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ABSTRACT

Shortcuts, spurious patterns that perform well only on the training distribution,
pose a major challenge to deep network reliability (Geirhos et al., 2020). In this
work, we investigate the layer-wise impact of image shortcuts on learned features.
First, we propose an experiment design that introduces artificial shortcut-inducing
skews during training, enabling a counterfactual analysis of how different layers
contribute to shortcut-related accuracy degradation. Next, we use our method to
study the effects of a patch-like skew on CNNs trained on CIFAR-10 and CIFAR-
100. Our analysis reveals that different types of skews affect networks layers
differently: class-universal skews (affecting all instances of a target class) and
class-specific skews (affecting only one class) impact deeper layers more than
non-universal and non-specific skews, respectively. Additionally, we identify the
forgetting of shortcut-free features as a key mechanism behind accuracy drop for
our class of skews, indicating the potential role of simplicity bias (Shah et al., 2020)
and excessive regularization (Sagawa et al., 2020) in shortcut learning.

1 INTRODUCTION

Shortcuts, spurious rules that only hold on the training distribution but do not generalize to real-
world scenarios, present an important concern for the reliability of deep networks. Despite their
prevalence, the mechanisms behind shortcut learning and their influence on learned representations
are still unclear. While, from a statistical perspective, shortcuts represent a well-known statistical
phenomenon of spurious correlations (Arjovsky et al., 2020), it remains unclear what correlations
deep models capture during training and how these correlations shape learned feature representations
(Hermann & Lampinen, 2020).

One of the overlooked aspects of deep learning in relation to shortcuts is the hierarchical nature of
deep features. Since the different layers of a network correspond to different levels of abstraction
(Simonyan et al., 2014), shortcuts likely affect layers in distinct ways. Consequently, layers may
have different degrees of responsibility for shortcut learning. A quantitative understanding of this
phenomenon could help design layer-specific strategies for mitigating distribution shifts (e.g. Lee
et al., 2023). However, existing works do not precisely quantify this phenomenon and either only
examine effects on the overall model accuracy without considering layer-wise effects (Scimeca et al.,
2022) or only study the effects on feature representations and do not explicitly link these results with
the final validation accuracy (Hermann & Lampinen, 2020; Islam et al., 2021).

Contributions To bridge this gap, we develop a method for systematically measuring the layer-wise
effects of shortcuts on feature representations. In Section 3, we propose an experiment design that,
given a fixed shortcut-inducing data skew, enables measuring layer-wise resposibility towards the loss
in validation accuracy due to the shortcut. Our method is based on counterfactual reasoning about
the behaviour of each layer had it been trained on unskewed data.

Next, we apply our method to evaluate layer-wise contributions to accuracy degradation due to
patch-like skews on the CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009) and study possible
mechanisms behind this drop. Our experimental findings in Section 4 reveal that different types of
patch-like skews affect network layers differently. Specifically, class-universal skews (affecting all
instances of a target class) and class-specific skews (affecting only one class) impact deeper layers
more than non-universal and non-specific skews, respectively. This finding suggests that various
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aspects of data quality might have layer-specific effects. In Section 5, we identify the forgetting of
shortcut-free features as a key mechanism behind accuracy degradation in our experiments, indicating
a potential role of complexity-constraining mechanisms, such as simplicity bias (Shah et al., 2020) or
regularization (Sagawa et al., 2020), in shortcut learning.

Finally, in Appendix A we evaluate the layer-wise effect of fine-tuning as a shortcut mitigation strategy
and find that fine-tuning is somewhat less effective for shallow layers, supporting the application of
layer-wise methods for adaptation to distribution shifts (e.g., Lee et al., 2023).

2 RELATED WORK

Mechanisms of shortcut formation Our work contributes to the understanding of shortcut learning
mechanisms (Shah et al., 2020; Sagawa et al., 2020; Nagarajan et al., 2021; Chaudhuri et al., 2023;
Tsoy & Konstantinov, 2024). Our analysis of accuracy degradation suggests that feature forgetting
plays a key role in shortcut learning, supporting prior hypotheses that simplicity bias (e.g., Shah et al.,
2020; Tsoy & Konstantinov, 2024) or excessive regularization (Sagawa et al., 2020) might be an
important factor in shortcut learning. In contrast to these works, we measure shortcut responsibilities
for different layers, allowing for a more fine-grained quantitive understanding of shortcuts.

Impact of shortcuts on feature representations Several studies examine the impact of image
shortcuts on learned representations (Hermann & Lampinen, 2020; Islam et al., 2021; Scimeca et al.,
2022). They analyze how shortcuts are encoded in layers using metrics such as linear probing accuracy
(Hermann & Lampinen, 2020), mutual information and read-out module accuracy (Islam et al., 2021),
or validation accuracy on feature-labeled datasets (Scimeca et al., 2022). While these approaches
provide insight into shortcut formation, they do not explicitly attribute accuracy degradation due to
shortcuts to specific layers. In contrast, our work quantifies layer-wise responsibility, offering a more
direct assessment of layer’s role in shortcut learning.

Layer-wise feature analysis Similarly to our work, Zhang et al. (2022); Maini et al. (2023); Huh
et al. (2023) investigate feature representations in deep models and assess the importance of each
layer for classification. Zhang et al. (2022) measure the importance of each particular layer of a deep
network by injecting noise in the network weights. Maini et al. (2023) analyze the memorization
behavior of different layers by introducing label noise. Huh et al. (2023) analyze learned feature
representations of deep models and show how some of their properties help generalization. While
these studies provide valuable insights into feature learning mechanisms, they do not attempt to
quantify the responsibility of different layers for shortcut learning. Thus, these approaches are not
directly comparable to ours.

Layer-wise fine-tuning analysis Our work also relates to the literature on layer-wise adaptation
of deep models to distribution shifts (e.g., Kumar et al., 2022; Lee et al., 2023; Trivedi et al., 2023;
Kirichenko et al., 2023). While we do not propose new adaptation methods, our findings can
help practitioners identify potential bottlenecks and better understand the applicability of existing
approaches.

3 EXPERIMENT DESIGN

This section outlines our experimental design for attributing layer-wise responsibility in shortcut
learning. Our approach introduces shortcut-inducing skews into the training process in a counterfac-
tual manner, allowing us to assess each layer’s role directly. Specifically, we train multiple networks
on the same task, exposing different layers of different networks to skewed data. Then, we evaluate
these networks on a skew-free validation dataset and use these accuracies to quantify each layer’s
contribution to shortcut learning.

3.1 RESPONSIBILITY ATTRIBUTION

Formally, consider a feed-forward architecture

f(θ, ·) = fm(θm, fm−1(θm−1, . . . , f0(θ0, ·) . . . )).
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Let θi:j represent the weights of layers i to j, and let err(θ) denote the error rate of this architecture
with weights θ on the shortcut-free validation dataset. Suppose that two networks of this architecture
are trained for T rounds on clean data and data affected by a shortcut-inducing skew g respectively,
resulting in final weights θT,0 (trained on clean data) and θT,m+1 (trained on skewed data). We
measure the accuracy drop on clean validation data between these networks, interpreting it as a
measure of shortcut learning. Our goal is to attribute the total responsibility for this drop

res0:ma := err(θT,m+1)− err(θT,0)

to individual layers.

To this end, we want to analyze the features extracted by shallow skewed layers θ0:i−1
T,m+1 by replacing

the corresponding skewed head θi:mT,m+1 with a head θT,i of the same architecture, counterfactually
trained on clean data (see Section 3.2 for the counterfactual training procedure). We define the
absolute responsibility of layers 0 : i− 1 for shortcut learning as the difference in validation accuracy
(averaged over training seeds) between the clean network θT,0 and a hybrid model composed of the
skewed shallow layers θ0:i−1

T,m+1 and the clean head θT,i,

res0:i−1
a := err((θ0:i−1

T,m+1, θT,i))− err(θT,0).

We then define the absolute responsibility of layer i as the difference in the responsibilities of layers
0 : i and layers 0 : i− 1

resia := res0:ia − res0:i−1
a .

To compare results across experiments, we normalize this metric by the total responsibility, producing
the relative responsibility of layer i

resir := resia / res
0:m
a .

3.2 COUNTERFACTUAL TRAINING ALGORITHM

A key challenge in our approach is designing a procedure for the counterfactual training of the heads.
We solve this challenge using the simultaneous training procedure described in Algorithm 1. Here
the loss of a network with weights θ on a data batch B is denoted by L(θ,B). This procedure trains
the skewed network θm+1, the clean network θ0, and the heads θ1, . . . , θm over T rounds. In each
round, we sample a clean data batch Bt to update the heads and the clean network, where the head
θi utilizes the shallow layers of the skewed network θ0:i−1

m+1 as a feature extractor. We then apply the
shortcut-inducing skew g to generate a skewed batch B′

t = g(Bt) and use it to update the skewed
network.

Algorithm 1 Simultaneous training of networks
Initialize: θ0,m+1 — initial network weights.
∀s ∈ [m] θ0,s = θs:m0,m+1 — initial heads weights.
for t = 1 to T do

Sample batch Bt and skewed batch B′
t = g(Bt)

for s = 0 to m do
Update a head using skewed features:
θt,s = θt−1,s − ηt∇θs:mL((θ0:s−1

t−1,m+1, θt−1,s), Bt)
end for
Update skewed network:
θt,m+1 = θt−1,m+1 − ηt∇L(θt−1,m+1, B

′
t)

end for

Rationale Throughout this process, each head progressively adapts to the intermediate skewed
features to classify clean data. By design, all heads receive the same exposure to training data, with
the only difference being the presence or the absence of a skew, enabling a meaningful comparison
between them. Additionally, the training methodology remains consistent across all sub-networks,
controlling for the optimizer’s implicit biases.

To further justify our approach, we compare it with a simple post-training adaptation method, where
the skewed network θ is first fully trained, and then clean heads are trained on top of the final skewed
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features. While both methods assess the suitability of intermediate features for clean classification, we
argue that our procedure is better suited for counterfactual comparison for two key reasons. First, in
our method, skewed and clean heads progressively adapt to intermediate features, an aspect shown to
influence feature learning (Allen-Zhu & Li, 2019; Panigrahi et al., 2024; Abbe et al., 2022) compared
to static post-training of heads. Second, our empirical obsevrations showed that our approach allows
to use the same hyperparameters for training all heads and networks to high accuracy, whereas the
post-training approach requires different hyperparameter tuning for each head to achieve high final
accuracy. Since hyperparameters such as learning rate significantly impact feature quality (e.g., Li
et al., 2019; Lewkowycz et al., 2020), our approach provides a more controlled basis for attributing
responsibility to specific layers.

4 RESPONSIBILITY ESTIMATION ON VISION DATA

We conducted experiments on CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009) using five
architectures: ResNet-9, ResNet-18, ResNet-34, ResNet-50 (He et al., 2016), and VGG-11 (Simonyan
& Zisserman, 2015), all trained with stochastic gradient descent (SGD). For a layer-wise analysis, we
divided each network into five layers. The first four layers roughly correspond to standard feature
blocks in ResNet architectures (which are constructed according to the output size), while the final
layer consists solely of the linear classification layer (see details in Appendix B.1).

Our experiments consider a patch-like skew that blends the upper-left corner of selected training
images with a class-dependent solid color (see Figure 1). This skew simplifies the classification task
by providing an easily learnable color feature, encouraging the network to rely on shortcut-based
classification rather than original CIFAR features.

Figure 1: Example of the patch-like skew

The introduced skew has four hyperparameters: (1) skew frequency within a class, (2) blending
strength, (3) affected region size, and (4) affected classes. We systematically varied these parameters
across all architecture-dataset combinations. First, we define three skew categories: One, Ten, and
Combo3. On CIFAR-10, the One category applies 1 color to 1 class, the Ten category assigns a
different color to each of the 10 classes, and the Combo3 category divides all classes into 3 groups of
sizes 3, 3, and 4 and blends each group with a different color. For CIFAR-100, to ensure comparability,
the One category skews 10 classes with one color, the Ten category skews all 100 classes with 10
colors, and the Combo3 category uses 3 colors for 100 classes.

Within each category, we define three skew types: Rare, Weak, and Small. Rare skews affect the
entire image and have a strong blending strength but only impact a fraction of the target class, leaving
some clean data for training. Weak skews affect the entire image and all instances of a target class but
with weaker blending strength. Small skews affect the whole target class and have strong blending
but only affect a portion of the image.

For each type, we vary the presence of skew along frequency, blending strength, and size axis for
Rare, Weak, and Small types, respectively, resulting in 27 experiments per architecture-dataset pair.
We repeat each experiment 4 times to average out training noise.

Training results We depict the absolute responsibility of the sequences of layers for CIFAR-10–
ResNet-50 pair in Appendix B.2. As expected, responsibility generally increases with the number of
skewed layers. Furthermore, different layers contribute differently to validation accuracy degradation,
and this effect varies with the skew parameters.

To systematically assess the role of layers in shortcut learning, we compute the average relative
responsibility of each layer across experiments. Since responsibility values are transformed to the
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Table 1: Average relative responsibility of individual layers on CIFAR-10 dataset
Skew class Layer 0 Layer 1 Layer 2 Layer 3 Layer 4

All 4.0% (0.8%) 11.1% (1.2%) 16.9% (1.4%) 31.7% (1.7%) 33.4% (2.4%)

Low 2.4% (0.8%) 12.1% (1.6%) 16.5% (1.4%) 35.4% (1.8%) 33.5% (3.5%)
Medium 4.7% (1.3%) 11.1% (2.2%) 18.7% (2.0%) 32.1% (2.1%) 33.4% (3.7%)
High 4.8% (1.9%) 10.2% (2.6%) 15.4% (3.4%) 27.6% (4.1%) 33.2% (5.2%)

Ten 4.8% (1.3%) 17.3% (2.2%) 18.6% (2.4%) 29.9% (2.7%) 29.4% (4.1%)
Combo3 4.7% (1.7%) 14.1% (2.4%) 18.3% (2.6%) 32.7% (3.4%) 21.2% (4.5%)
One 2.4% (1.1%) 2.0% (0.5%) 13.7% (2.2%) 32.5% (2.5%) 49.4% (2.4%)

Rare 9.7% (2.0%) 16.5% (2.9%) 26.4% (2.6%) 27.5% (2.4%) 15.4% (4.0%)
Weak 1.1% (0.6%) 10.0% (1.7%) 17.5% (1.9%) 41.7% (2.6%) 29.7% (2.7%)
Small 1.1% (0.5%) 6.9% (1.3%) 6.6% (1.7%) 25.9% (3.1%) 55.0% (3.4%)

Average relative responsibility of individual layers (and the between experiments standard deviation of the
average in parenthesis) over a certain skew class. Insignificant absolute average responsibilities are set to zero to
reduce the influence of outliers.

same scale, observations with small absolute responsibilities can introduce noise and outliers. To
mitigate this, we set the average responsibility of a given layer sequence 0 : i to zero if it is not
significantly different from zero at a 5% significance level (using the t-statistic).

Table 1 presents the results for the CIFAR-10 dataset. On average, for our set of experiments, the
last and penultimate layers are mostly responsible for shortcuts. Rare skews tend to affect shallow
layers more than Weak or Small skews. Similarly, the Combo3 and Ten categories of skews affect
shallow layers more than the One category. At the same time, the Small type mostly affects the last
layer. (See Appendix B.3 for the results for CIFAR-100 dataset.)

Discussion Our findings indicate that shortcut learning is primarily driven by the last two layers.
The strong impact of the final layer (especially for Small skews) may explain why adaptation methods
that modify only the last classification layer are often effective (e.g., Kirichenko et al., 2023). However,
the broader involvement of earlier layers (particularly for Rare skews) explains why schemes that
involve full-network fine-tuning often outperform simple linear probing in real-world situations (e.g.,
Kumar et al., 2022). More generally, our results highlight that different aspects of data quality might
have different layer-specific effects. Additionally, our results for the Rare type suggest that dataset
homogeneity may enhance feature learning, though further investigation is necessary to validate this
observation.

5 ANALYSIS OF SHORTCUT LEARNING MECHANISMS

Table 2: Regression of absolute responsibility on the explanatory metrics
CIFAR-10 absolute responsibility CIFAR-100 absolute responsibility

Forget. 0.639∗ 0.6065∗ 0.534∗ 0.6520∗

(0.026) (0.0122) (0.036) (0.0184)
Skew. −0.045 0.727∗ 0.210∗ 0.882∗

(0.034) (0.027) (0.057) (0.046)
Incons. −0.175∗ −0.17 −0.026 −0.02
(corr.) (0.035) (0.23) (0.072) (0.25)

R2 0.946 0.939 0.812 0.009 0.798 0.787 0.641 0.001
N 540 540 540 540 540 540 540 540

Each column presents coefficients (and their standard errors in parenthesis) of a specific regression. Coefficients
with ∗ are significantly different from zero on a 5% significance level.

To analyze the mechanisms behind shortcut formation, we compare the last-layer features of different
heads, evaluated on the validation dataset, against those of a clean network. We introduce three key
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metrics to quantify changes in feature representation due to shortcuts: Skewness, Forgetting, and
Inconsistency. Using regression analysis, we assess how well these metrics explain shortcut learning
in different layers, allowing us to pinpoint the primary mechanisms behind shortcut formation.

Metrics To define these metrics, assume that an experiment with seed s ∈ S resulted in the models
θT,i,s and consider a clean validation dataset D. For each head, we extract the last-layer features of
corresponding to layers 0 : i− 1 on the clean dataset

F i
s := ϕ((θ0:i−1

T,m+1,s, θT,i,s), D),

where ϕ(θ,D) are the last-layer features of model θ on dataset D.

Forgetting metric measures how many clean features are lost in the skewed feature extractor relative
to the clean network. To compute it, we calculate the average R2 statistic (Draper, 1998) of the
regularized regressions of the clean features F 0

s onto the skewed features F i
s and compare it with the

same statistic for the regression of clean features onto the clean features. Formally, we define Ri,j
n,k as

the R2 statistic of the regression of F j
k on F j

n and Forgetting metric for layers 0 : i− 1 as

Forgetting0:i−1 :=
1

(|S| − 1)|S|
∑
k,s ̸=k

R0,0
k,s −Ri,0

k,s.

Skewness metric measures how many shortcut-related features emerged in the skewed feature ex-
tractors compared to the clean network. To compute it, we calculate the average R2 statistic of
the regularized regressions of the skewed features onto the clean features and compare it with the
same statistic for the regressions of the skewed features on the skewed features. Formally, we define
Skewness metric for layers 0 : i− 1 as

Skewness0:i−1 :=
1

(|S| − 1)|S|
∑
k,s ̸=k

Ri,i
s,k −R0,i

s,k.

Inconsistency metric measures the overall dissimilarity between the features of the skewed feature
extractor and the clean network. To compute it, we calculate the average RV coefficient (Robert &
Escoufier, 1976; Kornblith et al., 2019) between skewed and clean features and compare it with the
same statistic for the pairs of clean features. Formally, define Ci,j

n,k as the RV coefficient of features
F i
n and F j

k . Then, we define Inconsistency metric for layers 0 : i− 1 as

Inconsistency0:i−1 :=
1

(|S| − 1)|S|
∑
k,s ̸=k

C0,0
k,s − Ci,0

k,s.

Regression After calculating the desired metrics, we regress the absolute responsibility of layers
0 : i on these three explanatory variables. Since Inconsistency metric also partially accounts the
effects of the Forgetting and Skewness metrics, we correct it by regressing Inconsistency metric on
Forgetting and Skewness metrics first and then use the residuals of this Inconsistency metric for the
final regression.

Table 2 outlines our results. As we can see, only Forgetting and Skewness metrics have considerable
explanatory power, suggesting that either feature forgetting or spurious feature learning is important
in shortcut learning. Since Skewness and Forgetting metrics are highly correlated, their explanatory
power is hard to compare. However, when Skewness metric remains the only explanatory variable in
the regressions for the CIFAR-10 dataset, the regression coefficient changes sign, suggesting that
the Skewness metric only tries to play a role of Forgetting metric and does not explain the results by
itself. Thus, the forgetting of shortcut-free features appears to be a key factor in shortcut learning,
suggesting that complexity-constraining mechanisms, such as simplicity bias (Shah et al., 2020; Tsoy
& Konstantinov, 2024) or excessive regularization (Sagawa et al., 2020), may play a significant role
in this process. Additionally, we conduct a series of layer-specific regressions of the same type in
Appendix C.1 and find that the results remain generally consistent across layers.
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A FINE-TUNING ADAPTATIONS

Finally, we investigate the layer-wise effects of fine-tuning as a shortcut-mitigation strategy. To this
end, we fine-tune a feature extractor with a corresponding clean head on an (around 6.7 times) smaller
held-out clean dataset. Note that, in this experiment, we do not reinitialize the linear classification
layer; hence, our setup becomes similar to the LP-FT setup of Kumar et al. (2022).

We use the standard SGD optimizer from PyTorch and linear learning scheduler with warm-up. The
parameters of data and optimizer are listed below.

batch size 256
lr 2−10

momentum 0.9
nesterov True
weight decay 0.0005
Share of warm-up steps 12.5%
Number of epochs 32

Figure 2 compares the absolute responsibility of layers before and after fine-tuning for the ResNet-
50–CIFAR-10 pair on the Ten category. As we can see, fine-tuning does not completely recover the
network from shortcuts. Moreover, fine-tuning for this experiment seems somewhat relatively more
effective for the deeper layers and less effective for shallow ones.

To systematically assess the effect of fine-tuning, we investigate the average relative improvement
in absolute responsibility due to fine-tuning. Since the relative improvements are the ratios of two
responsibilities over each other, the noise of the denominator could lead to big outliers. Thus, we
transform relative improvements for each experiment in the following manner. If the average absolute
responsibility before fine-tuning is not greater than zero on a 5% level according to the t-test or the
difference in the responsibilities before and after fine-tuning is insignificant from each other, we set
the relative improvement to 0%. If the absolute responsibility after fine-tuning is not greater than
zero on a 5% level, we set the improvement to 100%. If both rules apply, we exclude the observation
from the average (If we are left with only one observation in the category, we only report its average
without its standard deviation).

Table 3 presents the results for the CIFAR-10 dataset. Fine-tuning does not seem to recover the
network from shortcuts completely. Additionally, we notice that fine-tuning is more effective for the
penultimate layer compared to shallower layers. Specifically, fine-tuning somewhat improves the
distortion in the first layer only for the Rare type.

Table 4 presents the results for the CIFAR-100 dataset. Similarly to the previous case, fine-tuning
does not seem to recover the network from shortcuts completely. However, it becomes somewhat
more efficient for shallow layers and somewhat less efficient for deep layers (but the improvement

9
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Figure 2: Absolute responsibility of the sequence of layers before (blue) and after after (orange)
fine-tuning for ResNet-50–CIFAR-10 pair on the shortcuts from Ten category. Rows correspond to
Rare, Weak, and Small shortcut types respectively. Columns correspond to High, Medium, and Low
presence of the shortcut. Error bars depict the standard deviation of average responsibility over 4
training runs.

Table 3: Average relative improvement in absolute responsibility for CIFAR-10 dataset
Shortcut type Layers 0 : 0 Layers 0 : 1 Layers 0 : 2 Layers 0 : 3

All 7.4% (4.4%) 9.2% (2.2%) 13.5% (2.2%) 52.5% (2.1%)

High presence 9.1% (6.7%) 12.7% (3.4%) 11.4% (2.4%) 56.3% (1.6%)
Medium presence 7.7% (7.7%) 2.5% (1.8%) 11.3% (2.7%) 55.3% (2.3%)
Low presence 0.0% (0.0%) 13.5% (7.0%) 18.8% (6.1%) 44.7% (6.2%)

Ten category 0.0% (0.0%) 8.8% (3.3%) 20.9% (3.8%) 50.4% (3.4%)
Combo3 category 4.5% (4.5%) 14.1% (4.5%) 11.3% (3.5%) 44.3% (3.4%)
One category 40.0% (24.5%) 1.1% (1.1%) 7.6% (3.7%) 62.9% (3.6%)

Rare type 18.9% (10.6%) 9.1% (2.7%) 11.2% (3.2%) 45.0% (3.1%)
Weak type 0.0% (0.0%) 16.9% (5.6%) 21.1% (4.5%) 67.9% (2.1%)
Small type 0.0% (0.0%) 0.7% (0.5%) 7.3% (2.9%) 43.8% (4.3%)

ResNet-9 0.0% (0.0%) 2.5% (1.7%) 4.3% (2.0%) 39.8% (4.1%)
ResNet-18 0.0% (0.0%) 19.6% (8.3%) 22.6% (6.0%) 56.5% (4.9%)
ResNet-34 0.0% (0.0%) 8.7% (3.5%) 19.1% (5.5%) 58.5% (4.2%)
ResNet-50 16.1% (11.6%) 14.1% (5.8%) 13.3% (4.5%) 52.4% (4.0%)
VGG-11 50.0% (50.0%) 0.0% (0.0%) 8.7% (5.1%) 56.9% (5.5%)

Average relative improvement in responsibility for individual layers (and the between experiments standard
deviation of the average in parenthesis) over a certain shortcut class. Some improvements are clipped to 0% or
100% to avoid outliers.

varies a lot between experiments for shallow layers). Additionally, we could see that some averages
in the table are negative. These anomalies probably emerged due to noise in both the training and
fine-tuning processes.
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Table 4: Average relative improvement in absolute responsibility for CIFAR-100 dataset
Shortcut type Layers 0 : 0 Layers 0 : 1 Layers 0 : 2 Layers 0 : 3

All 22.2% (10.1%) 29.6% (6.3%) 10.1% (3.1%) 27.9% (2.8%)

High presence 40.0% (24.5%) 27.5% (9.1%) 5.6% (4.4%) 33.1% (4.2%)
Medium presence 12.5% (12.5%) 35.0% (10.9%) 6.7% (3.2%) 24.8% (4.1%)
Low presence 20.0% (20.0%) 20.5% (14.6%) 24.6% (10.1%) 25.5% (6.8%)

Ten category 14.3% (14.3%) 19.1% (7.2%) 7.4% (4.5%) 19.9% (3.6%)
Combo3 category 42.9% (20.2%) 43.7% (12.0%) 9.6% (4.3%) 19.4% (3.8%)
One category 0.0% (0.0%) 47.9% (28.9%) 20.3% (11.3%) 47.7% (6.3%)

Rare type 22.2% (14.7%) 43.3% (10.5%) 16.0% (5.4%) 27.3% (4.2%)
Weak type 25.0% (25.0%) 41.7% (14.9%) 8.6% (4.4%) 33.2% (4.9%)
Small type 20.0% (20.0%) 5.9% (5.9%) 4.7% (6.3%) 23.3% (5.6%)

ResNet-9 0.0% (0.0%) 0.0% (0.0%) −4.9% (4.9%) 5.4% (2.6%)
ResNet-18 0.0% (−%) 0.0% (0.0%) 0.0% (0.0%) 12.1% (4.5%)
ResNet-34 0.0% (0.0%) 5.4% (5.4%) −2.9% (2.9%) 17.9% (5.8%)
ResNet-50 50.0% (18.9%) 47.8% (14.6%) 6.4% (3.6%) 42.0% (6.5%)
VGG-11 0.0% (−%) 67.2% (12.8%) 39.2% (8.9%) 55.5% (4.3%)

Average relative improvement in responsibility for individual layers (and the between experiments standard
deviation of the average in parenthesis) over a certain shortcut class. Some improvements are clipped to 0% or
100% to avoid outliers.

Discussion Our experiments suggest that the improvement in the absolute responsibility due to
fine-tuning is generally disproportional across layers. It means that the “suitability” of the layer
for classification is generally different from the “adaptability” of the layer under the fine-tuning
procedure. This finding motivates the usefulness of approaches that adopt layers differently to the
new target distribution (e.g., Lee et al., 2023).

B ADDITIONAL RESULTS FOR SECTION 4

Here, we present additional details and results for the experiments in Section 4.

B.1 DETAILS OF TRAINING

Model details We define ResNet-9, as the network that consists of 1 convolutional layer and 4
BasicBlocks. For VGG-11, we use the version of architecture with batch normalization layers. For
all architectures, we replace the initial 7× 7 convolutional layer with 3× 3 layer since this size is
better suited for small CIFAR images.

As discussed in the main text, we divide all models to five layers. For ResNets, we base our layers on
the usual layer blocks for ResNet models, but we assign the first convolutional layer to the first block.
For VGG-11, we divide the networks by the max-pool layers (except for the last max-pool layer), it
results in precisely four blocks of layers.

Training procedure We use the standard SGD optimizer from PyTorch and linear learning sched-
uler with warm-up. The parameters of data and optimizer are listed below.

batch size 256
lr 0.25
momentum 0.9
nesterov True
weight decay 0.0005
Share of warm-up steps 12.5%
Number of epochs 256
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Skew hyperparameters We use the following hyperparameters for the skew.

Type Category Frequency Blending Strength Size

Rare Ten and Combo3 1/2, 3/4, 7/8 1/8 32
One 7/8, 31/32, 127/128 1/2 32

Weak Ten and Combo3 1 1/48, 1/32, 1/24 32
One 1 1/12, 1/8, 1/2 32

Small Ten and Combo3 1 1/16 4, 5, 7
One 1 1/3 4, 5, 8

B.2 ADDITIONAL FIGURES

Figures 3, 4, and 5 compare the absolute responsibility of the sequence of layers for the CIFAR-10–
ResNet-50 pair on Ten, One, and Comobo3 categories.
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Figure 3: Absolute responsibility of the sequence of layers for ResNet-50–CIFAR-10 pair on the
skews from Ten category. Rows correspond to Rare, Weak, and Small skew types respectively.
Columns correspond to High, Medium, and Low presence of the skew. Error bars depict the standard
deviation of average responsibility over 4 training runs.

B.3 ADDITIONAL TABLES

Table 5 presents the results for the CIFAR-100 dataset. Similar to the previous case, the last and
penultimate layers are mostly responsible for shortcuts; the Rare type and the Combo3 and Ten
categories tend to affect shallower layers of a network, while the Small type predominantly affects
the last layer. However, compared to the CIFAR-10 dataset, the shortcuts start to influence deeper
layers. Also, we notice that the average relative responsibility of layers 0 and 1 sometimes becomes
negative. These anomalies are probably the effect of noise since the absolute responsibility for layers
0 and 1 is usually quite small.
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Figure 4: Absolute responsibility of the sequence of layers for ResNet-50–CIFAR-10 pair on the
skews from One category. Rows correspond to Rare, Weak, and Small skew types respectively.
Columns correspond to High, Medium, and Low presence of the skew. Error bars depict the standard
deviation of average responsibility over 4 training runs.

Table 5: Average relative responsibility of individual layers on CIFAR-100 dataset
Skew class Layer 0 Layer 1 Layer 2 Layer 3 Layer 4

All 1.5% (0.5%) 3.2% (0.8%) 10.2% (1.2%) 31.5% (2.0%) 51.4% (2.4%)

Low 2.3% (0.8%) 3.9% (1.3%) 8.5% (1.4%) 36.0% (2.8%) 49.3% (3.0%)
Medium 1.5% (0.7%) 3.6% (1.3%) 11.7% (2.2%) 35.4% (3.3%) 47.8% (3.1%)
High 0.7% (0.9%) 2.1% (1.4%) 10.3% (2.8%) 23.2% (4.1%) 57.0% (5.6%)

Ten 1.0% (0.7%) 6.4% (1.2%) 12.3% (1.9%) 23.8% (2.5%) 54.3% (3.8%)
Combo3 2.2% (0.9%) 3.3% (1.5%) 15.7% (2.6%) 22.2% (2.5%) 52.1% (4.2%)
One 1.4% (0.7%) −0.1% (1.2%) 2.5% (1.4%) 48.6% (3.9%) 47.6% (4.3%)

Rare 3.9% (1.1%) 6.3% (2.0%) 19.5% (2.8%) 36.5% (3.7%) 33.7% (3.9%)
Weak 0.2% (0.7%) 1.6% (0.8%) 5.2% (1.4%) 37.6% (3.1%) 55.4% (3.1%)
Small 0.4% (0.3%) 1.7% (0.6%) 5.8% (1.2%) 20.5% (3.2%) 64.9% (3.9%)

ResNet-9 1.0% (0.6%) 2.5% (1.1%) 12.2% (3.5%) 20.2% (3.4%) 60.4% (4.7%)
ResNet-18 −0.7% (0.7%) 2.5% (1.2%) 8.3% (2.6%) 31.5% (4.1%) 58.4% (4.3%)
ResNet-34 0.5% (0.7%) 3.4% (1.2%) 6.5% (2.3%) 25.6% (4.1%) 63.9% (4.8%)
ResNet-50 5.6% (1.6%) 0.4% (2.0%) 12.0% (2.5%) 29.9% (3.8%) 52.0% (4.5%)
VGG-11 1.1% (0.8%) 7.3% (2.6%) 11.8% (2.9%) 50.4% (5.1%) 22.0% (4.1%)

Average relative responsibility of individual layers (and the between experiments standard deviation of the
average in parenthesis) over a certain skew class. Insignificant absolute average responsibilities are set to zero to
reduce the influence of outliers.

C ADDITIONAL RESULTS FOR SECTION 5

Here, we present additional results for Section 5.
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Figure 5: Absolute responsibility of the sequence of layers for ResNet-50–CIFAR-10 pair on the
skews from Combo3 category. Rows correspond to Rare, Weak, and Small skew types respectively.
Columns correspond to High, Medium, and Low presence of the skew. Error bars depict the standard
deviation of average responsibility over 4 training runs.

C.1 LAYER-WISE REGRESSION ANALYSIS

Tables 6–9 present the regression analysis results for individual network layers. Overall, these
findings align with the main regression analysis in Section 5. However, the Inconsistency metric
begins to show some explanatory power in the regressions for the CIFAR-100 dataset. Additionally,
we observe a decline in the explanatory power of covariates for Layer 0. This drop is likely due to
increased noise in the results for Layer 0, which inflates the denominator of the R2 statistic.

Table 6: Regression of absolute responsibility on the explanatory metrics for Layer 0
CIFAR-10 absolute responsibility CIFAR-100 absolute responsibility

Forget. 0.455∗ 0.528∗ 0.458∗ 0.586∗

(0.085) (0.073) (0.139) (0.119)
Skew. 0.244 0.932∗ 0.274 0.623∗

(0.177) (0.159) (0.154) (0.133)
Incons. −0.11 −0.11 1.29∗ 1.29∗

(corr.) (0.25) (0.35) (0.23) (0.27)

R2 0.432 0.421 0.260 0.008 0.308 0.155 0.110 0.146
N 135 135 135 135 135 135 135 135
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Table 7: Regression of absolute responsibility on the explanatory metrics for Layer 1
CIFAR-10 absolute responsibility CIFAR-100 absolute responsibility

Forget. 0.269∗ 0.450∗ 0.548∗ 0.697∗

(0.033) (0.024) (0.065) (0.058)
Skew. 0.487∗ 1.022∗ 0.447∗ 0.964∗

(0.085) (0.069) (0.099) (0.097)
Incons. −0.292 −0.29 0.720∗ 0.72∗

(corr.) (0.167) (0.54) (0.170) (0.35)

R2 0.850 0.801 0.772 0.010 0.595 0.497 0.338 0.056
N 135 135 135 135 135 135 135 135

Table 8: Regression of absolute responsibility on the explanatory metrics for Layer 2
CIFAR-10 absolute responsibility CIFAR-100 absolute responsibility

Forget. 0.322∗ 0.5000∗ 0.447∗ 0.613∗

(0.053) (0.0188) (0.039) (0.053)
Skew. 0.212∗ 0.564∗ 0.838∗ 1.139∗

(0.063) (0.024) (0.052) (0.082)
Incons. 0.021 0.02 0.421∗ 0.42
(corr.) (0.066) (0.22) (0.101) (0.29)

R2 0.906 0.895 0.873 0.007 0.818 0.538 0.547 0.034
N 135 135 135 135 135 135 135 135

Table 9: Regression of absolute responsibility on the explanatory metrics for Layer 3
CIFAR-10 absolute responsibility CIFAR-100 absolute responsibility

Forget. 0.766∗ 0.6370∗ 0.528∗ 0.558∗

(0.031) (0.0154) (0.050) (0.029)
Skew. −0.165∗ 0.671∗ 0.052 0.618∗

(0.038) (0.043) (0.076) (0.062)
Incons. −0.118∗ −0.11 −0.043 −0.04
(corr.) (0.035) (0.23) (0.094) (0.21)

R2 0.960 0.948 0.751 0.012 0.699 0.697 0.465 0.007
N 135 135 135 135 135 135 135 135
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