]

+ E

[
K∑

k=1

(V M
π⋆,k,1 − V M

πk,1)1(π
k ̸= π⋆,k)

]
(99)

= E

[
K∑

k=1

(V M
π⋆,k,1 − V M

πk,1)1(π
k ̸= π⋆,k)

]
(100)

≤ 2HRmaxE

[
K∑

k=1

1(πk ̸= π⋆,k)

]
. (101)

By the maximal coupling, we have that the probability of πk ̸= π⋆,k is TV(pk, qk). Thus, in together with Jensen’s
inequality, we can bound the above equation by

E

[
K∑

k=1

V M
π⋆,k,1 − V M

πk,1

]
≤ 2HRmaxE

[
K∑

k=1

√
1

2
dKL (qk(π)| pk(π))

]
(102)

≤ 2HRmax

K∑
k=1

√
E [dKL (qk(π)| pk(π))]. (103)

By combining the above results, we can conclude that the regret bound, i.e., BR(K,A , p(M)), is at most

BR(K,TS, p(M)) + 4HRmax

K∑
k=1

√
dKL (q(π0:k−1)| pexact(π0:k−1)) + 2HRmax

K∑
k=1

√
E [dKL (qk(π)| pk(π))]. (104)

□

G. Additional Umap Visualizations
We provide the Umap visualization of the state embeddings of PS-MBPO and MBPO during training in Figure 18 and
Figure 19. We observe that PS-MBPO will mostly cover a more broad range of the embedding space, and its pattern also
evolves more rapidly than MBPO.
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Figure 18: Visualization of the Umap embeddings of PS-MBPO and MBPO from consecutive training periods on Hopper,
Ant and Halfcheetah (from top to bottom).
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Figure 19: Visualization of the Umap embeddings of PS-MBPO and MBPO from consecutive training periods on Walker2d,
Ball-in-Cup and Cartpole-swingup (from top to bottom).
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