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ABSTRACT

The angular synchronization problem aims to accurately estimate (up to a constant
additive phase) a set of unknown angles θ1, . . . , θn P r0, 2πq from m noisy mea-
surements of their offsets θi´θj mod 2π. Applications include, for example, sensor
network localization, phase retrieval, and distributed clock synchronization. An
extension of the problem to the heterogeneous setting (dubbed k-synchronization)
is to estimate k groups of angles simultaneously, given noisy observations (with
unknown group assignment) from each group. Existing methods for angular syn-
chronization usually perform poorly in high-noise regimes, which are common in
applications. In this paper, we leverage neural networks for the angular synchro-
nization problem, and its heterogeneous extension, by proposing GNNSYNC, a
theoretically-grounded end-to-end trainable framework using directed graph neural
networks. In addition, new loss functions are devised to encode synchronization
objectives. Experimental results on extensive data sets demonstrate that GNNSync
attains competitive, and often superior, performance against a comprehensive set
of baselines for the angular synchronization problem and its extension, validating
the robustness of GNNSync even at high noise levels.

1 INTRODUCTION
The group synchronization problem has received considerable attention in recent years, as a key
building block of many computational problems. Group synchronization aims to estimate a collection
of group elements, given a small subset of potentially noisy measurements of their pairwise ratios
Υi,j “ gi g

´1
j . Some applications are ‚ over the group SO(3) of 3D rotations: rotation-averaging in

3D computer vision (Arrigoni & Fusiello, 2020; Janco & Bendory, 2022) and the molecule problem
in structural biology (Cucuringu et al., 2012b); ‚ over the group Z4 of the integers t0, 1, 2, 3u with
addition mod 4 as the group operation: solving jigsaw puzzles (Huroyan et al., 2020); ‚ over the
group Zn, resp., SO(2): recovering a global ranking from pairwise comparisons (He et al., 2022a;
Cucuringu, 2016), and, ‚ over the Euclidean group of rigid motions Eucp2q “ Z2 ˆ SO(2) ˆ R2:
sensor network localization (Cucuringu et al., 2012a).

(a) Low noise. (b) High noise.
Figure 1: Sensor network localization map.

An important special case is angular synchronization,
also referred to as phase synchronization, which can
be viewed as group synchronization over SO(2). The
angular synchronization problem aims at obtaining an
accurate estimation (up to a constant additive phase)
for a set of unknown angles θ1, . . . , θn P r0, 2πq

from m noisy measurements of their pairwise offsets
θi ´ θj mod 2π. This problem has a wide range

˚This work was partially done during an internship at Amazon.
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of applications, such as distributed clock synchronization over wireless networks (Giridhar &
Kumar, 2006), image reconstruction from pairwise intensity differences (Yu, 2009; 2011), phase
retrieval (Forstner et al., 2020; Iwen et al., 2020), and sensor network localization (SNL) (Cucuringu
et al., 2012a). In engineering, the SNL problem seeks to reconstruct the 2D coordinates of a cloud
of points from a sparse set of pairwise noisy Euclidean distances; in typical divide-and-conquer
approaches that aid with scalability, one first computes a local embedding of nearby points (denoted
as patches) and is left with the task of stitching the patches together in a globally consistent
embedding (Cucuringu et al., 2012a). Fig. 1 is an example of SNL on the U.S. map, where our
method recovers city locations (in blue) and aims to match ground-truth locations (in red). Most
works in the SNL literature that focus on the methodology development consider only purely
synthetic data sets in their experiments; here we consider a real-world data set (actual 2D layout
with different levels of densities of cities across the U.S. map), and add synthetic noise to perturb the
local patch embeddings for testing the robustness to noise of the angular synchronization component.

An extension of angular synchronization to the heterogeneous setting is k-synchronization, introduced
in Cucuringu & Tyagi (2022), and motivated by real-world graph realization problems (GRP) and
ranking. GRP aims to recover coordinates of a cloud of points in Rd, from a sparse subset (edges
of a graph) of noisy pairwise Euclidean distances (the case d “ 2 is the above SNL problem). The
motivation for k-synchronization arises in structural biology, where the distance measurements
between pairs of atoms may correspond to k different configurations of the molecule, in the case of
molecules with multiple conformations. In ranking applications, the k “ 2 sets of disjoint pairwise
measurements may correspond to two different judges, whose latent rankings we aim to recover.

A key limitation of existing methods for angular synchronization is their poor performance in the
presence of considerable noise. High noise levels are not unusual; measurements in SO(3) can
have large outliers in certain biological settings (cryo-EM and NMR spectroscopy), see for example
Cucuringu et al. (2012b). Therefore, we need new methods to push the boundary of signal recovery
when there is a high level of noise. While neural networks (NNs), in principle, could be trained to ad-
dress high noise regimes, the angular synchronization problem is not directly amenable to a standard
NN architecture due to the directed graph (digraph) structure of the underlying data measurement
process and the underlying group structure; hence the need for a customized graph neural network
(GNN) architecture and loss function for this task. Here we propose a GNN method called GNNSync
for angular synchronization, with a novel cycle loss function, which downweights noisy observations,
and explicitly enforces cycle consistency as a quality measure. GNNSync’s novelty does not lie
in simply applying a data-driven NN to this task, but rather in proposing a framework for handling
the pairwise comparisons encoded in a digraph, accounting for the underlying SO(2) group structure,
and designing a loss function for increased robustness to noise and outliers, with theoretical support.

Our main contributions are summarized as follows.
‚ We demonstrate how the angular synchronization problem can be recast as a theoretically-grounded
directed graph learning task by first incorporating the inductive biases of classical estimators within
the design of a more robust GNN architecture, called GNNSync, and then pairing with a novel
training loss that exploits cycle consistency to help infer the unknown angles.
‚ We perform extensive experiments comparing GNNSync with existing state-of-the-art algorithms
from the angular synchronization and k-synchronization literature, across a variety of synthetic outlier
models at various density and noise levels, and on a real-world application. GNNSync attains leading
performance, especially in high noise regimes, validating its robustness to noise.

2 RELATED WORK
2.1 ANGULAR SYNCHRONIZATION

The seminal work of Singer (2011) introduced spectral and semidefinite programming (SDP) relax-
ations for angular synchronization. For the spectral relaxation, the estimated angles are given by the
eigenvector corresponding to the largest eigenvalue of a Hermitian matrix H, whose entries are given
by Hi,j “ exppιAi,jq1pAi,j ‰ 0q, where ι is the imaginary unit, and Ai,j is the observed potentially
noisy offset θi´θj mod 2π. Singer (2011) also provided an SDP relaxation involving the same matrix
H, and empirically demonstrated that the spectral and SDP relaxations yield similar experimental
results. A row normalization was introduced to H prior to the eigenvector computation by Cucuringu
et al. (2012a), which showed improved results. Cucuringu et al. (2012b) generalized this approach to
the 3D setting Eucp3q “ Z2 ˆ SO(3) ˆR3, and incorporated into the optimization pipeline the ability
to operate in a semi-supervised setting, where certain group elements are known a-priori. Cucuringu &
Tyagi (2022) extended the angular synchronization problem to a heterogeneous setting, to the so-called
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k-synchronization problem, whose goal is to estimate k sets of angles simultaneously, given only the
graph union of noisy pairwise offsets, which we also explore in our experiments. The key idea in their
work is to estimate the k sets of angles from the top k eigenvectors of the angular embedding matrix H.

Boumal (2016) modeled the angular (phase) synchronization problem as a least-squares non-convex
optimization problem, and proposed a modified version of the power method called the Generalized
Power Method (GPM), which is straightforward to implement and free of parameter tuning. GPM
often attains leading performance among baselines in our experiments, and the iterative steps in the
GPM method motivated the design of the projected gradient steps in our GNNSync architecture. How-
ever, GPM is not directly applicable to k-synchronization with k ą 1 while GNNSync is. For k “ 1,
GNNSync tends to perform significantly better than GPM at high noise levels. Bandeira et al. (2017)
studied the tightness of the maximum likelihood semidefinite relaxation for angular synchronization,
where the maximum likelihood estimate is the solution to a nonbipartite Grothendieck problem over
the complex numbers. A truncated least-squares approach was proposed by Huang et al. (2017) that
minimizes the discrepancy between the estimated angle differences and the observed differences
under some constraints. Gao & Zhao (2019) tackled the angular synchronization problem with a
multi-frequency approach. Liu et al. (2023) unified various group synchronization problems over
subgroups of the orthogonal group. Filbir et al. (2021) provided recovery guarantees for eigenvector
relaxation and semidefinite convex relaxation methods for weighted angular synchronization. Lerman
& Shi (2022) applied a message-passing procedure based on cycle consistency information, to esti-
mate the corruption levels of group ratios and consequently solve the synchronization problem, but the
method is focused on the restrictive setting of adversarial or uniform corruption and sufficiently small
noise. In addition, Lerman & Shi (2022) requires post-processing based on the estimated corruption
levels to obtain the group elements, while GNNSync is trained end-to-end. Maunu & Lerman (2023)
utilized energy minimization ideas, with a variant converging linearly to the ground truth rotations.
2.2 DIRECTED GRAPH NEURAL NETWORKS
Digraph node embeddings can be effectively learned via directed graph neural networks (He et al.,
2022c). For learning such an embedding, Tong et al. (2020) constructed a GNN using higher-
order proximity. Zhang et al. (2021) built a complex Hermitian Laplacian matrix and proposed a
spectral digraph GNN. He et al. (2022b) introduced imbalance objectives for digraph clustering. Our
GNNSync framework can readily incorporate any existing digraph neural network.
2.3 RELATIONSHIP WITH OTHER GROUP SYNCHRONIZATION METHODS
Angular synchronization outputs can be used to obtain global rankings by using a one-dimensional
ordering. To this end, recovering rankings of n objects from pairwise comparisons can be viewed
as group synchronization over Zn. To recover global rankings from pairwise comparisons, GN-
NRank (He et al., 2022a) adopted an unfolding idea to add an inductive bias from Fogel et al. (2014)
to the NN architecture. Inspired by He et al. (2022a), we adapt their framework to borrow strength
from solving a related problem. We adapt their “innerproduct” variant to k-synchronization, remove
the 1D ordering at the end of the GNNRank framework, and rescale the estimated quantities to the
range r0, 2πq. We also borrow strength from the projected gradient steps in GPM (Boumal, 2016)
and add projected gradient steps to our GNNSync architecture. Another key novelty is that we devise
novel objectives, which reflect the angular structure of the data, to serve as our training loss functions.
The architectures are also very different: While in GNNRank the proximal gradient steps play a vital
role from an unrolling perspective, and the whole architecture could be viewed as an unrolling of
the SerialRank algorithm, here, although we borrow strength from the GPM method, the whole ar-
chitecture is different from merely unrolling GPM. Furthermore, the baselines serve as initial guesses
for the “proximal baseline” variant in GNNRank, but serve as input node features in our approach.

Other methods have been introduced for group synchronization, but mostly in the context of SO(3).
Shi & Lerman (2020) proposed an efficient algorithm for synchronization over SO(3) under high
levels of corruption and noise. Shi et al. (2022) provided a novel quadratic programming formulation
for estimating the corruption levels, but again its focus is on SO(3). Unrolled algorithms (which
are NNs) were introduced for SO(3) in Janco & Bendory (2022). While an adaptation to SO(2) may
be possible in principle, as its objective functions are based on the level of agreement between the
estimated angles and ground-truth, its experiments require ground-truth during training, usually not
available in practice. In contrast, our GNNSync framework can be trained without any known angles.

3 PROBLEM DEFINITION
The angular synchronization problem aims at obtaining an accurate estimation (up to a constant
additive phase) for a set of n unknown angles θ1, . . . , θn P r0, 2πq from m noisy measurements of
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their offsets θi ´ θj mod 2π, for i, j P t1, . . . , nu. We encode the noisy measurements in a digraph
G “ pV, Eq, where each of the n elements of the node set V has as attribute an angle θi P r0, 2πq.
The edge set E represents pairwise measurements of the angular offsets pθi ´ θjq mod 2π. The
weighted directed graph has a corresponding adjacency matrix A with Ai,j “ pθi ´ θjq mod 2π ě 0.
Estimating the unknown angles from noisy offsets amounts to assigning an estimate ri P r0, 2πq to
each node i P V . For computational complexity considerations, we randomly keep one of Ai,j and
Aj,i as observed quantity and set the other of these to zero. Thus, at most one of Ai,j and Aj,i can
be nonzero by construction; the other original entry can be inferred from Ai,j ` Aj,i “ 0 mod 2π.

An extension of the above problem to the heterogeneous setting is the k-synchronization problem,
which is defined as follows. We are given only the graph union of k digraphs G1, . . . ,Gk, with the
same node set and disjoint edge sets, which encode noisy measurements of k sets pθi,l´θj,lq mod 2π,
for l P t1, . . . , ku, i, j P t1, . . . , nu, of angle differences modulo 2π. Its adjacency matrix is denoted
by A. The problem is to estimate these k sets of n unknown angles θi,l P r0, 2πq,@l P t1, . . . , ku, i P

t1, . . . , nu, simultaneously. Note that we are given only G “ G1Y¨ ¨ ¨YGk and the value of k, and each
edge in G belongs to exactly one of G1, . . . ,Gk. To unify notations, we view the normal angular syn-
chronization problem as a special case of the more general k-synchronization problem where k “ 1.

4 LOSS AND EVALUATION
4.1 LOSS AND EVALUATION FOR ANGULAR SYNCHRONIZATION

For a vector r “ rr1, . . . , rnsJ with estimated angles as entries, we define T “ rpr1J ´

1rJq mod 2πs P Rnˆn. Then Ti,j “ pri ´ rjq mod 2π estimates Ai,j . We only compare T
with A at locations where A has nonzero entries. We introduce the residual matrix M with entries

Mi,j “ min ppTi,j ´ Ai,jq mod 2π, pAi,j ´ Ti,jq mod 2πq

if Ai,j ‰ 0, and Mi,j “ 0 if Ai,j “ 0. Then our upset loss is defined as
Lupset “ ∥M∥F {t, (1)

where the subscript F means Frobenius norm, and t is the number of nonzero elements in A. Despite
the non-differentiablility of the loss function, using the concept of a limiting subdifferential from Li
et al. (2020) we can give the following theoretical guarantee on the minimization of eq. (1); its proof
is in Appendix (App.) A.1, where also the case of general k is discussed.
Proposition 1. Every local minimum of eq. (1) is a directional stationary point of eq. (1).
For evaluation, we employ a Mean Square Error (MSE) function with angle corrections, considered
in Singer & Shkolnisky (2011). As the offset measurements are unchanged if we shift all angles by a
constant, denoting the ground-truth angle vector as R, this evaluation function can be written as

DMSEpr,Rq “ min
θ0Pr0,2πq

n
ÿ

i“1

rminpδi mod 2π, p´δiq mod 2πqs2, (2)

where δi “ ri ` θ0 ´ θi, @i “ 1, . . . , n. Additional implementation details are provided in App. C.4.

4.2 CYCLE CONSISTENCY RELATION

For noiseless observations, every cycle in the angular synchronization problem (k “ 1) or every cycle
whose edges correspond to the same offset graph Gl (k ą 1) satisfy the cycle consistency relation
that the angle sum mod 2π is 0. For 3-cycles pi, j, qq, such that Ai,j ¨ Aj,q ¨ Aq,i ą 0, this leads to

pAi,j ` Aj,q ` Aq,iq mod 2π “ pθi ´ θj ` θj ´ θq ` θq ´ θiq mod 2π “ 0,

as pa ` b mod mq “ tpa mod mq ` pb mod mq mod mu. Hence we obtain the 3-cycle condition

pAi,j ` Aj,q ` Aq,iq mod 2π “ 0,@pi, j, qq such that Ai,j ¨ Aj,q ¨ Aq,i ą 0. (3)

With T “ tpi, j, qq : Ai,j ¨ Aj,q ¨ Aq,i ą 0u, we define the cycle inconsistency level
1

|T|

ř

pi,j,qqPTrpAi,j ` Aj,q ` Aq,iq mod 2πs. We devise a loss function to minimize the cycle
inconsistency level with reweighted edges.
4.3 LOSS AND EVALUATION FOR GENERAL K-SYNCHRONIZATION

The upset loss for general k is defined similarly as in Sec. 4.1. Recall that the observed graph G has
adjacency matrix A. Given k groups of estimated angles tr1,l, . . . , rn,lu, l “ 1, . . . , k, we define the
matrix Tplq with entries Tplq

i,j “ pri,l ´ rj,lq mod 2π, for i, j P t1, . . . , nu, l P t1, . . . , ku. We define

Mplq by M
plq
i,j “ minppT

plq
i,j ´ Ai,jq mod 2π, pAi,j ´ T

plq
i,jq mod 2πq if Ai,j ‰ 0, and M

plq
i,j “ 0 if

Ai,j “ 0. Define M by Mi,j “ minlPt1,...,ku M
plq
i,j . The upset loss is as in eq. (1), Lupset “ ∥M∥F {t.
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In addition to Lupset, we introduce another option as a loss function based on the cycle consistency
relation from Sec. 4.2, which adds a regularization that helps in guiding the learning process for certain
challenging scenarios (e.g., with sparser G or larger k). Since measurements are typically noisy, we
first estimate the corruption level by entries in M, and use them to construct a confidence matrix C̃
for edges in G. We define the unnormalized confidence matrix C by Ci,j “ 1

1`Mi,j
1pAi,j ‰ 0q,

then normalize the entries by C̃i,j “ Ci,j

ř

u,v Au,v
ř

u,v Au,v ¨Cu,v
. The normalization is chosen such that

ř

i,j Ai,jC̃i,j “
ř

u,v Au,v. Keeping the sum of edge weights constant is carried out in order to
avoid reducing the cycle inconsistency level by only rescaling edge weights but not their relative
magnitudes. Based on the confidence matrix C̃, we reweigh edges in G to obtain an updated input
graph, whose adjacency matrix is the Hadamard product A d C̃. This graph attaches larger weights
to edges Ai,j for which T

plq
i,j is a good estimate when the edge pi, jq belongs to graph Gl. As the

graph assignment of an edge pi, jq is not known during training, we estimate it by
gpi, jq “ arg min

lPt1,...,ku
M

plq
i,j , and set gpj, iq “ gpi, jq, (4)

thus obtaining our estimated graphs G̃1, . . . , G̃k, which are also edge disjoint. Next, aiming to
minimize 3-cycle inconsistency of the updated input graph given our graph assignment estimates,
we introduce a loss function denoted as the cycle inconsistency loss Lcycle; for simplicity, we only
focus on 3-cycles (triangles). We interpret the matrix Ã “ pA d C̃ ´ pA d C̃qJq mod 2π as the
adjacency matrix of another weighted directed graph G̃. The entry Ãi,j of the new adjacency matrix
approximates angular differences of a reweighted graph, with noisy observations downweighted. Note
that we only reweigh the adjacency matrix in the cycle loss definition, but do not update the input
graph. The underlying idea is that this updated denoised graph may display higher cycle consistency
than the original graph. From our graph assignment estimates, we obtain estimated adjacency matrices
Ãplq for l P t1, . . . , ku, where Ãplq

i,j “ 1pgpi, jq “ lqÃi,j . Let Tplq “ tpi, j, qq : Ã
plq
i,j ¨Ã

plq
j,q ¨Ã

plq
q,i ą 0u

denote the set of all triangles in G̃l, and set Splq
i,j,q “ Ã

plq
i,j ` Ã

plq
j,q ` Ã

plq
q,i for pi, j, qq P Tplq. We define

Lplq
cycle “

1

|Tplq|
ÿ

pi,j,qqPTplq

minpS
plq
i,j,q mod 2π, p´S

plq
i,j,qq mod 2πq (5)

and set Lcycle “ 1
k

řk
l“1 L

plq
cycle. The default training loss for k ě 2 is Lcycle or Lupset alone; in the

experiment section, we also report the performance of a variant based on Lupset ` Lcycle.

For evaluation, we compute DMSE with eq. (2), for each of the k sets of angles, and consider the
average. As the ordering of the k sets can be arbitrary, we consider all permutations of t1, . . . , ku,
denoted by permpkq. Denoting the ground-truth angle matrix as R , whose pi, lq entry is the
ground-truth angle θi,l, and the l-th entry of the permutation pe by peplq, the final MSE value is

DMSEpr,Rq “
1

k
min

pePpermpkq

k
ÿ

l“1

DMSEpr:,peplq,R:,lq. (6)

Note that the MSE loss is not used during training as we do not have any ground-truth supervision;
the MSE formulation in eq. (2) is only used for evaluation. The lack of ground-truth information in
the presence of noise is precisely what renders this problem very difficult. If any partial ground-truth
information is available, then this can be incorporated into the loss function.

5 GNNSYNC ARCHITECTURE

𝑿𝑿 ∈ ℝ𝑛𝑛×𝑑𝑑𝑖𝑖𝑖𝑖

Directed Graph Neural Network

𝒁𝒁 ∈ ℝ𝑛𝑛×kd

𝑨𝑨 ∈ ℝ𝑛𝑛×𝑛𝑛

𝒓𝒓 ∈ ℝ𝑛𝑛×𝑘𝑘

Learnable
Vector(s)

Evaluation

𝑹𝑹
∈ ℝ𝑛𝑛×𝑘𝑘

Initial 𝒓𝒓(𝟎𝟎) ∈ ℝ𝑛𝑛×𝑘𝑘

Projected Gradient Steps

Loss Function

Figure 2: GNNSync overview: starting from an adjacency matrix A encoding
(noisy) pairwise offsets and an input feature matrix X, GNNSync first applies a
directed GNN to learn node embeddings Z. It then calculates the inner product
with a learnable vector (or k learnable vectors for k ą 1) to produce the initial
estimated angles r

p0q

i,l P r0, 2πq for l P t1, . . . , ku, after rescaling. It then
applies several projected gradient steps to the initial angle estimates to obtain
the final angle estimates, ri,l P r0, 2πq. Let the ground-truth angle matrix be
R P Rnˆk. The loss function is applied to the output angle matrix r, given A,
while the final evaluation is based on R and r. Orange frames indicate trainable
vectors/matrices, green squares fixed inputs, the red square the final estimated
angles (outputs), and the yellow circles the loss function and evaluation.
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5.1 OBTAINING DIRECTED GRAPH EMBEDDINGS

For obtaining digraph embeddings, any digraph GNN that outputs node embeddings can be applied,
e.g. DIMPA by He et al. (2022b), the inception block model by Tong et al. (2020), and MagNet by
Zhang et al. (2021). Here we employ DIMPA; details are in A.2. Denoting the final node embedding
matrix by Z P Rnˆkd, the embedding vector zi for a node i is zi “ pZqpi,:q P Rkd, the ith row of Z.

5.2 OBTAINING INITIAL ESTIMATED ANGLES

To obtain the initial estimated angles for the angular synchronization problem, we introduce a trainable
vector a with dimension equal to the embedding dimension, then calculate the unnormalized estimated
angles by the inner product of zi with a, plus a trainable bias b, followed by a sigmoid layer to force
positive values, and finally rescale the angles to r0, 2πq; in short: rp0q

i “ 2π sigmoidpzi ¨ a ` bq.

For general k-synchronization, we apply independent a, b values to obtain k different groups of initial
angle estimates based on different columns of the node embedding matrix Z. In general, denote
Zi,u:v as the pv ´ u ` 1q-vector whose entries are from the i-th row and the u-th to v-th columns
of the matrix Z. With a trainable vector aplq for each l P t1, . . . , ku with dimension equal to d, we
obtain the unnormalized estimated angles by the inner product of Zi,pl´1qd`1:ld with aplq, plus a
trainable bias bl, followed by a sigmoid layer to force positive angle values, then rescale the angles to
r0, 2πq; in short: rp0q

i,l “ 2π sigmoidpzi,pl´1qd`1:ld ¨ aplq ` blq.

5.3 PROJECTED GRADIENT STEPS FOR FINAL ANGLE ESTIMATES

Algorithm 1 Projected Gradient Steps
Input: Initial angle estimates rp0q

P Rnˆk,
Hermitian matrix H P Rnˆn, number of
steps Γ (default: 5).
Parameter: (Initial) parameter set tαγ ě

0u
Γ
γ“1 that could either be fixed or trainable

(default: fixed value 1).
Output: Updated angle estimates r P Rnˆk.
1: l Ð 1;
2: for l ď k do
3: γ Ð 1; y Ð r

p0q

:,l ;
4: for γ ď Γ do
5: ỹ Ð exppιyq;
6: ỹ Ð αγ ỹ ` Hỹ;
7: y Ð anglepỹq to obtain element-

wise angles in radians from com-
plex numbers;

8: γ Ð γ ` 1.
9: end for

10: r:,l Ð y.
11: l Ð l ` 1.
12: end for
13: return r.

Our final angle estimates are obtained after applying sev-
eral (default: Γ “ 5) projected gradient steps to the
initial angle estimates. In brief, projected gradient de-
scent for constrained optimization problems first takes
a gradient step while ignoring the constraints, and then
projects the result back onto the feasible set to incorpo-
rate the constraints. Here the projected gradient steps
are inspired by Boumal (2016). We construct H by
Hi,j “ exppιAi,jq1pAi,j ‰ 0q, and update the estimated
angles using Algo. 1, where r:,l denotes the l-th column
of r. In Algo. 1 the gradient step is on line 6, while the
projection step on line 7 projects the updated matrix to ele-
mentwise angles. Fig. 2 shows the GNNSync framework.

If graph assignments can be estimated effectively right
after the GNN, one can replace H with Hplq for each l “

1, . . . , k separately, where H
plq
i,j “ exppιA

plq
i,jq1pA

plq
i,j ‰

0q, and A
plq
i,j “ 1pgpi, jq “ lqAi,j is the estimated adja-

cency matrix for graph Gl using network assignments from
gpi, jq from eq. (4) applied to the initial angle estimates
rp0q. Yet, separate Hplq’s may make the architecture sen-
sitive to the accuracy of graph assignments after the GNN,

and hence for robustness we simply choose a single H. We also find in Sec. 6.4 that the use of H
instead of separate Hplq’s is essential for satisfactory performance. Besides, it is possible to make
Algo. 1 parameter-free by further fixing the tαγu values (default: αγ “ 1,@γ); we find that using
fixed tαγu does not strongly affect performance in our experiments. GNNSync executes the projected
gradient descent steps at every training iteration as part of a unified end-to-end training process, but
one could also use Algo. 1 to post-process predicted angles without putting the steps in the end-to-end
framework. We find that putting Algo. 1 in our end-to-end training framework is usually helpful.

5.4 ROBUSTNESS OF GNNSYNC

Measurement noise that perturbs the edge offsets can significantly impact the performance of group
synchronization algorithms. To this end, we demonstrate the robustness of GNNSync to such noise
perturbations, with the following theoretical guarantee, proved and further discussed in App. A.2

Proposition 2. For adjacency matrices A, Â, assume their row-normalized variants As, Âs,At, Ât

satisfy
∥∥∥As ´ Âs

∥∥∥
F

ă ϵs and
∥∥∥At ´ Ât

∥∥∥
F

ă ϵt, where subscripts s, t denote source and target,
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resp. Assume further their input feature matrices X, X̂ satisfy
∥∥∥X ´ X̂

∥∥∥
F

ă ϵf . Then their initial an-

gles rp0q, r̂p0q from a trained GNNSync using DIMPA satisfy
∥∥rp0q ´ r̂p0q

∥∥
F

ă Bsϵs `Btϵs `Bf ϵf ,
for values Bs, Bt, Bf that can be bounded by imposing constraints on model parameters and input.

6 EXPERIMENTS

Implementation details are in App. C and extended results in App. D.

6.1 DATA SETS AND PROTOCOL

Previous works in angular synchronization typically only consider synthetic data sets in their ex-
periments, and those applying synchronization to real-world data do not typically publish the data
sets. To bridge the gap between synthetic experiments and the real world, we construct synthetic data
sets with both correlated and uncorrelated ground-truth rotation angles, using various measurement
graphs and noise levels. In addition, we conduct sensor network localization on two data sets.

For synthetic data, we perform experiments on graphs with n “ 360 nodes for different measurement
graphs, with edge density parameter p P t0.05, 0.1, 0.15u, noise level η P t0, 0.1, . . . , 0.9u for k “ 1,
and η P t0, 0.1, . . . , 0.7u for k P t2, 3, 4u. The graph generation procedure is as follows (with further
details in App. B.1): ‚1) Generate k group(s) of ground-truth angles. One option is to generate
each angle from the same Gamma distribution with shape 0.5 and scale 2π. We denote this option
with subscript “1”. As angles could be highly correlated in practical scenarios, we introduce a more
realistic but challenging option “2”, with multivariate normal ground-truth angles. The mean of the
ground-truth angles is π, with covariance matrix for each l P t1, . . . , ku defined by wwJ, where
entries in w are generated independently from a standard normal distribution. We explore two more
options in the SI. We then apply mod 2π to all angles. ‚ 2) Generate a noisy background adjacency
matrix Anoise P Rnˆn. ‚ 3) Construct a complete adjacency matrix where η portion of the entries are
noisy and the rest represent true angular differences. ‚ 4) Generate a measurement graph and sparsify
the complete adjacency matrix by only keeping the edges in the measurement graph.

We construct 3 types of measurement graphs from NetworkX (Hagberg et al., 2008) and use the
following notations, where the subscript o P t1, 2, 3, 4u is the option mentioned in step 1) above:
‚ Erdős-Rényi (ER) Outlier model: denoted by EROopp, k, ηq, using as the measurement graph the
ER model from NetworkX, where p is the edge density parameter for the ER measurement graph;
‚ Barabasi Albert (BA) Outlier model: denoted by BAOopp, k, ηq, where the measurement graph
is a BA model with the number of edges to attach from a new node to existing nodes equal to rnp{2s,
using the standard implementation from NetworkX Hagberg et al. (2008); and
‚ Random Geometric Graph (RGG) Outlier model: denoted by RGGOopp, k, ηq, with NetworkX
parameter “distance threshold value (radius)” 2p for the RGG measurement graph. For k “ 1, we
omit the value k and subscript o in the notation, as the two options coincide in this special case.

For real-world data, we conduct sensor network localization on the U.S. map and the PACM point
cloud data set (Cucuringu et al., 2012a) with a focus on the SO(2) component, as follows, with data
processing details provided in App. B.2. ‚1) Starting with the ground-truth locations of n “ 1097
U.S. cities (resp., n “ 426 points), we construct patches using each city (resp., point) as a central
node and add its 50 nearest neighbors to the corresponding patch. ‚2) For each patch, we add noise
to each node’s coordinates independently. ‚3) We then rotate the patches using random rotation
angles (ground-truth angles generated as in 1) for synthetic models). For each pair of patches that
have at least 6 overlapping nodes, we apply Procrustes alignment (Gower, 1975) to estimate the
rotation angle based on these overlapping nodes and add an edge to the observed measurement
adjacency matrix. ‚4) We perform angular synchronization to obtain the initial estimated angles and
update the estimated angles by shifting by the average pairwise differences between the estimated
and ground-truth angles, to eliminate the degree of freedom of a global rotation. ‚5) Finally, we
apply the estimated rotations to the noisy patches and estimate node coordinates by averaging the
estimated locations for each node from all patches that contain this node.

6.2 BASELINES

In our numerical experiments for angular synchronization, we compare against 7 baselines, where
results are averaged over 10 runs: ‚ Spectral Baseline (Spectral) by Singer (2011), ‚ Row-Normalized
Spectral Baseline (Spectral RN) by Cucuringu et al. (2012a), ‚ Generalized Power Method (GPM)
by Boumal (2016), ‚ TranSync by Huang et al. (2017), ‚ CEMP GCW, ‚ CEMP MST by Lerman &
Shi (2022), and ‚ Trimmed Averaging Synchronization (TAS) by Maunu & Lerman (2023).
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For more general k-synchronization, we compare against two baselines from Cucuringu & Tyagi
(2022), which are based on the top k eigenvectors of the matrix H or its row-normalized version. We
use names ‚ Spectral and ‚ Spectral RN to denote them as before. To show that GNNSync (as well
as the baselines) deviate from trivial or random solutions, we include an additional baseline denoted
“Trivial” for each k, where all angles are predicted equal (with value 1, for simplicity).

6.3 MAIN EXPERIMENTAL RESULTS
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(a) RGGO1pp “ 0.15q
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(b) RGGO2pp “ 0.15q
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(c) ERO1pp “ 0.15q
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(d) BAO1pp “ 0.15q

Figure 3: MSE performance on angular synchronization (k “ 1). Error bars indicate one standard
deviation. Dashed lines highlight GNNSync variants.
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(a)
RGGO1pp “ 0.15, k “ 2q
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(b)
RGGO2pp “ 0.15, k “ 2q
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(c)
RGGO2pp “ 0.05, k “ 2q
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(d)
RGGO2pp “ 0.1, k “ 2q
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(e)
RGGO1pp “ 0.15, k “ 3q
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(f)
RGGO2pp “ 0.15, k “ 3q
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(g)
RGGO1pp “ 0.05, k “ 3q
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(h)
RGGO1pp “ 0.1, k “ 3q
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(i)
RGGO1pp “ 0.15, k “ 4q
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(j)
RGGO2pp “ 0.15, k “ 4q
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(k)
ERO1pp “ 0.15, k “ 4q
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Figure 4: MSE performance on k-synchronization for k P t2, 3, 4u. p is the network density and η is
the noise level. Error bars indicate one standard deviation. Dashed lines highlight GNNSync variants.

By default, we use the output angles of the baseline “Spectral RN” as input features for GNNSync,
and thus din “ k. The main experimental results are shown in Fig. 3 for k “ 1, and Fig. 4 for general
k P t2, 3, 4u, with additional results reported in App. D. For k ą 1, we use “GNNSync-cycle”,
“GNNSync-upset” and “GNNSync-sum” to denote GNNSync variants when considering the training
loss function Lcycle,Lupset, and Lupset ` Lcycle, respectively.

From Fig. 3 (with additional figures in App. D Fig. 6–8), we conclude that GNNSync produces
generally the best performance compared to baselines, in angular synchronization (k “ 1). From
Fig. 4 (see also App. D Fig. 9–17), we again conclude that GNNSync variants attain leading
performance for k ą 1. The first two columns of Fig. 4 compare the performance of the two options
of ground-truth angles on RGGO models. In columns 3 and 4, we show the effect of varying density
parameter p, and different synthetic models under various measurement graphs.
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For k ą 1, GNNSync-upset performs better than both baselines in most cases, with Lupset simple yet
effective to train. GNNSync-cycle generally attains the best performance. As the problems become
harder (with increasing η, decreasing p, increasing k, more complex measurement graph RGG),
GNNSync-cycle outperforms both baselines and other GNNSync variants by a larger margin. The per-
formance of GNNSync-sum lies between that of GNNSync-upset and GNNSync-cycle, but is closer
to that of GNNSync-upset, see App. D for more discussions on linear combinations of the two losses.
We conclude that while GNNSync-upset generally attains satisfactory performance, GNNSync-cycle
is more robust to harder problems than other GNNSync variants and the baselines. Accounting for the
performance of trivial guesses, we observe that GNNSync variants are more robust to noise, and attain
satisfactory performance even when the competitive baselines are outperformed by trivial guesses. We
highlight that there is a clear advantage of using cycle consistency in the pipeline, especially when the
problem is harder, thus reflecting the angular nature of the problem. For 3-cycle consistency and the cy-
cle loss Lcycle, gradient descent in principle drives down the (non-negative) values S of the sum of three
predicted angular differences. To minimize the S values, we encourage a reweighing process of the
initial edge weights so that cycle consistency roughly holds. Unlike Lupset which explicitly encourages
small Mi,j values for all edges, Lcycle only implicitly encourages small Mi,j values via the confidence
matrix reweighing process for edges with relatively small noise. In an ideal case, we only have large
Mi,j values on noisy edges. In this case, the reweighing process would downweight these noisy edges,
which results in a smaller value of the cycle loss function. This is also the underlying reason why Lcycle
is more robust to noise than Lupset. For k ą 1, we hence recommend using the more intricate Lcycle
function as the training loss function, and we will focus on GNNSync-cycle in the ablation study.

From Fig. 1 (see also App. D Tab. 1–4, Fig. 18–27), we observe that GNNSync is able to align patches
and recover coordinates effectively, and is more robust to noise than baselines. GNNSync attains
competitive MSE values and Average Normalized Error (ANE) results, where ANE (defined explicitly
in App. D.1) measures the discrepancy between the predicted locations and the actual locations.
6.4 ABLATION STUDY AND DISCUSSION
In this subsection, we justify several model choices for all k: ‚ the use of the projected gradient steps;
‚ an end-to-end framework instead of training first without the projected gradient steps and then
applying Algo. 1 as a post-processing procedure; ‚ fixed instead of trainable tαγu values. For k ą 1,

we also justify the use of the H matrix in Algo. 1 instead of separate Hplq’s based on estimated graph
assignments of the edges. To validate the ability of GNNSync to borrow strength from baselines, we
set the input feature matrix X as a set of angles that is estimated by one of the baselines (or k sets of
angles estimated by one of the baselines for k ą 1) and report the performance.

Due to space considerations, results for the ablation study are reported in App. D. For k “ 1, Fig. 22–
24 report the MSE performance for different GNNSync variants. Improvements over all possible base-
lines when taking their output as input features for k “ 1 are reported in Fig. 34–36. For k ą 1, we re-
port the results when using Lcycle as the training loss function in Fig. 25–33. We conclude that Algo. 1
is indeed helpful in guiding GNNSync to attain lower loss values (we omit loss results for space con-
siderations) and better MSE performance, and that end-to-end training usually attains comparable or
better performance than using Algo. 1 for post-processing, even when there is no trainable parameter in
Algo. 1. Moreover, the baselines are still outperformed by GNNSync if we apply the same number of
projected gradient steps as in GNNSyc as fine-tuning post-processing to the baselines, as illustrated in
Fig. 34 and 35. We observe across all data sets, that GNNSync usually improves on existing baselines
when employing their outputs as input features, and never performs significantly worse than the corre-
sponding baseline; hence, GNNSync can be used to enhance existing methods. Further, setting tαγu

values to be trainable does not seem to boost performance much, and hence we stick to fixed tαγu val-
ues. For k ą 1, using separate Hplq’s instead of the whole H in Algo. 1 harms performance, which can
be explained by the fact that learning graph assignments effectively via GNN outputs is challenging.

7 CONCLUSION AND OUTLOOK
This paper proposed a general NN framework for angular synchronization and a heterogeneous exten-
sion. As the current framework is limited to SO(2), we believe that extending our GNN-based frame-
work to the setting of other more general groups is an exciting research direction to pursue, and consti-
tutes ongoing work (for instance, for doing synchronization over the full Euclidean group Eucp2q “

Z2 ˆ SO(2) ˆR2). We also plan to optimize the loss functions under constraints, train our framework
with supervision of ground-truth angles (anchor information), and explore the interplay with low-rank
matrix completion. Another interesting direction is to extend our SNL example to explore the graph re-
alization problem, of recovering point clouds from a sparse noisy set of pairwise Euclidean distances.
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A ANALYTICAL DISCUSSIONS

A.1 PROPERTIES OF THE LOSS FUNCTIONS

In classical convex optimization of the type infx gpxq, optimal values are achieved at stationary
points; when the function g is differentiable, then following Fermat’s rule, stationary points are
points at which the gradient of g vanishes. Such points are typically found via gradient descent
methods. When the function g is not differentiable, then there are weaker variants for differentiablity
available such as the directional derivative. First we recall the notion of a directional derivative and a
directional stationary point from Li et al. (2020). The directional derivative of a function f at point
x P Rm in the direction d P Rm is defined by

f 1px,dq “ lim
tŒ0

fpx ` tdq ´ fpxq

t
.

A directional stationary point x P Rn of the problem infxPC gpxq for C Ă R
n and g : Rn Ñ R is

a point such that the directional derivatives in any direction d P Rn satisfy pg ` 1Cq1px,dq ě 0.
This notion is broad enough to include functions such as the maximum which is not everywhere
differentiable.

Moreover we say that a function f : Rm Ñ R is locally Lipschitz if for any bounded set S Ă R
m,

there exists a constant L ą 0 such that

|fpx ´ yq| ď L ∥ x ´ y ∥2
for all x,y P S. Note that a locally Lipschitz function f is differentiable almost everywhere, see
for example (Rockafellar & Wets, 2009, Theorem 9.60) where also more background on directional
derivatives and subdifferentials can be found.

Proof of Proposition 1 Here we prove Proposition 1 from the main text; for convenience, we repeat
it here.
Proposition 3. Every local minimum of eq. (1) is a directional stationary point of eq. (2).

Proof. eq. (2) gives that

Lupset

“ ∥M∥F {t

“
1

t

d

ÿ

i,j

1pTi,j ´ Ai,j ‰ 0, 2πqminpTi,j ´ Ai,j mod 2π,Ai,j ´ Ti,j mod 2πq2

“
1

t

d

ÿ

i,j

1pTi,j ´ Ai,j ‰ 0, 2πqmintTi,j ´ Ai,j mod 2π, 2π ´ pTi,j ´ Ai,j mod 2πqu2

where t is the number of nonzero elements in A. The function f : p0, 2πq ÞÑ p0, 2πq given by
fpxq “ minpx2, p2π ´ xq2q is differentiable with derivative uniformly bounded by 4π (and is
hence locally Lipschitz) except at the point x “ π where it takes on its maximum, π2. Thus,
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this function is a directionally differentiable Lipschitz function (which can be seen by writing
minpa, bq “ 1

2 pa ` bq ´ 1
2 |a ´ b| and noting that fpxq “ ´|x| is a directionally differentiable

Lipschitz function). Moreover we can phrase the optimization problem for the upset loss as an
optimization problem over the closed set C “ r0, 2πsn representing setstri, i “ 1, . . . , nu which are
then used to obtain matrices T with entries Tij “ ri ´ rj mod 2π. Fact 6 in Li et al. (2020) then
guarantees that every local minimum is a directional stationary point of eq. (2).

Discussion of the case of general k For general k-synchronization, we only require M
plq
i,j to be

close to zero for one l instead of all because each edge is assumed to belong to exactly one graph Gl.

Therefore in an ideal setting, for each edge pi, jq P E , exactly one of the entries Mplq
i,j , l “ 1, . . . , k

is zero. If all entries are large then this indicates that the information for pi, jq is very noisy.
Subsequently, the entry for pi, jq is downweighted in the updated graph for the cycle loss function.
The rationale is that when edge information is very noisy, the cycle consistency will often be violated;
violations for edge information that is not so noisy are more important for angular synchronization as
they should contain a stronger signal.

In terms of the cycle loss function itself, the confidence matrix C̃ for edges in G arises. First consider
the optimization problem in which C̃ is omitted; taking Ã “ pA ´ AJq mod 2π and we optimize
the upset loss, the cycle loss, or both. For the upset loss, eq. (5) itself when considering fixed Ãplq

terms, can be analyzed similarly to the analysis of Lupset in Proposition 1, using that the minimum
as appearing in Mi,j “ minlPt1,...,ku M

plq
i,j is a directionally differentiable Lipschitz function. For

the cycle loss function, the expression of Lplq
cycle takes a constant (when we regard Ãplq as fixed)

away from the minimum of Splq
i,j,q mod 2π and p´S

plq
i,j,qq mod 2π. This minimum is equivalent to

|π ´ pS
plq
i,j,q mod 2πq|, which is again a directionally differentiable Lipschitz function. Arguing as

for Proposition 1 thus shows that the statement of this proposition extends to this special treatment of
the k-synchronization problem.

In our general treatment of the k-synchronization problem, the confidence matrix C̃ depends on
the maximum M of the residual matrices and involves the expression 1

1`Mi,j
1pAi,j ‰ 0q. While

the function fpxq “ 1
1`x is differentiable for x ą 0, its composition with a function such as M

may not be differentiable, as M only possesses a very weak notion of differential, called a limiting
subdifferential in Li et al. (2020), to which the chain rule does not apply. This complex dependence
hinders a more rigorous analysis of the general treatment of the k-synchronization problem, where
even the chain rule is not guaranteed to hold.

Non-differentiable points of the loss function Although the Frobenius norm, the min function, and
modulo have non-differentiable points, these points have measure zero. Moreover, as we use PyTorch
autograd 1 for gradient calculation, even in the presence of non-differentiable points, backpropagation
can be carried out whenever an approximate gradient can be constructed. Note that the absolute value
function is convex, and hence autograd will apply the sub-gradient of the minimum norm. There also
exist differentiable approximations for the modulo, and hence backpropagation can still be executed.
Finally, in our experiments, we do not empirically observe any issue of convergence.

Novelty While the design of the upset loss in isolation may be relatively straightforward for the
k “ 1 case, we provide theoretical support as well as a less obvious loss function extension to handle
broader k ě 2 cases that rely on assigning edges to different graphs. The design of the cycle loss is
not trivial and based on problem-specific insights.

A.2 ROBUSTNESS OF GNNSYNC

First we review DIMPA (Directed Mixed Path Aggregation) from He et al. (2022b) for obtaining
a network embedding. DIMPA captures local network information by taking a weighted average
of information from neighbors within h hops. Here we use h “ 2 hops throughout the paper. Let
A P Rnˆn be an adjacency and As its row-normalization. A weighted self-loop is added to each

1https://pytorch.org/docs/stable/notes/autograd.html
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node; then we normalize by setting As “ pD̃sq´1Ãs, where Ãs “ A ` τIn, with D̃s the diagonal
matrix with entries D̃s

i,i “
ř

j Ã
s
i,j , In the n ˆ n identity matrix, and τ is a small value; as in He

et al. (2022b) we take τ “ 0.5.

The h-hop source matrix is given by pAsqh. The set of up-to-h-hop source neighborhood matrices is
denoted as As,h “ tIn,As, . . . , pAsqhu. Similarly, for aggregating information when each node is
viewed as a target node of a link, we carry out the same procedure for the transpose AJ. The set of
up-to-h-hop target neighborhood matrices is denotes as At,h “ tIn,At, . . . , pAtq

hu, where At is
the row-normalized target adjacency matrix calculated from AJ.

Let the input feature matrix be denoted by X P Rnˆdin . The source embedding is given by

Zs “

˜

ÿ

NPAs,h

ωs
N ¨ N

¸

¨ Qs P Rnˆd, (7)

where for each N, ωs
N is a learnable scalar, d is the dimension of this embedding, and Qs “

MLPps,Lq
pXq. Here, the hyperparameter L controls the number of layers in the multilayer perceptron

(MLP) with ReLU activation but without the bias terms; as in He et al. (2022b) we fix L “ 2
throughout. Each layer of the MLP has the same number d of hidden units. The target embedding
Zt is defined similarly, with s replaced by t ineq. (7). After these two decoupled aggregations,
the embeddings are concatenated to obtain the final node embedding as a n ˆ p2dq matrix Z “

CONCAT pZs,Ztq .

Proof of Proposition 2 Here we prove Proposition 2 from the main text; for convenience, we repeat
it here.
Proposition 4. For adjacency matrices A, Â, assume their row-normalized variants As, Âs,At, Ât

satisfy
∥∥∥As ´ Âs

∥∥∥
F

ă ϵs and
∥∥∥At ´ Ât

∥∥∥
F

ă ϵt, where subscripts s, t denote source and target,

resp. Assume further their input feature matrices X, X̂ satisfy
∥∥∥X ´ X̂

∥∥∥
F

ă ϵf . Then their initial an-

gles rp0q, r̂p0q from a trained GNNSync using DIMPA satisfy
∥∥rp0q ´ r̂p0q

∥∥
F

ă Bsϵs `Btϵs `Bf ϵf ,
for values Bs, Bt, Bf that can be bounded by imposing constraints on model parameters and input.

Proof. Let us assume the input feature matrices are X, X̂ P Rnˆdin for A and Â, respectively.

The DIMPA procedures for the input row-normalized adjacency matrices As,At with 2 hops and
hidden dimension d can be written as a concatenation of the source and target node embeddings Zs

and Zt, where

Zs “ pIn ` as1As ` as2A
2
sqReLUpXWs0qWs1,

Zt “ pIn ` at1At ` at2A
2
t qReLUpXWt0qWt1.

(8)

Here In P Rnˆn is the identity matrix, as1, as2, at1, at2 P R, Ws0,Wt0 P Rdinˆd where d is the
hidden dimension, and Ws1,Wt1 P Rhˆh. Similarly, we have for Âs and Ât

Ẑs “ pIn ` as1Âs ` as2Â
2
sqReLUpX̂Ws0qWs1,

Ẑt “ pIn ` at1Ât ` at2Â
2
t qReLUpX̂Wt0qWt1.

(9)

After DIMPA, we carry out the innerproduct procedure and sigmoid rescaling, to obtain for k “ 1

rp0q “ 2πsigmoidpZsas ` Ztat ` bq, r̂p0q “ 2πsigmoidpẐsas ` Ẑtat ` bq, (10)

where as,at P Rdˆ1 and b is a trained scalar.

For k ą 1, we have (before reshaping rp0q and r̂p0q from shape nk ˆ 1 to shape n ˆ k which does
not change the Frobenius norm)

rp0q “ 2πsigmoidpZsas ` Ztat ` bq, r̂p0q “ 2πsigmoidpẐsas ` Ẑtat ` bq, (11)

where as,at P Rdk and b P Rk. Indeed, we could view the scalar b as a 1D vector, and consider
eq. (10) as a special case of eq. (11).
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Using eq. (8) and eq. (9), along with the triangle inequality, we have that

∥∥∥Zs ´ Ẑs

∥∥∥
F

“

∥∥∥pIn ` as1As ` as2A
2
sqReLUpXWs0qWs1 ´ pIn ` as1Âs ` as2Â

2
sqReLUpX̂Ws0qWs1

∥∥∥
F

ď

∥∥∥pIn ` as1As ` as2A
2
sqReLUpXWs0qWs1 ´ pIn ` as1Âs ` as2Â

2
sqReLUpXWs0qWs1

∥∥∥
F

`∥∥∥pIn ` as1Âs ` as2Â
2
sqReLUpXWs0qWs1 ´ pIn ` as1Âs ` as2Â

2
sqReLUpX̂Ws0qWs1

∥∥∥
F

ď

∥∥∥ras1pAs ´ Âsq ` as2pA2
s ´ Â2

sqsReLUpXWs0qWs1

∥∥∥
F

`∥∥∥In ` as1Âs ` as2Â
2
s

∥∥∥
F
∥Ws1∥F

∥∥∥ReLUpXWs0q ´ ReLUpX̂Ws0q

∥∥∥
F

ď

∥∥∥As ´ Âs

∥∥∥
F

∥∥∥ras1 ` as2pAs ` ÂsqsReLUpXWs0qWs1

∥∥∥
F

`∥∥∥In ` as1Âs ` as2Â
2
s

∥∥∥
F
∥Ws1∥F ∥Ws0∥F

∥∥∥X ´ X̂
∥∥∥
F

ăϵsBs0 ` ϵfBfs,
(12)

where Bs0 “

∥∥∥ras1 ` as2pAs ` ÂsqsReLUpXWs0qWs1

∥∥∥
F

and

Bfs “

∥∥∥In ` as1Âs ` as2Â
2
s

∥∥∥
F
∥Ws1∥F ∥Ws0∥F . Note that we also use the fact that the ReLU

function is Lipschitz with Lipschitz constant 1.

Likewise, we have

∥∥∥Zt ´ Ẑt

∥∥∥
F

ă ϵtBt0 ` ϵfBft, (13)

where Bt0 “

∥∥∥rat1 ` at2pAt ` ÂtqsReLUpXWt0qWt1

∥∥∥
F

and

Bft “

∥∥∥In ` at1Ât ` at2Â
2
t

∥∥∥
F
∥Wt1∥F ∥Wt0∥F .

With eq. (12) and eq. (13), noting that the sigmoid function is Lipschitz with Lipschitz constant 1, we
employ eq. (11) to obtain

∥∥∥rp0q ´ r̂p0q
∥∥∥
F

“

∥∥∥2πsigmoidpZsas ` Ztat ` bq ´ 2πsigmoidpẐsas ` Ẑtat ` bq

∥∥∥
F

ď2π
∥∥∥pZsas ` Ztat ` bq ´ pẐsas ` Ẑtat ` bq

∥∥∥
F

“2π
∥∥∥pZs ´ Ẑsqas ` pZt ´ Ẑtqat

∥∥∥
F

ď2π
”
∥∥∥pZs ´ Ẑsqas

∥∥∥
F

`

∥∥∥pZt ´ Ẑtqat

∥∥∥
F

ı

“2π
´

∥as∥F
∥∥∥Zs ´ Ẑs

∥∥∥
F

` ∥at∥F
∥∥∥Zt ´ Ẑt

∥∥∥
F

¯

ă2πpϵsBs0 ` ϵfBfs ` ϵtBt0 ` ϵfBftq

“ϵsBs ` ϵtBt ` ϵfBf ,
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with values

Bs “2πBs0 “ 2π
∥∥∥ras1 ` as2pAs ` ÂsqsReLUpXWs0qWs1

∥∥∥
F
,

Bt “2πBt0 “ 2π
∥∥∥rat1 ` at2pAt ` ÂtqsReLUpXWt0qWt1

∥∥∥
F
,

Bf “2πpBfs ` Bftq

“2π
∥∥∥In ` as1Âs ` as2Â

2
s

∥∥∥
F
∥Ws1∥F ∥Ws0∥F

` 2π
∥∥∥In ` at1Ât ` at2Â

2
t

∥∥∥
F
∥Wt1∥F ∥Wt0∥F .

(14)

If we in addition have
∥Ws0∥F ď 1, ∥Ws1∥F ď 1, ∥Wt0∥F ď 1, ∥Wt1∥F ď 1,∥∥∥as1 ` as2pAs ` Âsq

∥∥∥
F

ď 1,
∥∥∥at1 ` at2pAt ` Âtq

∥∥∥
F

ď 1,

∥XWs0∥F ď 1,
∥∥∥In ` as1Âs ` as2Â

2
s

∥∥∥
F

ď 1,
∥∥∥In ` at1Ât ` at2Â

2
t

∥∥∥
F

ď 1,

then the bound becomes
∥∥rp0q ´ r̂p0q

∥∥
F

ă 2πpϵs ` ϵt ` 2ϵf q, as∥∥∥ras1 ` as2pAs ` ÂsqsReLUpXWs0qWs1

∥∥∥
F

ď

∥∥∥as1 ` as2pAs ` Âsq

∥∥∥
F
∥ReLUpXWs0q∥F ∥Ws1∥F

ď

∥∥∥as1 ` as2pAs ` Âsq

∥∥∥
F
∥XWs0∥F ∥Ws1∥F ,

and similarly for Bt.

This completes the proof.

Discussion on GNNSync’s robustness to noise With the above proposition, we could consider
Â as the ground-truth noiseless adjacency matrix whose nonzero entries encode pθi ´ θjq mod 2π,
and A as the actual noisy observed input graph. We then execute row normalization to obtain the
source and target matrices Âs and Ât for the ground-truth and As and At for the observation,
respectively. In a favourable noise regime, ϵs and ϵt would be small. The value ϵf comes from
the feature generation method. For Spectral RN baseline as input feature generation method for
example, this involves some eigensolver corresponding to complex Hermitian matrices, and hence
the Davis-Kahan Theorem (Davis & Kahan, 1970) or one of its variants (Li, 1998; Yu et al., 2015)
could be applied to upper-bound ϵf . As for the values Bs, Bt, and Bf , we could bound them by
adding constraints to GNNSync’s model parameters. Employing a backpropagation procedure with
our novel loss functions could further boost the robustness of GNNSync, with learnable procedures,
as shown for example in Ruiz et al. (2021).

B DATA SETS

B.1 RANDOM GRAPH OUTLIER MODELS

The detailed synthetic data generation process is as follows:

1. Given the number of nodes n, generate k group(s) of ground-truth angles tθi,l : i P

t1, . . . , nuu for l P t1, . . . , ku. One option is to generate each θi,l from the same Gamma
distribution with shape 0.5 and scale 2π. We denote this option with subscript “1”. Since
angles could be highly correlated in practical scenarios, we introduce a more realistic but
challenging option “2”, with multivariate normal ground-truth angles. For example, in the
SNL application, angles correspond to patch rotations, and may well be that patches in
similar geographic regions have corresponding rotations. The mean of the ground-truth
angles is π, with covariance matrix for each l P t1, . . . , ku defined by wwJ, where entries in
w are generated independently from a standard normal distribution. We then apply mod 2π
to all angles to ensure that they lie in r0, 2πq. We thus obtain the ground-truth adjacency
matrix (matrices) Al

GT P Rnˆn, whose pi, jq element is given by pθi,l ´ θj,lq mod 2π.
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2. Generate a noisy background adjacency matrix Anoise P Rnˆn whose entries are indepen-
dently generated from a uniform distribution over r0, 2πq.

3. Generate a selection matrix Asel P Rnˆn whose entries are independently drawn from a
Uniform(0,1) distribution. The pi, jq entry of this selection matrix is used to assign whether
or not the observation is noisy, and if not noisy, to which graph it is assigned, using for
l “ 1, . . . , k

Bnoisepi, j; lq “ 1
`

p1 ´ ηqpl ´ 1q{k ď Aselpi, jq ă p1 ´ ηql{k
˘

and Bnoisepi, j;8q “ 1
`

Aselpi, jq ě p1 ´ ηq
˘

, where 1p¨q is the indicator function.

4. Construct a complete (without self-loops) weighted adjacency matrix Acomplete P Rnˆn by
Acompletepi, jq “

ř

lPt1,...,ku A
plq
GTpi, jqBnoisepi, j; lq ` Anoisepi, jqBnoisepi, j;8q.

5. Generate a measurement graph Ḡ with adjacency matrix Ḡ using a standard random graph
model, as introduced by Sec. 6.1.

6. The edges in Ḡ are the edges on which we observe the noisy version Acomplete of the ground-
truth adjacency matrix (matrices) Al

GT, to obtain the temporary adjacency matrix T1 by
T1pi, jq “ Acompletepi, jq1pḠpi, jq ‰ 0q.

7. The true angle differences would yield a skew-symmetric matrix before taking the entries
mod 2π. We therefore construct a skew-symmetric matrix T2 by setting T2pi, iq “ 0 for
all i, and for i ‰ j setting T2pi, jq “ T1pi, jq1pi ă jq ´ T1pj, iq1pi ą jq.

8. In the skew-symmetric matrix, each entry appears twice, with different signs. For com-
putational reasons, for the final adjacency matrix, we only keep the non-negative entries,
except for evaluation. We obtain the final adjacency matrix A by Ai,j “ Api, jq “

T2pi, jq1pT2pi, jq ě 0q mod 2π.

In addition to the two options introduced in Sec. 6.1, we introduce two more options for the ground-
truth angle generation process here, which are both multivariate normal distributions, but with
different covariance matrices. For option “3”, the covariance matrix is just the identity matrix. For
option “4”, we have a block-diagonal covariance matrix, with six blocks, each of which is generated
independently according to option “2” as stated in Sec. 6.1 in the main text.

As methods could be applied to different connected components of disconnected graphs separately,
we focus on weakly connected networks. We have checked that all generated networks in our
experiments are weakly connected.

The reason behind the naming convention “outlier” stems from the noisy offset entries in the adjacency
matrix.

Steps 7 and 8 are to ensure that there does not exist an edge pi, jq such that pAi,j `Aj,iq mod 2π ‰ 0,
as this would be confusing. In principle, we could work with the upper-triangular part or the lower-
triangular part of the adjacency matrix first, then obtain the skew-symmetric adjacency matrix T2

and apply step 8 again. The procedures mentioned in Sec. 6.1 are what we implement in practice,
which should take no more than twice the computational cost compared to working with half of the
adjacency matrix at the beginning. Note that data generation only happens once before running the
actual experiments.

Our synthetic data settings are similar to those in previous angular synchronization papers, such as
Singer (2011); Lerman & Shi (2022); Cucuringu & Tyagi (2022), to generate noisy samples from an
outlier model (where each outlier measurement is generated uniformly at random), instead of using
additive Gaussian noise in the so-called spike models. The choice of the number of nodes 360 could
be changed to other numbers; we chose it to relate to 360 possible integer degrees of an angle. Note
that the initial work of Singer (2011) considered n random rotation angles uniformly distributed in
r0, 2πq. We do not observe a large difference in the performance of other sizes (we have also tried
300 and 500, for example).

The choice of synthetic data set construction is inspired by Singer (2011) and Cucuringu & Tyagi
(2022). They are noisy versions of standard random graph models. These random graph models
were chosen as they can be used for comparison. Indeed, some previous works have only used
ER measurement graphs as in Lerman & Shi (2022), and Singer (2011) theoretically analyzed and
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experimented with both sparse ER and complete measurement graphs; we already have a more
thorough setup in our experiments. Furthermore, the addition of the RGG model stems from the
very fact that this model is perhaps the most representative one, given the applications that have
motivated the development of the group synchronization problem over the last decade. Indeed, in
sensor network localization or the molecule problem in NMR structural biology, pairwise Euclidean
distance information is only available between nearby sensors or atoms (e.g., certain sensors/atoms
are connected if at most 6 miles/angstrom apart), hence leading to an RGG (disc graph) model. In
this setup, in order to recover the latent coordinates, the state-of-the-art methods rely on divide-and-
conquer approaches that first divide the graph into overlapping subgraphs /patches, embed locally
to take advantage of the higher edge density locally, and finally aim to stitch globally, which is
where group synchronization comes into play. Therefore, any patch-based reconstruction method
that leverages the local geometry is only able to pairwise align only nearby patches that have enough
points in common; far away patches that do not overlap simply cannot be aligned. Thus, the choice
of RGG resembles best the real-world applications. The ER model has been predominantly used in
the literature as it is easier to analyze theoretically compared to RGG, in light of available tools from
the random matrix theory literature.

B.2 SENSOR NETWORK LOCALIZATION

Previous works in the field of angular synchronization typically only consider synthetic data sets in
their experiments, and those applying synchronization to real-world data do not typically publish
the data sets. Concrete examples for such works include tracking the trajectory of a moving object
using directional sensors (Plarre & Kumar, 2005), and habitat monitoring in an infrastructure-
less environment in which radios are turned on at designated times to save power on Great Duck
Island (Mainwaring et al., 2002).

In this paper, we adapt the task on group synchronization over the Euclidean group of rigid motions
Eucp2q “ Z2 ˆ SOp2q ˆ R2 to a real-world task, by focusing on the angular synchronization SOp2q

component. This task on a real-world data set is a special case of the sensor network localization
(SNL) task on the plane (R2) mentioned in Cucuringu et al. (2012a), but we focus on synchronization
over SO(2) only, as we do not consider any translations or reflections. Though we do not have purely
real-world data sets that are employed in practice, we mimic the practical task of sensor network
localization (with a focus on rotation only) and conduct the localization task on the U.S. map as well
as a PACM point cloud. In detail, the task is conducted as follows, where Fig. 5 provides an overview
of the pipeline on the U.S. map with an illustrative example:

1. Starting with the ground-truth locations of U.S. cities (we have n “ 1097 cities, see red
dots in Fig. 5), we construct patches using each city as a central node and add its kpatch “ 50
nearest neighbors to the corresponding patch (see Fig. 5(a)). We then obtain m “ n “ 1097
patches (see Fig. 5(b) for a two-patch example). This is to represent sensor patches in the
real world.

2. For each patch, we add noise to each node’s coordinates using independent normal dis-
tributions for x and y coordinates respectively, with mean zero and standard deviation η
times of x and y coordinates’ standard deviation, respectively (see Fig. 5(c)). Note that
the noise added to the same node is independent for different patches. This is to represent
noisy observations due to the lack of use of the expensive GPS service to estimate sensor
coordinates.

3. We then rotate the patches based on some ground-truth rotation angles θ1, . . . , θn (see
Fig. 5(d)). Here we generate the angles using one of the options introduced in Sec. 6.1 and
Sec. B.1. This again is to represent noisy observations in the real world.

4. Then for each pair of the patches that have at least kthres “ 6 overlapping nodes, we apply
Procrustes alignment (Gower, 1975) to estimate the rotation angle based on these overlapping
nodes (but with noisy coordinates) and add an edge with the weight the estimated rotation
angle to the observed (measurement) adjacency matrix A. In other words, if two patches
Pi, Pj that have at least kthres “ 6 overlapping nodes, we have Ai,j the estimated rotation
angle from Procrustes alignment to rotate Pj to align with Pi. This angle is an estimation of
θi ´ θj . The threshold is set to represent the real-world scenario where only nearby sensors
may communicate with each other.
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5. After that, we perform angular synchronization on the sparse adjacency matrix A (retaining
only the upper triangular entries) to obtain the initial estimated angles rp0q

1 , . . . , r
p0q
n for each

patch.

6. We then update the estimated angles by shifting by the average of pairwise differences
between the estimated and ground-truth angles, in order to mod out the global degree
of freedom from the synchronization step (see Fig. 5(e)). That is, we first calculate the
average of pairwise differences by δpariwise “ 1

n

řn
i“1rpr

p0q

i ´ θiq mod 2πs, then set ri “

pr
p0q

i ´ δpairwiseq mod 2π, i “ 1, . . . , n.

7. Next, we apply the estimated rotations to the noisy patches.

8. Finally, we estimate the city coordinates by averaging the estimated locations for each city
(node) across patches that contain this city (node) (see Fig. 5(f)).

Note that the noise in the observed adjacency matrix originates from the error by Procrustes alignment,
with possible noise added to nodes’ coordinates. Therefore, even when η “ 0, the observed adjacency
matrix may not align perfectly with ground-truth pairwise angular offsets. Besides, the observed
adjacency matrix is sparse instead of complete due to the thresholding set up to only connect two
nodes in the graph if the patches have enough overlapping nodes. In our experiments, we vary η from
r0, 0.05, 0.1, 0.15, 0.2, 0.25s.

Our current experiment is focused on group synchronization over the group SO(2), and in future
work we plan to explore synchronization over the full Euclidean group Eucp2q “ Z2 ˆ SO(2) ˆ R2,
similar to Cucuringu et al. (2012a), where in addition to rotations, both reflections and translations
are considered and synchronized over.

C IMPLEMENTATION DETAILS

C.1 SETUP

We use the whole graph for training for at most 1000 epochs, and stop early if the loss value does
not decrease for 200 epochs. We use Stochastic Gradient Descend (SGD) as the optimizer and
ℓ2 regularization with weight decay 5 ¨ 10´4 to avoid overfitting. We use as learning rate 0.005
throughout.

For each synthetic data set, we generate 5 synthetic networks under the same setting, each with 2
repeated runs.

The DIMPA model is inherited from He et al. (2022b). Indeed, other directed graph embedding
neural network methods such as Tong et al. (2020) and Zhang et al. (2021) could be employed, and
we pick DIMPA just for simplicity. In our experiments, we did try out Tong et al. (2020), and we do
not observe much difference in the performance as long as some directed graph embeddings could be
produced.

C.2 CODES, DATA AND HARDWARE

To fully reproduce our results, anonymized code is available at https://github.com/
SherylHYX/GNN_Sync. Experiments were conducted on two compute nodes, each with 8 Nvidia
Tesla T4, 96 Intel Xeon Platinum 8259CL CPUs @ 2.50GHz and 378GB RAM. All experiments can
be completed within several days, including all variants.

The data sets considered here are relatively small and the same applies to GNNSync’s competitive
papers. Although each individual task does not require many resources (often ă 5min/run), for the
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(a) Construct a patch in blue
based on nearest neighbors.
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(c) Add noise to each node’s
coordinates in each patch.
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(d) Rotate the patches based on
some ground-truth rotation

angles. Then apply Procrustes
analysis to estimate the rotation

angle based on overlapping nodes
(in green). Here we use

θblue “ 174˝ and θyellow “ 178˝

with ground-truth
θblue ´ θyellow “ 356˝.
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(e) Perform angular
synchronization on the full

adjacency matrix A (keeping
only upper triangular entries) to
obtain estimated angles for each

patch. Update the estimated
angles by a global shift to obtain
final estimates. Apply estimated
rotations to the noisy patches.
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(f) Recovered central point
locations (in blue) versus their

ground-truth locations (in green)
on the U.S. map (in red) for the

two sampled patches. The
locations are estimated by taking
the average recovered coordinates

for each city (node) from all
patches that contain this node.

Figure 5: U.S. city patch localization pipeline with two patches as an example: Starting with the
ground-truth locations of U.S. cities, we construct patches using each city as a central node and
add its kpatch “ 50 nearest neighbors to the corresponding patch. We then add noise to each node’s
coordinates using independent normal distributions for x and y coordinates respectively, with mean
zero and standard deviation η “ 0.05 times of x and y coordinates’ standard deviation, respectively.
We then rotate the patches based on some ground-truth rotation angles from option “2” introduced in
Sec. 4.1. Here we use θblue “ 174˝ and θyellow “ 178˝ with ground-truth θblue ´ θyellow “ 356˝. The
estimated rotation angle from the blue patch to the yellow one is Ablue, yellow “ 6.25 (i.e., 358˝). Then
we apply Procrustes analysis to estimate the rotation angle based on overlapping nodes (but with noisy
coordinates). After that, we perform angular synchronization on the full adjacency matrix A (keeping
only upper triangular entries) to obtain estimated angles for each patch. We then update the estimated
angles by shifting by the average of pairwise differences between the estimated and ground-truth
angles. Here we have estimates rblue “ 173˝ and ryellow “ 175˝ with rblue ´ ryellow “ 358˝. Then we
apply estimated rotations to the noisy patches. Finally, we obtain recovered central point locations
for the two sampled patches. The locations are estimated by taking the average recovered coordinates
for each city (node) from all patches that contain this node. The recovered points are colored in blue,
while their ground-truth locations are colored in green.

synthetic data sets in this paper we have

3pmeasurement graph styles for k “ 1q ¨ 10pnoise levelsq

¨3psparsity levelsq ¨ 4pground-truth optionsq

` 3pnumber of larger k valuesq ¨ 6pmeasurement graph
options for k ą 1q ¨ 8pnoise levelsq

¨3psparsity levelsq ¨ 4pground-truth optionsq

“ 360 ` 1, 728 “ 2, 088
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synthetic data sets. Each data set requires 10 runs for each of the
1pmain resultsq

`6pdifferent baselines as input featuresq

`1pno Projected Gradient Stepsq

`1ptrainable αq

“ 9

variants for the regular angular synchronization (k “ 1) and
3pmain resultsq

`2pdifferent baselines as input featuresq

`2pdifferent baselineq

`2ptrainable tαγuq

`2pno Projected Gradient Stepsq

`2pseparate Hplqq

`5pother linear combinations of the loss functionq

“ 18

variants for general k-synchronization with k P t2, 3, 4u. Therefore, the set of tasks in this paper
requires a total of 360 ¨ 10 ¨ 9 ` 1, 728 ¨ 10 ¨ 18 “ 32, 400 ` 311, 040 “ 343, 440 runs.

The baselines are typically faster, as they do not involve training, but GNNSync is also pretty
computationally friendly, not at a significantly higher computational expense. Indeed, the set of all
cycles could be pre-computed before training. For k-synchronization, we only need to verify whether
all edges in a cycle are contained in an estimated graph, and to keep only these cycles for computation.
There is a loop that repeats k times, but for each loop, only matrix operations are involved, which
can be done in parallel for all possible cycles. This would not be too expensive, as validated by our
experiments. Besides, for the MSE function, we do not use it for training, so it is not a loss function
in the first place. For evaluation, it does require computing all permutations of k but the evaluation is
only conducted once. Therefore, these computationally expensive operations (locating all possible
cycles and permutations of k in the MSE computation) are not involved in training, but only before
or after training, and hence our method is still scalable with n and k.

C.3 BASELINE IMPLEMENTATION

For CEMP GCW and CEMP MST, we adapt the MatLab code from https://github.com/
yunpeng-shi/CEMP/tree/main/SO2 to Python. For other baselines, we implement the
approaches based on equations from the original papers. For TAS, we transform the MatLab codes
from the authors of Maunu & Lerman (2023) to Python. We set the number of epochs to 50, and set
the trimming parameter to zero due to the high sparsity level of our synthetic networks, as otherwise,
almost all predictions would be the same, just like the Trivial solution.

Besides, we do not compare GNNSync against the method in Gao & Zhao (2019) in our experiments,
as there is no code available. Also, their algorithm involves integration and angular argmax in each
iteration, which seems to be computationally expensive.

Finally, we are aware of Semi-Definite Programming (SDP) baselines but have found them too
time-consuming or space-inefficient. Also, from Singer (2011), we know that SDP and spectral
methods have comparable performance. Therefore, in our experiments, we omit the SDP results.

C.4 MSE CALCULATION

As stated in eq. (2), the MSE function calculates the mean square error using a global angular
rotation that minimizes the MSE value. The implementation of the MSE function, however, does not
explicitly search for the lowest MSE value through grid search or gradient descent. Inspired by the
implementation of the MSE in Singer & Shkolnisky (2011), we first map each of the predicted angles
r and the ground-truth angles R to rotation matrices by the mapping function

rotpθq “

„

cospθq ´ sinpθq

sinpθq cospθq

ȷ

.
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Table 1: Average MSE values (plus/minus one standard deviation) for the real-world experiments on
the U.S. map over ten runs. The best is marked in bold red while the second best is in underline blue.

η option GNNSync Spectral Spectral RN GPM TranSync CEMP GCW CEMP MST TAS Trivial

0 1 0.010˘0.006 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 2.358˘0.075 2.442˘0.069
0 2 0.004˘0.001 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 1.567˘0.035 1.566˘0.037
0 3 0.000˘0.000 -0.000˘0.000 -0.000˘0.000 -0.000˘0.000 -0.000˘0.000 -0.000˘0.000 -0.000˘0.000 0.138˘0.174 0.138˘0.174
0 4 0.002˘0.001 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.651˘0.237 0.663˘0.238
0.05 1 0.014˘0.006 0.007˘0.001 0.006˘0.001 0.006˘0.001 0.036˘0.027 0.082˘0.040 1.162˘0.438 2.340˘0.098 2.411˘0.094
0.05 2 0.010˘0.002 0.006˘0.000 0.006˘0.000 0.006˘0.000 0.026˘0.006 0.072˘0.006 1.353˘0.461 1.559˘0.032 1.559˘0.033
0.05 3 0.006˘0.002 0.007˘0.001 0.006˘0.001 0.006˘0.001 0.027˘0.009 0.816˘0.494 2.827˘0.980 0.293˘0.481 0.294˘0.482
0.05 4 0.007˘0.002 0.006˘0.001 0.006˘0.000 0.006˘0.001 0.024˘0.007 0.319˘0.251 1.826˘0.918 0.750˘0.373 0.759˘0.372
0.1 1 0.030˘0.005 0.030˘0.007 0.027˘0.006 0.025˘0.005 0.147˘0.026 0.528˘0.077 2.819˘0.292 2.318˘0.104 2.368˘0.101
0.1 2 0.025˘0.002 0.031˘0.002 0.028˘0.002 0.027˘0.001 0.188˘0.053 0.397˘0.048 2.874˘0.315 1.558˘0.030 1.564˘0.028
0.1 3 0.019˘0.003 0.027˘0.005 0.024˘0.004 0.025˘0.004 0.129˘0.048 1.775˘1.104 3.583˘0.298 0.138˘0.175 0.138˘0.174
0.1 4 0.021˘0.006 0.026˘0.003 0.023˘0.002 0.023˘0.002 0.127˘0.033 1.055˘0.616 3.102˘0.205 0.656˘0.238 0.663˘0.238
0.15 1 0.059˘0.008 0.075˘0.012 0.072˘0.013 0.062˘0.008 0.483˘0.279 1.496˘0.473 3.698˘0.092 2.363˘0.117 2.396˘0.118
0.15 2 0.057˘0.005 0.082˘0.005 0.076˘0.007 0.067˘0.003 0.492˘0.122 1.193˘0.238 3.501˘0.301 1.566˘0.037 1.566˘0.037
0.15 3 0.037˘0.006 0.052˘0.011 0.048˘0.009 0.046˘0.010 0.277˘0.064 1.745˘0.540 3.671˘0.229 0.138˘0.175 0.138˘0.174
0.15 4 0.043˘0.007 0.055˘0.008 0.052˘0.006 0.046˘0.005 0.591˘0.384 1.317˘0.174 3.519˘0.152 0.658˘0.239 0.663˘0.238
0.2 1 0.101˘0.007 0.148˘0.024 0.151˘0.019 0.107˘0.009 1.000˘0.257 2.568˘0.906 3.711˘0.122 2.377˘0.095 2.399˘0.093
0.2 2 0.101˘0.006 0.163˘0.017 0.159˘0.018 0.122˘0.009 1.054˘0.245 2.082˘0.263 3.717˘0.109 1.564˘0.037 1.566˘0.037
0.2 3 0.065˘0.015 0.095˘0.018 0.092˘0.019 0.078˘0.015 0.756˘0.222 2.239˘0.556 3.699˘0.111 0.335˘0.377 0.336˘0.380
0.2 4 0.066˘0.008 0.096˘0.017 0.095˘0.019 0.072˘0.010 0.717˘0.258 2.040˘0.334 3.751˘0.089 0.660˘0.239 0.663˘0.238
0.25 1 0.158˘0.008 0.244˘0.038 0.263˘0.039 0.164˘0.011 1.690˘0.569 2.888˘0.240 3.791˘0.096 2.427˘0.069 2.442˘0.069
0.25 2 0.163˘0.013 0.291˘0.038 0.294˘0.042 0.193˘0.018 1.888˘0.737 2.633˘0.294 3.782˘0.108 1.564˘0.037 1.566˘0.037
0.25 3 0.105˘0.065 0.143˘0.018 0.242˘0.105 0.103˘0.021 1.265˘0.583 3.050˘0.552 3.765˘0.081 0.138˘0.174 0.138˘0.174
0.25 4 0.128˘0.074 0.170˘0.029 0.176˘0.040 0.107˘0.017 1.296˘0.320 2.787˘0.477 3.787˘0.070 0.660˘0.238 0.663˘0.238

We then calculate the matrix

Q “
1

n

n
ÿ

i“1

rotpRiq
J ¨ rotpriq.

The MSE value is given by

4 ´ 2
n

ÿ

i“1

singipQq,

where singipQq is the i-th singular value of Q during Singular Value Decomposition (SVD).

D EXTENDED EXPERIMENTAL RESULTS

This section reports extended experimental results mentioned in the main text.

D.1 EXTENDED MAIN RESULTS

Full main synthetic experimental results are shown in Fig. 6 to 17. Results on real-world data sets
are shown in Fig. 18 to 27, while other PACM results are omitted but with the same conclusion.
To accommodate potential variability in different runs, we report the mean and standard deviation
of ten runs (two repeated runs on five different sets of ground-truth angles) in Tab. 1 and 3. We
also compute the Average Normalized Error (ANE) for coordinate recovery similar to eq. (44) of
Cucuringu et al. (2012a), and report mean and one standard deviation of the results in Tab. 2 and
4. Specifically, denote pxi, yiq as the ground-truth coordinate for node i where i “ 1, . . . , n, and
px̂i, ŷiq as the predicted coordinate, we define the Average Normalized Error (ANE) as

ANE “

a

řn
i“1rpxi ´ x̂iq

2 ` pyi ´ ŷiq2s
a

řn
i“1rpxi ´ x0q2 ` pyi ´ y0q2s

, (15)

where px0, y0q “ p 1
n

řn
i“1 xi,

1
n

řn
i“1 yiq “ p0, 0q is the center of mass of the true coordinates. We

conclude that GNNSync is able to effectively recover coordinates. We also observe that GNNSync is
more robust to the noise of patch coordinates. We omit the visual plots for the “Trivial” baseline but
report its performance in Tab. 1, 2, 3, and 4.
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Table 2: Average ANE values (plus/minus one standard deviation) for the real-world experiments on
the U.S. map over ten runs. The best is marked in bold red while the second best is in underline blue.

η option GNNSync Spectral Spectral RN GPM TranSync CEMP GCW CEMP MST TAS Trivial

0 1 0.075˘0.028 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.740˘0.021 0.973˘0.263
0 2 0.047˘0.010 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.425˘0.015 0.423˘0.014
0 3 0.011˘0.009 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.050˘0.049 0.049˘0.049
0 4 0.030˘0.016 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.213˘0.078 0.219˘0.078
0.05 1 0.074˘0.027 0.032˘0.010 0.032˘0.011 0.032˘0.009 0.360˘0.591 0.121˘0.069 0.709˘0.495 0.735˘0.025 0.984˘0.277
0.05 2 0.054˘0.013 0.284˘0.508 0.030˘0.002 0.159˘0.258 0.092˘0.020 0.146˘0.035 0.638˘0.238 0.421˘0.015 0.419˘0.013
0.05 3 0.030˘0.017 0.118˘0.160 0.035˘0.005 0.039˘0.008 0.469˘0.763 0.708˘0.338 0.900˘0.178 0.089˘0.124 0.089˘0.124
0.05 4 0.229˘0.569 0.404˘0.744 0.031˘0.007 0.032˘0.008 0.058˘0.009 0.494˘0.595 0.750˘0.369 0.243˘0.121 0.250˘0.122
0.1 1 0.078˘0.014 0.070˘0.024 0.204˘0.152 0.160˘0.181 0.164˘0.050 0.568˘0.409 1.068˘0.135 0.733˘0.028 0.987˘0.280
0.1 2 0.057˘0.017 0.077˘0.007 0.076˘0.005 0.259˘0.355 0.270˘0.042 0.345˘0.042 0.992˘0.161 0.415˘0.016 0.414˘0.016
0.1 3 0.046˘0.015 0.085˘0.017 0.079˘0.018 0.324˘0.466 0.503˘0.503 0.920˘0.298 1.019˘0.109 0.053˘0.047 0.053˘0.047
0.1 4 0.247˘0.583 0.075˘0.019 0.069˘0.016 0.124˘0.119 0.226˘0.135 0.828˘0.382 0.964˘0.146 0.215˘0.079 0.219˘0.078
0.15 1 0.313˘0.449 0.216˘0.153 0.602˘0.713 0.104˘0.022 0.313˘0.027 0.859˘0.422 1.019˘0.071 0.755˘0.032 1.101˘0.257
0.15 2 0.076˘0.019 0.573˘0.679 0.151˘0.062 0.136˘0.026 0.460˘0.304 0.983˘0.460 0.964˘0.065 0.425˘0.015 0.424˘0.014
0.15 3 0.181˘0.347 0.189˘0.165 0.102˘0.024 0.107˘0.025 0.524˘0.527 0.787˘0.145 0.979˘0.105 0.057˘0.045 0.057˘0.045
0.15 4 0.075˘0.032 0.104˘0.030 0.096˘0.020 0.088˘0.024 0.929˘0.522 0.947˘0.460 1.019˘0.060 0.215˘0.077 0.220˘0.078
0.2 1 0.131˘0.026 0.247˘0.203 0.612˘0.375 0.125˘0.034 0.835˘0.435 0.876˘0.140 1.087˘0.058 0.749˘0.027 0.976˘0.267
0.2 2 0.094˘0.018 0.451˘0.332 0.225˘0.109 0.433˘0.506 0.609˘0.234 0.967˘0.272 1.005˘0.038 0.424˘0.017 0.424˘0.014
0.2 3 0.087˘0.037 0.133˘0.025 0.130˘0.028 0.132˘0.030 0.964˘0.649 0.889˘0.211 1.020˘0.053 0.109˘0.092 0.110˘0.093
0.2 4 0.077˘0.023 0.123˘0.029 0.126˘0.025 0.103˘0.027 0.724˘0.484 0.911˘0.217 0.999˘0.031 0.215˘0.076 0.221˘0.077
0.25 1 0.197˘0.066 0.223˘0.101 0.337˘0.255 0.478˘0.418 0.656˘0.188 0.978˘0.133 1.008˘0.032 0.760˘0.022 0.974˘0.263
0.25 2 0.122˘0.034 0.494˘0.399 0.393˘0.219 0.546˘0.701 0.912˘0.215 0.895˘0.061 1.030˘0.025 0.425˘0.017 0.425˘0.014
0.25 3 0.260˘0.397 0.281˘0.215 0.230˘0.065 0.157˘0.038 1.193˘0.429 1.085˘0.153 1.009˘0.052 0.067˘0.041 0.067˘0.041
0.25 4 0.134˘0.109 0.513˘0.662 0.188˘0.047 0.288˘0.343 0.612˘0.174 0.958˘0.147 1.042˘0.048 0.217˘0.074 0.222˘0.076

Table 3: Average MSE values (plus/minus one standard deviation) for the real-world experiments
on the PACM point cloud over ten runs. The best is marked in bold red while the second best is in
underline blue.

η option GNNSync Spectral Spectral RN GPM TranSync CEMP GCW CEMP MST TAS Trivial

0 1 0.010˘0.013 -0.000˘0.000 -0.000˘0.000 -0.000˘0.000 -0.000˘0.000 -0.000˘0.000 -0.000˘0.000 2.249˘0.128 2.468˘0.139
0 2 0.001˘0.001 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 1.640˘0.041 1.565˘0.042
0 3 0.002˘0.002 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 1.221˘0.779 1.160˘0.783
0 4 0.001˘0.001 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 1.196˘0.430 1.176˘0.426
0.05 1 0.015˘0.011 0.003˘0.000 0.003˘0.001 0.003˘0.000 0.010˘0.004 0.039˘0.008 0.202˘0.093 2.246˘0.129 2.468˘0.139
0.05 2 0.004˘0.001 0.003˘0.000 0.002˘0.000 0.002˘0.000 0.010˘0.003 0.024˘0.016 0.885˘1.157 1.611˘0.057 1.543˘0.051
0.05 3 0.004˘0.002 0.003˘0.000 0.003˘0.000 0.003˘0.000 0.009˘0.004 0.057˘0.058 0.528˘0.496 1.218˘0.777 1.160˘0.783
0.05 4 0.003˘0.001 0.003˘0.000 0.003˘0.000 0.003˘0.000 0.011˘0.012 0.177˘0.206 0.718˘0.292 1.006˘0.246 0.987˘0.253
0.1 1 0.015˘0.005 0.012˘0.004 0.012˘0.004 0.012˘0.004 0.049˘0.014 0.187˘0.107 1.580˘0.642 2.122˘0.150 2.346˘0.135
0.1 2 0.010˘0.001 0.011˘0.001 0.010˘0.001 0.010˘0.001 0.044˘0.011 0.145˘0.031 1.599˘0.459 1.631˘0.036 1.565˘0.042
0.1 3 0.012˘0.003 0.010˘0.001 0.010˘0.001 0.010˘0.001 0.055˘0.025 0.298˘0.377 1.394˘0.659 1.213˘0.775 1.160˘0.783
0.1 4 0.010˘0.001 0.011˘0.001 0.010˘0.001 0.010˘0.001 0.067˘0.052 0.271˘0.148 1.934˘0.656 1.191˘0.431 1.176˘0.426
0.15 1 0.032˘0.009 0.029˘0.012 0.028˘0.011 0.028˘0.012 0.136˘0.088 0.380˘0.192 2.009˘0.657 2.262˘0.136 2.468˘0.139
0.15 2 0.022˘0.002 0.022˘0.002 0.020˘0.002 0.021˘0.002 0.109˘0.034 0.522˘0.528 2.927˘0.254 1.587˘0.064 1.530˘0.057
0.15 3 0.021˘0.005 0.020˘0.004 0.019˘0.004 0.019˘0.004 0.107˘0.035 0.523˘0.416 2.970˘0.502 0.570˘0.468 0.524˘0.446
0.15 4 0.020˘0.002 0.022˘0.001 0.020˘0.001 0.020˘0.001 0.091˘0.038 0.567˘0.324 2.869˘0.430 1.185˘0.427 1.176˘0.426
0.2 1 0.050˘0.012 0.053˘0.019 0.051˘0.018 0.051˘0.019 0.236˘0.117 0.546˘0.167 2.894˘0.312 2.288˘0.139 2.468˘0.139
0.2 2 0.037˘0.003 0.039˘0.006 0.037˘0.005 0.038˘0.006 0.250˘0.109 0.826˘0.410 2.982˘0.595 1.610˘0.041 1.565˘0.042
0.2 3 0.032˘0.006 0.032˘0.004 0.030˘0.003 0.030˘0.004 0.157˘0.045 0.872˘0.368 3.330˘0.284 1.180˘1.161 1.166˘1.170
0.2 4 0.030˘0.002 0.034˘0.002 0.032˘0.002 0.031˘0.002 0.191˘0.084 0.894˘0.220 3.312˘0.295 0.998˘0.246 0.987˘0.253
0.25 1 0.069˘0.019 0.082˘0.026 0.078˘0.025 0.081˘0.028 0.389˘0.185 1.028˘0.224 3.513˘0.350 2.318˘0.140 2.468˘0.139
0.25 2 0.054˘0.005 0.059˘0.010 0.056˘0.009 0.057˘0.011 0.454˘0.386 0.955˘0.126 3.586˘0.224 1.605˘0.040 1.565˘0.042
0.25 3 0.050˘0.013 0.051˘0.009 0.047˘0.008 0.049˘0.009 0.341˘0.105 0.942˘0.049 3.469˘0.164 1.475˘1.071 1.460˘1.084
0.25 4 0.047˘0.005 0.053˘0.003 0.050˘0.004 0.050˘0.003 0.359˘0.176 1.179˘0.442 3.238˘0.333 1.181˘0.425 1.176˘0.426
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Table 4: Average ANE values (plus/minus one standard deviation) for the real-world experiments
on the PACM point cloud over ten runs. The best is marked in bold red while the second best is in
underline blue.

η option GNNSync Spectral Spectral RN GPM TranSync CEMP GCW CEMP MST TAS Trivial

0 1 0.118˘0.093 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 1.357˘0.080 1.655˘0.426
0 2 0.051˘0.031 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.870˘0.029 0.785˘0.020
0 3 0.048˘0.034 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.645˘0.396 0.597˘0.390
0 4 0.038˘0.024 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.000˘0.000 0.687˘0.236 0.631˘0.223
0.05 1 0.139˘0.079 0.722˘1.382 0.088˘0.120 0.029˘0.009 0.093˘0.042 0.154˘0.066 0.964˘1.353 1.347˘0.082 1.655˘0.426
0.05 2 0.055˘0.019 0.671˘1.288 0.022˘0.003 0.024˘0.005 0.102˘0.048 0.121˘0.093 0.692˘0.687 0.869˘0.043 0.805˘0.045
0.05 3 0.061˘0.031 0.029˘0.007 0.026˘0.007 0.028˘0.007 0.062˘0.017 0.823˘1.317 0.588˘0.310 0.640˘0.393 0.597˘0.389
0.05 4 0.046˘0.021 0.032˘0.007 0.030˘0.006 0.031˘0.007 0.068˘0.039 0.291˘0.253 0.826˘0.425 0.699˘0.256 0.671˘0.279
0.1 1 0.116˘0.037 0.072˘0.039 0.074˘0.039 0.661˘1.159 0.220˘0.066 0.896˘1.294 1.326˘0.710 1.320˘0.094 1.654˘0.433
0.1 2 0.068˘0.021 0.197˘0.275 0.053˘0.009 0.088˘0.063 0.210˘0.041 1.057˘1.368 1.499˘0.537 0.851˘0.018 0.785˘0.020
0.1 3 0.077˘0.039 0.144˘0.168 0.158˘0.216 0.055˘0.016 0.196˘0.070 0.401˘0.320 1.470˘0.907 0.636˘0.391 0.597˘0.389
0.1 4 0.057˘0.014 0.063˘0.011 0.056˘0.014 0.060˘0.013 0.270˘0.185 0.639˘0.383 1.419˘0.437 0.683˘0.245 0.632˘0.223
0.15 1 0.163˘0.063 0.228˘0.178 0.159˘0.064 0.138˘0.060 0.301˘0.235 0.511˘0.346 1.313˘0.653 1.357˘0.084 1.655˘0.426
0.15 2 0.085˘0.020 0.078˘0.017 0.076˘0.015 0.349˘0.382 0.232˘0.078 0.739˘0.438 2.096˘0.323 0.844˘0.043 0.768˘0.032
0.15 3 0.095˘0.039 0.738˘1.340 0.076˘0.031 0.079˘0.032 0.239˘0.061 0.903˘1.036 1.803˘0.217 0.322˘0.241 0.298˘0.226
0.15 4 0.079˘0.020 0.094˘0.016 0.086˘0.019 0.090˘0.017 0.366˘0.240 1.125˘1.250 1.775˘0.338 0.670˘0.237 0.632˘0.223
0.2 1 0.189˘0.063 0.196˘0.068 0.199˘0.069 0.193˘0.071 0.937˘1.219 1.528˘0.954 2.331˘0.262 1.378˘0.085 1.655˘0.426
0.2 2 0.102˘0.029 0.111˘0.028 0.110˘0.031 0.265˘0.313 0.402˘0.239 1.202˘0.789 1.909˘0.278 0.840˘0.027 0.785˘0.020
0.2 3 0.097˘0.036 0.846˘1.507 0.526˘0.873 0.169˘0.173 0.336˘0.124 0.829˘0.338 1.852˘0.125 0.633˘0.591 0.635˘0.610
0.2 4 0.096˘0.017 0.116˘0.020 0.807˘0.855 0.104˘0.022 0.398˘0.247 1.059˘0.303 1.952˘0.435 0.690˘0.270 0.672˘0.279
0.25 1 0.290˘0.277 0.254˘0.074 0.252˘0.075 0.247˘0.081 0.465˘0.140 1.505˘0.824 2.016˘0.194 1.391˘0.093 1.655˘0.426
0.25 2 0.109˘0.029 0.142˘0.051 0.129˘0.040 0.372˘0.494 0.907˘1.221 1.312˘0.891 2.087˘0.138 0.838˘0.028 0.785˘0.020
0.25 3 0.311˘0.615 0.557˘0.872 0.407˘0.586 0.313˘0.268 0.871˘0.806 1.713˘0.728 1.941˘0.078 0.779˘0.534 0.782˘0.560
0.25 4 0.109˘0.022 0.140˘0.035 0.888˘0.965 0.131˘0.035 0.427˘0.117 1.248˘0.622 1.923˘0.205 0.648˘0.235 0.633˘0.222

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

η

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
S

E

k1EROp5N360stylegamma

(a) ERO1pp “ 0.05q

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

η

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
S

E

k1EROp5N360stylemulti normal1

(b) ERO2pp “ 0.05q

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

η

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
S

E

k1EROp5N360stylemulti normal0

(c) ERO3pp “ 0.05q

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

η

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
S

E

k1EROp5N360styleblock normal6

(d) ERO4pp “ 0.05q

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

η

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
S

E

k1EROp10N360stylegamma

(e) ERO1pp “ 0.1q

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

η

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
S

E

k1EROp10N360stylemulti normal1

(f) ERO2pp “ 0.1q

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

η

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
S

E

k1EROp10N360stylemulti normal0

(g) ERO3pp “ 0.1q

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

η

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
S

E

k1EROp10N360styleblock normal6

(h) ERO4pp “ 0.1q

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

η

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
S

E

k1EROp15N360stylegamma

(i) ERO1pp “ 0.15q

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

η

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
S

E

k1EROp15N360stylemulti normal1

(j) ERO2pp “ 0.15q

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

η

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
S

E

k1EROp15N360stylemulti normal0

(k) ERO3pp “ 0.15q

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

η

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
S

E

k1EROp15N360styleblock normal6

(l) ERO4pp “ 0.15q

Figure 6: MSE performance comparison on GNNSync against baselines on angular synchronization
(k “ 1) for ERO models. p is the network density and η is the noise level. Error bars indicate one
standard deviation.
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Figure 7: MSE performance comparison on GNNSync against baselines on angular synchronization
(k “ 1) for BAO models. p is the network density and η is the noise level. Error bars indicate one
standard deviation.
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Figure 8: MSE performance comparison on GNNSync against baselines on angular synchronization
(k “ 1) for RGGO models. p is the network density and η is the noise level. Error bars indicate one
standard deviation.
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Figure 9: MSE performance comparison on GNNSync against baselines on k´synchronization with
k “ 2 for ERO models. p is the network density and η is the noise level. Error bars indicate one
standard deviation.
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Figure 10: MSE performance comparison on GNNSync against baselines on k´synchronization with
k “ 2 for BAO models. p is the network density and η is the noise level. Error bars indicate one
standard deviation.
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Figure 11: MSE performance comparison on GNNSync against baselines on k´synchronization with
k “ 2 for RGGO models. p is the network density and η is the noise level. Error bars indicate one
standard deviation.
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Figure 12: MSE performance comparison on GNNSync against baselines on k´synchronization with
k “ 3 for ERO models. p is the network density and η is the noise level. p is the network density and
η is the noise level. Error bars indicate one standard deviation.
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Figure 13: MSE performance comparison on GNNSync against baselines on k´synchronization with
k “ 3 for BAO models. p is the network density and η is the noise level. Error bars indicate one
standard deviation.
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Figure 14: MSE performance comparison on GNNSync against baselines on k´synchronization with
k “ 3 for RGGO models. p is the network density and η is the noise level. Error bars indicate one
standard deviation.
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Figure 15: MSE performance comparison on GNNSync against baselines on k´synchronization with
k “ 4 for ERO models. p is the network density and η is the noise level. Error bars indicate one
standard deviation.
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Figure 16: MSE performance comparison on GNNSync against baselines on k´synchronization with
k “ 4 for BAO models. p is the network density and η is the noise level. Error bars indicate one
standard deviation.
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Figure 17: MSE performance comparison on GNNSync against baselines on k´synchronization with
k “ 4 for RGGO models. p is the network density and η is the noise level. Error bars indicate one
standard deviation.
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(a) GNNSync, η “ 0 (b) Spectral, η “ 0 (c) Spectral RN, η “ 0 (d) GPM, η “ 0

(e) TranSync, η “ 0 (f) CEMP GCW, η “ 0 (g) CEMP MST, η “ 0 (h) TAS, η “ 0

(i) GNNSync, η “ 0.05 (j) Spectral, η “ 0.05 (k) Spectral RN, η “ 0.05 (l) GPM, η “ 0.05

(m) TranSync, η “ 0.05 (n) CEMP GCW, η “ 0.05 (o) CEMP MST, η “ 0.05 (p) TAS, η “ 0.05

(q) GNNSync, η “ 0.1 (r) Spectral, η “ 0.1 (s) Spectral RN, η “ 0.1 (t) GPM, η “ 0.1

(u) TranSync, η “ 0.1 (v) CEMP GCW, η “ 0.1 (w) CEMP MST, η “ 0.1 (x) TAS, η “ 0.1

Figure 18: Result visualization for the Sensor Network Localization task on the U.S. map using
option “1” as ground-truth angles for low-noise input data. Red dots indicate ground-truth locations
and blue dots are estimated city locations.
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(a) GNNSync, η “ 0.15 (b) Spectral, η “ 0.15 (c) Spectral RN, η “ 0.15 (d) GPM, η “ 0.15

(e) TranSync, η “ 0.15 (f) CEMP GCW, η “ 0.15 (g) CEMP MST, η “ 0.15 (h) TAS, η “ 0.15

(i) GNNSync, η “ 0.2 (j) Spectral, η “ 0.2 (k) Spectral RN, η “ 0.2 (l) GPM, η “ 0.2

(m) TranSync, η “ 0.2 (n) CEMP GCW, η “ 0.2 (o) CEMP MST, η “ 0.2 (p) TAS, η “ 0.2

(q) GNNSync, η “ 0.25 (r) Spectral, η “ 0.25 (s) Spectral RN, η “ 0.25 (t) GPM, η “ 0.25

(u) TranSync, η “ 0.25 (v) CEMP GCW, η “ 0.25 (w) CEMP MST, η “ 0.25 (x) TAS, η “ 0.25

Figure 19: Result visualization for the Sensor Network Localization task on the U.S. map using
option “1” as ground-truth angles for high-noise input data. Red dots indicate ground-truth locations
and blue dots are estimated city locations.
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(a) GNNSync, η “ 0 (b) Spectral, η “ 0 (c) Spectral RN, η “ 0 (d) GPM, η “ 0

(e) TranSync, η “ 0 (f) CEMP GCW, η “ 0 (g) CEMP MST, η “ 0 (h) TAS, η “ 0

(i) GNNSync, η “ 0.05 (j) Spectral, η “ 0.05 (k) Spectral RN, η “ 0.05 (l) GPM, η “ 0.05

(m) TranSync, η “ 0.05 (n) CEMP GCW, η “ 0.05 (o) CEMP MST, η “ 0.05 (p) TAS, η “ 0.05

(q) GNNSync, η “ 0.1 (r) Spectral, η “ 0.1 (s) Spectral RN, η “ 0.1 (t) GPM, η “ 0.1

(u) TranSync, η “ 0.1 (v) CEMP GCW, η “ 0.1 (w) CEMP MST, η “ 0.1 (x) TAS, η “ 0.1

Figure 20: Result visualization for the Sensor Network Localization task on the U.S. map using
option “2” as ground-truth angles for low-noise input data. Red dots indicate ground-truth locations
and blue dots are estimated city locations.
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(a) GNNSync, η “ 0.15 (b) Spectral, η “ 0.15 (c) Spectral RN, η “ 0.15 (d) GPM, η “ 0.15

(e) TranSync, η “ 0.15 (f) CEMP GCW, η “ 0.15 (g) CEMP MST, η “ 0.15 (h) TAS, η “ 0.15

(i) GNNSync, η “ 0.2 (j) Spectral, η “ 0.2 (k) Spectral RN, η “ 0.2 (l) GPM, η “ 0.2

(m) TranSync, η “ 0.2 (n) CEMP GCW, η “ 0.2 (o) CEMP MST, η “ 0.2 (p) TAS, η “ 0.2

(q) GNNSync, η “ 0.25 (r) Spectral, η “ 0.25 (s) Spectral RN, η “ 0.25 (t) GPM, η “ 0.25

(u) TranSync, η “ 0.25 (v) CEMP GCW, η “ 0.25 (w) CEMP MST, η “ 0.25 (x) TAS, η “ 0.25

Figure 21: Result visualization for the Sensor Network Localization task on the U.S. map using
option “2” as ground-truth angles for high-noise input data. Red dots indicate ground-truth locations
and blue dots are estimated city locations.
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(a) GNNSync, η “ 0 (b) Spectral, η “ 0 (c) Spectral RN, η “ 0 (d) GPM, η “ 0

(e) TranSync, η “ 0 (f) CEMP GCW, η “ 0 (g) CEMP MST, η “ 0 (h) TAS, η “ 0

(i) GNNSync, η “ 0.05 (j) Spectral, η “ 0.05 (k) Spectral RN, η “ 0.05 (l) GPM, η “ 0.05

(m) TranSync, η “ 0.05 (n) CEMP GCW, η “ 0.05 (o) CEMP MST, η “ 0.05 (p) TAS, η “ 0.05

(q) GNNSync, η “ 0.1 (r) Spectral, η “ 0.1 (s) Spectral RN, η “ 0.1 (t) GPM, η “ 0.1

(u) TranSync, η “ 0.1 (v) CEMP GCW, η “ 0.1 (w) CEMP MST, η “ 0.1 (x) TAS, η “ 0.1

Figure 22: Result visualization for the Sensor Network Localization task on the U.S. map using
option “3” as ground-truth angles for low-noise input data. Red dots indicate ground-truth locations
and blue dots are estimated city locations.
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(a) GNNSync, η “ 0.15 (b) Spectral, η “ 0.15 (c) Spectral RN, η “ 0.15 (d) GPM, η “ 0.15

(e) TranSync, η “ 0.15 (f) CEMP GCW, η “ 0.15 (g) CEMP MST, η “ 0.15 (h) TAS, η “ 0.15

(i) GNNSync, η “ 0.2 (j) Spectral, η “ 0.2 (k) Spectral RN, η “ 0.2 (l) GPM, η “ 0.2

(m) TranSync, η “ 0.2 (n) CEMP GCW, η “ 0.2 (o) CEMP MST, η “ 0.2 (p) TAS, η “ 0.2

(q) GNNSync, η “ 0.25 (r) Spectral, η “ 0.25 (s) Spectral RN, η “ 0.25 (t) GPM, η “ 0.25

(u) TranSync, η “ 0.25 (v) CEMP GCW, η “ 0.25 (w) CEMP MST, η “ 0.25 (x) TAS, η “ 0.25

Figure 23: Result visualization for the Sensor Network Localization task on the U.S. map using
option “3” as ground-truth angles for high-noise input data. Red dots indicate ground-truth locations
and blue dots are estimated city locations.
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(a) GNNSync, η “ 0 (b) Spectral, η “ 0 (c) Spectral RN, η “ 0 (d) GPM, η “ 0

(e) TranSync, η “ 0 (f) CEMP GCW, η “ 0 (g) CEMP MST, η “ 0 (h) TAS, η “ 0

(i) GNNSync, η “ 0.05 (j) Spectral, η “ 0.05 (k) Spectral RN, η “ 0.05 (l) GPM, η “ 0.05

(m) TranSync, η “ 0.05 (n) CEMP GCW, η “ 0.05 (o) CEMP MST, η “ 0.05 (p) TAS, η “ 0.05

(q) GNNSync, η “ 0.1 (r) Spectral, η “ 0.1 (s) Spectral RN, η “ 0.1 (t) GPM, η “ 0.1

(u) TranSync, η “ 0.1 (v) CEMP GCW, η “ 0.1 (w) CEMP MST, η “ 0.1 (x) TAS, η “ 0.1

Figure 24: Result visualization for the Sensor Network Localization task on the U.S. map using
option “4” as ground-truth angles for low-noise input data. Red dots indicate ground-truth locations
and blue dots are estimated city locations.
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(a) GNNSync, η “ 0.15 (b) Spectral, η “ 0.15 (c) Spectral RN, η “ 0.15 (d) GPM, η “ 0.15

(e) TranSync, η “ 0.15 (f) CEMP GCW, η “ 0.15 (g) CEMP MST, η “ 0.15 (h) TAS, η “ 0.15

(i) GNNSync, η “ 0.2 (j) Spectral, η “ 0.2 (k) Spectral RN, η “ 0.2 (l) GPM, η “ 0.2

(m) TranSync, η “ 0.2 (n) CEMP GCW, η “ 0.2 (o) CEMP MST, η “ 0.2 (p) TAS, η “ 0.2

(q) GNNSync, η “ 0.25 (r) Spectral, η “ 0.25 (s) Spectral RN, η “ 0.25 (t) GPM, η “ 0.25

(u) TranSync, η “ 0.25 (v) CEMP GCW, η “ 0.25 (w) CEMP MST, η “ 0.25 (x) TAS, η “ 0.25

Figure 25: Result visualization for the Sensor Network Localization task on the U.S. map using
option “4” as ground-truth angles for high-noise input data. Red dots indicate ground-truth locations
and blue dots are estimated city locations.
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(a) GNNSync, η “ 0 (b) Spectral, η “ 0 (c) Spectral RN, η “ 0 (d) GPM, η “ 0

(e) TranSync, η “ 0 (f) CEMP GCW, η “ 0 (g) CEMP MST, η “ 0 (h) TAS, η “ 0

(i) GNNSync, η “ 0.05 (j) Spectral, η “ 0.05 (k) Spectral RN, η “ 0.05 (l) GPM, η “ 0.05

(m) TranSync, η “ 0.05 (n) CEMP GCW, η “ 0.05 (o) CEMP MST, η “ 0.05 (p) TAS, η “ 0.05

(q) GNNSync, η “ 0.1 (r) Spectral, η “ 0.1 (s) Spectral RN, η “ 0.1 (t) GPM, η “ 0.1

(u) TranSync, η “ 0.1 (v) CEMP GCW, η “ 0.1 (w) CEMP MST, η “ 0.1 (x) TAS, η “ 0.1

Figure 26: Result visualization for the Sensor Network Localization task on the PACM point cloud
using option “1” as ground-truth angles for low-noise input data. Red dots indicate ground-truth
locations and blue dots are estimated city locations.
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(a) GNNSync, η “ 0.15 (b) Spectral, η “ 0.15 (c) Spectral RN, η “ 0.15 (d) GPM, η “ 0.15

(e) TranSync, η “ 0.15 (f) CEMP GCW, η “ 0.15 (g) CEMP MST, η “ 0.15 (h) TAS, η “ 0.15

(i) GNNSync, η “ 0.2 (j) Spectral, η “ 0.2 (k) Spectral RN, η “ 0.2 (l) GPM, η “ 0.2

(m) TranSync, η “ 0.2 (n) CEMP GCW, η “ 0.2 (o) CEMP MST, η “ 0.2 (p) TAS, η “ 0.2

(q) GNNSync, η “ 0.25 (r) Spectral, η “ 0.25 (s) Spectral RN, η “ 0.25 (t) GPM, η “ 0.25

(u) TranSync, η “ 0.25 (v) CEMP GCW, η “ 0.25 (w) CEMP MST, η “ 0.25 (x) TAS, η “ 0.25

Figure 27: Result visualization for the Sensor Network Localization task on the PACM point cloud
using option “1” as ground-truth angles for high-noise input data. Red dots indicate ground-truth
locations and blue dots are estimated city locations.
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D.2 EXTENDED ABLATION STUDY RESULTS

Ablation study results are reported in Fig. 28 and 29, while the rest are omitted but could lead to
the same conclusion. Note that for k ą 1, we ablation study results are based on using Lcycle as the
training loss function.

Improvements over all possible baselines when taking their output as input features for k “ 1 are
reported in Fig. 30, 31 and 32, where we omit results for η “ 0.9 as in general all methods fall behind
the trivial solution at η “ 0.9. We find that in most cases GNNSync could improve over baselines,
and could do worse often only when all methods fall behind the trivial baseline.

To show the effect of a linear combination of Lcycle and Lupset, we empirically test Lcycle ` τLupset,
with τ varying from 0 to 0.9; see Fig. 33 (the others are omitted but could lead to the same conclusion)
for details. The performance for different choices of τ do not vary significantly, providing further
evidence that it suffices to simply pay attention to either of the two loss functions instead of their
linear combination. The experiments also show that as the problem becomes harder (e.g. as the
noise level increases and the network becomes sparser), a smaller coefficient of Lupset (even zero) is
preferred, which indicates that Lcycle plays a more essential role in the more challenging scenarios.

To assess the effect of fine-tuning (via projected gradient steps) over the baselines, we apply the same
number of projected gradient descent steps as GNNSync to the comparative baselines and report the
performance in Figures 34 and 35. We observe that even when applying these fine-tuning steps, the
baselines are usually beaten by our end-to-end trainable GNNSync pipeline.
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Figure 28: MSE performance comparison on GNNSync variants on angular synchronization (k “ 1)
for ERO models. p is the network density and η is the noise level. Error bars indicate one standard
deviation.
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Figure 29: MSE performance comparison on GNNSync variants on k´synchronization with k “ 2
for ERO models. p is the network density and η is the noise level. Error bars indicate one standard
deviation.
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Figure 30: MSE performance improvement on GNNSync over variants on angular synchronization
(k “ 1) for ERO models. p is the network density and η is the noise level. Error bars indicate one
standard deviation.
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Figure 31: MSE performance improvement on GNNSync over variants on angular synchronization
(k “ 1) for BAO models. p is the network density and η is the noise level. Error bars indicate one
standard deviation.
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Figure 32: MSE performance improvement on GNNSync over variants on angular synchronization
(k “ 1) for RGGO models. p is the network density and η is the noise level. Error bars indicate one
standard deviation.
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Figure 33: MSE comparison on GNNSync variants using as loss τLupset ` Lcycle with different
coefficients τ , on k´synchronization with k “ 2 for ERO models. p is the network density and η is
the noise level. Error bars indicate one standard deviation.
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Figure 34: MSE performance comparison on GNNSync against fine-tuned baselines on angular
synchronization (k “ 1) for ERO models. p is the network density and η is the noise level. Error bars
indicate one standard deviation.
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(k) ERO3pp “ 0.15q
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Figure 35: MSE performance comparison on GNNSync against fine-tuned baselines on
k´synchronization with k “ 2 for ERO models. p is the network density and η is the noise
level. Error bars indicate one standard deviation.
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